KVM: SVM: Make Use of the generic guest-mode functions
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u16 intercept_cr_read;
102         u16 intercept_cr_write;
103         u16 intercept_dr_read;
104         u16 intercept_dr_write;
105         u32 intercept_exceptions;
106         u64 intercept;
107
108         /* Nested Paging related state */
109         u64 nested_cr3;
110 };
111
112 #define MSRPM_OFFSETS   16
113 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
114
115 struct vcpu_svm {
116         struct kvm_vcpu vcpu;
117         struct vmcb *vmcb;
118         unsigned long vmcb_pa;
119         struct svm_cpu_data *svm_data;
120         uint64_t asid_generation;
121         uint64_t sysenter_esp;
122         uint64_t sysenter_eip;
123
124         u64 next_rip;
125
126         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
127         struct {
128                 u16 fs;
129                 u16 gs;
130                 u16 ldt;
131                 u64 gs_base;
132         } host;
133
134         u32 *msrpm;
135
136         struct nested_state nested;
137
138         bool nmi_singlestep;
139
140         unsigned int3_injected;
141         unsigned long int3_rip;
142         u32 apf_reason;
143 };
144
145 #define MSR_INVALID                     0xffffffffU
146
147 static struct svm_direct_access_msrs {
148         u32 index;   /* Index of the MSR */
149         bool always; /* True if intercept is always on */
150 } direct_access_msrs[] = {
151         { .index = MSR_STAR,                            .always = true  },
152         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
153 #ifdef CONFIG_X86_64
154         { .index = MSR_GS_BASE,                         .always = true  },
155         { .index = MSR_FS_BASE,                         .always = true  },
156         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
157         { .index = MSR_LSTAR,                           .always = true  },
158         { .index = MSR_CSTAR,                           .always = true  },
159         { .index = MSR_SYSCALL_MASK,                    .always = true  },
160 #endif
161         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
162         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
163         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
164         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
165         { .index = MSR_INVALID,                         .always = false },
166 };
167
168 /* enable NPT for AMD64 and X86 with PAE */
169 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
170 static bool npt_enabled = true;
171 #else
172 static bool npt_enabled;
173 #endif
174 static int npt = 1;
175
176 module_param(npt, int, S_IRUGO);
177
178 static int nested = 1;
179 module_param(nested, int, S_IRUGO);
180
181 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
182 static void svm_complete_interrupts(struct vcpu_svm *svm);
183
184 static int nested_svm_exit_handled(struct vcpu_svm *svm);
185 static int nested_svm_intercept(struct vcpu_svm *svm);
186 static int nested_svm_vmexit(struct vcpu_svm *svm);
187 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
188                                       bool has_error_code, u32 error_code);
189
190 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
191 {
192         return container_of(vcpu, struct vcpu_svm, vcpu);
193 }
194
195 static inline void enable_gif(struct vcpu_svm *svm)
196 {
197         svm->vcpu.arch.hflags |= HF_GIF_MASK;
198 }
199
200 static inline void disable_gif(struct vcpu_svm *svm)
201 {
202         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
203 }
204
205 static inline bool gif_set(struct vcpu_svm *svm)
206 {
207         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
208 }
209
210 static unsigned long iopm_base;
211
212 struct kvm_ldttss_desc {
213         u16 limit0;
214         u16 base0;
215         unsigned base1:8, type:5, dpl:2, p:1;
216         unsigned limit1:4, zero0:3, g:1, base2:8;
217         u32 base3;
218         u32 zero1;
219 } __attribute__((packed));
220
221 struct svm_cpu_data {
222         int cpu;
223
224         u64 asid_generation;
225         u32 max_asid;
226         u32 next_asid;
227         struct kvm_ldttss_desc *tss_desc;
228
229         struct page *save_area;
230 };
231
232 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
233 static uint32_t svm_features;
234
235 struct svm_init_data {
236         int cpu;
237         int r;
238 };
239
240 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
