KVM: Get rid of arch.interrupt_window_open & arch.nmi_window_open
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33
34 #define __ex(x) __kvm_handle_fault_on_reboot(x)
35
36 MODULE_AUTHOR("Qumranet");
37 MODULE_LICENSE("GPL");
38
39 #define IOPM_ALLOC_ORDER 2
40 #define MSRPM_ALLOC_ORDER 1
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT  (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_FEATURE_SVML (1 << 2)
48
49 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
50
51 /* Turn on to get debugging output*/
52 /* #define NESTED_DEBUG */
53
54 #ifdef NESTED_DEBUG
55 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
56 #else
57 #define nsvm_printk(fmt, args...) do {} while(0)
58 #endif
59
60 /* enable NPT for AMD64 and X86 with PAE */
61 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
62 static bool npt_enabled = true;
63 #else
64 static bool npt_enabled = false;
65 #endif
66 static int npt = 1;
67
68 module_param(npt, int, S_IRUGO);
69
70 static int nested = 0;
71 module_param(nested, int, S_IRUGO);
72
73 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
74
75 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
76 static int nested_svm_vmexit(struct vcpu_svm *svm);
77 static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
78                              void *arg2, void *opaque);
79 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
80                                       bool has_error_code, u32 error_code);
81
82 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
83 {
84         return container_of(vcpu, struct vcpu_svm, vcpu);
85 }
86
87 static inline bool is_nested(struct vcpu_svm *svm)
88 {
89         return svm->nested_vmcb;
90 }
91
92 static unsigned long iopm_base;
93
94 struct kvm_ldttss_desc {
95         u16 limit0;
96         u16 base0;
97         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
98         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
99         u32 base3;
100         u32 zero1;
101 } __attribute__((packed));
102
103 struct svm_cpu_data {
104         int cpu;
105
106         u64 asid_generation;
107         u32 max_asid;
108         u32 next_asid;
109         struct kvm_ldttss_desc *tss_desc;
110
111         struct page *save_area;
112 };
113
114 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
115 static uint32_t svm_features;
116
117 struct svm_init_data {
118         int cpu;
119         int r;
120 };
121
122 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
123
124 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
125 #define MSRS_RANGE_SIZE 2048
126 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
127
128 #define MAX_INST_SIZE 15
129
130 static inline u32 svm_has(u32 feat)
131 {
132         return svm_features & feat;
133 }
134
135 static inline void clgi(void)
136 {
137         asm volatile (__ex(SVM_CLGI));
138 }
139
140 static inline void stgi(void)
141 {
142         asm volatile (__ex(SVM_STGI));
143 }
144
145 static inline void invlpga(unsigned long addr, u32 asid)
146 {
147         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
148 }
149
150 static inline unsigned long kvm_read_cr2(void)
151 {
152         unsigned long cr2;
153
154         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
155         return cr2;
156 }
157
158 static inline void kvm_write_cr2(unsigned long val)
159 {
160         asm volatile ("mov %0, %%cr2" :: "r" (val));
161 }
162
163 static inline void force_new_asid(struct kvm_vcpu *vcpu)
164 {
165         to_svm(vcpu)->asid_generation--;
166 }
167
168 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
169 {
170         force_new_asid(vcpu);
171 }
172
173 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
174 {
175         if (!npt_enabled && !(efer & EFER_LMA))
176                 efer &= ~EFER_LME;
177
178         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
179         vcpu->arch.shadow_efer = efer;
180 }
181
182 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
183                                 bool has_error_code, u32 error_code)
184 {
185         struct vcpu_svm *svm = to_svm(vcpu);
186
187         /* If we are within a nested VM we'd better #VMEXIT and let the
188            guest handle the exception */
189         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
190                 return;
191
192         svm->vmcb->control.event_inj = nr
193                 | SVM_EVTINJ_VALID
194                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
195                 | SVM_EVTINJ_TYPE_EXEPT;
196         svm->vmcb->control.event_inj_err = error_code;
197 }
198
199 static int is_external_interrupt(u32 info)
200 {
201         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
202         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
203 }
204
205 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
206 {
207         struct vcpu_svm *svm = to_svm(vcpu);
208
209         if (!svm->next_rip) {
210                 printk(KERN_DEBUG "%s: NOP\n", __func__);
211                 return;
212         }
213         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
214                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
215                        __func__, kvm_rip_read(vcpu), svm->next_rip);
216
217         kvm_rip_write(vcpu, svm->next_rip);
218         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
219 }
220
221 static int has_svm(void)
222 {
223         const char *msg;
224
225         if (!cpu_has_svm(&msg)) {
226                 printk(KERN_INFO "has_svm: %s\n", msg);
227                 return 0;
228         }
229
230         return 1;
231 }
232
233 static void svm_hardware_disable(void *garbage)
234 {
235         cpu_svm_disable();
236 }
237
238 static void svm_hardware_enable(void *garbage)
239 {
240
241         struct svm_cpu_data *svm_data;
242         uint64_t efer;
243         struct desc_ptr gdt_descr;
244         struct desc_struct *gdt;
245         int me = raw_smp_processor_id();
246
247         if (!has_svm()) {
248                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
249                 return;
250         }
251         svm_data = per_cpu(svm_data, me);
252
253         if (!svm_data) {
254                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
255                        me);
256                 return;
257         }
258
259         svm_data->asid_generation = 1;
260         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
261         svm_data->next_asid = svm_data->max_asid + 1;
262
263         asm volatile ("sgdt %0" : "=m"(gdt_descr));
264         gdt = (struct desc_struct *)gdt_descr.address;
265         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
266
267         rdmsrl(MSR_EFER, efer);
268         wrmsrl(MSR_EFER, efer | EFER_SVME);
269
270         wrmsrl(MSR_VM_HSAVE_PA,
271                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
272 }
273
274 static void svm_cpu_uninit(int cpu)
275 {
276         struct svm_cpu_data *svm_data
277                 = per_cpu(svm_data, raw_smp_processor_id());
278
279         if (!svm_data)
280                 return;
281
282         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
283         __free_page(svm_data->save_area);
284         kfree(svm_data);
285 }
286
287 static int svm_cpu_init(int cpu)
288 {
289         struct svm_cpu_data *svm_data;
290         int r;
291
292         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
293         if (!svm_data)
294                 return -ENOMEM;
295         svm_data->cpu = cpu;
296         svm_data->save_area = alloc_page(GFP_KERNEL);
297         r = -ENOMEM;
298         if (!svm_data->save_area)
299                 goto err_1;
300
301         per_cpu(svm_data, cpu) = svm_data;
302
303         return 0;
304
305 err_1:
306         kfree(svm_data);
307         return r;
308
309 }
310
311 static void set_msr_interception(u32 *msrpm, unsigned msr,
312                                  int read, int write)
313 {
314         int i;
315
316         for (i = 0; i < NUM_MSR_MAPS; i++) {
317                 if (msr >= msrpm_ranges[i] &&
318                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
319                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
320                                           msrpm_ranges[i]) * 2;
321
322                         u32 *base = msrpm + (msr_offset / 32);
323                         u32 msr_shift = msr_offset % 32;
324                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
325                         *base = (*base & ~(0x3 << msr_shift)) |
326                                 (mask << msr_shift);
327                         return;
328                 }
329         }
330         BUG();
331 }
332
333 static void svm_vcpu_init_msrpm(u32 *msrpm)
334 {
335         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
336
337 #ifdef CONFIG_X86_64
338         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
339         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
340         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
341         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
342         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
343         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
344 #endif
345         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
346         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
347         set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
348         set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
349 }
350
351 static void svm_enable_lbrv(struct vcpu_svm *svm)
352 {
353         u32 *msrpm = svm->msrpm;
354
355         svm->vmcb->control.lbr_ctl = 1;
356         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
357         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
358         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
359         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
360 }
361
362 static void svm_disable_lbrv(struct vcpu_svm *svm)
363 {
364         u32 *msrpm = svm->msrpm;
365
366         svm->vmcb->control.lbr_ctl = 0;
367         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
368         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
369         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
370         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
371 }
372
373 static __init int svm_hardware_setup(void)
374 {
375         int cpu;
376         struct page *iopm_pages;
377         void *iopm_va;
378         int r;
379
380         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
381
382         if (!iopm_pages)
383                 return -ENOMEM;
384
385         iopm_va = page_address(iopm_pages);
386         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
387         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389         if (boot_cpu_has(X86_FEATURE_NX))
