KVM: SVM: Use svm_flush_tlb instead of force_new_asid
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114         struct kvm_vcpu vcpu;
115         struct vmcb *vmcb;
116         unsigned long vmcb_pa;
117         struct svm_cpu_data *svm_data;
118         uint64_t asid_generation;
119         uint64_t sysenter_esp;
120         uint64_t sysenter_eip;
121
122         u64 next_rip;
123
124         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125         struct {
126                 u16 fs;
127                 u16 gs;
128                 u16 ldt;
129                 u64 gs_base;
130         } host;
131
132         u32 *msrpm;
133
134         struct nested_state nested;
135
136         bool nmi_singlestep;
137
138         unsigned int3_injected;
139         unsigned long int3_rip;
140         u32 apf_reason;
141 };
142
143 #define MSR_INVALID                     0xffffffffU
144
145 static struct svm_direct_access_msrs {
146         u32 index;   /* Index of the MSR */
147         bool always; /* True if intercept is always on */
148 } direct_access_msrs[] = {
149         { .index = MSR_STAR,                            .always = true  },
150         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
151 #ifdef CONFIG_X86_64
152         { .index = MSR_GS_BASE,                         .always = true  },
153         { .index = MSR_FS_BASE,                         .always = true  },
154         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
155         { .index = MSR_LSTAR,                           .always = true  },
156         { .index = MSR_CSTAR,                           .always = true  },
157         { .index = MSR_SYSCALL_MASK,                    .always = true  },
158 #endif
159         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
160         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
161         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
162         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
163         { .index = MSR_INVALID,                         .always = false },
164 };
165
166 /* enable NPT for AMD64 and X86 with PAE */
167 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
168 static bool npt_enabled = true;
169 #else
170 static bool npt_enabled;
171 #endif
172 static int npt = 1;
173
174 module_param(npt, int, S_IRUGO);
175
176 static int nested = 1;
177 module_param(nested, int, S_IRUGO);
178
179 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
180 static void svm_complete_interrupts(struct vcpu_svm *svm);
181
182 static int nested_svm_exit_handled(struct vcpu_svm *svm);
183 static int nested_svm_intercept(struct vcpu_svm *svm);
184 static int nested_svm_vmexit(struct vcpu_svm *svm);
185 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
186                                       bool has_error_code, u32 error_code);
187
188 enum {
189         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
190                             pause filter count */
191         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
192         VMCB_ASID,       /* ASID */
193         VMCB_INTR,       /* int_ctl, int_vector */
194         VMCB_NPT,        /* npt_en, nCR3, gPAT */
195         VMCB_CR,         /* CR0, CR3, CR4, EFER */
196         VMCB_DR,         /* DR6, DR7 */
197         VMCB_DT,         /* GDT, IDT */
198         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
199         VMCB_CR2,        /* CR2 only */
200         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
201         VMCB_DIRTY_MAX,
202 };
203
204 /* TPR and CR2 are always written before VMRUN */
205 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
206
207 static inline void mark_all_dirty(struct vmcb *vmcb)
208 {
209         vmcb->control.clean = 0;
210 }
211
212 static inline void mark_all_clean(struct vmcb *vmcb)
213 {
214         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
215                                & ~VMCB_ALWAYS_DIRTY_MASK;
216 }
217
218 static inline void mark_dirty(struct vmcb *vmcb, int bit)
219 {
220         vmcb->control.clean &= ~(1 << bit);
221 }
222
223 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
224 {
225         return container_of(vcpu, struct vcpu_svm, vcpu);
226 }
227
228 static void recalc_intercepts(struct vcpu_svm *svm)
229 {
230         struct vmcb_control_area *c, *h;
231         struct nested_state *g;
232
233         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
234
235         if (!is_guest_mode(&svm->vcpu))
236                 return;
237
238         c = &svm->vmcb->control;
239         h = &svm->nested.hsave->control;
240         g = &svm->nested;
241
242         c->intercept_cr = h->intercept_cr | g->intercept_cr;
243         c->intercept_dr = h->intercept_dr | g->intercept_dr;
244         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
245         c->intercept = h->intercept | g->intercept;
246 }
247
248 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
249 {
250         if (is_guest_mode(&svm->vcpu))
251                 return svm->nested.hsave;
252         else
253                 return svm->vmcb;
254 }
255
256 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
257 {
258         struct vmcb *vmcb = get_host_vmcb(svm);
259
260         vmcb->control.intercept_cr |= (1U << bit);
261
262         recalc_intercepts(svm);
263 }
264
265 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
266 {
267         struct vmcb *vmcb = get_host_vmcb(svm);
268
269         vmcb->control.intercept_cr &= ~(1U << bit);
270
271         recalc_intercepts(svm);
272 }
273
274 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
275 {
276         struct vmcb *vmcb = get_host_vmcb(svm);
277
278         return vmcb->control.intercept_cr & (1U << bit);
279 }
280
281 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
282 {
283         struct vmcb *vmcb = get_host_vmcb(svm);
284
285         vmcb->control.intercept_dr |= (1U << bit);
286
287         recalc_intercepts(svm);
288 }
289
290 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
291 {
292         struct vmcb *vmcb = get_host_vmcb(svm);
293
294         vmcb->control.intercept_dr &= ~(1U << bit);
295
296         recalc_intercepts(svm);
297 }
298
299 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
300 {
301         struct vmcb *vmcb = get_host_vmcb(svm);
302
303         vmcb->control.intercept_exceptions |= (1U << bit);
304
305         recalc_intercepts(svm);
306 }
307
308 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_exceptions &= ~(1U << bit);
313
314         recalc_intercepts(svm);
315 }
316
317 static inline void set_intercept(struct vcpu_svm *svm, int bit)
318 {
319         struct vmcb *vmcb = get_host_vmcb(svm);
320
321         vmcb->control.intercept |= (1ULL << bit);
322
323         recalc_intercepts(svm);
324 }
325
326 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
327 {
328         struct vmcb *vmcb = get_host_vmcb(svm);
329
330         vmcb->control.intercept &= ~(1ULL << bit);
331
332         recalc_intercepts(svm);
333 }
334
335 static inline void enable_gif(struct vcpu_svm *svm)
336 {
337         svm->vcpu.arch.hflags |= HF_GIF_MASK;
338 }
339
340 static inline void disable_gif(struct vcpu_svm *svm)
341 {
342         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
343 }
344
345 static inline bool gif_set(struct vcpu_svm *svm)
346 {
347         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
348 }
349
350 static unsigned long iopm_base;
351
352 struct kvm_ldttss_desc {
353         u16 limit0;
354         u16 base0;
355         unsigned base1:8, type:5, dpl:2, p:1;
356         unsigned limit1:4, zero0:3, g:1, base2:8;
357         u32 base3;
358         u32 zero1;
359 } __attribute__((packed));
360
361 struct svm_cpu_data {
362         int cpu;
363
364         u64 asid_generation;
365         u32 max_asid;
366         u32 next_asid;
367         struct kvm_ldttss_desc *tss_desc;
368
369         struct page *save_area;
370 };
371
372 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
373 static uint32_t svm_features;
374
375 struct svm_init_data {
376         int cpu;
377         int r;
378 };
379
380 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
381
382 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
383 #define MSRS_RANGE_SIZE 2048
384 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
385
386 static u32 svm_msrpm_offset(u32 msr)
387 {
388         u32 offset;
389         int i;
390
391         for (i = 0; i < NUM_MSR_MAPS; i++) {
392                 if (msr < msrpm_ranges[i] ||
393                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
394                         continue;
395
396                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
397                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
398
399                 /* Now we have the u8 offset - but need the u32 offset */
400                 return offset / 4;
401         }
402
403         /* MSR not in any range */
404         return MSR_INVALID;
405 }
406
407 #define MAX_INST_SIZE 15
408
409 static inline void clgi(void)
410 {
411         asm volatile (__ex(SVM_CLGI));
412 }
413
414 static inline void stgi(void)
415 {
416         asm volatile (__ex(SVM_STGI));
417 }
418
419 static inline void invlpga(unsigned long addr, u32 asid)
420 {
421         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
422 }
423
424 static int get_npt_level(void)
425 {
426 #ifdef CONFIG_X86_64
427         return PT64_ROOT_LEVEL;
428 #else
429         return PT32E_ROOT_LEVEL;
430 #endif
431 }
432
433 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
434 {
435         vcpu->arch.efer = efer;
436         if (!npt_enabled && !(efer & EFER_LMA))
437                 efer &= ~EFER_LME;
438
439         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
440         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
441 }
442
443 static int is_external_interrupt(u32 info)
444 {
445         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
446         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
447 }
448
449 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
450 {
451         struct vcpu_svm *svm = to_svm(vcpu);
452         u32 ret = 0;
453
454         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
455                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
456         return ret & mask;
457 }
458
459 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
460 {
461         struct vcpu_svm *svm = to_svm(vcpu);
462
463         if (mask == 0)
464                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
465         else
466                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
467
468 }
469
470 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
471 {
472         struct vcpu_svm *svm = to_svm(vcpu);
473
474         if (svm->vmcb->control.next_rip != 0)
475                 svm->next_rip = svm->vmcb->control.next_rip;
476
477         if (!svm->next_rip) {
478                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
479                                 EMULATE_DONE)
480                         printk(KERN_DEBUG "%s: NOP\n", __func__);
481                 return;
482         }
483         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
484                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
485                        __func__, kvm_rip_read(vcpu), svm->next_rip);
486
487         kvm_rip_write(vcpu, svm->next_rip);
488         svm_set_interrupt_shadow(vcpu, 0);
489 }
490
491 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
492                                 bool has_error_code, u32 error_code,
493                                 bool reinject)
494 {
495         struct vcpu_svm *svm = to_svm(vcpu);
496
497         /*
498          * If we are within a nested VM we'd better #VMEXIT and let the guest
499          * handle the exception
500          */
501         if (!reinject &&
502             nested_svm_check_exception(svm, nr, has_error_code, error_code))
503                 return;
504
505         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
506                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
507
508                 /*
509                  * For guest debugging where we have to reinject #BP if some
510                  * INT3 is guest-owned:
511                  * Emulate nRIP by moving RIP forward. Will fail if injection
512                  * raises a fault that is not intercepted. Still better than
513                  * failing in all cases.
514                  */
515                 skip_emulated_instruction(&svm->vcpu);
516                 rip = kvm_rip_read(&svm->vcpu);
517                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
518                 svm->int3_injected = rip - old_rip;
519         }
520
521         svm->vmcb->control.event_inj = nr
522                 | SVM_EVTINJ_VALID
523                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
524                 | SVM_EVTINJ_TYPE_EXEPT;
525         svm->vmcb->control.event_inj_err = error_code;
526 }
527
528 static void svm_init_erratum_383(void)
529 {
530         u32 low, high;
531         int err;
532         u64 val;
533
534         if (!cpu_has_amd_erratum(amd_erratum_383))
535                 return;
536
537         /* Use _safe variants to not break nested virtualization */
538         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
539         if (err)
540                 return;
541
542         val |= (1ULL << 47);
543
544         low  = lower_32_bits(val);
545         high = upper_32_bits(val);
546
547         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
548
549         erratum_383_found = true;
550 }
551
552 static int has_svm(void)
553 {
554         const char *msg;
555
556         if (!cpu_has_svm(&msg)) {
557                 printk(KERN_INFO "has_svm: %s\n", msg);
558                 return 0;
559         }
560
561         return 1;
562 }
563
564 static void svm_hardware_disable(void *garbage)
565 {
566         cpu_svm_disable();
567 }
568
569 static int svm_hardware_enable(void *garbage)
570 {
571
572         struct svm_cpu_data *sd;
573         uint64_t efer;
574         struct desc_ptr gdt_descr;
575         struct desc_struct *gdt;
576         int me = raw_smp_processor_id();
577
578         rdmsrl(MSR_EFER, efer);
579         if (efer & EFER_SVME)
580                 return -EBUSY;
581
582         if (!has_svm()) {
583                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
584                        me);
585                 return -EINVAL;
586         }
587         sd = per_cpu(svm_data, me);
588
589         if (!sd) {
590                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
591                        me);
592                 return -EINVAL;
593         }
594
595         sd->asid_generation = 1;
596         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
597         sd->next_asid = sd->max_asid + 1;
598
599         native_store_gdt(&gdt_descr);
600         gdt = (struct desc_struct *)gdt_descr.address;
601         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
602
603         wrmsrl(MSR_EFER, efer | EFER_SVME);
604
605         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
606
607         svm_init_erratum_383();
608
609         return 0;
610 }
611
612 static void svm_cpu_uninit(int cpu)
613 {
614         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
615
616         if (!sd)
617                 return;
618
619         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
620         __free_page(sd->save_area);
621         kfree(sd);
622 }
623
624 static int svm_cpu_init(int cpu)
625 {
626         struct svm_cpu_data *sd;
627         int r;
628
629         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
630         if (!sd)
631                 return -ENOMEM;
632         sd->cpu = cpu;
633         sd->save_area = alloc_page(GFP_KERNEL);
634         r = -ENOMEM;
635         if (!sd->save_area)
636                 goto err_1;
637
638         per_cpu(svm_data, cpu) = sd;
639
640         return 0;
641
642 err_1:
643         kfree(sd);
644         return r;
645
646 }
647
648 static bool valid_msr_intercept(u32 index)
649 {
650         int i;
651
652         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
653                 if (direct_access_msrs[i].index == index)
654                         return true;
655
656         return false;
657 }
658
659 static void set_msr_interception(u32 *msrpm, unsigned msr,
660                                  int read, int write)
661 {
662         u8 bit_read, bit_write;
663         unsigned long tmp;
664         u32 offset;
665
666         /*
667          * If this warning triggers extend the direct_access_msrs list at the
668          * beginning of the file
669          */
670         WARN_ON(!valid_msr_intercept(msr));
671
672         offset    = svm_msrpm_offset(msr);
673         bit_read  = 2 * (msr & 0x0f);
674         bit_write = 2 * (msr & 0x0f) + 1;
675         tmp       = msrpm[offset];
676
677         BUG_ON(offset == MSR_INVALID);
678
679         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
680         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
681
682         msrpm[offset] = tmp;
683 }
684
685 static void svm_vcpu_init_msrpm(u32 *msrpm)
686 {
687         int i;
688
689         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
690
691         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
692                 if (!direct_access_msrs[i].always)
693                         continue;
694
695                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
696         }
697 }
698
699 static void add_msr_offset(u32 offset)
700 {
701         int i;
702
703         for (i = 0; i < MSRPM_OFFSETS; ++i) {
704
705                 /* Offset already in list? */
706                 if (msrpm_offsets[i] == offset)
707                         return;
708
709                 /* Slot used by another offset? */
710                 if (msrpm_offsets[i] != MSR_INVALID)
711                         continue;
712
713                 /* Add offset to list */
714                 msrpm_offsets[i] = offset;
715
716                 return;
717         }
718
719         /*
720          * If this BUG triggers the msrpm_offsets table has an overflow. Just
721          * increase MSRPM_OFFSETS in this case.