241
242 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
243 #define MSRS_RANGE_SIZE 2048
244 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
245
246 static u32 svm_msrpm_offset(u32 msr)
247 {
248         u32 offset;
249         int i;
250
251         for (i = 0; i < NUM_MSR_MAPS; i++) {
252                 if (msr < msrpm_ranges[i] ||
253                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
254                         continue;
255
256                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
257                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
258
259                 /* Now we have the u8 offset - but need the u32 offset */
260                 return offset / 4;
261         }
262
263         /* MSR not in any range */
264         return MSR_INVALID;
265 }
266
267 #define MAX_INST_SIZE 15
268
269 static inline void clgi(void)
270 {
271         asm volatile (__ex(SVM_CLGI));
272 }
273
274 static inline void stgi(void)
275 {
276         asm volatile (__ex(SVM_STGI));
277 }
278
279 static inline void invlpga(unsigned long addr, u32 asid)
280 {
281         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
282 }
283
284 static inline void force_new_asid(struct kvm_vcpu *vcpu)
285 {
286         to_svm(vcpu)->asid_generation--;
287 }
288
289 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
290 {
291         force_new_asid(vcpu);
292 }
293
294 static int get_npt_level(void)
295 {
296 #ifdef CONFIG_X86_64
297         return PT64_ROOT_LEVEL;
298 #else
299         return PT32E_ROOT_LEVEL;
300 #endif
301 }
302
303 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
304 {
305         vcpu->arch.efer = efer;
306         if (!npt_enabled && !(efer & EFER_LMA))
307                 efer &= ~EFER_LME;
308
309         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
310 }
311
312 static int is_external_interrupt(u32 info)
313 {
314         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
315         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
316 }
317
318 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
319 {
320         struct vcpu_svm *svm = to_svm(vcpu);
321         u32 ret = 0;
322
323         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
324                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
325         return ret & mask;
326 }
327
328 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
329 {
330         struct vcpu_svm *svm = to_svm(vcpu);
331
332         if (mask == 0)
333                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
334         else
335                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
336
337 }
338
339 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
340 {
341         struct vcpu_svm *svm = to_svm(vcpu);
342
343         if (svm->vmcb->control.next_rip != 0)
344                 svm->next_rip = svm->vmcb->control.next_rip;
345
346         if (!svm->next_rip) {
347                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
348                                 EMULATE_DONE)
349                         printk(KERN_DEBUG "%s: NOP\n", __func__);
350                 return;
351         }
352         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
353                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
354                        __func__, kvm_rip_read(vcpu), svm->next_rip);
355
356         kvm_rip_write(vcpu, svm->next_rip);
357         svm_set_interrupt_shadow(vcpu, 0);
358 }
359
360 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
361                                 bool has_error_code, u32 error_code,
362                                 bool reinject)
363 {
364         struct vcpu_svm *svm = to_svm(vcpu);
365
366         /*
367          * If we are within a nested VM we'd better #VMEXIT and let the guest
368          * handle the exception
369          */
370         if (!reinject &&
371             nested_svm_check_exception(svm, nr, has_error_code, error_code))
372                 return;
373
374         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
375                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
376
377                 /*
378                  * For guest debugging where we have to reinject #BP if some
379                  * INT3 is guest-owned:
380                  * Emulate nRIP by moving RIP forward. Will fail if injection
381                  * raises a fault that is not intercepted. Still better than
382                  * failing in all cases.