390                 kvm_enable_efer_bits(EFER_NX);
391
392         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
393                 kvm_enable_efer_bits(EFER_FFXSR);
394
395         if (nested) {
396                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
397                 kvm_enable_efer_bits(EFER_SVME);
398         }
399
400         for_each_online_cpu(cpu) {
401                 r = svm_cpu_init(cpu);
402                 if (r)
403                         goto err;
404         }
405
406         svm_features = cpuid_edx(SVM_CPUID_FUNC);
407
408         if (!svm_has(SVM_FEATURE_NPT))
409                 npt_enabled = false;
410
411         if (npt_enabled && !npt) {
412                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
413                 npt_enabled = false;
414         }
415
416         if (npt_enabled) {
417                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
418                 kvm_enable_tdp();
419         } else
420                 kvm_disable_tdp();
421
422         return 0;
423
424 err:
425         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
426         iopm_base = 0;
427         return r;
428 }
429
430 static __exit void svm_hardware_unsetup(void)
431 {
432         int cpu;
433
434         for_each_online_cpu(cpu)
435                 svm_cpu_uninit(cpu);
436
437         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
438         iopm_base = 0;
439 }
440
441 static void init_seg(struct vmcb_seg *seg)
442 {
443         seg->selector = 0;
444         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
445                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
446         seg->limit = 0xffff;
447         seg->base = 0;
448 }
449
450 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
451 {
452         seg->selector = 0;
453         seg->attrib = SVM_SELECTOR_P_MASK | type;
454         seg->limit = 0xffff;
455         seg->base = 0;
456 }
457
458 static void init_vmcb(struct vcpu_svm *svm)
459 {
460         struct vmcb_control_area *control = &svm->vmcb->control;
461         struct vmcb_save_area *save = &svm->vmcb->save;
462
463         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
464                                         INTERCEPT_CR3_MASK |
465                                         INTERCEPT_CR4_MASK;
466
467         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
468                                         INTERCEPT_CR3_MASK |
469                                         INTERCEPT_CR4_MASK |
470                                         INTERCEPT_CR8_MASK;
471
472         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
473                                         INTERCEPT_DR1_MASK |
474                                         INTERCEPT_DR2_MASK |
475                                         INTERCEPT_DR3_MASK;
476
477         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
478                                         INTERCEPT_DR1_MASK |
479                                         INTERCEPT_DR2_MASK |
480                                         INTERCEPT_DR3_MASK |
481                                         INTERCEPT_DR5_MASK |
482                                         INTERCEPT_DR7_MASK;
483
484         control->intercept_exceptions = (1 << PF_VECTOR) |
485                                         (1 << UD_VECTOR) |
486                                         (1 << MC_VECTOR);
487
488
489         control->intercept =    (1ULL << INTERCEPT_INTR) |
490                                 (1ULL << INTERCEPT_NMI) |
491                                 (1ULL << INTERCEPT_SMI) |
492                                 (1ULL << INTERCEPT_CPUID) |
493                                 (1ULL << INTERCEPT_INVD) |
494                                 (1ULL << INTERCEPT_HLT) |
495                                 (1ULL << INTERCEPT_INVLPG) |
496                                 (1ULL << INTERCEPT_INVLPGA) |
497                                 (1ULL << INTERCEPT_IOIO_PROT) |
498                                 (1ULL << INTERCEPT_MSR_PROT) |
499                                 (1ULL << INTERCEPT_TASK_SWITCH) |
500                                 (1ULL << INTERCEPT_SHUTDOWN) |
501                                 (1ULL << INTERCEPT_VMRUN) |
502                                 (1ULL << INTERCEPT_VMMCALL) |
503                                 (1ULL << INTERCEPT_VMLOAD) |
504                                 (1ULL << INTERCEPT_VMSAVE) |
505                                 (1ULL << INTERCEPT_STGI) |
506                                 (1ULL << INTERCEPT_CLGI) |
507                                 (1ULL << INTERCEPT_SKINIT) |
508                                 (1ULL << INTERCEPT_WBINVD) |
509                                 (1ULL << INTERCEPT_MONITOR) |
510                                 (1ULL << INTERCEPT_MWAIT);
511
512         control->iopm_base_pa = iopm_base;
513         control->msrpm_base_pa = __pa(svm->msrpm);
514         control->tsc_offset = 0;
515         control->int_ctl = V_INTR_MASKING_MASK;
516
517         init_seg(&save->es);
518         init_seg(&save->ss);
519         init_seg(&save->ds);
520         init_seg(&save->fs);
521         init_seg(&save->gs);
522
523         save->cs.selector = 0xf000;
524         /* Executable/Readable Code Segment */
525         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
526                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
527         save->cs.limit = 0xffff;
528         /*
529          * cs.base should really be 0xffff0000, but vmx can't handle that, so
530          * be consistent with it.
531          *
532          * Replace when we have real mode working for vmx.
533          */
534         save->cs.base = 0xf0000;
535
536         save->gdtr.limit = 0xffff;
537         save->idtr.limit = 0xffff;
538
539         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
540         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
541
542         save->efer = EFER_SVME;
543         save->dr6 = 0xffff0ff0;
544         save->dr7 = 0x400;
545         save->rflags = 2;
546         save->rip = 0x0000fff0;
547         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
548
549         /*
550          * cr0 val on cpu init should be 0x60000010, we enable cpu
551          * cache by default. the orderly way is to enable cache in bios.
552          */
553         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
554         save->cr4 = X86_CR4_PAE;
555         /* rdx = ?? */
556
557         if (npt_enabled) {
558                 /* Setup VMCB for Nested Paging */
559                 control->nested_ctl = 1;
560                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
561                                         (1ULL << INTERCEPT_INVLPG));
562                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
563                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
564                                                 INTERCEPT_CR3_MASK);
565                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
566                                                  INTERCEPT_CR3_MASK);
567                 save->g_pat = 0x0007040600070406ULL;
568                 /* enable caching because the QEMU Bios doesn't enable it */
569                 save->cr0 = X86_CR0_ET;
570                 save->cr3 = 0;
571                 save->cr4 = 0;
572         }
573         force_new_asid(&svm->vcpu);
574
575         svm->nested_vmcb = 0;
576         svm->vcpu.arch.hflags = HF_GIF_MASK;
577 }
578
579 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
580 {
581         struct vcpu_svm *svm = to_svm(vcpu);
582
583         init_vmcb(svm);
584
585         if (vcpu->vcpu_id != 0) {
586                 kvm_rip_write(vcpu, 0);
587                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
588                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
589         }
590         vcpu->arch.regs_avail = ~0;
591         vcpu->arch.regs_dirty = ~0;
592
593         return 0;
594 }
595
596 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
597 {
598         struct vcpu_svm *svm;
599         struct page *page;
600         struct page *msrpm_pages;
601         struct page *hsave_page;
602         struct page *nested_msrpm_pages;
603         int err;
604
605         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
606         if (!svm) {
607                 err = -ENOMEM;
608                 goto out;
609         }
610
611         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
612         if (err)
613                 goto free_svm;
614
615         page = alloc_page(GFP_KERNEL);
616         if (!page) {
617                 err = -ENOMEM;
618                 goto uninit;
619         }
620
621         err = -ENOMEM;
622         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
623         if (!msrpm_pages)
624                 goto uninit;
625
626         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
627         if (!nested_msrpm_pages)
628                 goto uninit;
629
630         svm->msrpm = page_address(msrpm_pages);
631         svm_vcpu_init_msrpm(svm->msrpm);
632
633         hsave_page = alloc_page(GFP_KERNEL);
634         if (!hsave_page)
635                 goto uninit;
636         svm->hsave = page_address(hsave_page);
637
638         svm->nested_msrpm = page_address(nested_msrpm_pages);
639
640         svm->vmcb = page_address(page);
641         clear_page(svm->vmcb);
642         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
643         svm->asid_generation = 0;
644         init_vmcb(svm);
645
646         fx_init(&svm->vcpu);
647         svm->vcpu.fpu_active = 1;
648         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
649         if (svm->vcpu.vcpu_id == 0)
650                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
651
652         return &svm->vcpu;
653
654 uninit:
655         kvm_vcpu_uninit(&svm->vcpu);
656 free_svm:
657         kmem_cache_free(kvm_vcpu_cache, svm);
658 out:
659         return ERR_PTR(err);
660 }
661
662 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
663 {
664         struct vcpu_svm *svm = to_svm(vcpu);
665
666         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
667         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
668         __free_page(virt_to_page(svm->hsave));
669         __free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER);
670         kvm_vcpu_uninit(vcpu);
671         kmem_cache_free(kvm_vcpu_cache, svm);
672 }
673
674 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
675 {
676         struct vcpu_svm *svm = to_svm(vcpu);
677         int i;
678
679         if (unlikely(cpu != vcpu->cpu)) {
680                 u64 tsc_this, delta;
681
682                 /*
683                  * Make sure that the guest sees a monotonically
684                  * increasing TSC.