722          */
723         BUG();
724 }
725
726 static void init_msrpm_offsets(void)
727 {
728         int i;
729
730         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
731
732         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
733                 u32 offset;
734
735                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
736                 BUG_ON(offset == MSR_INVALID);
737
738                 add_msr_offset(offset);
739         }
740 }
741
742 static void svm_enable_lbrv(struct vcpu_svm *svm)
743 {
744         u32 *msrpm = svm->msrpm;
745
746         svm->vmcb->control.lbr_ctl = 1;
747         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
748         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
749         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
750         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
751 }
752
753 static void svm_disable_lbrv(struct vcpu_svm *svm)
754 {
755         u32 *msrpm = svm->msrpm;
756
757         svm->vmcb->control.lbr_ctl = 0;
758         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
759         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
760         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
761         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
762 }
763
764 static __init int svm_hardware_setup(void)
765 {
766         int cpu;
767         struct page *iopm_pages;
768         void *iopm_va;
769         int r;
770
771         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
772
773         if (!iopm_pages)
774                 return -ENOMEM;
775
776         iopm_va = page_address(iopm_pages);
777         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
778         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
779
780         init_msrpm_offsets();
781
782         if (boot_cpu_has(X86_FEATURE_NX))
783                 kvm_enable_efer_bits(EFER_NX);
784
785         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
786                 kvm_enable_efer_bits(EFER_FFXSR);
787
788         if (nested) {
789                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
790                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
791         }
792
793         for_each_possible_cpu(cpu) {
794                 r = svm_cpu_init(cpu);
795                 if (r)
796                         goto err;
797         }
798
799         svm_features = cpuid_edx(SVM_CPUID_FUNC);
800
801         if (!boot_cpu_has(X86_FEATURE_NPT))
802                 npt_enabled = false;
803
804         if (npt_enabled && !npt) {
805                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
806                 npt_enabled = false;
807         }
808
809         if (npt_enabled) {
810                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
811                 kvm_enable_tdp();
812         } else
813                 kvm_disable_tdp();
814
815         return 0;
816
817 err:
818         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
819         iopm_base = 0;
820         return r;
821 }
822
823 static __exit void svm_hardware_unsetup(void)
824 {
825         int cpu;
826
827         for_each_possible_cpu(cpu)
828                 svm_cpu_uninit(cpu);
829
830         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
831         iopm_base = 0;
832 }
833
834 static void init_seg(struct vmcb_seg *seg)
835 {
836         seg->selector = 0;
837         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
838                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
839         seg->limit = 0xffff;
840         seg->base = 0;
841 }
842
843 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
844 {
845         seg->selector = 0;
846         seg->attrib = SVM_SELECTOR_P_MASK | type;
847         seg->limit = 0xffff;
848         seg->base = 0;
849 }
850
851 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
852 {
853         struct vcpu_svm *svm = to_svm(vcpu);
854         u64 g_tsc_offset = 0;
855
856         if (is_guest_mode(vcpu)) {
857                 g_tsc_offset = svm->vmcb->control.tsc_offset -
858                                svm->nested.hsave->control.tsc_offset;
859                 svm->nested.hsave->control.tsc_offset = offset;
860         }
861
862         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
863
864         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
865 }
866
867 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
868 {
869         struct vcpu_svm *svm = to_svm(vcpu);
870
871         svm->vmcb->control.tsc_offset += adjustment;
872         if (is_guest_mode(vcpu))
873                 svm->nested.hsave->control.tsc_offset += adjustment;
874         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
875 }
876
877 static void init_vmcb(struct vcpu_svm *svm)
878 {
879         struct vmcb_control_area *control = &svm->vmcb->control;
880         struct vmcb_save_area *save = &svm->vmcb->save;
881
882         svm->vcpu.fpu_active = 1;
883         svm->vcpu.arch.hflags = 0;
884
885         set_cr_intercept(svm, INTERCEPT_CR0_READ);
886         set_cr_intercept(svm, INTERCEPT_CR3_READ);
887         set_cr_intercept(svm, INTERCEPT_CR4_READ);
888         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
889         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
890         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
891         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
892
893         set_dr_intercept(svm, INTERCEPT_DR0_READ);
894         set_dr_intercept(svm, INTERCEPT_DR1_READ);
895         set_dr_intercept(svm, INTERCEPT_DR2_READ);
896         set_dr_intercept(svm, INTERCEPT_DR3_READ);
897         set_dr_intercept(svm, INTERCEPT_DR4_READ);
898         set_dr_intercept(svm, INTERCEPT_DR5_READ);
899         set_dr_intercept(svm, INTERCEPT_DR6_READ);
900         set_dr_intercept(svm, INTERCEPT_DR7_READ);
901
902         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
903         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
904         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
905         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
906         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
907         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
908         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
909         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
910
911         set_exception_intercept(svm, PF_VECTOR);
912         set_exception_intercept(svm, UD_VECTOR);
913         set_exception_intercept(svm, MC_VECTOR);
914
915         set_intercept(svm, INTERCEPT_INTR);
916         set_intercept(svm, INTERCEPT_NMI);
917         set_intercept(svm, INTERCEPT_SMI);
918         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
919         set_intercept(svm, INTERCEPT_CPUID);
920         set_intercept(svm, INTERCEPT_INVD);
921         set_intercept(svm, INTERCEPT_HLT);
922         set_intercept(svm, INTERCEPT_INVLPG);
923         set_intercept(svm, INTERCEPT_INVLPGA);
924         set_intercept(svm, INTERCEPT_IOIO_PROT);
925         set_intercept(svm, INTERCEPT_MSR_PROT);
926         set_intercept(svm, INTERCEPT_TASK_SWITCH);
927         set_intercept(svm, INTERCEPT_SHUTDOWN);
928         set_intercept(svm, INTERCEPT_VMRUN);
929         set_intercept(svm, INTERCEPT_VMMCALL);
930         set_intercept(svm, INTERCEPT_VMLOAD);
931         set_intercept(svm, INTERCEPT_VMSAVE);
932         set_intercept(svm, INTERCEPT_STGI);
933         set_intercept(svm, INTERCEPT_CLGI);
934         set_intercept(svm, INTERCEPT_SKINIT);
935         set_intercept(svm, INTERCEPT_WBINVD);
936         set_intercept(svm, INTERCEPT_MONITOR);
937         set_intercept(svm, INTERCEPT_MWAIT);
938
939         control->iopm_base_pa = iopm_base;
940         control->msrpm_base_pa = __pa(svm->msrpm);
941         control->int_ctl = V_INTR_MASKING_MASK;
942
943         init_seg(&save->es);
944         init_seg(&save->ss);
945         init_seg(&save->ds);
946         init_seg(&save->fs);
947         init_seg(&save->gs);
948
949         save->cs.selector = 0xf000;
950         /* Executable/Readable Code Segment */
951         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
952                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
953         save->cs.limit = 0xffff;
954         /*
955          * cs.base should really be 0xffff0000, but vmx can't handle that, so
956          * be consistent with it.
957          *
958          * Replace when we have real mode working for vmx.
959          */
960         save->cs.base = 0xf0000;
961
962         save->gdtr.limit = 0xffff;
963         save->idtr.limit = 0xffff;
964
965         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
966         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
967
968         svm_set_efer(&svm->vcpu, 0);
969         save->dr6 = 0xffff0ff0;
970         save->dr7 = 0x400;
971         save->rflags = 2;
972         save->rip = 0x0000fff0;
973         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
974
975         /*
976          * This is the guest-visible cr0 value.
977          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
978          */
979         svm->vcpu.arch.cr0 = 0;
980         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
981
982         save->cr4 = X86_CR4_PAE;
983         /* rdx = ?? */
984
985         if (npt_enabled) {
986                 /* Setup VMCB for Nested Paging */
987                 control->nested_ctl = 1;
988                 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
989                 clr_intercept(svm, INTERCEPT_INVLPG);
990                 clr_exception_intercept(svm, PF_VECTOR);
991                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
992                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
993                 save->g_pat = 0x0007040600070406ULL;
994                 save->cr3 = 0;
995                 save->cr4 = 0;
996         }
997         svm->asid_generation = 0;
998
999         svm->nested.vmcb = 0;
1000         svm->vcpu.arch.hflags = 0;
1001
1002         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1003                 control->pause_filter_count = 3000;
1004                 set_intercept(svm, INTERCEPT_PAUSE);
1005         }
1006
1007         mark_all_dirty(svm->vmcb);
1008
1009         enable_gif(svm);
1010 }
1011
1012 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1013 {
1014         struct vcpu_svm *svm = to_svm(vcpu);
1015
1016         init_vmcb(svm);
1017
1018         if (!kvm_vcpu_is_bsp(vcpu)) {
1019                 kvm_rip_write(vcpu, 0);
1020                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1021                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1022         }
1023         vcpu->arch.regs_avail = ~0;
1024         vcpu->arch.regs_dirty = ~0;
1025
1026         return 0;
1027 }
1028
1029 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1030 {
1031         struct vcpu_svm *svm;
1032         struct page *page;
1033         struct page *msrpm_pages;
1034         struct page *hsave_page;
1035         struct page *nested_msrpm_pages;
1036         int err;
1037
1038         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1039         if (!svm) {
1040                 err = -ENOMEM;
1041                 goto out;
1042         }
1043
1044         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1045         if (err)
1046                 goto free_svm;
1047
1048         err = -ENOMEM;
1049         page = alloc_page(GFP_KERNEL);
1050         if (!page)
1051                 goto uninit;
1052
1053         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1054         if (!msrpm_pages)
1055                 goto free_page1;
1056
1057         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1058         if (!nested_msrpm_pages)
1059                 goto free_page2;
1060
1061         hsave_page = alloc_page(GFP_KERNEL);
1062         if (!hsave_page)
1063                 goto free_page3;
1064
1065         svm->nested.hsave = page_address(hsave_page);
1066
1067         svm->msrpm = page_address(msrpm_pages);
1068         svm_vcpu_init_msrpm(svm->msrpm);
1069
1070         svm->nested.msrpm = page_address(nested_msrpm_pages);
1071         svm_vcpu_init_msrpm(svm->nested.msrpm);
1072
1073         svm->vmcb = page_address(page);
1074         clear_page(svm->vmcb);
1075         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1076         svm->asid_generation = 0;
1077         init_vmcb(svm);
1078         kvm_write_tsc(&svm->vcpu, 0);
1079
1080         err = fx_init(&svm->vcpu);
1081         if (err)
1082                 goto free_page4;
1083
1084         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1085         if (kvm_vcpu_is_bsp(&svm->vcpu))
1086                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1087
1088         return &svm->vcpu;
1089
1090 free_page4:
1091         __free_page(hsave_page);
1092 free_page3:
1093         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1094 free_page2:
1095         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1096 free_page1:
1097         __free_page(page);
1098 uninit:
1099         kvm_vcpu_uninit(&svm->vcpu);
1100 free_svm:
1101         kmem_cache_free(kvm_vcpu_cache, svm);
1102 out:
1103         return ERR_PTR(err);
1104 }
1105
1106 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1107 {
1108         struct vcpu_svm *svm = to_svm(vcpu);
1109
1110         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1111         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1112         __free_page(virt_to_page(svm->nested.hsave));
1113         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1114         kvm_vcpu_uninit(vcpu);
1115         kmem_cache_free(kvm_vcpu_cache, svm);
1116 }
1117
1118 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1119 {
1120         struct vcpu_svm *svm = to_svm(vcpu);
1121         int i;
1122
1123         if (unlikely(cpu != vcpu->cpu)) {
1124                 svm->asid_generation = 0;
1125                 mark_all_dirty(svm->vmcb);
1126         }
1127
1128 #ifdef CONFIG_X86_64
1129         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1130 #endif
1131         savesegment(fs, svm->host.fs);
1132         savesegment(gs, svm->host.gs);
1133         svm->host.ldt = kvm_read_ldt();
1134
1135         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1136                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1137 }
1138
1139 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1140 {
1141         struct vcpu_svm *svm = to_svm(vcpu);
1142         int i;
1143
1144         ++vcpu->stat.host_state_reload;
1145         kvm_load_ldt(svm->host.ldt);
1146 #ifdef CONFIG_X86_64
1147         loadsegment(fs, svm->host.fs);
1148         load_gs_index(svm->host.gs);
1149         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1150 #else
1151         loadsegment(gs, svm->host.gs);
1152 #endif
1153         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1154                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1155 }
1156
1157 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1158 {
1159         return to_svm(vcpu)->vmcb->save.rflags;
1160 }
1161
1162 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1163 {
1164         to_svm(vcpu)->vmcb->save.rflags = rflags;
1165 }
1166
1167 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1168 {
1169         switch (reg) {
1170         case VCPU_EXREG_PDPTR:
1171                 BUG_ON(!npt_enabled);
1172                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1173                 break;
1174         default:
1175                 BUG();
1176         }
1177 }
1178
1179 static void svm_set_vintr(struct vcpu_svm *svm)
1180 {
1181         set_intercept(svm, INTERCEPT_VINTR);
1182 }
1183
1184 static void svm_clear_vintr(struct vcpu_svm *svm)
1185 {
1186         clr_intercept(svm, INTERCEPT_VINTR);
1187 }
1188
1189 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1190 {
1191         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1192
1193         switch (seg) {
1194         case VCPU_SREG_CS: return &save->cs;
1195         case VCPU_SREG_DS: return &save->ds;
1196         case VCPU_SREG_ES: return &save->es;
1197         case VCPU_SREG_FS: return &save->fs;
1198         case VCPU_SREG_GS: return &save->gs;
1199         case VCPU_SREG_SS: return &save->ss;
1200         case VCPU_SREG_TR: return &save->tr;
1201         case VCPU_SREG_LDTR: return &save->ldtr;
1202         }
1203         BUG();
1204         return NULL;
1205 }
1206
1207 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1208 {
1209         struct vmcb_seg *s = svm_seg(vcpu, seg);
1210
1211         return s->base;
1212 }
1213
1214 static void svm_get_segment(struct kvm_vcpu *vcpu,
1215                             struct kvm_segment *var, int seg)
1216 {
1217         struct vmcb_seg *s = svm_seg(vcpu, seg);
1218
1219         var->base = s->base;
1220         var->limit = s->limit;
1221         var->selector = s->selector;
1222         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1223         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1224         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1225         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1226         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1227         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1228         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1229         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1230
1231         /*
1232          * AMD's VMCB does not have an explicit unusable field, so emulate it
1233          * for cross vendor migration purposes by "not present"
1234          */
1235         var->unusable = !var->present || (var->type == 0);
1236
1237         switch (seg) {
1238         case VCPU_SREG_CS:
1239                 /*
1240                  * SVM always stores 0 for the 'G' bit in the CS selector in
1241                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1242                  * Intel's VMENTRY has a check on the 'G' bit.