383                  */
384                 skip_emulated_instruction(&svm->vcpu);
385                 rip = kvm_rip_read(&svm->vcpu);
386                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
387                 svm->int3_injected = rip - old_rip;
388         }
389
390         svm->vmcb->control.event_inj = nr
391                 | SVM_EVTINJ_VALID
392                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
393                 | SVM_EVTINJ_TYPE_EXEPT;
394         svm->vmcb->control.event_inj_err = error_code;
395 }
396
397 static void svm_init_erratum_383(void)
398 {
399         u32 low, high;
400         int err;
401         u64 val;
402
403         if (!cpu_has_amd_erratum(amd_erratum_383))
404                 return;
405
406         /* Use _safe variants to not break nested virtualization */
407         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
408         if (err)
409                 return;
410
411         val |= (1ULL << 47);
412
413         low  = lower_32_bits(val);
414         high = upper_32_bits(val);
415
416         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
417
418         erratum_383_found = true;
419 }
420
421 static int has_svm(void)
422 {
423         const char *msg;
424
425         if (!cpu_has_svm(&msg)) {
426                 printk(KERN_INFO "has_svm: %s\n", msg);
427                 return 0;
428         }
429
430         return 1;
431 }
432
433 static void svm_hardware_disable(void *garbage)
434 {
435         cpu_svm_disable();
436 }
437
438 static int svm_hardware_enable(void *garbage)
439 {
440
441         struct svm_cpu_data *sd;
442         uint64_t efer;
443         struct desc_ptr gdt_descr;
444         struct desc_struct *gdt;
445         int me = raw_smp_processor_id();
446
447         rdmsrl(MSR_EFER, efer);
448         if (efer & EFER_SVME)
449                 return -EBUSY;
450
451         if (!has_svm()) {
452                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
453                        me);
454                 return -EINVAL;
455         }
456         sd = per_cpu(svm_data, me);
457
458         if (!sd) {
459                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
460                        me);
461                 return -EINVAL;
462         }
463
464         sd->asid_generation = 1;
465         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
466         sd->next_asid = sd->max_asid + 1;
467
468         native_store_gdt(&gdt_descr);
469         gdt = (struct desc_struct *)gdt_descr.address;
470         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
471
472         wrmsrl(MSR_EFER, efer | EFER_SVME);
473
474         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
475
476         svm_init_erratum_383();
477
478         return 0;
479 }
480
481 static void svm_cpu_uninit(int cpu)
482 {
483         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
484
485         if (!sd)
486                 return;
487
488         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
489         __free_page(sd->save_area);
490         kfree(sd);
491 }
492
493 static int svm_cpu_init(int cpu)
494 {
495         struct svm_cpu_data *sd;
496         int r;
497
498         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
499         if (!sd)
500                 return -ENOMEM;
501         sd->cpu = cpu;
502         sd->save_area = alloc_page(GFP_KERNEL);
503         r = -ENOMEM;
504         if (!sd->save_area)
505                 goto err_1;
506
507         per_cpu(svm_data, cpu) = sd;
508
509         return 0;
510
511 err_1:
512         kfree(sd);
513         return r;
514
515 }
516
517 static bool valid_msr_intercept(u32 index)
518 {
519         int i;
520
521         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
522                 if (direct_access_msrs[i].index == index)
523                         return true;
524
525         return false;
526 }
527
528 static void set_msr_interception(u32 *msrpm, unsigned msr,
529                                  int read, int write)
530 {
531         u8 bit_read, bit_write;
532         unsigned long tmp;
533         u32 offset;
534
535         /*
536          * If this warning triggers extend the direct_access_msrs list at the
537          * beginning of the file
538          */
539         WARN_ON(!valid_msr_intercept(msr));
540
541         offset    = svm_msrpm_offset(msr);
542         bit_read  = 2 * (msr & 0x0f);
543         bit_write = 2 * (msr & 0x0f) + 1;
544         tmp       = msrpm[offset];
545
546         BUG_ON(offset == MSR_INVALID);
547
548         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
549         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
550
551         msrpm[offset] = tmp;
552 }
553
554 static void svm_vcpu_init_msrpm(u32 *msrpm)
555 {
556         int i;
557
558         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
559
560         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
561                 if (!direct_access_msrs[i].always)
562                         continue;
563
564                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
565         }
566 }
567
568 static void add_msr_offset(u32 offset)
569 {
570         int i;
571
572         for (i = 0; i < MSRPM_OFFSETS; ++i) {
573
574                 /* Offset already in list? */
575                 if (msrpm_offsets[i] == offset)
576                         return;
577
578                 /* Slot used by another offset? */
579                 if (msrpm_offsets[i] != MSR_INVALID)
580                         continue;
581
582                 /* Add offset to list */
583                 msrpm_offsets[i] = offset;
584
585                 return;
586         }
587
588         /*
589          * If this BUG triggers the msrpm_offsets table has an overflow. Just
590          * increase MSRPM_OFFSETS in this case.