685                  */
686                 rdtscll(tsc_this);
687                 delta = vcpu->arch.host_tsc - tsc_this;
688                 svm->vmcb->control.tsc_offset += delta;
689                 vcpu->cpu = cpu;
690                 kvm_migrate_timers(vcpu);
691         }
692
693         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
694                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
695 }
696
697 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
698 {
699         struct vcpu_svm *svm = to_svm(vcpu);
700         int i;
701
702         ++vcpu->stat.host_state_reload;
703         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
704                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
705
706         rdtscll(vcpu->arch.host_tsc);
707 }
708
709 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
710 {
711         return to_svm(vcpu)->vmcb->save.rflags;
712 }
713
714 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
715 {
716         to_svm(vcpu)->vmcb->save.rflags = rflags;
717 }
718
719 static void svm_set_vintr(struct vcpu_svm *svm)
720 {
721         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
722 }
723
724 static void svm_clear_vintr(struct vcpu_svm *svm)
725 {
726         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
727 }
728
729 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
730 {
731         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
732
733         switch (seg) {
734         case VCPU_SREG_CS: return &save->cs;
735         case VCPU_SREG_DS: return &save->ds;
736         case VCPU_SREG_ES: return &save->es;
737         case VCPU_SREG_FS: return &save->fs;
738         case VCPU_SREG_GS: return &save->gs;
739         case VCPU_SREG_SS: return &save->ss;
740         case VCPU_SREG_TR: return &save->tr;
741         case VCPU_SREG_LDTR: return &save->ldtr;
742         }
743         BUG();
744         return NULL;
745 }
746
747 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
748 {
749         struct vmcb_seg *s = svm_seg(vcpu, seg);
750
751         return s->base;
752 }
753
754 static void svm_get_segment(struct kvm_vcpu *vcpu,
755                             struct kvm_segment *var, int seg)
756 {
757         struct vmcb_seg *s = svm_seg(vcpu, seg);
758
759         var->base = s->base;
760         var->limit = s->limit;
761         var->selector = s->selector;
762         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
763         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
764         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
765         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
766         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
767         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
768         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
769         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
770
771         /* AMD's VMCB does not have an explicit unusable field, so emulate it
772          * for cross vendor migration purposes by "not present"
773          */
774         var->unusable = !var->present || (var->type == 0);
775
776         switch (seg) {
777         case VCPU_SREG_CS:
778                 /*
779                  * SVM always stores 0 for the 'G' bit in the CS selector in
780                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
781                  * Intel's VMENTRY has a check on the 'G' bit.
782                  */
783                 var->g = s->limit > 0xfffff;
784                 break;
785         case VCPU_SREG_TR:
786                 /*
787                  * Work around a bug where the busy flag in the tr selector
788                  * isn't exposed
789                  */
790                 var->type |= 0x2;
791                 break;
792         case VCPU_SREG_DS:
793         case VCPU_SREG_ES:
794         case VCPU_SREG_FS:
795         case VCPU_SREG_GS:
796                 /*
797                  * The accessed bit must always be set in the segment
798                  * descriptor cache, although it can be cleared in the
799                  * descriptor, the cached bit always remains at 1. Since
800                  * Intel has a check on this, set it here to support
801                  * cross-vendor migration.
802                  */
803                 if (!var->unusable)
804                         var->type |= 0x1;
805                 break;
806         }
807 }
808
809 static int svm_get_cpl(struct kvm_vcpu *vcpu)
810 {
811         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
812
813         return save->cpl;
814 }
815
816 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
817 {
818         struct vcpu_svm *svm = to_svm(vcpu);
819
820         dt->limit = svm->vmcb->save.idtr.limit;
821         dt->base = svm->vmcb->save.idtr.base;
822 }
823
824 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
825 {
826         struct vcpu_svm *svm = to_svm(vcpu);
827
828         svm->vmcb->save.idtr.limit = dt->limit;
829         svm->vmcb->save.idtr.base = dt->base ;
830 }
831
832 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
833 {
834         struct vcpu_svm *svm = to_svm(vcpu);
835
836         dt->limit = svm->vmcb->save.gdtr.limit;
837         dt->base = svm->vmcb->save.gdtr.base;
838 }
839
840 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
841 {
842         struct vcpu_svm *svm = to_svm(vcpu);
843
844         svm->vmcb->save.gdtr.limit = dt->limit;
845         svm->vmcb->save.gdtr.base = dt->base ;
846 }
847
848 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
849 {
850 }
851
852 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
853 {
854         struct vcpu_svm *svm = to_svm(vcpu);
855
856 #ifdef CONFIG_X86_64
857         if (vcpu->arch.shadow_efer & EFER_LME) {
858                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
859                         vcpu->arch.shadow_efer |= EFER_LMA;
860                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
861                 }
862
863                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
864                         vcpu->arch.shadow_efer &= ~EFER_LMA;
865                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
866                 }
867         }
868 #endif
869         if (npt_enabled)
870                 goto set;
871
872         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
873                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
874                 vcpu->fpu_active = 1;
875         }
876
877         vcpu->arch.cr0 = cr0;
878         cr0 |= X86_CR0_PG | X86_CR0_WP;
879         if (!vcpu->fpu_active) {
880                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
881                 cr0 |= X86_CR0_TS;
882         }
883 set:
884         /*
885          * re-enable caching here because the QEMU bios
886          * does not do it - this results in some delay at
887          * reboot
888          */
889         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
890         svm->vmcb->save.cr0 = cr0;
891 }
892
893 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
894 {
895         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
896         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
897
898         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
899                 force_new_asid(vcpu);
900
901         vcpu->arch.cr4 = cr4;
902         if (!npt_enabled)
903                 cr4 |= X86_CR4_PAE;
904         cr4 |= host_cr4_mce;
905         to_svm(vcpu)->vmcb->save.cr4 = cr4;
906 }
907
908 static void svm_set_segment(struct kvm_vcpu *vcpu,
909                             struct kvm_segment *var, int seg)
910 {
911         struct vcpu_svm *svm = to_svm(vcpu);
912         struct vmcb_seg *s = svm_seg(vcpu, seg);
913
914         s->base = var->base;
915         s->limit = var->limit;
916         s->selector = var->selector;
917         if (var->unusable)
918                 s->attrib = 0;
919         else {
920                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
921                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
922                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
923                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
924                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
925                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
926                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
927                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
928         }
929         if (seg == VCPU_SREG_CS)
930                 svm->vmcb->save.cpl
931                         = (svm->vmcb->save.cs.attrib
932                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
933
934 }
935
936 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
937 {
938         int old_debug = vcpu->guest_debug;
939         struct vcpu_svm *svm = to_svm(vcpu);
940
941         vcpu->guest_debug = dbg->control;
942
943         svm->vmcb->control.intercept_exceptions &=
944                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
945         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
946                 if (vcpu->guest_debug &
947                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
948                         svm->vmcb->control.intercept_exceptions |=
949                                 1 << DB_VECTOR;
950                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
951                         svm->vmcb->control.intercept_exceptions |=
952                                 1 << BP_VECTOR;
953         } else
954                 vcpu->guest_debug = 0;
955
956         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
957                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
958         else
959                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
960
961         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
962                 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
963         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
964                 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
965
966         return 0;
967 }
968
969 static int svm_get_irq(struct kvm_vcpu *vcpu)
970 {
971         if (!vcpu->arch.interrupt.pending)
972                 return -1;
973         return vcpu->arch.interrupt.nr;
974 }
975
976 static void load_host_msrs(struct kvm_vcpu *vcpu)
977 {
978 #ifdef CONFIG_X86_64
979         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
980 #endif
981 }
982
983 static void save_host_msrs(struct kvm_vcpu *vcpu)
984 {
985 #ifdef CONFIG_X86_64
986         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
987 #endif
988 }
989
990 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
991 {
992         if (svm_data->next_asid > svm_data->max_asid) {
993                 ++svm_data->asid_generation;
994                 svm_data->next_asid = 1;
995                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
996         }
997
998         svm->vcpu.cpu = svm_data->cpu;
999         svm->asid_generation = svm_data->asid_generation;
1000         svm->vmcb->control.asid = svm_data->next_asid++;
1001 }
1002
1003 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1004 {
1005         struct vcpu_svm *svm = to_svm(vcpu);
1006         unsigned long val;
1007
1008         switch (dr) {
1009         case 0 ... 3:
1010                 val = vcpu->arch.db[dr];
1011                 break;
1012         case 6:
1013                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1014                         val = vcpu->arch.dr6;
1015                 else
1016                         val = svm->vmcb->save.dr6;
1017                 break;
1018         case 7:
1019                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020                         val = vcpu->arch.dr7;
1021                 else
1022                         val = svm->vmcb->save.dr7;
1023                 break;
1024         default:
1025                 val = 0;
1026         }
1027
1028         KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
1029         return val;
1030 }
1031
1032 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1033                        int *exception)
1034 {
1035         struct vcpu_svm *svm = to_svm(vcpu);
1036
1037         KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)value, handler);
1038
1039         *exception = 0;
1040
1041         switch (dr) {
1042         case 0 ... 3:
1043                 vcpu->arch.db[dr] = value;
1044                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1045                         vcpu->arch.eff_db[dr] = value;
1046                 return;
1047         case 4 ... 5:
1048                 if (vcpu->arch.cr4 & X86_CR4_DE)
1049                         *exception = UD_VECTOR;
1050                 return;
1051         case 6:
1052                 if (value & 0xffffffff00000000ULL) {
1053                         *exception = GP_VECTOR;
1054                         return;
1055                 }
1056                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1057                 return;
1058         case 7:
1059                 if (value & 0xffffffff00000000ULL) {
1060                         *exception = GP_VECTOR;
1061                         return;
1062                 }
1063                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1064                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1065                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1066                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1067                 }
1068                 return;
1069         default:
1070                 /* FIXME: Possible case? */
1071                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1072                        __func__, dr);
1073                 *exception = UD_VECTOR;
1074                 return;
1075         }
1076 }
1077
1078 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1079 {
1080         u64 fault_address;
1081         u32 error_code;
1082
1083         fault_address  = svm->vmcb->control.exit_info_2;
1084         error_code = svm->vmcb->control.exit_info_1;
1085
1086         if (!npt_enabled)
1087                 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1088                             (u32)fault_address, (u32)(fault_address >> 32),
1089                             handler);
1090         else
1091                 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1092                             (u32)fault_address, (u32)(fault_address >> 32),
1093                             handler);
1094         /*
1095          * FIXME: Tis shouldn't be necessary here, but there is a flush
1096          * missing in the MMU code. Until we find this bug, flush the
1097          * complete TLB here on an NPF
1098          */
1099         if (npt_enabled)
1100                 svm_flush_tlb(&svm->vcpu);
1101         else {
1102                 if (svm->vcpu.arch.interrupt.pending ||
1103                                 svm->vcpu.arch.exception.pending)
1104                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1105         }
1106         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1107 }
1108
1109 static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1110 {
1111         if (!(svm->vcpu.guest_debug &
1112               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
1113                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1114                 return 1;
1115         }
1116         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1117         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1118         kvm_run->debug.arch.exception = DB_VECTOR;
1119         return 0;
1120 }
1121
1122 static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1123 {
1124         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1125         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1126         kvm_run->debug.arch.exception = BP_VECTOR;
1127         return 0;
1128 }
1129
1130 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1131 {
1132         int er;
1133
1134         er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1135         if (er != EMULATE_DONE)
1136                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1137         return 1;
1138 }
1139
1140 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1141 {
1142         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1143         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1144                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1145         svm->vcpu.fpu_active = 1;
1146
1147         return 1;
1148 }
1149
1150 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1151 {
1152         /*
1153          * On an #MC intercept the MCE handler is not called automatically in
1154          * the host. So do it by hand here.