1243                  */
1244                 var->g = s->limit > 0xfffff;
1245                 break;
1246         case VCPU_SREG_TR:
1247                 /*
1248                  * Work around a bug where the busy flag in the tr selector
1249                  * isn't exposed
1250                  */
1251                 var->type |= 0x2;
1252                 break;
1253         case VCPU_SREG_DS:
1254         case VCPU_SREG_ES:
1255         case VCPU_SREG_FS:
1256         case VCPU_SREG_GS:
1257                 /*
1258                  * The accessed bit must always be set in the segment
1259                  * descriptor cache, although it can be cleared in the
1260                  * descriptor, the cached bit always remains at 1. Since
1261                  * Intel has a check on this, set it here to support
1262                  * cross-vendor migration.
1263                  */
1264                 if (!var->unusable)
1265                         var->type |= 0x1;
1266                 break;
1267         case VCPU_SREG_SS:
1268                 /*
1269                  * On AMD CPUs sometimes the DB bit in the segment
1270                  * descriptor is left as 1, although the whole segment has
1271                  * been made unusable. Clear it here to pass an Intel VMX
1272                  * entry check when cross vendor migrating.
1273                  */
1274                 if (var->unusable)
1275                         var->db = 0;
1276                 break;
1277         }
1278 }
1279
1280 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1281 {
1282         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1283
1284         return save->cpl;
1285 }
1286
1287 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1288 {
1289         struct vcpu_svm *svm = to_svm(vcpu);
1290
1291         dt->size = svm->vmcb->save.idtr.limit;
1292         dt->address = svm->vmcb->save.idtr.base;
1293 }
1294
1295 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1296 {
1297         struct vcpu_svm *svm = to_svm(vcpu);
1298
1299         svm->vmcb->save.idtr.limit = dt->size;
1300         svm->vmcb->save.idtr.base = dt->address ;
1301         mark_dirty(svm->vmcb, VMCB_DT);
1302 }
1303
1304 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1305 {
1306         struct vcpu_svm *svm = to_svm(vcpu);
1307
1308         dt->size = svm->vmcb->save.gdtr.limit;
1309         dt->address = svm->vmcb->save.gdtr.base;
1310 }
1311
1312 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1313 {
1314         struct vcpu_svm *svm = to_svm(vcpu);
1315
1316         svm->vmcb->save.gdtr.limit = dt->size;
1317         svm->vmcb->save.gdtr.base = dt->address ;
1318         mark_dirty(svm->vmcb, VMCB_DT);
1319 }
1320
1321 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1322 {
1323 }
1324
1325 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1326 {
1327 }
1328
1329 static void update_cr0_intercept(struct vcpu_svm *svm)
1330 {
1331         ulong gcr0 = svm->vcpu.arch.cr0;
1332         u64 *hcr0 = &svm->vmcb->save.cr0;
1333
1334         if (!svm->vcpu.fpu_active)
1335                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1336         else
1337                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1338                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1339
1340         mark_dirty(svm->vmcb, VMCB_CR);
1341
1342         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1343                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1344                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1345         } else {
1346                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1347                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1348         }
1349 }
1350
1351 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1352 {
1353         struct vcpu_svm *svm = to_svm(vcpu);
1354
1355         if (is_guest_mode(vcpu)) {
1356                 /*
1357                  * We are here because we run in nested mode, the host kvm
1358                  * intercepts cr0 writes but the l1 hypervisor does not.
1359                  * But the L1 hypervisor may intercept selective cr0 writes.
1360                  * This needs to be checked here.
1361                  */
1362                 unsigned long old, new;
1363
1364                 /* Remove bits that would trigger a real cr0 write intercept */
1365                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1366                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1367
1368                 if (old == new) {
1369                         /* cr0 write with ts and mp unchanged */
1370                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1371                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1372                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1373                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1374                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1375                                 return;
1376                         }
1377                 }
1378         }
1379
1380 #ifdef CONFIG_X86_64
1381         if (vcpu->arch.efer & EFER_LME) {
1382                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1383                         vcpu->arch.efer |= EFER_LMA;
1384                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1385                 }
1386
1387                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1388                         vcpu->arch.efer &= ~EFER_LMA;
1389                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1390                 }
1391         }
1392 #endif
1393         vcpu->arch.cr0 = cr0;
1394
1395         if (!npt_enabled)
1396                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1397
1398         if (!vcpu->fpu_active)
1399                 cr0 |= X86_CR0_TS;
1400         /*
1401          * re-enable caching here because the QEMU bios
1402          * does not do it - this results in some delay at
1403          * reboot
1404          */
1405         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1406         svm->vmcb->save.cr0 = cr0;
1407         mark_dirty(svm->vmcb, VMCB_CR);
1408         update_cr0_intercept(svm);
1409 }
1410
1411 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1412 {
1413         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1414         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1415
1416         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1417                 svm_flush_tlb(vcpu);
1418
1419         vcpu->arch.cr4 = cr4;
1420         if (!npt_enabled)
1421                 cr4 |= X86_CR4_PAE;
1422         cr4 |= host_cr4_mce;
1423         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1424         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1425 }
1426
1427 static void svm_set_segment(struct kvm_vcpu *vcpu,
1428                             struct kvm_segment *var, int seg)
1429 {
1430         struct vcpu_svm *svm = to_svm(vcpu);
1431         struct vmcb_seg *s = svm_seg(vcpu, seg);
1432
1433         s->base = var->base;
1434         s->limit = var->limit;
1435         s->selector = var->selector;
1436         if (var->unusable)
1437                 s->attrib = 0;
1438         else {
1439                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1440                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1441                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1442                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1443                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1444                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1445                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1446                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1447         }
1448         if (seg == VCPU_SREG_CS)
1449                 svm->vmcb->save.cpl
1450                         = (svm->vmcb->save.cs.attrib
1451                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1452
1453         mark_dirty(svm->vmcb, VMCB_SEG);
1454 }
1455
1456 static void update_db_intercept(struct kvm_vcpu *vcpu)
1457 {
1458         struct vcpu_svm *svm = to_svm(vcpu);
1459
1460         clr_exception_intercept(svm, DB_VECTOR);
1461         clr_exception_intercept(svm, BP_VECTOR);
1462
1463         if (svm->nmi_singlestep)
1464                 set_exception_intercept(svm, DB_VECTOR);
1465
1466         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1467                 if (vcpu->guest_debug &
1468                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1469                         set_exception_intercept(svm, DB_VECTOR);
1470                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1471                         set_exception_intercept(svm, BP_VECTOR);
1472         } else
1473                 vcpu->guest_debug = 0;
1474 }
1475
1476 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1477 {
1478         struct vcpu_svm *svm = to_svm(vcpu);
1479
1480         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1481                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1482         else
1483                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1484
1485         mark_dirty(svm->vmcb, VMCB_DR);
1486
1487         update_db_intercept(vcpu);
1488 }
1489
1490 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1491 {
1492         if (sd->next_asid > sd->max_asid) {
1493                 ++sd->asid_generation;
1494                 sd->next_asid = 1;
1495                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1496         }
1497
1498         svm->asid_generation = sd->asid_generation;
1499         svm->vmcb->control.asid = sd->next_asid++;
1500
1501         mark_dirty(svm->vmcb, VMCB_ASID);
1502 }
1503
1504 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1505 {
1506         struct vcpu_svm *svm = to_svm(vcpu);
1507
1508         svm->vmcb->save.dr7 = value;
1509         mark_dirty(svm->vmcb, VMCB_DR);
1510 }
1511
1512 static int pf_interception(struct vcpu_svm *svm)
1513 {
1514         u64 fault_address = svm->vmcb->control.exit_info_2;
1515         u32 error_code;
1516         int r = 1;
1517
1518         switch (svm->apf_reason) {
1519         default:
1520                 error_code = svm->vmcb->control.exit_info_1;
1521
1522                 trace_kvm_page_fault(fault_address, error_code);
1523                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1524                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1525                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1526                 break;
1527         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1528                 svm->apf_reason = 0;
1529                 local_irq_disable();
1530                 kvm_async_pf_task_wait(fault_address);
1531                 local_irq_enable();
1532                 break;
1533         case KVM_PV_REASON_PAGE_READY:
1534                 svm->apf_reason = 0;
1535                 local_irq_disable();
1536                 kvm_async_pf_task_wake(fault_address);
1537                 local_irq_enable();
1538                 break;
1539         }
1540         return r;
1541 }
1542
1543 static int db_interception(struct vcpu_svm *svm)
1544 {
1545         struct kvm_run *kvm_run = svm->vcpu.run;
1546
1547         if (!(svm->vcpu.guest_debug &
1548               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1549                 !svm->nmi_singlestep) {
1550                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1551                 return 1;
1552         }
1553
1554         if (svm->nmi_singlestep) {
1555                 svm->nmi_singlestep = false;
1556                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1557                         svm->vmcb->save.rflags &=
1558                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1559                 update_db_intercept(&svm->vcpu);
1560         }
1561
1562         if (svm->vcpu.guest_debug &
1563             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1564                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1565                 kvm_run->debug.arch.pc =
1566                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1567                 kvm_run->debug.arch.exception = DB_VECTOR;
1568                 return 0;
1569         }
1570
1571         return 1;
1572 }
1573
1574 static int bp_interception(struct vcpu_svm *svm)
1575 {
1576         struct kvm_run *kvm_run = svm->vcpu.run;
1577
1578         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1579         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1580         kvm_run->debug.arch.exception = BP_VECTOR;
1581         return 0;
1582 }
1583
1584 static int ud_interception(struct vcpu_svm *svm)
1585 {
1586         int er;
1587
1588         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1589         if (er != EMULATE_DONE)
1590                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1591         return 1;
1592 }
1593
1594 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1595 {
1596         struct vcpu_svm *svm = to_svm(vcpu);
1597
1598         clr_exception_intercept(svm, NM_VECTOR);
1599
1600         svm->vcpu.fpu_active = 1;
1601         update_cr0_intercept(svm);
1602 }
1603
1604 static int nm_interception(struct vcpu_svm *svm)
1605 {
1606         svm_fpu_activate(&svm->vcpu);
1607         return 1;
1608 }
1609
1610 static bool is_erratum_383(void)
1611 {
1612         int err, i;
1613         u64 value;
1614
1615         if (!erratum_383_found)
1616                 return false;
1617
1618         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1619         if (err)
1620                 return false;
1621
1622         /* Bit 62 may or may not be set for this mce */
1623         value &= ~(1ULL << 62);
1624
1625         if (value != 0xb600000000010015ULL)
1626                 return false;
1627
1628         /* Clear MCi_STATUS registers */
1629         for (i = 0; i < 6; ++i)
1630                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1631
1632         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1633         if (!err) {
1634                 u32 low, high;
1635
1636                 value &= ~(1ULL << 2);
1637                 low    = lower_32_bits(value);
1638                 high   = upper_32_bits(value);
1639
1640                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1641         }
1642
1643         /* Flush tlb to evict multi-match entries */
1644         __flush_tlb_all();
1645
1646         return true;
1647 }
1648
1649 static void svm_handle_mce(struct vcpu_svm *svm)
1650 {
1651         if (is_erratum_383()) {
1652                 /*
1653                  * Erratum 383 triggered. Guest state is corrupt so kill the
1654                  * guest.