591          */
592         BUG();
593 }
594
595 static void init_msrpm_offsets(void)
596 {
597         int i;
598
599         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
600
601         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
602                 u32 offset;
603
604                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
605                 BUG_ON(offset == MSR_INVALID);
606
607                 add_msr_offset(offset);
608         }
609 }
610
611 static void svm_enable_lbrv(struct vcpu_svm *svm)
612 {
613         u32 *msrpm = svm->msrpm;
614
615         svm->vmcb->control.lbr_ctl = 1;
616         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
617         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
618         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
619         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
620 }
621
622 static void svm_disable_lbrv(struct vcpu_svm *svm)
623 {
624         u32 *msrpm = svm->msrpm;
625
626         svm->vmcb->control.lbr_ctl = 0;
627         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
628         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
629         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
630         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
631 }
632
633 static __init int svm_hardware_setup(void)
634 {
635         int cpu;
636         struct page *iopm_pages;
637         void *iopm_va;
638         int r;
639
640         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
641
642         if (!iopm_pages)
643                 return -ENOMEM;
644
645         iopm_va = page_address(iopm_pages);
646         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
647         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
648
649         init_msrpm_offsets();
650
651         if (boot_cpu_has(X86_FEATURE_NX))
652                 kvm_enable_efer_bits(EFER_NX);
653
654         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
655                 kvm_enable_efer_bits(EFER_FFXSR);
656
657         if (nested) {
658                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
659                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
660         }
661
662         for_each_possible_cpu(cpu) {
663                 r = svm_cpu_init(cpu);
664                 if (r)
665                         goto err;
666         }
667
668         svm_features = cpuid_edx(SVM_CPUID_FUNC);
669
670         if (!boot_cpu_has(X86_FEATURE_NPT))
671                 npt_enabled = false;
672
673         if (npt_enabled && !npt) {
674                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
675                 npt_enabled = false;
676         }
677
678         if (npt_enabled) {
679                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
680                 kvm_enable_tdp();
681         } else
682                 kvm_disable_tdp();
683
684         return 0;
685
686 err:
687         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
688         iopm_base = 0;
689         return r;
690 }
691
692 static __exit void svm_hardware_unsetup(void)
693 {
694         int cpu;
695
696         for_each_possible_cpu(cpu)
697                 svm_cpu_uninit(cpu);
698
699         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
700         iopm_base = 0;
701 }
702
703 static void init_seg(struct vmcb_seg *seg)
704 {
705         seg->selector = 0;
706         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
707                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
708         seg->limit = 0xffff;
709         seg->base = 0;
710 }
711
712 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
713 {
714         seg->selector = 0;
715         seg->attrib = SVM_SELECTOR_P_MASK | type;
716         seg->limit = 0xffff;
717         seg->base = 0;
718 }
719
720 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
721 {
722         struct vcpu_svm *svm = to_svm(vcpu);
723         u64 g_tsc_offset = 0;
724
725         if (is_guest_mode(vcpu)) {
726                 g_tsc_offset = svm->vmcb->control.tsc_offset -
727                                svm->nested.hsave->control.tsc_offset;
728                 svm->nested.hsave->control.tsc_offset = offset;
729         }
730
731         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
732 }
733
734 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
735 {
736         struct vcpu_svm *svm = to_svm(vcpu);
737
738         svm->vmcb->control.tsc_offset += adjustment;
739         if (is_guest_mode(vcpu))
740                 svm->nested.hsave->control.tsc_offset += adjustment;
741 }
742
743 static void init_vmcb(struct vcpu_svm *svm)
744 {