1155          */
1156         asm volatile (
1157                 "int $0x12\n");
1158         /* not sure if we ever come back to this point */
1159
1160         return 1;
1161 }
1162
1163 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1164 {
1165         /*
1166          * VMCB is undefined after a SHUTDOWN intercept
1167          * so reinitialize it.
1168          */
1169         clear_page(svm->vmcb);
1170         init_vmcb(svm);
1171
1172         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1173         return 0;
1174 }
1175
1176 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1177 {
1178         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1179         int size, in, string;
1180         unsigned port;
1181
1182         ++svm->vcpu.stat.io_exits;
1183
1184         svm->next_rip = svm->vmcb->control.exit_info_2;
1185
1186         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1187
1188         if (string) {
1189                 if (emulate_instruction(&svm->vcpu,
1190                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1191                         return 0;
1192                 return 1;
1193         }
1194
1195         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1196         port = io_info >> 16;
1197         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1198
1199         skip_emulated_instruction(&svm->vcpu);
1200         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1201 }
1202
1203 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1204 {
1205         KVMTRACE_0D(NMI, &svm->vcpu, handler);
1206         return 1;
1207 }
1208
1209 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1210 {
1211         ++svm->vcpu.stat.irq_exits;
1212         KVMTRACE_0D(INTR, &svm->vcpu, handler);
1213         return 1;
1214 }
1215
1216 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1217 {
1218         return 1;
1219 }
1220
1221 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1222 {
1223         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1224         skip_emulated_instruction(&svm->vcpu);
1225         return kvm_emulate_halt(&svm->vcpu);
1226 }
1227
1228 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1229 {
1230         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1231         skip_emulated_instruction(&svm->vcpu);
1232         kvm_emulate_hypercall(&svm->vcpu);
1233         return 1;
1234 }
1235
1236 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1237 {
1238         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1239             || !is_paging(&svm->vcpu)) {
1240                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1241                 return 1;
1242         }
1243
1244         if (svm->vmcb->save.cpl) {
1245                 kvm_inject_gp(&svm->vcpu, 0);
1246                 return 1;
1247         }
1248
1249        return 0;
1250 }
1251
1252 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1253                                       bool has_error_code, u32 error_code)
1254 {
1255         if (is_nested(svm)) {
1256                 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1257                 svm->vmcb->control.exit_code_hi = 0;
1258                 svm->vmcb->control.exit_info_1 = error_code;
1259                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1260                 if (nested_svm_exit_handled(svm, false)) {
1261                         nsvm_printk("VMexit -> EXCP 0x%x\n", nr);
1262
1263                         nested_svm_vmexit(svm);
1264                         return 1;
1265                 }
1266         }
1267
1268         return 0;
1269 }
1270
1271 static inline int nested_svm_intr(struct vcpu_svm *svm)
1272 {
1273         if (is_nested(svm)) {
1274                 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1275                         return 0;
1276
1277                 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1278                         return 0;
1279
1280                 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1281
1282                 if (nested_svm_exit_handled(svm, false)) {
1283                         nsvm_printk("VMexit -> INTR\n");
1284                         nested_svm_vmexit(svm);
1285                         return 1;
1286                 }
1287         }
1288
1289         return 0;
1290 }
1291
1292 static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
1293 {
1294         struct page *page;
1295
1296         down_read(&current->mm->mmap_sem);
1297         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1298         up_read(&current->mm->mmap_sem);
1299
1300         if (is_error_page(page)) {
1301                 printk(KERN_INFO "%s: could not find page at 0x%llx\n",
1302                        __func__, gpa);
1303                 kvm_release_page_clean(page);
1304                 kvm_inject_gp(&svm->vcpu, 0);
1305                 return NULL;
1306         }
1307         return page;
1308 }
1309
1310 static int nested_svm_do(struct vcpu_svm *svm,
1311                          u64 arg1_gpa, u64 arg2_gpa, void *opaque,
1312                          int (*handler)(struct vcpu_svm *svm,
1313                                         void *arg1,
1314                                         void *arg2,
1315                                         void *opaque))
1316 {
1317         struct page *arg1_page;
1318         struct page *arg2_page = NULL;
1319         void *arg1;
1320         void *arg2 = NULL;
1321         int retval;
1322
1323         arg1_page = nested_svm_get_page(svm, arg1_gpa);
1324         if(arg1_page == NULL)
1325                 return 1;
1326
1327         if (arg2_gpa) {
1328                 arg2_page = nested_svm_get_page(svm, arg2_gpa);
1329                 if(arg2_page == NULL) {
1330                         kvm_release_page_clean(arg1_page);
1331                         return 1;
1332                 }
1333         }
1334
1335         arg1 = kmap_atomic(arg1_page, KM_USER0);
1336         if (arg2_gpa)
1337                 arg2 = kmap_atomic(arg2_page, KM_USER1);
1338
1339         retval = handler(svm, arg1, arg2, opaque);
1340
1341         kunmap_atomic(arg1, KM_USER0);
1342         if (arg2_gpa)
1343                 kunmap_atomic(arg2, KM_USER1);
1344
1345         kvm_release_page_dirty(arg1_page);
1346         if (arg2_gpa)
1347                 kvm_release_page_dirty(arg2_page);
1348
1349         return retval;
1350 }
1351
1352 static int nested_svm_exit_handled_real(struct vcpu_svm *svm,
1353                                         void *arg1,
1354                                         void *arg2,
1355                                         void *opaque)
1356 {
1357         struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1358         bool kvm_overrides = *(bool *)opaque;
1359         u32 exit_code = svm->vmcb->control.exit_code;
1360
1361         if (kvm_overrides) {
1362                 switch (exit_code) {
1363                 case SVM_EXIT_INTR:
1364                 case SVM_EXIT_NMI:
1365                         return 0;
1366                 /* For now we are always handling NPFs when using them */
1367                 case SVM_EXIT_NPF:
1368                         if (npt_enabled)
1369                                 return 0;
1370                         break;
1371                 /* When we're shadowing, trap PFs */
1372                 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1373                         if (!npt_enabled)
1374                                 return 0;
1375                         break;
1376                 default:
1377                         break;
1378                 }
1379         }
1380
1381         switch (exit_code) {
1382         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1383                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1384                 if (nested_vmcb->control.intercept_cr_read & cr_bits)
1385                         return 1;
1386                 break;
1387         }
1388         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1389                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1390                 if (nested_vmcb->control.intercept_cr_write & cr_bits)
1391                         return 1;
1392                 break;
1393         }
1394         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1395                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1396                 if (nested_vmcb->control.intercept_dr_read & dr_bits)
1397                         return 1;
1398                 break;
1399         }
1400         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1401                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1402                 if (nested_vmcb->control.intercept_dr_write & dr_bits)
1403                         return 1;
1404                 break;
1405         }
1406         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1407                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1408                 if (nested_vmcb->control.intercept_exceptions & excp_bits)
1409                         return 1;
1410                 break;
1411         }
1412         default: {
1413                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1414                 nsvm_printk("exit code: 0x%x\n", exit_code);
1415                 if (nested_vmcb->control.intercept & exit_bits)
1416                         return 1;
1417         }
1418         }
1419
1420         return 0;
1421 }
1422
1423 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm,
1424                                        void *arg1, void *arg2,
1425                                        void *opaque)
1426 {
1427         struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1428         u8 *msrpm = (u8 *)arg2;
1429         u32 t0, t1;
1430         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1431         u32 param = svm->vmcb->control.exit_info_1 & 1;
1432
1433         if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1434                 return 0;
1435
1436         switch(msr) {
1437         case 0 ... 0x1fff:
1438                 t0 = (msr * 2) % 8;
1439                 t1 = msr / 8;
1440                 break;
1441         case 0xc0000000 ... 0xc0001fff:
1442                 t0 = (8192 + msr - 0xc0000000) * 2;
1443                 t1 = (t0 / 8);
1444                 t0 %= 8;
1445                 break;
1446         case 0xc0010000 ... 0xc0011fff:
1447                 t0 = (16384 + msr - 0xc0010000) * 2;
1448                 t1 = (t0 / 8);
1449                 t0 %= 8;
1450                 break;
1451         default:
1452                 return 1;
1453                 break;
1454         }
1455         if (msrpm[t1] & ((1 << param) << t0))
1456                 return 1;
1457
1458         return 0;
1459 }
1460
1461 static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
1462 {
1463         bool k = kvm_override;
1464
1465         switch (svm->vmcb->control.exit_code) {
1466         case SVM_EXIT_MSR:
1467                 return nested_svm_do(svm, svm->nested_vmcb,
1468                                      svm->nested_vmcb_msrpm, NULL,
1469                                      nested_svm_exit_handled_msr);
1470         default: break;
1471         }
1472
1473         return nested_svm_do(svm, svm->nested_vmcb, 0, &k,
1474                              nested_svm_exit_handled_real);
1475 }
1476
1477 static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1,
1478                                   void *arg2, void *opaque)
1479 {
1480         struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1481         struct vmcb *hsave = svm->hsave;
1482         u64 nested_save[] = { nested_vmcb->save.cr0,
1483                               nested_vmcb->save.cr3,
1484                               nested_vmcb->save.cr4,
1485                               nested_vmcb->save.efer,