1655                  */
1656                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1657
1658                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1659
1660                 return;
1661         }
1662
1663         /*
1664          * On an #MC intercept the MCE handler is not called automatically in
1665          * the host. So do it by hand here.
1666          */
1667         asm volatile (
1668                 "int $0x12\n");
1669         /* not sure if we ever come back to this point */
1670
1671         return;
1672 }
1673
1674 static int mc_interception(struct vcpu_svm *svm)
1675 {
1676         return 1;
1677 }
1678
1679 static int shutdown_interception(struct vcpu_svm *svm)
1680 {
1681         struct kvm_run *kvm_run = svm->vcpu.run;
1682
1683         /*
1684          * VMCB is undefined after a SHUTDOWN intercept
1685          * so reinitialize it.
1686          */
1687         clear_page(svm->vmcb);
1688         init_vmcb(svm);
1689
1690         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1691         return 0;
1692 }
1693
1694 static int io_interception(struct vcpu_svm *svm)
1695 {
1696         struct kvm_vcpu *vcpu = &svm->vcpu;
1697         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1698         int size, in, string;
1699         unsigned port;
1700
1701         ++svm->vcpu.stat.io_exits;
1702         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1703         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1704         if (string || in)
1705                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1706
1707         port = io_info >> 16;
1708         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1709         svm->next_rip = svm->vmcb->control.exit_info_2;
1710         skip_emulated_instruction(&svm->vcpu);
1711
1712         return kvm_fast_pio_out(vcpu, size, port);
1713 }
1714
1715 static int nmi_interception(struct vcpu_svm *svm)
1716 {
1717         return 1;
1718 }
1719
1720 static int intr_interception(struct vcpu_svm *svm)
1721 {
1722         ++svm->vcpu.stat.irq_exits;
1723         return 1;
1724 }
1725
1726 static int nop_on_interception(struct vcpu_svm *svm)
1727 {
1728         return 1;
1729 }
1730
1731 static int halt_interception(struct vcpu_svm *svm)
1732 {
1733         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1734         skip_emulated_instruction(&svm->vcpu);
1735         return kvm_emulate_halt(&svm->vcpu);
1736 }
1737
1738 static int vmmcall_interception(struct vcpu_svm *svm)
1739 {
1740         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1741         skip_emulated_instruction(&svm->vcpu);
1742         kvm_emulate_hypercall(&svm->vcpu);
1743         return 1;
1744 }
1745
1746 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1747 {
1748         struct vcpu_svm *svm = to_svm(vcpu);
1749
1750         return svm->nested.nested_cr3;
1751 }
1752
1753 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1754                                    unsigned long root)
1755 {
1756         struct vcpu_svm *svm = to_svm(vcpu);
1757
1758         svm->vmcb->control.nested_cr3 = root;
1759         mark_dirty(svm->vmcb, VMCB_NPT);
1760         svm_flush_tlb(vcpu);
1761 }
1762
1763 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1764                                        struct x86_exception *fault)
1765 {
1766         struct vcpu_svm *svm = to_svm(vcpu);
1767
1768         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1769         svm->vmcb->control.exit_code_hi = 0;
1770         svm->vmcb->control.exit_info_1 = fault->error_code;
1771         svm->vmcb->control.exit_info_2 = fault->address;
1772
1773         nested_svm_vmexit(svm);
1774 }
1775
1776 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1777 {
1778         int r;
1779
1780         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1781
1782         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1783         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1784         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1785         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1786         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1787
1788         return r;
1789 }
1790
1791 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1792 {
1793         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1794 }
1795
1796 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1797 {
1798         if (!(svm->vcpu.arch.efer & EFER_SVME)
1799             || !is_paging(&svm->vcpu)) {
1800                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1801                 return 1;
1802         }
1803
1804         if (svm->vmcb->save.cpl) {
1805                 kvm_inject_gp(&svm->vcpu, 0);
1806                 return 1;
1807         }
1808
1809        return 0;
1810 }
1811
1812 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1813                                       bool has_error_code, u32 error_code)
1814 {
1815         int vmexit;
1816
1817         if (!is_guest_mode(&svm->vcpu))
1818                 return 0;
1819
1820         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1821         svm->vmcb->control.exit_code_hi = 0;
1822         svm->vmcb->control.exit_info_1 = error_code;
1823         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1824
1825         vmexit = nested_svm_intercept(svm);
1826         if (vmexit == NESTED_EXIT_DONE)
1827                 svm->nested.exit_required = true;
1828
1829         return vmexit;
1830 }
1831
1832 /* This function returns true if it is save to enable the irq window */
1833 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1834 {
1835         if (!is_guest_mode(&svm->vcpu))
1836                 return true;
1837
1838         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1839                 return true;
1840
1841         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1842                 return false;
1843
1844         /*
1845          * if vmexit was already requested (by intercepted exception
1846          * for instance) do not overwrite it with "external interrupt"
1847          * vmexit.
1848          */
1849         if (svm->nested.exit_required)
1850                 return false;
1851
1852         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1853         svm->vmcb->control.exit_info_1 = 0;
1854         svm->vmcb->control.exit_info_2 = 0;
1855
1856         if (svm->nested.intercept & 1ULL) {
1857                 /*
1858                  * The #vmexit can't be emulated here directly because this
1859                  * code path runs with irqs and preemtion disabled. A
1860                  * #vmexit emulation might sleep. Only signal request for
1861                  * the #vmexit here.
1862                  */
1863                 svm->nested.exit_required = true;
1864                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1865                 return false;
1866         }
1867
1868         return true;
1869 }
1870
1871 /* This function returns true if it is save to enable the nmi window */
1872 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1873 {
1874         if (!is_guest_mode(&svm->vcpu))
1875                 return true;
1876
1877         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1878                 return true;
1879
1880         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1881         svm->nested.exit_required = true;
1882
1883         return false;
1884 }
1885
1886 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1887 {
1888         struct page *page;
1889
1890         might_sleep();
1891
1892         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1893         if (is_error_page(page))
1894                 goto error;
1895
1896         *_page = page;
1897
1898         return kmap(page);
1899
1900 error:
1901         kvm_release_page_clean(page);
1902         kvm_inject_gp(&svm->vcpu, 0);
1903
1904         return NULL;
1905 }
1906
1907 static void nested_svm_unmap(struct page *page)
1908 {
1909         kunmap(page);
1910         kvm_release_page_dirty(page);
1911 }
1912
1913 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1914 {
1915         unsigned port;
1916         u8 val, bit;
1917         u64 gpa;
1918
1919         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1920                 return NESTED_EXIT_HOST;
1921
1922         port = svm->vmcb->control.exit_info_1 >> 16;
1923         gpa  = svm->nested.vmcb_iopm + (port / 8);
1924         bit  = port % 8;
1925         val  = 0;
1926
1927         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1928                 val &= (1 << bit);
1929
1930         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1931 }
1932
1933 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1934 {
1935         u32 offset, msr, value;
1936         int write, mask;
1937
1938         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1939                 return NESTED_EXIT_HOST;
1940
1941         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1942         offset = svm_msrpm_offset(msr);
1943         write  = svm->vmcb->control.exit_info_1 & 1;
1944         mask   = 1 << ((2 * (msr & 0xf)) + write);
1945
1946         if (offset == MSR_INVALID)
1947                 return NESTED_EXIT_DONE;
1948
1949         /* Offset is in 32 bit units but need in 8 bit units */
1950         offset *= 4;
1951
1952         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1953                 return NESTED_EXIT_DONE;
1954
1955         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1956 }
1957
1958 static int nested_svm_exit_special(struct vcpu_svm *svm)
1959 {
1960         u32 exit_code = svm->vmcb->control.exit_code;
1961
1962         switch (exit_code) {
1963         case SVM_EXIT_INTR:
1964         case SVM_EXIT_NMI:
1965         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1966                 return NESTED_EXIT_HOST;
1967         case SVM_EXIT_NPF:
1968                 /* For now we are always handling NPFs when using them */
1969                 if (npt_enabled)
1970                         return NESTED_EXIT_HOST;
1971                 break;
1972         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1973                 /* When we're shadowing, trap PFs, but not async PF */
1974                 if (!npt_enabled && svm->apf_reason == 0)
1975                         return NESTED_EXIT_HOST;
1976                 break;
1977         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1978                 nm_interception(svm);
1979                 break;
1980         default:
1981                 break;
1982         }
1983
1984         return NESTED_EXIT_CONTINUE;
1985 }
1986
1987 /*
1988  * If this function returns true, this #vmexit was already handled
1989  */
1990 static int nested_svm_intercept(struct vcpu_svm *svm)
1991 {
1992         u32 exit_code = svm->vmcb->control.exit_code;
1993         int vmexit = NESTED_EXIT_HOST;
1994
1995         switch (exit_code) {
1996         case SVM_EXIT_MSR:
1997                 vmexit = nested_svm_exit_handled_msr(svm);
1998                 break;
1999         case SVM_EXIT_IOIO:
2000                 vmexit = nested_svm_intercept_ioio(svm);
2001                 break;
2002         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2003                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2004                 if (svm->nested.intercept_cr & bit)
2005                         vmexit = NESTED_EXIT_DONE;
2006                 break;
2007         }
2008         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2009                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2010                 if (svm->nested.intercept_dr & bit)
2011                         vmexit = NESTED_EXIT_DONE;
2012                 break;
2013         }
2014         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2015                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2016                 if (svm->nested.intercept_exceptions & excp_bits)
2017                         vmexit = NESTED_EXIT_DONE;
2018                 /* async page fault always cause vmexit */
2019                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2020                          svm->apf_reason != 0)
2021                         vmexit = NESTED_EXIT_DONE;
2022                 break;
2023         }
2024         case SVM_EXIT_ERR: {
2025                 vmexit = NESTED_EXIT_DONE;
2026                 break;
2027         }
2028         default: {
2029                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2030                 if (svm->nested.intercept & exit_bits)
2031                         vmexit = NESTED_EXIT_DONE;
2032         }
2033         }
2034
2035         return vmexit;
2036 }
2037
2038 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2039 {
2040         int vmexit;
2041
2042         vmexit = nested_svm_intercept(svm);
2043
2044         if (vmexit == NESTED_EXIT_DONE)
2045                 nested_svm_vmexit(svm);
2046
2047         return vmexit;
2048 }
2049
2050 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2051 {
2052         struct vmcb_control_area *dst  = &dst_vmcb->control;
2053         struct vmcb_control_area *from = &from_vmcb->control;
2054
2055         dst->intercept_cr         = from->intercept_cr;
2056         dst->intercept_dr         = from->intercept_dr;
2057         dst->intercept_exceptions = from->intercept_exceptions;
2058         dst->intercept            = from->intercept;
2059         dst->iopm_base_pa         = from->iopm_base_pa;
2060         dst->msrpm_base_pa        = from->msrpm_base_pa;
2061         dst->tsc_offset           = from->tsc_offset;
2062         dst->asid                 = from->asid;
2063         dst->tlb_ctl              = from->tlb_ctl;
2064         dst->int_ctl              = from->int_ctl;
2065         dst->int_vector           = from->int_vector;
2066         dst->int_state            = from->int_state;
2067         dst->exit_code            = from->exit_code;
2068         dst->exit_code_hi         = from->exit_code_hi;
2069         dst->exit_info_1          = from->exit_info_1;
2070         dst->exit_info_2          = from->exit_info_2;
2071         dst->exit_int_info        = from->exit_int_info;
2072         dst->exit_int_info_err    = from->exit_int_info_err;
2073         dst->nested_ctl           = from->nested_ctl;
2074         dst->event_inj            = from->event_inj;
2075         dst->event_inj_err        = from->event_inj_err;
2076         dst->nested_cr3           = from->nested_cr3;
2077         dst->lbr_ctl              = from->lbr_ctl;
2078 }
2079
2080 static int nested_svm_vmexit(struct vcpu_svm *svm)
2081 {
2082         struct vmcb *nested_vmcb;
2083         struct vmcb *hsave = svm->nested.hsave;
2084         struct vmcb *vmcb = svm->vmcb;
2085         struct page *page;
2086
2087         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2088                                        vmcb->control.exit_info_1,
2089                                        vmcb->control.exit_info_2,
2090                                        vmcb->control.exit_int_info,
2091                                        vmcb->control.exit_int_info_err);
2092
2093         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2094         if (!nested_vmcb)
2095                 return 1;
2096
2097         /* Exit Guest-Mode */
2098         leave_guest_mode(&svm->vcpu);
2099         svm->nested.vmcb = 0;
2100
2101         /* Give the current vmcb to the guest */
2102         disable_gif(svm);
2103
2104         nested_vmcb->save.es     = vmcb->save.es;
2105         nested_vmcb->save.cs     = vmcb->save.cs;
2106         nested_vmcb->save.ss     = vmcb->save.ss;
2107         nested_vmcb->save.ds     = vmcb->save.ds;
2108         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2109         nested_vmcb->save.idtr   = vmcb->save.idtr;
2110         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2111         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2112         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2113         nested_vmcb->save.cr2    = vmcb->save.cr2;
2114         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2115         nested_vmcb->save.rflags = vmcb->save.rflags;
2116         nested_vmcb->save.rip    = vmcb->save.rip;
2117         nested_vmcb->save.rsp    = vmcb->save.rsp;
2118         nested_vmcb->save.rax    = vmcb->save.rax;
2119         nested_vmcb->save.dr7    = vmcb->save.dr7;
2120         nested_vmcb->save.dr6    = vmcb->save.dr6;
2121         nested_vmcb->save.cpl    = vmcb->save.cpl;
2122
2123         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2124         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2125         nested_vmcb->control.int_state         = vmcb->control.int_state;
2126         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2127         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2128         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2129         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2130         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2131         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2132         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2133
2134         /*
2135          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2136          * to make sure that we do not lose injected events. So check event_inj
2137          * here and copy it to exit_int_info if it is valid.