745         struct vmcb_control_area *control = &svm->vmcb->control;
746         struct vmcb_save_area *save = &svm->vmcb->save;
747
748         svm->vcpu.fpu_active = 1;
749
750         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
751                                         INTERCEPT_CR3_MASK |
752                                         INTERCEPT_CR4_MASK;
753
754         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
755                                         INTERCEPT_CR3_MASK |
756                                         INTERCEPT_CR4_MASK |
757                                         INTERCEPT_CR8_MASK;
758
759         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
760                                         INTERCEPT_DR1_MASK |
761                                         INTERCEPT_DR2_MASK |
762                                         INTERCEPT_DR3_MASK |
763                                         INTERCEPT_DR4_MASK |
764                                         INTERCEPT_DR5_MASK |
765                                         INTERCEPT_DR6_MASK |
766                                         INTERCEPT_DR7_MASK;
767
768         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
769                                         INTERCEPT_DR1_MASK |
770                                         INTERCEPT_DR2_MASK |
771                                         INTERCEPT_DR3_MASK |
772                                         INTERCEPT_DR4_MASK |
773                                         INTERCEPT_DR5_MASK |
774                                         INTERCEPT_DR6_MASK |
775                                         INTERCEPT_DR7_MASK;
776
777         control->intercept_exceptions = (1 << PF_VECTOR) |
778                                         (1 << UD_VECTOR) |
779                                         (1 << MC_VECTOR);
780
781
782         control->intercept =    (1ULL << INTERCEPT_INTR) |
783                                 (1ULL << INTERCEPT_NMI) |
784                                 (1ULL << INTERCEPT_SMI) |
785                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
786                                 (1ULL << INTERCEPT_CPUID) |
787                                 (1ULL << INTERCEPT_INVD) |
788                                 (1ULL << INTERCEPT_HLT) |
789                                 (1ULL << INTERCEPT_INVLPG) |
790                                 (1ULL << INTERCEPT_INVLPGA) |
791                                 (1ULL << INTERCEPT_IOIO_PROT) |
792                                 (1ULL << INTERCEPT_MSR_PROT) |
793                                 (1ULL << INTERCEPT_TASK_SWITCH) |
794                                 (1ULL << INTERCEPT_SHUTDOWN) |
795                                 (1ULL << INTERCEPT_VMRUN) |
796                                 (1ULL << INTERCEPT_VMMCALL) |
797                                 (1ULL << INTERCEPT_VMLOAD) |
798                                 (1ULL << INTERCEPT_VMSAVE) |
799                                 (1ULL << INTERCEPT_STGI) |
800                                 (1ULL << INTERCEPT_CLGI) |
801                                 (1ULL << INTERCEPT_SKINIT) |
802                                 (1ULL << INTERCEPT_WBINVD) |
803                                 (1ULL << INTERCEPT_MONITOR) |
804                                 (1ULL << INTERCEPT_MWAIT);
805
806         control->iopm_base_pa = iopm_base;
807         control->msrpm_base_pa = __pa(svm->msrpm);
808         control->int_ctl = V_INTR_MASKING_MASK;
809
810         init_seg(&save->es);
811         init_seg(&save->ss);
812         init_seg(&save->ds);
813         init_seg(&save->fs);
814         init_seg(&save->gs);
815
816         save->cs.selector = 0xf000;
817         /* Executable/Readable Code Segment */
818         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
819                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
820         save->cs.limit = 0xffff;
821         /*
822          * cs.base should really be 0xffff0000, but vmx can't handle that, so
823          * be consistent with it.
824          *
825          * Replace when we have real mode working for vmx.
826          */
827         save->cs.base = 0xf0000;
828
829         save->gdtr.limit = 0xffff;
830         save->idtr.limit = 0xffff;
831
832         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
833         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
834
835         svm_set_efer(&svm->vcpu, 0);
836         save->dr6 = 0xffff0ff0;
837         save->dr7 = 0x400;
838         save->rflags = 2;
839         save->rip = 0x0000fff0;
840         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
841
842         /*
843          * This is the guest-visible cr0 value.