1486                               nested_vmcb->control.intercept_cr_read,
1487                               nested_vmcb->control.intercept_cr_write,
1488                               nested_vmcb->control.intercept_dr_read,
1489                               nested_vmcb->control.intercept_dr_write,
1490                               nested_vmcb->control.intercept_exceptions,
1491                               nested_vmcb->control.intercept,
1492                               nested_vmcb->control.msrpm_base_pa,
1493                               nested_vmcb->control.iopm_base_pa,
1494                               nested_vmcb->control.tsc_offset };
1495
1496         /* Give the current vmcb to the guest */
1497         memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb));
1498         nested_vmcb->save.cr0 = nested_save[0];
1499         if (!npt_enabled)
1500                 nested_vmcb->save.cr3 = nested_save[1];
1501         nested_vmcb->save.cr4 = nested_save[2];
1502         nested_vmcb->save.efer = nested_save[3];
1503         nested_vmcb->control.intercept_cr_read = nested_save[4];
1504         nested_vmcb->control.intercept_cr_write = nested_save[5];
1505         nested_vmcb->control.intercept_dr_read = nested_save[6];
1506         nested_vmcb->control.intercept_dr_write = nested_save[7];
1507         nested_vmcb->control.intercept_exceptions = nested_save[8];
1508         nested_vmcb->control.intercept = nested_save[9];
1509         nested_vmcb->control.msrpm_base_pa = nested_save[10];
1510         nested_vmcb->control.iopm_base_pa = nested_save[11];
1511         nested_vmcb->control.tsc_offset = nested_save[12];
1512
1513         /* We always set V_INTR_MASKING and remember the old value in hflags */
1514         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1515                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1516
1517         if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) &&
1518             (nested_vmcb->control.int_vector)) {
1519                 nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
1520                                 nested_vmcb->control.int_vector);
1521         }
1522
1523         /* Restore the original control entries */
1524         svm->vmcb->control = hsave->control;
1525
1526         /* Kill any pending exceptions */
1527         if (svm->vcpu.arch.exception.pending == true)
1528                 nsvm_printk("WARNING: Pending Exception\n");
1529         svm->vcpu.arch.exception.pending = false;
1530
1531         /* Restore selected save entries */
1532         svm->vmcb->save.es = hsave->save.es;
1533         svm->vmcb->save.cs = hsave->save.cs;
1534         svm->vmcb->save.ss = hsave->save.ss;
1535         svm->vmcb->save.ds = hsave->save.ds;
1536         svm->vmcb->save.gdtr = hsave->save.gdtr;
1537         svm->vmcb->save.idtr = hsave->save.idtr;
1538         svm->vmcb->save.rflags = hsave->save.rflags;
1539         svm_set_efer(&svm->vcpu, hsave->save.efer);
1540         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1541         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1542         if (npt_enabled) {
1543                 svm->vmcb->save.cr3 = hsave->save.cr3;
1544                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1545         } else {
1546                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1547         }
1548         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1549         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1550         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1551         svm->vmcb->save.dr7 = 0;
1552         svm->vmcb->save.cpl = 0;
1553         svm->vmcb->control.exit_int_info = 0;
1554
1555         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
1556         /* Exit nested SVM mode */
1557         svm->nested_vmcb = 0;
1558
1559         return 0;
1560 }
1561
1562 static int nested_svm_vmexit(struct vcpu_svm *svm)
1563 {
1564         nsvm_printk("VMexit\n");
1565         if (nested_svm_do(svm, svm->nested_vmcb, 0,
1566                           NULL, nested_svm_vmexit_real))
1567                 return 1;
1568
1569         kvm_mmu_reset_context(&svm->vcpu);
1570         kvm_mmu_load(&svm->vcpu);
1571
1572         return 0;
1573 }
1574
1575 static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1,
1576                                   void *arg2, void *opaque)
1577 {
1578         int i;
1579         u32 *nested_msrpm = (u32*)arg1;
1580         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1581                 svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1582         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm);
1583
1584         return 0;
1585 }
1586
1587 static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1,
1588                             void *arg2, void *opaque)
1589 {
1590         struct vmcb *nested_vmcb = (struct vmcb *)arg1;
1591         struct vmcb *hsave = svm->hsave;
1592
1593         /* nested_vmcb is our indicator if nested SVM is activated */
1594         svm->nested_vmcb = svm->vmcb->save.rax;
1595
1596         /* Clear internal status */
1597         svm->vcpu.arch.exception.pending = false;
1598
1599         /* Save the old vmcb, so we don't need to pick what we save, but
1600            can restore everything when a VMEXIT occurs */
1601         memcpy(hsave, svm->vmcb, sizeof(struct vmcb));
1602         /* We need to remember the original CR3 in the SPT case */
1603         if (!npt_enabled)
1604                 hsave->save.cr3 = svm->vcpu.arch.cr3;
1605         hsave->save.cr4 = svm->vcpu.arch.cr4;
1606         hsave->save.rip = svm->next_rip;
1607
1608         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1609                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1610         else
1611                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1612
1613         /* Load the nested guest state */
1614         svm->vmcb->save.es = nested_vmcb->save.es;
1615         svm->vmcb->save.cs = nested_vmcb->save.cs;
1616         svm->vmcb->save.ss = nested_vmcb->save.ss;
1617         svm->vmcb->save.ds = nested_vmcb->save.ds;
1618         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1619         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1620         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1621         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1622         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1623         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1624         if (npt_enabled) {
1625                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1626                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1627         } else {
1628                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1629                 kvm_mmu_reset_context(&svm->vcpu);
1630         }
1631         svm->vmcb->save.cr2 = nested_vmcb->save.cr2;
1632         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1633         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1634         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1635         /* In case we don't even reach vcpu_run, the fields are not updated */
1636         svm->vmcb->save.rax = nested_vmcb->save.rax;
1637         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1638         svm->vmcb->save.rip = nested_vmcb->save.rip;
1639         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1640         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1641         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1642
1643         /* We don't want a nested guest to be more powerful than the guest,
1644            so all intercepts are ORed */
1645         svm->vmcb->control.intercept_cr_read |=
1646                 nested_vmcb->control.intercept_cr_read;
1647         svm->vmcb->control.intercept_cr_write |=
1648                 nested_vmcb->control.intercept_cr_write;
1649         svm->vmcb->control.intercept_dr_read |=
1650                 nested_vmcb->control.intercept_dr_read;
1651         svm->vmcb->control.intercept_dr_write |=
1652                 nested_vmcb->control.intercept_dr_write;
1653         svm->vmcb->control.intercept_exceptions |=
1654                 nested_vmcb->control.intercept_exceptions;
1655
1656         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1657
1658         svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1659
1660         force_new_asid(&svm->vcpu);
1661         svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1662         svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1663         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1664         if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1665                 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1666                                 nested_vmcb->control.int_ctl);
1667         }
1668         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1669                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1670         else
1671                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1672
1673         nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1674                         nested_vmcb->control.exit_int_info,
1675                         nested_vmcb->control.int_state);
1676
1677         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1678         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1679         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1680         if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1681                 nsvm_printk("Injecting Event: 0x%x\n",
1682                                 nested_vmcb->control.event_inj);
1683         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1684         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1685
1686         svm->vcpu.arch.hflags |= HF_GIF_MASK;
1687
1688         return 0;
1689 }
1690
1691 static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1692 {
1693         to_vmcb->save.fs = from_vmcb->save.fs;
1694         to_vmcb->save.gs = from_vmcb->save.gs;
1695         to_vmcb->save.tr = from_vmcb->save.tr;
1696         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1697         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1698         to_vmcb->save.star = from_vmcb->save.star;
1699         to_vmcb->save.lstar = from_vmcb->save.lstar;
1700         to_vmcb->save.cstar = from_vmcb->save.cstar;
1701         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1702         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1703         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1704         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1705
1706         return 1;
1707 }
1708
1709 static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb,
1710                              void *arg2, void *opaque)
1711 {
1712         return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb);
1713 }
1714
1715 static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
1716                              void *arg2, void *opaque)
1717 {
1718         return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb);
1719 }
1720
1721 static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1722 {
1723         if (nested_svm_check_permissions(svm))
1724                 return 1;
1725
1726         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1727         skip_emulated_instruction(&svm->vcpu);
1728
1729         nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload);
1730
1731         return 1;
1732 }
1733
1734 static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1735 {
1736         if (nested_svm_check_permissions(svm))
1737                 return 1;
1738
1739         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1740         skip_emulated_instruction(&svm->vcpu);