2138          * Exit_int_info and event_inj can't be both valid because the case
2139          * below only happens on a VMRUN instruction intercept which has
2140          * no valid exit_int_info set.
2141          */
2142         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2143                 struct vmcb_control_area *nc = &nested_vmcb->control;
2144
2145                 nc->exit_int_info     = vmcb->control.event_inj;
2146                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2147         }
2148
2149         nested_vmcb->control.tlb_ctl           = 0;
2150         nested_vmcb->control.event_inj         = 0;
2151         nested_vmcb->control.event_inj_err     = 0;
2152
2153         /* We always set V_INTR_MASKING and remember the old value in hflags */
2154         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2155                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2156
2157         /* Restore the original control entries */
2158         copy_vmcb_control_area(vmcb, hsave);
2159
2160         kvm_clear_exception_queue(&svm->vcpu);
2161         kvm_clear_interrupt_queue(&svm->vcpu);
2162
2163         svm->nested.nested_cr3 = 0;
2164
2165         /* Restore selected save entries */
2166         svm->vmcb->save.es = hsave->save.es;
2167         svm->vmcb->save.cs = hsave->save.cs;
2168         svm->vmcb->save.ss = hsave->save.ss;
2169         svm->vmcb->save.ds = hsave->save.ds;
2170         svm->vmcb->save.gdtr = hsave->save.gdtr;
2171         svm->vmcb->save.idtr = hsave->save.idtr;
2172         svm->vmcb->save.rflags = hsave->save.rflags;
2173         svm_set_efer(&svm->vcpu, hsave->save.efer);
2174         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2175         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2176         if (npt_enabled) {
2177                 svm->vmcb->save.cr3 = hsave->save.cr3;
2178                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2179         } else {
2180                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2181         }
2182         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2183         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2184         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2185         svm->vmcb->save.dr7 = 0;
2186         svm->vmcb->save.cpl = 0;
2187         svm->vmcb->control.exit_int_info = 0;
2188
2189         mark_all_dirty(svm->vmcb);
2190
2191         nested_svm_unmap(page);
2192
2193         nested_svm_uninit_mmu_context(&svm->vcpu);
2194         kvm_mmu_reset_context(&svm->vcpu);
2195         kvm_mmu_load(&svm->vcpu);
2196
2197         return 0;
2198 }
2199
2200 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2201 {
2202         /*
2203          * This function merges the msr permission bitmaps of kvm and the
2204          * nested vmcb. It is omptimized in that it only merges the parts where
2205          * the kvm msr permission bitmap may contain zero bits
2206          */
2207         int i;
2208
2209         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2210                 return true;
2211
2212         for (i = 0; i < MSRPM_OFFSETS; i++) {
2213                 u32 value, p;
2214                 u64 offset;
2215
2216                 if (msrpm_offsets[i] == 0xffffffff)
2217                         break;
2218
2219                 p      = msrpm_offsets[i];
2220                 offset = svm->nested.vmcb_msrpm + (p * 4);
2221
2222                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2223                         return false;
2224
2225                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2226         }
2227
2228         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2229
2230         return true;
2231 }
2232
2233 static bool nested_vmcb_checks(struct vmcb *vmcb)
2234 {
2235         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2236                 return false;
2237
2238         if (vmcb->control.asid == 0)
2239                 return false;
2240
2241         if (vmcb->control.nested_ctl && !npt_enabled)
2242                 return false;
2243
2244         return true;
2245 }
2246
2247 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2248 {
2249         struct vmcb *nested_vmcb;
2250         struct vmcb *hsave = svm->nested.hsave;
2251         struct vmcb *vmcb = svm->vmcb;
2252         struct page *page;
2253         u64 vmcb_gpa;
2254
2255         vmcb_gpa = svm->vmcb->save.rax;
2256
2257         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2258         if (!nested_vmcb)
2259                 return false;
2260
2261         if (!nested_vmcb_checks(nested_vmcb)) {
2262                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2263                 nested_vmcb->control.exit_code_hi = 0;
2264                 nested_vmcb->control.exit_info_1  = 0;
2265                 nested_vmcb->control.exit_info_2  = 0;
2266
2267                 nested_svm_unmap(page);
2268
2269                 return false;
2270         }
2271
2272         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2273                                nested_vmcb->save.rip,
2274                                nested_vmcb->control.int_ctl,
2275                                nested_vmcb->control.event_inj,
2276                                nested_vmcb->control.nested_ctl);
2277
2278         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2279                                     nested_vmcb->control.intercept_cr >> 16,
2280                                     nested_vmcb->control.intercept_exceptions,
2281                                     nested_vmcb->control.intercept);
2282
2283         /* Clear internal status */
2284         kvm_clear_exception_queue(&svm->vcpu);
2285         kvm_clear_interrupt_queue(&svm->vcpu);
2286
2287         /*
2288          * Save the old vmcb, so we don't need to pick what we save, but can
2289          * restore everything when a VMEXIT occurs
2290          */
2291         hsave->save.es     = vmcb->save.es;
2292         hsave->save.cs     = vmcb->save.cs;
2293         hsave->save.ss     = vmcb->save.ss;
2294         hsave->save.ds     = vmcb->save.ds;
2295         hsave->save.gdtr   = vmcb->save.gdtr;
2296         hsave->save.idtr   = vmcb->save.idtr;
2297         hsave->save.efer   = svm->vcpu.arch.efer;
2298         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2299         hsave->save.cr4    = svm->vcpu.arch.cr4;
2300         hsave->save.rflags = vmcb->save.rflags;
2301         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2302         hsave->save.rsp    = vmcb->save.rsp;
2303         hsave->save.rax    = vmcb->save.rax;
2304         if (npt_enabled)
2305                 hsave->save.cr3    = vmcb->save.cr3;
2306         else
2307                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2308
2309         copy_vmcb_control_area(hsave, vmcb);
2310
2311         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2312                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2313         else
2314                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2315
2316         if (nested_vmcb->control.nested_ctl) {
2317                 kvm_mmu_unload(&svm->vcpu);
2318                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2319                 nested_svm_init_mmu_context(&svm->vcpu);
2320         }
2321
2322         /* Load the nested guest state */
2323         svm->vmcb->save.es = nested_vmcb->save.es;
2324         svm->vmcb->save.cs = nested_vmcb->save.cs;
2325         svm->vmcb->save.ss = nested_vmcb->save.ss;
2326         svm->vmcb->save.ds = nested_vmcb->save.ds;
2327         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2328         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2329         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2330         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2331         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2332         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2333         if (npt_enabled) {
2334                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2335                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2336         } else
2337                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2338
2339         /* Guest paging mode is active - reset mmu */
2340         kvm_mmu_reset_context(&svm->vcpu);
2341
2342         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2343         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2344         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2345         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2346
2347         /* In case we don't even reach vcpu_run, the fields are not updated */
2348         svm->vmcb->save.rax = nested_vmcb->save.rax;
2349         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2350         svm->vmcb->save.rip = nested_vmcb->save.rip;
2351         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2352         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2353         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2354
2355         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2356         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2357
2358         /* cache intercepts */
2359         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2360         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2361         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2362         svm->nested.intercept            = nested_vmcb->control.intercept;
2363
2364         svm_flush_tlb(&svm->vcpu);
2365         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2366         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2367                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2368         else
2369                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2370
2371         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2372                 /* We only want the cr8 intercept bits of the guest */
2373                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2374                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2375         }
2376
2377         /* We don't want to see VMMCALLs from a nested guest */
2378         clr_intercept(svm, INTERCEPT_VMMCALL);
2379
2380         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2381         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2382         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2383         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2384         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2385         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2386
2387         nested_svm_unmap(page);
2388
2389         /* Enter Guest-Mode */
2390         enter_guest_mode(&svm->vcpu);
2391
2392         /*
2393          * Merge guest and host intercepts - must be called  with vcpu in
2394          * guest-mode to take affect here
2395          */
2396         recalc_intercepts(svm);
2397
2398         svm->nested.vmcb = vmcb_gpa;
2399
2400         enable_gif(svm);
2401
2402         mark_all_dirty(svm->vmcb);
2403
2404         return true;
2405 }
2406
2407 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2408 {
2409         to_vmcb->save.fs = from_vmcb->save.fs;
2410         to_vmcb->save.gs = from_vmcb->save.gs;
2411         to_vmcb->save.tr = from_vmcb->save.tr;
2412         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2413         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2414         to_vmcb->save.star = from_vmcb->save.star;
2415         to_vmcb->save.lstar = from_vmcb->save.lstar;
2416         to_vmcb->save.cstar = from_vmcb->save.cstar;
2417         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2418         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2419         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2420         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2421 }
2422
2423 static int vmload_interception(struct vcpu_svm *svm)
2424 {
2425         struct vmcb *nested_vmcb;
2426         struct page *page;
2427
2428         if (nested_svm_check_permissions(svm))
2429                 return 1;
2430
2431         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2432         skip_emulated_instruction(&svm->vcpu);
2433
2434         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2435         if (!nested_vmcb)
2436                 return 1;
2437
2438         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2439         nested_svm_unmap(page);
2440
2441         return 1;
2442 }
2443
2444 static int vmsave_interception(struct vcpu_svm *svm)
2445 {
2446         struct vmcb *nested_vmcb;
2447         struct page *page;
2448
2449         if (nested_svm_check_permissions(svm))
2450                 return 1;
2451
2452         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2453         skip_emulated_instruction(&svm->vcpu);
2454
2455         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2456         if (!nested_vmcb)
2457                 return 1;
2458
2459         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2460         nested_svm_unmap(page);
2461
2462         return 1;
2463 }
2464
2465 static int vmrun_interception(struct vcpu_svm *svm)
2466 {
2467         if (nested_svm_check_permissions(svm))
2468                 return 1;
2469
2470         /* Save rip after vmrun instruction */
2471         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2472
2473         if (!nested_svm_vmrun(svm))
2474                 return 1;
2475
2476         if (!nested_svm_vmrun_msrpm(svm))
2477                 goto failed;
2478
2479         return 1;
2480
2481 failed:
2482
2483         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2484         svm->vmcb->control.exit_code_hi = 0;
2485         svm->vmcb->control.exit_info_1  = 0;
2486         svm->vmcb->control.exit_info_2  = 0;
2487
2488         nested_svm_vmexit(svm);
2489
2490         return 1;
2491 }
2492
2493 static int stgi_interception(struct vcpu_svm *svm)
2494 {
2495         if (nested_svm_check_permissions(svm))
2496                 return 1;
2497
2498         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2499         skip_emulated_instruction(&svm->vcpu);
2500         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2501
2502         enable_gif(svm);
2503
2504         return 1;
2505 }
2506
2507 static int clgi_interception(struct vcpu_svm *svm)
2508 {
2509         if (nested_svm_check_permissions(svm))
2510                 return 1;
2511
2512         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2513         skip_emulated_instruction(&svm->vcpu);
2514
2515         disable_gif(svm);
2516
2517         /* After a CLGI no interrupts should come */
2518         svm_clear_vintr(svm);
2519         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2520
2521         mark_dirty(svm->vmcb, VMCB_INTR);
2522
2523         return 1;
2524 }
2525
2526 static int invlpga_interception(struct vcpu_svm *svm)
2527 {
2528         struct kvm_vcpu *vcpu = &svm->vcpu;
2529
2530         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2531                           vcpu->arch.regs[VCPU_REGS_RAX]);
2532
2533         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2534         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2535
2536         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2537         skip_emulated_instruction(&svm->vcpu);
2538         return 1;
2539 }
2540
2541 static int skinit_interception(struct vcpu_svm *svm)
2542 {
2543         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2544
2545         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2546         return 1;
2547 }
2548
2549 static int invalid_op_interception(struct vcpu_svm *svm)
2550 {
2551         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2552         return 1;
2553 }
2554
2555 static int task_switch_interception(struct vcpu_svm *svm)
2556 {
2557         u16 tss_selector;
2558         int reason;
2559         int int_type = svm->vmcb->control.exit_int_info &
2560                 SVM_EXITINTINFO_TYPE_MASK;
2561         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2562         uint32_t type =
2563                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2564         uint32_t idt_v =
2565                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2566         bool has_error_code = false;
2567         u32 error_code = 0;
2568
2569         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2570
2571         if (svm->vmcb->control.exit_info_2 &
2572             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2573                 reason = TASK_SWITCH_IRET;
2574         else if (svm->vmcb->control.exit_info_2 &
2575                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2576                 reason = TASK_SWITCH_JMP;
2577         else if (idt_v)
2578                 reason = TASK_SWITCH_GATE;
2579         else
2580                 reason = TASK_SWITCH_CALL;
2581
2582         if (reason == TASK_SWITCH_GATE) {
2583                 switch (type) {
2584                 case SVM_EXITINTINFO_TYPE_NMI:
2585                         svm->vcpu.arch.nmi_injected = false;
2586                         break;
2587                 case SVM_EXITINTINFO_TYPE_EXEPT:
2588                         if (svm->vmcb->control.exit_info_2 &
2589                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2590                                 has_error_code = true;
2591                                 error_code =
2592                                         (u32)svm->vmcb->control.exit_info_2;
2593                         }
2594                         kvm_clear_exception_queue(&svm->vcpu);
2595                         break;
2596                 case SVM_EXITINTINFO_TYPE_INTR:
2597                         kvm_clear_interrupt_queue(&svm->vcpu);
2598                         break;
2599                 default:
2600                         break;
2601                 }
2602         }
2603
2604         if (reason != TASK_SWITCH_GATE ||
2605             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2606             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2607              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2608                 skip_emulated_instruction(&svm->vcpu);
2609
2610         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2611                                 has_error_code, error_code) == EMULATE_FAIL) {
2612                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2613                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2614                 svm->vcpu.run->internal.ndata = 0;
2615                 return 0;
2616         }
2617         return 1;
2618 }
2619
2620 static int cpuid_interception(struct vcpu_svm *svm)
2621 {
2622         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2623         kvm_emulate_cpuid(&svm->vcpu);
2624         return 1;
2625 }
2626
2627 static int iret_interception(struct vcpu_svm *svm)
2628 {
2629         ++svm->vcpu.stat.nmi_window_exits;
2630         clr_intercept(svm, INTERCEPT_IRET);
2631         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2632         return 1;
2633 }
2634
2635 static int invlpg_interception(struct vcpu_svm *svm)
2636 {
2637         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2638 }
2639
2640 static int emulate_on_interception(struct vcpu_svm *svm)
2641 {
2642         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2643 }
2644
2645 static int cr0_write_interception(struct vcpu_svm *svm)
2646 {
2647         struct kvm_vcpu *vcpu = &svm->vcpu;
2648         int r;
2649
2650         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2651
2652         if (svm->nested.vmexit_rip) {
2653                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2654                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2655                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2656                 svm->nested.vmexit_rip = 0;
2657         }
2658
2659         return r == EMULATE_DONE;
2660 }
2661
2662 static int cr8_write_interception(struct vcpu_svm *svm)
2663 {
2664         struct kvm_run *kvm_run = svm->vcpu.run;
2665
2666         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2667         /* instruction emulation calls kvm_set_cr8() */
2668         emulate_instruction(&svm->vcpu, 0, 0, 0);
2669         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2670                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2671                 return 1;
2672         }
2673         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2674                 return 1;
2675         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2676         return 0;
2677 }
2678
2679 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2680 {
2681         struct vcpu_svm *svm = to_svm(vcpu);
2682
2683         switch (ecx) {
2684         case MSR_IA32_TSC: {
2685                 struct vmcb *vmcb = get_host_vmcb(svm);
2686
2687                 *data = vmcb->control.tsc_offset + native_read_tsc();
2688                 break;
2689         }
2690         case MSR_STAR:
2691                 *data = svm->vmcb->save.star;
2692                 break;
2693 #ifdef CONFIG_X86_64
2694         case MSR_LSTAR:
2695                 *data = svm->vmcb->save.lstar;
2696                 break;
2697         case MSR_CSTAR:
2698                 *data = svm->vmcb->save.cstar;
2699                 break;
2700         case MSR_KERNEL_GS_BASE:
2701                 *data = svm->vmcb->save.kernel_gs_base;
2702                 break;
2703         case MSR_SYSCALL_MASK:
2704                 *data = svm->vmcb->save.sfmask;
2705                 break;
2706 #endif
2707         case MSR_IA32_SYSENTER_CS:
2708                 *data = svm->vmcb->save.sysenter_cs;
2709                 break;
2710         case MSR_IA32_SYSENTER_EIP:
2711                 *data = svm->sysenter_eip;
2712                 break;
2713         case MSR_IA32_SYSENTER_ESP:
2714                 *data = svm->sysenter_esp;
2715                 break;
2716         /*
2717          * Nobody will change the following 5 values in the VMCB so we can
2718          * safely return them on rdmsr. They will always be 0 until LBRV is
2719          * implemented.
2720          */
2721         case MSR_IA32_DEBUGCTLMSR:
2722                 *data = svm->vmcb->save.dbgctl;
2723                 break;
2724         case MSR_IA32_LASTBRANCHFROMIP:
2725                 *data = svm->vmcb->save.br_from;
2726                 break;
2727         case MSR_IA32_LASTBRANCHTOIP:
2728                 *data = svm->vmcb->save.br_to;
2729                 break;
2730         case MSR_IA32_LASTINTFROMIP:
2731                 *data = svm->vmcb->save.last_excp_from;
2732                 break;
2733         case MSR_IA32_LASTINTTOIP:
2734                 *data = svm->vmcb->save.last_excp_to;
2735                 break;
2736         case MSR_VM_HSAVE_PA:
2737                 *data = svm->nested.hsave_msr;
2738                 break;
2739         case MSR_VM_CR:
2740                 *data = svm->nested.vm_cr_msr;
2741                 break;
2742         case MSR_IA32_UCODE_REV:
2743                 *data = 0x01000065;
2744                 break;
2745         default:
2746                 return kvm_get_msr_common(vcpu, ecx, data);
2747         }
2748         return 0;
2749 }
2750
2751 static int rdmsr_interception(struct vcpu_svm *svm)
2752 {
2753         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2754         u64 data;
2755
2756         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2757                 trace_kvm_msr_read_ex(ecx);
2758                 kvm_inject_gp(&svm->vcpu, 0);
2759         } else {
2760                 trace_kvm_msr_read(ecx, data);
2761
2762                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2763                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2764                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2765                 skip_emulated_instruction(&svm->vcpu);
2766         }
2767         return 1;
2768 }
2769
2770 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2771 {
2772         struct vcpu_svm *svm = to_svm(vcpu);
2773         int svm_dis, chg_mask;
2774
2775         if (data & ~SVM_VM_CR_VALID_MASK)
2776                 return 1;
2777
2778         chg_mask = SVM_VM_CR_VALID_MASK;
2779
2780         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2781                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2782
2783         svm->nested.vm_cr_msr &= ~chg_mask;
2784         svm->nested.vm_cr_msr |= (data & chg_mask);
2785
2786         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2787
2788         /* check for svm_disable while efer.svme is set */
2789         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2790                 return 1;
2791
2792         return 0;
2793 }
2794
2795 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2796 {
2797         struct vcpu_svm *svm = to_svm(vcpu);
2798
2799         switch (ecx) {
2800         case MSR_IA32_TSC:
2801                 kvm_write_tsc(vcpu, data);
2802                 break;
2803         case MSR_STAR:
2804                 svm->vmcb->save.star = data;
2805                 break;
2806 #ifdef CONFIG_X86_64
2807         case MSR_LSTAR:
2808                 svm->vmcb->save.lstar = data;
2809                 break;
2810         case MSR_CSTAR:
2811                 svm->vmcb->save.cstar = data;
2812                 break;
2813         case MSR_KERNEL_GS_BASE:
2814                 svm->vmcb->save.kernel_gs_base = data;
2815                 break;
2816         case MSR_SYSCALL_MASK:
2817                 svm->vmcb->save.sfmask = data;
2818                 break;
2819 #endif
2820         case MSR_IA32_SYSENTER_CS:
2821                 svm->vmcb->save.sysenter_cs = data;
2822                 break;
2823         case MSR_IA32_SYSENTER_EIP:
2824                 svm->sysenter_eip = data;
2825                 svm->vmcb->save.sysenter_eip = data;
2826                 break;
2827         case MSR_IA32_SYSENTER_ESP:
2828                 svm->sysenter_esp = data;
2829                 svm->vmcb->save.sysenter_esp = data;
2830                 break;
2831         case MSR_IA32_DEBUGCTLMSR:
2832                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2833                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2834                                         __func__, data);
2835                         break;
2836                 }
2837                 if (data & DEBUGCTL_RESERVED_BITS)
2838                         return 1;
2839
2840                 svm->vmcb->save.dbgctl = data;
2841                 mark_dirty(svm->vmcb, VMCB_LBR);
2842                 if (data & (1ULL<<0))
2843                         svm_enable_lbrv(svm);
2844                 else
2845                         svm_disable_lbrv(svm);
2846                 break;
2847         case MSR_VM_HSAVE_PA:
2848                 svm->nested.hsave_msr = data;
2849                 break;
2850         case MSR_VM_CR:
2851                 return svm_set_vm_cr(vcpu, data);
2852         case MSR_VM_IGNNE:
2853                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2854                 break;
2855         default:
2856                 return kvm_set_msr_common(vcpu, ecx, data);
2857         }
2858         return 0;
2859 }
2860
2861 static int wrmsr_interception(struct vcpu_svm *svm)
2862 {
2863         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2864         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2865                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2866
2867
2868         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2869         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2870                 trace_kvm_msr_write_ex(ecx, data);
2871                 kvm_inject_gp(&svm->vcpu, 0);
2872         } else {
2873                 trace_kvm_msr_write(ecx, data);
2874                 skip_emulated_instruction(&svm->vcpu);
2875         }
2876         return 1;
2877 }
2878
2879 static int msr_interception(struct vcpu_svm *svm)
2880 {
2881         if (svm->vmcb->control.exit_info_1)
2882                 return wrmsr_interception(svm);
2883         else
2884                 return rdmsr_interception(svm);
2885 }
2886
2887 static int interrupt_window_interception(struct vcpu_svm *svm)
2888 {
2889         struct kvm_run *kvm_run = svm->vcpu.run;
2890
2891         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2892         svm_clear_vintr(svm);
2893         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2894         mark_dirty(svm->vmcb, VMCB_INTR);
2895         /*
2896          * If the user space waits to inject interrupts, exit as soon as
2897          * possible
2898          */
2899         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2900             kvm_run->request_interrupt_window &&
2901             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2902                 ++svm->vcpu.stat.irq_window_exits;
2903                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2904                 return 0;
2905         }
2906
2907         return 1;
2908 }
2909
2910 static int pause_interception(struct vcpu_svm *svm)
2911 {
2912         kvm_vcpu_on_spin(&(svm->vcpu));
2913         return 1;
2914 }
2915
2916 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2917         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2918         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2919         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2920         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2921         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2922         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2923         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2924         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2925         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2926         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2927         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2928         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2929         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2930         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2931         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2932         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2933         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2934         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2935         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2936         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2937         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2938         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2939         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2940         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2941         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2942         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2943         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2944         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2945         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2946         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2947         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2948         [SVM_EXIT_INTR]                         = intr_interception,
2949         [SVM_EXIT_NMI]                          = nmi_interception,
2950         [SVM_EXIT_SMI]                          = nop_on_interception,
2951         [SVM_EXIT_INIT]                         = nop_on_interception,
2952         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2953         [SVM_EXIT_CPUID]                        = cpuid_interception,
2954         [SVM_EXIT_IRET]                         = iret_interception,
2955         [SVM_EXIT_INVD]                         = emulate_on_interception,
2956         [SVM_EXIT_PAUSE]                        = pause_interception,
2957         [SVM_EXIT_HLT]                          = halt_interception,
2958         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2959         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2960         [SVM_EXIT_IOIO]                         = io_interception,
2961         [SVM_EXIT_MSR]                          = msr_interception,
2962         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2963         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2964         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2965         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2966         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2967         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2968         [SVM_EXIT_STGI]                         = stgi_interception,
2969         [SVM_EXIT_CLGI]                         = clgi_interception,
2970         [SVM_EXIT_SKINIT]                       = skinit_interception,
2971         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2972         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2973         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2974         [SVM_EXIT_NPF]                          = pf_interception,
2975 };
2976
2977 void dump_vmcb(struct kvm_vcpu *vcpu)
2978 {
2979         struct vcpu_svm *svm = to_svm(vcpu);
2980         struct vmcb_control_area *control = &svm->vmcb->control;
2981         struct vmcb_save_area *save = &svm->vmcb->save;
2982
2983         pr_err("VMCB Control Area:\n");
2984         pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff);
2985         pr_err("cr_write:           %04x\n", control->intercept_cr >> 16);
2986         pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff);
2987         pr_err("dr_write:           %04x\n", control->intercept_dr >> 16);
2988         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2989         pr_err("intercepts:         %016llx\n", control->intercept);
2990         pr_err("pause filter count: %d\n", control->pause_filter_count);
2991         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2992         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2993         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2994         pr_err("asid:               %d\n", control->asid);