844          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
845          */
846         svm->vcpu.arch.cr0 = 0;
847         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
848
849         save->cr4 = X86_CR4_PAE;
850         /* rdx = ?? */
851
852         if (npt_enabled) {
853                 /* Setup VMCB for Nested Paging */
854                 control->nested_ctl = 1;
855                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
856                                         (1ULL << INTERCEPT_INVLPG));
857                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
858                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
859                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
860                 save->g_pat = 0x0007040600070406ULL;
861                 save->cr3 = 0;
862                 save->cr4 = 0;
863         }
864         force_new_asid(&svm->vcpu);
865
866         svm->nested.vmcb = 0;
867         svm->vcpu.arch.hflags = 0;
868
869         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
870                 control->pause_filter_count = 3000;
871                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
872         }
873
874         enable_gif(svm);
875 }
876
877 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
878 {
879         struct vcpu_svm *svm = to_svm(vcpu);
880
881         init_vmcb(svm);
882
883         if (!kvm_vcpu_is_bsp(vcpu)) {
884                 kvm_rip_write(vcpu, 0);
885                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
886                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
887         }
888         vcpu->arch.regs_avail = ~0;
889         vcpu->arch.regs_dirty = ~0;
890
891         return 0;
892 }
893
894 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
895 {
896         struct vcpu_svm *svm;
897         struct page *page;
898         struct page *msrpm_pages;
899         struct page *hsave_page;
900         struct page *nested_msrpm_pages;
901         int err;
902
903         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
904         if (!svm) {
905                 err = -ENOMEM;
906                 goto out;
907         }
908
909         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
910         if (err)
911                 goto free_svm;
912
913         err = -ENOMEM;
914         page = alloc_page(GFP_KERNEL);
915         if (!page)
916                 goto uninit;
917
918         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
919         if (!msrpm_pages)
920                 goto free_page1;
921
922         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
923         if (!nested_msrpm_pages)
924                 goto free_page2;
925
926         hsave_page = alloc_page(GFP_KERNEL);
927         if (!hsave_page)
928                 goto free_page3;
929
930         svm->nested.hsave = page_address(hsave_page);
931
932         svm->msrpm = page_address(msrpm_pages);
933         svm_vcpu_init_msrpm(svm->msrpm);
934
935         svm->nested.msrpm = page_address(nested_msrpm_pages);
936         svm_vcpu_init_msrpm(svm->nested.msrpm);
937
938         svm->vmcb = page_address(page);
939         clear_page(svm->vmcb);
940         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
941         svm->asid_generation = 0;
942         init_vmcb(svm);
943         kvm_write_tsc(&svm->vcpu, 0);
944
945         err = fx_init(&svm->vcpu);
946         if (err)
947                 goto free_page4;
948
949         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
950         if (kvm_vcpu_is_bsp(&svm->vcpu))
951                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
952
953         return &svm->vcpu;
954
955 free_page4:
956         __free_page(hsave_page);
957 free_page3:
958         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
959 free_page2:
960         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
961 free_page1:
962         __free_page(page);
963 uninit:
964         kvm_vcpu_uninit(&svm->vcpu);
965 free_svm:
966         kmem_cache_free(kvm_vcpu_cache, svm);
967 out:
968         return ERR_PTR(err);
969 }
970
971 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
972 {
973         struct vcpu_svm *svm = to_svm(vcpu);
974
975         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
976         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
977         __free_page(virt_to_page(svm->nested.hsave));
978         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
979         kvm_vcpu_uninit(vcpu);
980         kmem_cache_free(kvm_vcpu_cache, svm);
981 }
982
983 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
984 {
985         struct vcpu_svm *svm = to_svm(vcpu);
986         int i;
987
988         if (unlikely(cpu != vcpu->cpu)) {
989                 svm->asid_generation = 0;
990         }
991
992 #ifdef CONFIG_X86_64
993         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
994 #endif
995         savesegment(fs, svm->host.fs);
996         savesegment(gs, svm->host.gs);
997         svm->host.ldt = kvm_read_ldt();
998