1741
1742         nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave);
1743
1744         return 1;
1745 }
1746
1747 static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1748 {
1749         nsvm_printk("VMrun\n");
1750         if (nested_svm_check_permissions(svm))
1751                 return 1;
1752
1753         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1754         skip_emulated_instruction(&svm->vcpu);
1755
1756         if (nested_svm_do(svm, svm->vmcb->save.rax, 0,
1757                           NULL, nested_svm_vmrun))
1758                 return 1;
1759
1760         if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0,
1761                       NULL, nested_svm_vmrun_msrpm))
1762                 return 1;
1763
1764         return 1;
1765 }
1766
1767 static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1768 {
1769         if (nested_svm_check_permissions(svm))
1770                 return 1;
1771
1772         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1773         skip_emulated_instruction(&svm->vcpu);
1774
1775         svm->vcpu.arch.hflags |= HF_GIF_MASK;
1776
1777         return 1;
1778 }
1779
1780 static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1781 {
1782         if (nested_svm_check_permissions(svm))
1783                 return 1;
1784
1785         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1786         skip_emulated_instruction(&svm->vcpu);
1787
1788         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
1789
1790         /* After a CLGI no interrupts should come */
1791         svm_clear_vintr(svm);
1792         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1793
1794         return 1;
1795 }
1796
1797 static int invalid_op_interception(struct vcpu_svm *svm,
1798                                    struct kvm_run *kvm_run)
1799 {
1800         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1801         return 1;
1802 }
1803
1804 static int task_switch_interception(struct vcpu_svm *svm,
1805                                     struct kvm_run *kvm_run)
1806 {
1807         u16 tss_selector;
1808         int reason;
1809         int int_type = svm->vmcb->control.exit_int_info &
1810                 SVM_EXITINTINFO_TYPE_MASK;
1811         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1812
1813         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1814
1815         if (svm->vmcb->control.exit_info_2 &
1816             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1817                 reason = TASK_SWITCH_IRET;
1818         else if (svm->vmcb->control.exit_info_2 &
1819                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1820                 reason = TASK_SWITCH_JMP;
1821         else if (svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID)
1822                 reason = TASK_SWITCH_GATE;
1823         else
1824                 reason = TASK_SWITCH_CALL;
1825
1826
1827         if (reason != TASK_SWITCH_GATE ||
1828             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
1829             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
1830              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
1831                 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0,
1832                                         EMULTYPE_SKIP) != EMULATE_DONE)
1833                         return 0;
1834         }
1835
1836         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
1837 }
1838
1839 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1840 {
1841         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1842         kvm_emulate_cpuid(&svm->vcpu);
1843         return 1;
1844 }
1845
1846 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1847 {
1848         if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1849                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1850         return 1;
1851 }
1852
1853 static int emulate_on_interception(struct vcpu_svm *svm,
1854                                    struct kvm_run *kvm_run)
1855 {
1856         if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1857                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1858         return 1;
1859 }
1860
1861 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1862 {
1863         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
1864         /* instruction emulation calls kvm_set_cr8() */
1865         emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1866         if (irqchip_in_kernel(svm->vcpu.kvm))
1867                 return 1;
1868         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
1869                 return 1;
1870         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1871         return 0;
1872 }
1873
1874 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1875 {
1876         struct vcpu_svm *svm = to_svm(vcpu);
1877
1878         switch (ecx) {
1879         case MSR_IA32_TIME_STAMP_COUNTER: {
1880                 u64 tsc;
1881
1882                 rdtscll(tsc);
1883                 *data = svm->vmcb->control.tsc_offset + tsc;
1884                 break;
1885         }
1886         case MSR_K6_STAR:
1887                 *data = svm->vmcb->save.star;
1888                 break;
1889 #ifdef CONFIG_X86_64
1890         case MSR_LSTAR:
1891                 *data = svm->vmcb->save.lstar;
1892                 break;
1893         case MSR_CSTAR:
1894                 *data = svm->vmcb->save.cstar;
1895                 break;
1896         case MSR_KERNEL_GS_BASE:
1897                 *data = svm->vmcb->save.kernel_gs_base;
1898                 break;
1899         case MSR_SYSCALL_MASK:
1900                 *data = svm->vmcb->save.sfmask;
1901                 break;
1902 #endif
1903         case MSR_IA32_SYSENTER_CS:
1904                 *data = svm->vmcb->save.sysenter_cs;
1905                 break;
1906         case MSR_IA32_SYSENTER_EIP:
1907                 *data = svm->vmcb->save.sysenter_eip;
1908                 break;
1909         case MSR_IA32_SYSENTER_ESP:
1910                 *data = svm->vmcb->save.sysenter_esp;
1911                 break;
1912         /* Nobody will change the following 5 values in the VMCB so
1913            we can safely return them on rdmsr. They will always be 0
1914            until LBRV is implemented. */
1915         case MSR_IA32_DEBUGCTLMSR:
1916                 *data = svm->vmcb->save.dbgctl;
1917                 break;
1918         case MSR_IA32_LASTBRANCHFROMIP:
1919                 *data = svm->vmcb->save.br_from;
1920                 break;
1921         case MSR_IA32_LASTBRANCHTOIP:
1922                 *data = svm->vmcb->save.br_to;
1923                 break;
1924         case MSR_IA32_LASTINTFROMIP:
1925                 *data = svm->vmcb->save.last_excp_from;
1926                 break;
1927         case MSR_IA32_LASTINTTOIP:
1928                 *data = svm->vmcb->save.last_excp_to;
1929                 break;
1930         case MSR_VM_HSAVE_PA:
1931                 *data = svm->hsave_msr;
1932                 break;
1933         case MSR_VM_CR:
1934                 *data = 0;
1935                 break;
1936         case MSR_IA32_UCODE_REV:
1937                 *data = 0x01000065;
1938                 break;
1939         default:
1940                 return kvm_get_msr_common(vcpu, ecx, data);
1941         }
1942         return 0;
1943 }
1944
1945 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1946 {
1947         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1948         u64 data;
1949
1950         if (svm_get_msr(&svm->vcpu, ecx, &data))
1951                 kvm_inject_gp(&svm->vcpu, 0);
1952         else {
1953                 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1954                             (u32)(data >> 32), handler);
1955
1956                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1957                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1958                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1959                 skip_emulated_instruction(&svm->vcpu);
1960         }
1961         return 1;
1962 }
1963
1964 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1965 {
1966         struct vcpu_svm *svm = to_svm(vcpu);
1967
1968         switch (ecx) {
1969         case MSR_IA32_TIME_STAMP_COUNTER: {
1970                 u64 tsc;
1971
1972                 rdtscll(tsc);
1973                 svm->vmcb->control.tsc_offset = data - tsc;
1974                 break;
1975         }
1976         case MSR_K6_STAR:
1977                 svm->vmcb->save.star = data;
1978                 break;
1979 #ifdef CONFIG_X86_64
1980         case MSR_LSTAR:
1981                 svm->vmcb->save.lstar = data;
1982                 break;
1983         case MSR_CSTAR:
1984                 svm->vmcb->save.cstar = data;
1985                 break;
1986         case MSR_KERNEL_GS_BASE:
1987                 svm->vmcb->save.kernel_gs_base = data;
1988                 break;
1989         case MSR_SYSCALL_MASK:
1990                 svm->vmcb->save.sfmask = data;
1991                 break;
1992 #endif
1993         case MSR_IA32_SYSENTER_CS:
1994                 svm->vmcb->save.sysenter_cs = data;
1995                 break;
1996         case MSR_IA32_SYSENTER_EIP:
1997                 svm->vmcb->save.sysenter_eip = data;
1998                 break;
1999         case MSR_IA32_SYSENTER_ESP:
2000                 svm->vmcb->save.sysenter_esp = data;
2001                 break;
2002         case MSR_IA32_DEBUGCTLMSR:
2003                 if (!svm_has(SVM_FEATURE_LBRV)) {
2004                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2005                                         __func__, data);
2006                         break;
2007                 }
2008                 if (data & DEBUGCTL_RESERVED_BITS)
2009                         return 1;
2010
2011                 svm->vmcb->save.dbgctl = data;
2012                 if (data & (1ULL<<0))
2013                         svm_enable_lbrv(svm);
2014                 else
2015                         svm_disable_lbrv(svm);
2016                 break;
2017         case MSR_K7_EVNTSEL0:
2018         case MSR_K7_EVNTSEL1:
2019         case MSR_K7_EVNTSEL2:
2020         case MSR_K7_EVNTSEL3:
2021         case MSR_K7_PERFCTR0:
2022         case MSR_K7_PERFCTR1:
2023         case MSR_K7_PERFCTR2:
2024         case MSR_K7_PERFCTR3:
2025                 /*
2026                  * Just discard all writes to the performance counters; this
2027                  * should keep both older linux and windows 64-bit guests
2028                  * happy
2029                  */
2030                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
2031
2032                 break;
2033         case MSR_VM_HSAVE_PA:
2034                 svm->hsave_msr = data;
2035                 break;
2036         default:
2037                 return kvm_set_msr_common(vcpu, ecx, data);
2038         }
2039         return 0;
2040 }
2041
2042 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2043 {
2044         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2045         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2046                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2047
2048         KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
2049                     handler);
2050
2051         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2052         if (svm_set_msr(&svm->vcpu, ecx, data))
2053                 kvm_inject_gp(&svm->vcpu, 0);
2054         else
2055                 skip_emulated_instruction(&svm->vcpu);
2056         return 1;
2057 }
2058
2059 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2060 {
2061         if (svm->vmcb->control.exit_info_1)
2062                 return wrmsr_interception(svm, kvm_run);
2063         else
2064                 return rdmsr_interception(svm, kvm_run);