2995         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2996         pr_err("int_ctl:            %08x\n", control->int_ctl);
2997         pr_err("int_vector:         %08x\n", control->int_vector);
2998         pr_err("int_state:          %08x\n", control->int_state);
2999         pr_err("exit_code:          %08x\n", control->exit_code);
3000         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
3001         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
3002         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
3003         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
3004         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
3005         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
3006         pr_err("event_inj:          %08x\n", control->event_inj);
3007         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
3008         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
3009         pr_err("next_rip:           %016llx\n", control->next_rip);
3010         pr_err("VMCB State Save Area:\n");
3011         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
3012                 save->es.selector, save->es.attrib,
3013                 save->es.limit, save->es.base);
3014         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
3015                 save->cs.selector, save->cs.attrib,
3016                 save->cs.limit, save->cs.base);
3017         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
3018                 save->ss.selector, save->ss.attrib,
3019                 save->ss.limit, save->ss.base);
3020         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
3021                 save->ds.selector, save->ds.attrib,
3022                 save->ds.limit, save->ds.base);
3023         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
3024                 save->fs.selector, save->fs.attrib,
3025                 save->fs.limit, save->fs.base);
3026         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
3027                 save->gs.selector, save->gs.attrib,
3028                 save->gs.limit, save->gs.base);
3029         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3030                 save->gdtr.selector, save->gdtr.attrib,
3031                 save->gdtr.limit, save->gdtr.base);
3032         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3033                 save->ldtr.selector, save->ldtr.attrib,
3034                 save->ldtr.limit, save->ldtr.base);
3035         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3036                 save->idtr.selector, save->idtr.attrib,
3037                 save->idtr.limit, save->idtr.base);
3038         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
3039                 save->tr.selector, save->tr.attrib,
3040                 save->tr.limit, save->tr.base);
3041         pr_err("cpl:            %d                efer:         %016llx\n",
3042                 save->cpl, save->efer);
3043         pr_err("cr0:            %016llx cr2:          %016llx\n",
3044                 save->cr0, save->cr2);
3045         pr_err("cr3:            %016llx cr4:          %016llx\n",
3046                 save->cr3, save->cr4);
3047         pr_err("dr6:            %016llx dr7:          %016llx\n",
3048                 save->dr6, save->dr7);
3049         pr_err("rip:            %016llx rflags:       %016llx\n",
3050                 save->rip, save->rflags);
3051         pr_err("rsp:            %016llx rax:          %016llx\n",
3052                 save->rsp, save->rax);
3053         pr_err("star:           %016llx lstar:        %016llx\n",
3054                 save->star, save->lstar);
3055         pr_err("cstar:          %016llx sfmask:       %016llx\n",
3056                 save->cstar, save->sfmask);
3057         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
3058                 save->kernel_gs_base, save->sysenter_cs);
3059         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
3060                 save->sysenter_esp, save->sysenter_eip);
3061         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
3062                 save->g_pat, save->dbgctl);
3063         pr_err("br_from:        %016llx br_to:        %016llx\n",
3064                 save->br_from, save->br_to);
3065         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
3066                 save->last_excp_from, save->last_excp_to);
3067
3068 }
3069
3070 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3071 {
3072         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3073
3074         *info1 = control->exit_info_1;
3075         *info2 = control->exit_info_2;
3076 }
3077
3078 static int handle_exit(struct kvm_vcpu *vcpu)
3079 {
3080         struct vcpu_svm *svm = to_svm(vcpu);
3081         struct kvm_run *kvm_run = vcpu->run;
3082         u32 exit_code = svm->vmcb->control.exit_code;
3083
3084         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3085
3086         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3087                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3088         if (npt_enabled)
3089                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3090
3091         if (unlikely(svm->nested.exit_required)) {
3092                 nested_svm_vmexit(svm);
3093                 svm->nested.exit_required = false;
3094
3095                 return 1;
3096         }
3097
3098         if (is_guest_mode(vcpu)) {
3099                 int vmexit;
3100
3101                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3102                                         svm->vmcb->control.exit_info_1,
3103                                         svm->vmcb->control.exit_info_2,
3104                                         svm->vmcb->control.exit_int_info,
3105                                         svm->vmcb->control.exit_int_info_err);
3106
3107                 vmexit = nested_svm_exit_special(svm);
3108
3109                 if (vmexit == NESTED_EXIT_CONTINUE)
3110                         vmexit = nested_svm_exit_handled(svm);
3111
3112                 if (vmexit == NESTED_EXIT_DONE)
3113                         return 1;
3114         }
3115
3116         svm_complete_interrupts(svm);
3117
3118         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3119                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3120                 kvm_run->fail_entry.hardware_entry_failure_reason
3121                         = svm->vmcb->control.exit_code;
3122                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3123                 dump_vmcb(vcpu);
3124                 return 0;
3125         }
3126
3127         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3128             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3129             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3130             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3131                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3132                        "exit_code 0x%x\n",
3133                        __func__, svm->vmcb->control.exit_int_info,
3134                        exit_code);
3135
3136         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3137             || !svm_exit_handlers[exit_code]) {
3138                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3139                 kvm_run->hw.hardware_exit_reason = exit_code;
3140                 return 0;
3141         }
3142
3143         return svm_exit_handlers[exit_code](svm);
3144 }
3145
3146 static void reload_tss(struct kvm_vcpu *vcpu)
3147 {
3148         int cpu = raw_smp_processor_id();
3149
3150         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3151         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3152         load_TR_desc();
3153 }
3154
3155 static void pre_svm_run(struct vcpu_svm *svm)
3156 {
3157         int cpu = raw_smp_processor_id();
3158
3159         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3160
3161         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3162         /* FIXME: handle wraparound of asid_generation */
3163         if (svm->asid_generation != sd->asid_generation)
3164                 new_asid(svm, sd);
3165 }
3166
3167 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3168 {
3169         struct vcpu_svm *svm = to_svm(vcpu);
3170
3171         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3172         vcpu->arch.hflags |= HF_NMI_MASK;
3173         set_intercept(svm, INTERCEPT_IRET);
3174         ++vcpu->stat.nmi_injections;
3175 }
3176
3177 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3178 {
3179         struct vmcb_control_area *control;
3180
3181         control = &svm->vmcb->control;
3182         control->int_vector = irq;
3183         control->int_ctl &= ~V_INTR_PRIO_MASK;
3184         control->int_ctl |= V_IRQ_MASK |
3185                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3186         mark_dirty(svm->vmcb, VMCB_INTR);
3187 }
3188
3189 static void svm_set_irq(struct kvm_vcpu *vcpu)
3190 {
3191         struct vcpu_svm *svm = to_svm(vcpu);
3192
3193         BUG_ON(!(gif_set(svm)));
3194
3195         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3196         ++vcpu->stat.irq_injections;
3197
3198         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3199                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3200 }
3201
3202 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3203 {
3204         struct vcpu_svm *svm = to_svm(vcpu);
3205
3206         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3207                 return;
3208
3209         if (irr == -1)
3210                 return;
3211
3212         if (tpr >= irr)
3213                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3214 }
3215
3216 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3217 {
3218         struct vcpu_svm *svm = to_svm(vcpu);
3219         struct vmcb *vmcb = svm->vmcb;
3220         int ret;
3221         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3222               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3223         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3224
3225         return ret;
3226 }
3227
3228 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3229 {
3230         struct vcpu_svm *svm = to_svm(vcpu);
3231
3232         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3233 }
3234
3235 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3236 {
3237         struct vcpu_svm *svm = to_svm(vcpu);
3238
3239         if (masked) {
3240                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3241                 set_intercept(svm, INTERCEPT_IRET);
3242         } else {
3243                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3244                 clr_intercept(svm, INTERCEPT_IRET);
3245         }
3246 }
3247
3248 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3249 {
3250         struct vcpu_svm *svm = to_svm(vcpu);
3251         struct vmcb *vmcb = svm->vmcb;
3252         int ret;
3253
3254         if (!gif_set(svm) ||
3255              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3256                 return 0;
3257
3258         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3259
3260         if (is_guest_mode(vcpu))
3261                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3262
3263         return ret;
3264 }
3265
3266 static void enable_irq_window(struct kvm_vcpu *vcpu)
3267 {
3268         struct vcpu_svm *svm = to_svm(vcpu);
3269
3270         /*
3271          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3272          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3273          * get that intercept, this function will be called again though and
3274          * we'll get the vintr intercept.
3275          */
3276         if (gif_set(svm) && nested_svm_intr(svm)) {
3277                 svm_set_vintr(svm);
3278                 svm_inject_irq(svm, 0x0);
3279         }
3280 }
3281
3282 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3283 {
3284         struct vcpu_svm *svm = to_svm(vcpu);
3285
3286         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3287             == HF_NMI_MASK)
3288                 return; /* IRET will cause a vm exit */
3289
3290         /*
3291          * Something prevents NMI from been injected. Single step over possible
3292          * problem (IRET or exception injection or interrupt shadow)
3293          */
3294         svm->nmi_singlestep = true;
3295         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3296         update_db_intercept(vcpu);
3297 }
3298
3299 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3300 {
3301         return 0;
3302 }
3303
3304 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3305 {
3306         to_svm(vcpu)->asid_generation--;
3307 }
3308
3309 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3310 {
3311 }
3312
3313 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3314 {
3315         struct vcpu_svm *svm = to_svm(vcpu);
3316
3317         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3318                 return;
3319
3320         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3321                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3322                 kvm_set_cr8(vcpu, cr8);
3323         }
3324 }
3325
3326 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3327 {
3328         struct vcpu_svm *svm = to_svm(vcpu);
3329         u64 cr8;
3330
3331         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3332                 return;
3333
3334         cr8 = kvm_get_cr8(vcpu);
3335         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3336         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3337 }
3338
3339 static void svm_complete_interrupts(struct vcpu_svm *svm)
3340 {
3341         u8 vector;
3342         int type;
3343         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3344         unsigned int3_injected = svm->int3_injected;
3345
3346         svm->int3_injected = 0;
3347
3348         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3349                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3350                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3351         }
3352
3353         svm->vcpu.arch.nmi_injected = false;
3354         kvm_clear_exception_queue(&svm->vcpu);
3355         kvm_clear_interrupt_queue(&svm->vcpu);
3356
3357         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3358                 return;
3359
3360         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3361
3362         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3363         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3364
3365         switch (type) {
3366         case SVM_EXITINTINFO_TYPE_NMI:
3367                 svm->vcpu.arch.nmi_injected = true;
3368                 break;
3369         case SVM_EXITINTINFO_TYPE_EXEPT:
3370                 /*
3371                  * In case of software exceptions, do not reinject the vector,
3372                  * but re-execute the instruction instead. Rewind RIP first
3373                  * if we emulated INT3 before.
3374                  */
3375                 if (kvm_exception_is_soft(vector)) {
3376                         if (vector == BP_VECTOR && int3_injected &&
3377                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3378                                 kvm_rip_write(&svm->vcpu,
3379                                               kvm_rip_read(&svm->vcpu) -
3380                                               int3_injected);
3381                         break;
3382                 }
3383                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3384                         u32 err = svm->vmcb->control.exit_int_info_err;
3385                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3386
3387                 } else
3388                         kvm_requeue_exception(&svm->vcpu, vector);
3389                 break;
3390         case SVM_EXITINTINFO_TYPE_INTR:
3391                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3392                 break;
3393         default:
3394                 break;
3395         }
3396 }
3397
3398 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3399 {
3400         struct vcpu_svm *svm = to_svm(vcpu);
3401         struct vmcb_control_area *control = &svm->vmcb->control;
3402
3403         control->exit_int_info = control->event_inj;
3404         control->exit_int_info_err = control->event_inj_err;
3405         control->event_inj = 0;
3406         svm_complete_interrupts(svm);
3407 }
3408
3409 #ifdef CONFIG_X86_64
3410 #define R "r"
3411 #else
3412 #define R "e"
3413 #endif
3414
3415 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3416 {
3417         struct vcpu_svm *svm = to_svm(vcpu);
3418
3419         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3420         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3421         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3422
3423         /*
3424          * A vmexit emulation is required before the vcpu can be executed
3425          * again.