999         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1000                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1001 }
1002
1003 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1004 {
1005         struct vcpu_svm *svm = to_svm(vcpu);
1006         int i;
1007
1008         ++vcpu->stat.host_state_reload;
1009         kvm_load_ldt(svm->host.ldt);
1010 #ifdef CONFIG_X86_64
1011         loadsegment(fs, svm->host.fs);
1012         load_gs_index(svm->host.gs);
1013         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1014 #else
1015         loadsegment(gs, svm->host.gs);
1016 #endif
1017         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1018                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1019 }
1020
1021 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1022 {
1023         return to_svm(vcpu)->vmcb->save.rflags;
1024 }
1025
1026 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1027 {
1028         to_svm(vcpu)->vmcb->save.rflags = rflags;
1029 }
1030
1031 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1032 {
1033         switch (reg) {
1034         case VCPU_EXREG_PDPTR:
1035                 BUG_ON(!npt_enabled);
1036                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1037                 break;
1038         default:
1039                 BUG();
1040         }
1041 }
1042
1043 static void svm_set_vintr(struct vcpu_svm *svm)
1044 {
1045         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1046 }
1047
1048 static void svm_clear_vintr(struct vcpu_svm *svm)
1049 {
1050         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1051 }
1052
1053 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1054 {
1055         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1056
1057         switch (seg) {
1058         case VCPU_SREG_CS: return &save->cs;
1059         case VCPU_SREG_DS: return &save->ds;
1060         case VCPU_SREG_ES: return &save->es;
1061         case VCPU_SREG_FS: return &save->fs;
1062         case VCPU_SREG_GS: return &save->gs;
1063         case VCPU_SREG_SS: return &save->ss;
1064         case VCPU_SREG_TR: return &save->tr;
1065         case VCPU_SREG_LDTR: return &save->ldtr;
1066         }
1067         BUG();
1068         return NULL;
1069 }
1070
1071 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1072 {
1073         struct vmcb_seg *s = svm_seg(vcpu, seg);
1074
1075         return s->base;
1076 }
1077
1078 static void svm_get_segment(struct kvm_vcpu *vcpu,
1079                             struct kvm_segment *var, int seg)
1080 {
1081         struct vmcb_seg *s = svm_seg(vcpu, seg);
1082
1083         var->base = s->base;
1084         var->limit = s->limit;
1085         var->selector = s->selector;
1086         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1087         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1088         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1089         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1090         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1091         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1092         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1093         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1094
1095         /*
1096          * AMD's VMCB does not have an explicit unusable field, so emulate it
1097          * for cross vendor migration purposes by "not present"
1098          */
1099         var->unusable = !var->present || (var->type == 0);
1100
1101         switch (seg) {
1102         case VCPU_SREG_CS:
1103                 /*
1104                  * SVM always stores 0 for the 'G' bit in the CS selector in
1105                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1106                  * Intel's VMENTRY has a check on the 'G' bit.
1107                  */
1108                 var->g = s->limit > 0xfffff;
1109                 break;
1110         case VCPU_SREG_TR:
1111                 /*
1112                  * Work around a bug where the busy flag in the tr selector
1113                  * isn't exposed
1114                  */
1115                 var->type |= 0x2;
1116                 break;
1117         case VCPU_SREG_DS:
1118         case VCPU_SREG_ES:
1119         case VCPU_SREG_FS:
1120         case VCPU_SREG_GS:
1121                 /*
1122                  * The accessed bit must always be set in the segment
1123                  * descriptor cache, although it can be cleared in the
1124                  * descriptor, the cached bit always remains at 1. Since
1125                  * Intel has a check on this, set it here to support
1126                  * cross-vendor migration.
1127                  */
1128                 if (!var->unusable)
1129                         var->type |= 0x1;
1130                 break;
1131         case VCPU_SREG_SS:
1132                 /*
1133                  * On AMD CPUs sometimes the DB bit in the segment
1134                  * descriptor is left as 1, although the whole segment has
1135                  * been made unusable. Clear it here to pass an Intel VMX
1136                  * entry check when cross vendor migrating.