2065 }
2066
2067 static int interrupt_window_interception(struct vcpu_svm *svm,
2068                                    struct kvm_run *kvm_run)
2069 {
2070         KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
2071
2072         svm_clear_vintr(svm);
2073         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2074         /*
2075          * If the user space waits to inject interrupts, exit as soon as
2076          * possible
2077          */
2078         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2079             kvm_run->request_interrupt_window &&
2080             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2081                 ++svm->vcpu.stat.irq_window_exits;
2082                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2083                 return 0;
2084         }
2085
2086         return 1;
2087 }
2088
2089 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
2090                                       struct kvm_run *kvm_run) = {
2091         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2092         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2093         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2094         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2095         /* for now: */
2096         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2097         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2098         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2099         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2100         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2101         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2102         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2103         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2104         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2105         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2106         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2107         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2108         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2109         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2110         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2111         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2112         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2113         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2114         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2115         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2116         [SVM_EXIT_INTR]                         = intr_interception,
2117         [SVM_EXIT_NMI]                          = nmi_interception,
2118         [SVM_EXIT_SMI]                          = nop_on_interception,
2119         [SVM_EXIT_INIT]                         = nop_on_interception,
2120         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2121         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2122         [SVM_EXIT_CPUID]                        = cpuid_interception,
2123         [SVM_EXIT_INVD]                         = emulate_on_interception,
2124         [SVM_EXIT_HLT]                          = halt_interception,
2125         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2126         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
2127         [SVM_EXIT_IOIO]                         = io_interception,
2128         [SVM_EXIT_MSR]                          = msr_interception,
2129         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2130         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2131         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2132         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2133         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2134         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2135         [SVM_EXIT_STGI]                         = stgi_interception,
2136         [SVM_EXIT_CLGI]                         = clgi_interception,
2137         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
2138         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2139         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2140         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2141         [SVM_EXIT_NPF]                          = pf_interception,
2142 };
2143
2144 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2145 {
2146         struct vcpu_svm *svm = to_svm(vcpu);
2147         u32 exit_code = svm->vmcb->control.exit_code;
2148
2149         KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
2150                     (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
2151
2152         if (is_nested(svm)) {
2153                 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2154                             exit_code, svm->vmcb->control.exit_info_1,
2155                             svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2156                 if (nested_svm_exit_handled(svm, true)) {
2157                         nested_svm_vmexit(svm);
2158                         nsvm_printk("-> #VMEXIT\n");
2159                         return 1;
2160                 }
2161         }
2162
2163         if (npt_enabled) {
2164                 int mmu_reload = 0;
2165                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2166                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2167                         mmu_reload = 1;
2168                 }
2169                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2170                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2171                 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2172                         if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
2173                                 kvm_inject_gp(vcpu, 0);
2174                                 return 1;
2175                         }
2176                 }
2177                 if (mmu_reload) {
2178                         kvm_mmu_reset_context(vcpu);
2179                         kvm_mmu_load(vcpu);
2180                 }
2181         }
2182
2183
2184         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2185                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2186                 kvm_run->fail_entry.hardware_entry_failure_reason
2187                         = svm->vmcb->control.exit_code;
2188                 return 0;
2189         }
2190
2191         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2192             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2193             exit_code != SVM_EXIT_NPF)
2194                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2195                        "exit_code 0x%x\n",
2196                        __func__, svm->vmcb->control.exit_int_info,
2197                        exit_code);
2198
2199         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2200             || !svm_exit_handlers[exit_code]) {
2201                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2202                 kvm_run->hw.hardware_exit_reason = exit_code;
2203                 return 0;
2204         }
2205
2206         return svm_exit_handlers[exit_code](svm, kvm_run);
2207 }
2208
2209 static void reload_tss(struct kvm_vcpu *vcpu)
2210 {
2211         int cpu = raw_smp_processor_id();
2212
2213         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2214         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2215         load_TR_desc();
2216 }
2217
2218 static void pre_svm_run(struct vcpu_svm *svm)
2219 {
2220         int cpu = raw_smp_processor_id();
2221
2222         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2223
2224         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2225         if (svm->vcpu.cpu != cpu ||
2226             svm->asid_generation != svm_data->asid_generation)
2227                 new_asid(svm, svm_data);
2228 }
2229
2230
2231 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2232 {
2233         struct vmcb_control_area *control;
2234
2235         KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
2236
2237         ++svm->vcpu.stat.irq_injections;
2238         control = &svm->vmcb->control;
2239         control->int_vector = irq;
2240         control->int_ctl &= ~V_INTR_PRIO_MASK;
2241         control->int_ctl |= V_IRQ_MASK |
2242                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2243 }
2244
2245 static void svm_queue_irq(struct vcpu_svm *svm, unsigned nr)
2246 {
2247         svm->vmcb->control.event_inj = nr |
2248                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2249 }
2250
2251 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
2252 {
2253         struct vcpu_svm *svm = to_svm(vcpu);
2254
2255         nested_svm_intr(svm);
2256
2257         svm_queue_irq(svm, irq);
2258 }
2259
2260 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
2261 {
2262         struct vcpu_svm *svm = to_svm(vcpu);
2263         struct vmcb *vmcb = svm->vmcb;
2264         int max_irr, tpr;
2265
2266         if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
2267                 return;
2268
2269         vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2270
2271         max_irr = kvm_lapic_find_highest_irr(vcpu);
2272         if (max_irr == -1)
2273                 return;
2274
2275         tpr = kvm_lapic_get_cr8(vcpu) << 4;
2276
2277         if (tpr >= (max_irr & 0xf0))
2278                 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2279 }
2280
2281 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2282 {
2283         struct vcpu_svm *svm = to_svm(vcpu);
2284         struct vmcb *vmcb = svm->vmcb;
2285         return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2286                 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2287                 (svm->vcpu.arch.hflags & HF_GIF_MASK);
2288 }
2289
2290 static void enable_irq_window(struct kvm_vcpu *vcpu)
2291 {
2292         svm_set_vintr(to_svm(vcpu));
2293         svm_inject_irq(to_svm(vcpu), 0x0);
2294 }
2295
2296 static void svm_intr_inject(struct kvm_vcpu *vcpu)
2297 {
2298         /* try to reinject previous events if any */
2299         if (vcpu->arch.interrupt.pending) {
2300                 svm_queue_irq(to_svm(vcpu), vcpu->arch.interrupt.nr);
2301                 return;
2302         }
2303
2304         /* try to inject new event if pending */
2305         if (kvm_cpu_has_interrupt(vcpu)) {
2306                 if (svm_interrupt_allowed(vcpu)) {
2307                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
2308                         svm_queue_irq(to_svm(vcpu), vcpu->arch.interrupt.nr);
2309                 }
2310         }
2311 }
2312
2313 static void svm_intr_assist(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2314 {
2315         struct vcpu_svm *svm = to_svm(vcpu);
2316         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
2317                 kvm_run->request_interrupt_window;
2318
2319         if (nested_svm_intr(svm))
2320                 goto out;
2321
2322         svm_intr_inject(vcpu);
2323
2324         if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
2325                 enable_irq_window(vcpu);
2326
2327 out:
2328         update_cr8_intercept(vcpu);
2329 }
2330
2331 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2332 {
2333         return 0;
2334 }
2335
2336 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2337 {
2338         force_new_asid(vcpu);
2339 }
2340
2341 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2342 {
2343 }
2344
2345 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2346 {
2347         struct vcpu_svm *svm = to_svm(vcpu);
2348
2349         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2350                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2351                 kvm_set_cr8(vcpu, cr8);