3426          */
3427         if (unlikely(svm->nested.exit_required))
3428                 return;
3429
3430         pre_svm_run(svm);
3431
3432         sync_lapic_to_cr8(vcpu);
3433
3434         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3435
3436         clgi();
3437
3438         local_irq_enable();
3439
3440         asm volatile (
3441                 "push %%"R"bp; \n\t"
3442                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3443                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3444                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3445                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3446                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3447                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3448 #ifdef CONFIG_X86_64
3449                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3450                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3451                 "mov %c[r10](%[svm]), %%r10 \n\t"
3452                 "mov %c[r11](%[svm]), %%r11 \n\t"
3453                 "mov %c[r12](%[svm]), %%r12 \n\t"
3454                 "mov %c[r13](%[svm]), %%r13 \n\t"
3455                 "mov %c[r14](%[svm]), %%r14 \n\t"
3456                 "mov %c[r15](%[svm]), %%r15 \n\t"
3457 #endif
3458
3459                 /* Enter guest mode */
3460                 "push %%"R"ax \n\t"
3461                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3462                 __ex(SVM_VMLOAD) "\n\t"
3463                 __ex(SVM_VMRUN) "\n\t"
3464                 __ex(SVM_VMSAVE) "\n\t"
3465                 "pop %%"R"ax \n\t"
3466
3467                 /* Save guest registers, load host registers */
3468                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3469                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3470                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3471                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3472                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3473                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3474 #ifdef CONFIG_X86_64
3475                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3476                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3477                 "mov %%r10, %c[r10](%[svm]) \n\t"
3478                 "mov %%r11, %c[r11](%[svm]) \n\t"
3479                 "mov %%r12, %c[r12](%[svm]) \n\t"
3480                 "mov %%r13, %c[r13](%[svm]) \n\t"
3481                 "mov %%r14, %c[r14](%[svm]) \n\t"
3482                 "mov %%r15, %c[r15](%[svm]) \n\t"
3483 #endif
3484                 "pop %%"R"bp"
3485                 :
3486                 : [svm]"a"(svm),
3487                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3488                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3489                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3490                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3491                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3492                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3493                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3494 #ifdef CONFIG_X86_64
3495                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3496                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3497                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3498                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3499                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3500                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3501                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3502                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3503 #endif
3504                 : "cc", "memory"
3505                 , R"bx", R"cx", R"dx", R"si", R"di"
3506 #ifdef CONFIG_X86_64
3507                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3508 #endif
3509                 );
3510
3511 #ifdef CONFIG_X86_64
3512         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3513 #else
3514         loadsegment(fs, svm->host.fs);
3515 #endif
3516
3517         reload_tss(vcpu);
3518
3519         local_irq_disable();
3520
3521         stgi();
3522
3523         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3524         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3525         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3526         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3527
3528         sync_cr8_to_lapic(vcpu);
3529
3530         svm->next_rip = 0;
3531
3532         /* if exit due to PF check for async PF */
3533         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3534                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3535
3536         if (npt_enabled) {
3537                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3538                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3539         }
3540
3541         /*
3542          * We need to handle MC intercepts here before the vcpu has a chance to
3543          * change the physical cpu
3544          */
3545         if (unlikely(svm->vmcb->control.exit_code ==
3546                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3547                 svm_handle_mce(svm);
3548
3549         mark_all_clean(svm->vmcb);
3550 }
3551
3552 #undef R
3553
3554 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3555 {
3556         struct vcpu_svm *svm = to_svm(vcpu);
3557
3558         svm->vmcb->save.cr3 = root;
3559         mark_dirty(svm->vmcb, VMCB_CR);
3560         svm_flush_tlb(vcpu);
3561 }
3562
3563 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3564 {
3565         struct vcpu_svm *svm = to_svm(vcpu);
3566
3567         svm->vmcb->control.nested_cr3 = root;
3568         mark_dirty(svm->vmcb, VMCB_NPT);
3569
3570         /* Also sync guest cr3 here in case we live migrate */
3571         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3572         mark_dirty(svm->vmcb, VMCB_CR);
3573
3574         svm_flush_tlb(vcpu);
3575 }
3576
3577 static int is_disabled(void)
3578 {
3579         u64 vm_cr;
3580
3581         rdmsrl(MSR_VM_CR, vm_cr);
3582         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3583                 return 1;
3584
3585         return 0;
3586 }
3587
3588 static void
3589 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3590 {
3591         /*
3592          * Patch in the VMMCALL instruction:
3593          */
3594         hypercall[0] = 0x0f;
3595         hypercall[1] = 0x01;
3596         hypercall[2] = 0xd9;
3597 }
3598
3599 static void svm_check_processor_compat(void *rtn)
3600 {
3601         *(int *)rtn = 0;
3602 }
3603
3604 static bool svm_cpu_has_accelerated_tpr(void)
3605 {
3606         return false;
3607 }
3608
3609 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3610 {
3611         return 0;
3612 }
3613
3614 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3615 {
3616 }
3617
3618 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3619 {
3620         switch (func) {
3621         case 0x00000001:
3622                 /* Mask out xsave bit as long as it is not supported by SVM */
3623                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3624                 break;
3625         case 0x80000001:
3626                 if (nested)
3627                         entry->ecx |= (1 << 2); /* Set SVM bit */
3628                 break;
3629         case 0x8000000A:
3630                 entry->eax = 1; /* SVM revision 1 */
3631                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3632                                    ASID emulation to nested SVM */
3633                 entry->ecx = 0; /* Reserved */
3634                 entry->edx = 0; /* Per default do not support any
3635                                    additional features */
3636
3637                 /* Support next_rip if host supports it */
3638                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3639                         entry->edx |= SVM_FEATURE_NRIP;
3640
3641                 /* Support NPT for the guest if enabled */
3642                 if (npt_enabled)
3643                         entry->edx |= SVM_FEATURE_NPT;
3644
3645                 break;
3646         }
3647 }
3648
3649 static const struct trace_print_flags svm_exit_reasons_str[] = {
3650         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3651         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3652         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3653         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3654         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3655         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3656         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3657         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3658         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3659         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3660         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3661         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3662         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3663         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3664         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3665         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3666         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3667         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3668         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3669         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3670         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3671         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3672         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3673         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3674         { SVM_EXIT_INTR,                        "interrupt" },
3675         { SVM_EXIT_NMI,                         "nmi" },
3676         { SVM_EXIT_SMI,                         "smi" },
3677         { SVM_EXIT_INIT,                        "init" },
3678         { SVM_EXIT_VINTR,                       "vintr" },
3679         { SVM_EXIT_CPUID,                       "cpuid" },
3680         { SVM_EXIT_INVD,                        "invd" },
3681         { SVM_EXIT_HLT,                         "hlt" },
3682         { SVM_EXIT_INVLPG,                      "invlpg" },
3683         { SVM_EXIT_INVLPGA,                     "invlpga" },
3684         { SVM_EXIT_IOIO,                        "io" },
3685         { SVM_EXIT_MSR,                         "msr" },
3686         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3687         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3688         { SVM_EXIT_VMRUN,                       "vmrun" },
3689         { SVM_EXIT_VMMCALL,                     "hypercall" },
3690         { SVM_EXIT_VMLOAD,                      "vmload" },
3691         { SVM_EXIT_VMSAVE,                      "vmsave" },
3692         { SVM_EXIT_STGI,                        "stgi" },
3693         { SVM_EXIT_CLGI,                        "clgi" },
3694         { SVM_EXIT_SKINIT,                      "skinit" },
3695         { SVM_EXIT_WBINVD,                      "wbinvd" },
3696         { SVM_EXIT_MONITOR,                     "monitor" },
3697         { SVM_EXIT_MWAIT,                       "mwait" },
3698         { SVM_EXIT_NPF,                         "npf" },
3699         { -1, NULL }
3700 };
3701
3702 static int svm_get_lpage_level(void)
3703 {
3704         return PT_PDPE_LEVEL;
3705 }
3706
3707 static bool svm_rdtscp_supported(void)
3708 {
3709         return false;
3710 }
3711
3712 static bool svm_has_wbinvd_exit(void)
3713 {
3714         return true;
3715 }
3716
3717 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3718 {
3719         struct vcpu_svm *svm = to_svm(vcpu);
3720
3721         set_exception_intercept(svm, NM_VECTOR);
3722         update_cr0_intercept(svm);
3723 }
3724
3725 static struct kvm_x86_ops svm_x86_ops = {
3726         .cpu_has_kvm_support = has_svm,
3727         .disabled_by_bios = is_disabled,
3728         .hardware_setup = svm_hardware_setup,
3729         .hardware_unsetup = svm_hardware_unsetup,
3730         .check_processor_compatibility = svm_check_processor_compat,
3731         .hardware_enable = svm_hardware_enable,
3732         .hardware_disable = svm_hardware_disable,
3733         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3734
3735         .vcpu_create = svm_create_vcpu,
3736         .vcpu_free = svm_free_vcpu,
3737         .vcpu_reset = svm_vcpu_reset,
3738
3739         .prepare_guest_switch = svm_prepare_guest_switch,
3740         .vcpu_load = svm_vcpu_load,
3741         .vcpu_put = svm_vcpu_put,
3742
3743         .set_guest_debug = svm_guest_debug,
3744         .get_msr = svm_get_msr,
3745         .set_msr = svm_set_msr,
3746         .get_segment_base = svm_get_segment_base,
3747         .get_segment = svm_get_segment,
3748         .set_segment = svm_set_segment,
3749         .get_cpl = svm_get_cpl,
3750         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3751         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3752         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3753         .set_cr0 = svm_set_cr0,
3754         .set_cr3 = svm_set_cr3,
3755         .set_cr4 = svm_set_cr4,
3756         .set_efer = svm_set_efer,
3757         .get_idt = svm_get_idt,
3758         .set_idt = svm_set_idt,
3759         .get_gdt = svm_get_gdt,
3760         .set_gdt = svm_set_gdt,
3761         .set_dr7 = svm_set_dr7,
3762         .cache_reg = svm_cache_reg,
3763         .get_rflags = svm_get_rflags,
3764         .set_rflags = svm_set_rflags,
3765         .fpu_activate = svm_fpu_activate,
3766         .fpu_deactivate = svm_fpu_deactivate,
3767
3768         .tlb_flush = svm_flush_tlb,
3769
3770         .run = svm_vcpu_run,
3771         .handle_exit = handle_exit,
3772         .skip_emulated_instruction = skip_emulated_instruction,
3773         .set_interrupt_shadow = svm_set_interrupt_shadow,
3774         .get_interrupt_shadow = svm_get_interrupt_shadow,
3775         .patch_hypercall = svm_patch_hypercall,
3776         .set_irq = svm_set_irq,
3777         .set_nmi = svm_inject_nmi,
3778         .queue_exception = svm_queue_exception,
3779         .cancel_injection = svm_cancel_injection,
3780         .interrupt_allowed = svm_interrupt_allowed,
3781         .nmi_allowed = svm_nmi_allowed,
3782         .get_nmi_mask = svm_get_nmi_mask,
3783         .set_nmi_mask = svm_set_nmi_mask,
3784         .enable_nmi_window = enable_nmi_window,
3785         .enable_irq_window = enable_irq_window,
3786         .update_cr8_intercept = update_cr8_intercept,
3787
3788         .set_tss_addr = svm_set_tss_addr,
3789         .get_tdp_level = get_npt_level,
3790         .get_mt_mask = svm_get_mt_mask,
3791
3792         .get_exit_info = svm_get_exit_info,
3793         .exit_reasons_str = svm_exit_reasons_str,
3794
3795         .get_lpage_level = svm_get_lpage_level,
3796
3797         .cpuid_update = svm_cpuid_update,
3798
3799         .rdtscp_supported = svm_rdtscp_supported,
3800
3801         .set_supported_cpuid = svm_set_supported_cpuid,
3802
3803         .has_wbinvd_exit = svm_has_wbinvd_exit,
3804
3805         .write_tsc_offset = svm_write_tsc_offset,
3806         .adjust_tsc_offset = svm_adjust_tsc_offset,
3807
3808         .set_tdp_cr3 = set_tdp_cr3,
3809 };
3810
3811 static int __init svm_init(void)
3812 {
3813         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3814                         __alignof__(struct vcpu_svm), THIS_MODULE);
3815 }
3816
3817 static void __exit svm_exit(void)
3818 {
3819         kvm_exit();
3820 }
3821
3822 module_init(svm_init)
3823 module_exit(svm_exit)