2352         }
2353 }
2354
2355 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2356 {
2357         struct vcpu_svm *svm = to_svm(vcpu);
2358         u64 cr8;
2359
2360         cr8 = kvm_get_cr8(vcpu);
2361         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2362         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2363 }
2364
2365 static void svm_complete_interrupts(struct vcpu_svm *svm)
2366 {
2367         u8 vector;
2368         int type;
2369         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2370
2371         svm->vcpu.arch.nmi_injected = false;
2372         kvm_clear_exception_queue(&svm->vcpu);
2373         kvm_clear_interrupt_queue(&svm->vcpu);
2374
2375         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2376                 return;
2377
2378         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2379         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2380
2381         switch (type) {
2382         case SVM_EXITINTINFO_TYPE_NMI:
2383                 svm->vcpu.arch.nmi_injected = true;
2384                 break;
2385         case SVM_EXITINTINFO_TYPE_EXEPT:
2386                 /* In case of software exception do not reinject an exception
2387                    vector, but re-execute and instruction instead */
2388                 if (vector == BP_VECTOR || vector == OF_VECTOR)
2389                         break;
2390                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2391                         u32 err = svm->vmcb->control.exit_int_info_err;
2392                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2393
2394                 } else
2395                         kvm_queue_exception(&svm->vcpu, vector);
2396                 break;
2397         case SVM_EXITINTINFO_TYPE_INTR:
2398                 kvm_queue_interrupt(&svm->vcpu, vector);
2399                 break;
2400         default:
2401                 break;
2402         }
2403 }
2404
2405 #ifdef CONFIG_X86_64
2406 #define R "r"
2407 #else
2408 #define R "e"
2409 #endif
2410
2411 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2412 {
2413         struct vcpu_svm *svm = to_svm(vcpu);
2414         u16 fs_selector;
2415         u16 gs_selector;
2416         u16 ldt_selector;
2417
2418         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2419         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2420         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2421
2422         pre_svm_run(svm);
2423
2424         sync_lapic_to_cr8(vcpu);
2425
2426         save_host_msrs(vcpu);
2427         fs_selector = kvm_read_fs();
2428         gs_selector = kvm_read_gs();
2429         ldt_selector = kvm_read_ldt();
2430         svm->host_cr2 = kvm_read_cr2();
2431         if (!is_nested(svm))
2432                 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2433         /* required for live migration with NPT */
2434         if (npt_enabled)
2435                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2436
2437         clgi();
2438
2439         local_irq_enable();
2440
2441         asm volatile (
2442                 "push %%"R"bp; \n\t"
2443                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2444                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2445                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2446                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2447                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2448                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2449 #ifdef CONFIG_X86_64
2450                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2451                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2452                 "mov %c[r10](%[svm]), %%r10 \n\t"
2453                 "mov %c[r11](%[svm]), %%r11 \n\t"
2454                 "mov %c[r12](%[svm]), %%r12 \n\t"
2455                 "mov %c[r13](%[svm]), %%r13 \n\t"
2456                 "mov %c[r14](%[svm]), %%r14 \n\t"
2457                 "mov %c[r15](%[svm]), %%r15 \n\t"
2458 #endif
2459
2460                 /* Enter guest mode */
2461                 "push %%"R"ax \n\t"
2462                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2463                 __ex(SVM_VMLOAD) "\n\t"
2464                 __ex(SVM_VMRUN) "\n\t"
2465                 __ex(SVM_VMSAVE) "\n\t"
2466                 "pop %%"R"ax \n\t"
2467
2468                 /* Save guest registers, load host registers */
2469                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2470                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2471                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2472                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2473                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2474                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2475 #ifdef CONFIG_X86_64
2476                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2477                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2478                 "mov %%r10, %c[r10](%[svm]) \n\t"
2479                 "mov %%r11, %c[r11](%[svm]) \n\t"
2480                 "mov %%r12, %c[r12](%[svm]) \n\t"
2481                 "mov %%r13, %c[r13](%[svm]) \n\t"
2482                 "mov %%r14, %c[r14](%[svm]) \n\t"
2483                 "mov %%r15, %c[r15](%[svm]) \n\t"
2484 #endif
2485                 "pop %%"R"bp"
2486                 :
2487                 : [svm]"a"(svm),
2488                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2489                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2490                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2491                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2492                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2493                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2494                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2495 #ifdef CONFIG_X86_64
2496                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2497                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2498                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2499                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2500                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2501                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2502                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2503                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2504 #endif
2505                 : "cc", "memory"
2506                 , R"bx", R"cx", R"dx", R"si", R"di"
2507 #ifdef CONFIG_X86_64
2508                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2509 #endif
2510                 );
2511
2512         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2513         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2514         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2515         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2516
2517         kvm_write_cr2(svm->host_cr2);
2518
2519         kvm_load_fs(fs_selector);
2520         kvm_load_gs(gs_selector);
2521         kvm_load_ldt(ldt_selector);
2522         load_host_msrs(vcpu);
2523
2524         reload_tss(vcpu);
2525
2526         local_irq_disable();
2527
2528         stgi();
2529
2530         sync_cr8_to_lapic(vcpu);
2531
2532         svm->next_rip = 0;
2533
2534         svm_complete_interrupts(svm);
2535 }
2536
2537 #undef R
2538
2539 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2540 {
2541         struct vcpu_svm *svm = to_svm(vcpu);
2542
2543         if (npt_enabled) {
2544                 svm->vmcb->control.nested_cr3 = root;
2545                 force_new_asid(vcpu);
2546                 return;
2547         }
2548
2549         svm->vmcb->save.cr3 = root;
2550         force_new_asid(vcpu);
2551
2552         if (vcpu->fpu_active) {
2553                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2554                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2555                 vcpu->fpu_active = 0;
2556         }
2557 }
2558
2559 static int is_disabled(void)
2560 {
2561         u64 vm_cr;
2562
2563         rdmsrl(MSR_VM_CR, vm_cr);
2564         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2565                 return 1;
2566
2567         return 0;
2568 }
2569
2570 static void
2571 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2572 {
2573         /*
2574          * Patch in the VMMCALL instruction:
2575          */
2576         hypercall[0] = 0x0f;
2577         hypercall[1] = 0x01;
2578         hypercall[2] = 0xd9;
2579 }
2580
2581 static void svm_check_processor_compat(void *rtn)
2582 {
2583         *(int *)rtn = 0;
2584 }
2585
2586 static bool svm_cpu_has_accelerated_tpr(void)
2587 {
2588         return false;
2589 }
2590
2591 static int get_npt_level(void)
2592 {
2593 #ifdef CONFIG_X86_64
2594         return PT64_ROOT_LEVEL;
2595 #else
2596         return PT32E_ROOT_LEVEL;
2597 #endif
2598 }
2599
2600 static int svm_get_mt_mask_shift(void)
2601 {
2602         return 0;
2603 }
2604
2605 static struct kvm_x86_ops svm_x86_ops = {
2606         .cpu_has_kvm_support = has_svm,
2607         .disabled_by_bios = is_disabled,
2608         .hardware_setup = svm_hardware_setup,
2609         .hardware_unsetup = svm_hardware_unsetup,
2610         .check_processor_compatibility = svm_check_processor_compat,
2611         .hardware_enable = svm_hardware_enable,
2612         .hardware_disable = svm_hardware_disable,
2613         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2614
2615         .vcpu_create = svm_create_vcpu,
2616         .vcpu_free = svm_free_vcpu,
2617         .vcpu_reset = svm_vcpu_reset,
2618
2619         .prepare_guest_switch = svm_prepare_guest_switch,
2620         .vcpu_load = svm_vcpu_load,
2621         .vcpu_put = svm_vcpu_put,
2622
2623         .set_guest_debug = svm_guest_debug,
2624         .get_msr = svm_get_msr,
2625         .set_msr = svm_set_msr,
2626         .get_segment_base = svm_get_segment_base,
2627         .get_segment = svm_get_segment,
2628         .set_segment = svm_set_segment,
2629         .get_cpl = svm_get_cpl,
2630         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2631         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2632         .set_cr0 = svm_set_cr0,
2633         .set_cr3 = svm_set_cr3,
2634         .set_cr4 = svm_set_cr4,
2635         .set_efer = svm_set_efer,
2636         .get_idt = svm_get_idt,
2637         .set_idt = svm_set_idt,
2638         .get_gdt = svm_get_gdt,
2639         .set_gdt = svm_set_gdt,
2640         .get_dr = svm_get_dr,
2641         .set_dr = svm_set_dr,
2642         .get_rflags = svm_get_rflags,
2643         .set_rflags = svm_set_rflags,
2644
2645         .tlb_flush = svm_flush_tlb,
2646
2647         .run = svm_vcpu_run,
2648         .handle_exit = handle_exit,
2649         .skip_emulated_instruction = skip_emulated_instruction,
2650         .patch_hypercall = svm_patch_hypercall,
2651         .get_irq = svm_get_irq,
2652         .set_irq = svm_set_irq,
2653         .queue_exception = svm_queue_exception,
2654         .inject_pending_irq = svm_intr_assist,
2655         .interrupt_allowed = svm_interrupt_allowed,
2656
2657         .set_tss_addr = svm_set_tss_addr,
2658         .get_tdp_level = get_npt_level,
2659         .get_mt_mask_shift = svm_get_mt_mask_shift,
2660 };
2661
2662 static int __init svm_init(void)
2663 {
2664         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2665                               THIS_MODULE);
2666 }
2667
2668 static void __exit svm_exit(void)
2669 {
2670         kvm_exit();
2671 }
2672
2673 module_init(svm_init)
2674 module_exit(svm_exit)