1137                  */
1138                 if (var->unusable)
1139                         var->db = 0;
1140                 break;
1141         }
1142 }
1143
1144 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1145 {
1146         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1147
1148         return save->cpl;
1149 }
1150
1151 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1152 {
1153         struct vcpu_svm *svm = to_svm(vcpu);
1154
1155         dt->size = svm->vmcb->save.idtr.limit;
1156         dt->address = svm->vmcb->save.idtr.base;
1157 }
1158
1159 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1160 {
1161         struct vcpu_svm *svm = to_svm(vcpu);
1162
1163         svm->vmcb->save.idtr.limit = dt->size;
1164         svm->vmcb->save.idtr.base = dt->address ;
1165 }
1166
1167 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1168 {
1169         struct vcpu_svm *svm = to_svm(vcpu);
1170
1171         dt->size = svm->vmcb->save.gdtr.limit;
1172         dt->address = svm->vmcb->save.gdtr.base;
1173 }
1174
1175 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1176 {
1177         struct vcpu_svm *svm = to_svm(vcpu);
1178
1179         svm->vmcb->save.gdtr.limit = dt->size;
1180         svm->vmcb->save.gdtr.base = dt->address ;
1181 }
1182
1183 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1184 {
1185 }
1186
1187 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1188 {
1189 }
1190
1191 static void update_cr0_intercept(struct vcpu_svm *svm)
1192 {
1193         struct vmcb *vmcb = svm->vmcb;
1194         ulong gcr0 = svm->vcpu.arch.cr0;
1195         u64 *hcr0 = &svm->vmcb->save.cr0;
1196
1197         if (!svm->vcpu.fpu_active)
1198                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1199         else
1200                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1201                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1202
1203
1204         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1205                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1206                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1207                 if (is_guest_mode(&svm->vcpu)) {
1208                         struct vmcb *hsave = svm->nested.hsave;
1209
1210                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1211                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1212                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1213                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1214                 }
1215         } else {
1216                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1217                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1218                 if (is_guest_mode(&svm->vcpu)) {
1219                         struct vmcb *hsave = svm->nested.hsave;
1220
1221                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1222                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1223                 }
1224         }
1225 }
1226
1227 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1228 {
1229         struct vcpu_svm *svm = to_svm(vcpu);
1230
1231         if (is_guest_mode(vcpu)) {
1232                 /*
1233                  * We are here because we run in nested mode, the host kvm
1234                  * intercepts cr0 writes but the l1 hypervisor does not.
1235                  * But the L1 hypervisor may intercept selective cr0 writes.
1236                  * This needs to be checked here.
1237                  */
1238                 unsigned long old, new;
1239
1240                 /* Remove bits that would trigger a real cr0 write intercept */
1241                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1242                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1243
1244                 if (old == new) {
1245                         /* cr0 write with ts and mp unchanged */
1246                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1247                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1248                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1249                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1250                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1251                                 return;
1252                         }
1253                 }
1254         }
1255
1256 #ifdef CONFIG_X86_64
1257         if (vcpu->arch.efer & EFER_LME) {
1258                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1259                         vcpu->arch.efer |= EFER_LMA;
1260                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1261                 }
1262
1263                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1264                         vcpu->arch.efer &= ~EFER_LMA;
1265                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1266                 }
1267         }
1268 #endif
1269         vcpu->arch.cr0 = cr0;
1270
1271         if (!npt_enabled)
1272                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1273
1274         if (!vcpu->fpu_active)
1275                 cr0 |= X86_CR0_TS;
1276         /*
1277          * re-enable caching here because the QEMU bios
1278          * does not do it - this results in some delay at
1279          * reboot
1280          */
1281         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1282         svm->vmcb->save.cr0 = cr0;
1283         update_cr0_intercept(svm);
1284 }
1285
1286 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1287 {
1288         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1289         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1290
1291         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1292                 force_new_asid(vcpu);
1293
1294         vcpu->arch.cr4 = cr4;
1295         if (!npt_enabled)
1296                 cr4 |= X86_CR4_PAE;
1297         cr4 |= host_cr4_mce;
1298         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1299 }
1300
1301 static void svm_set_segment(struct kvm_vcpu *vcpu,
1302                             struct kvm_segment *var, int seg)
1303 {
1304         struct vcpu_svm *svm = to_svm(vcpu);
1305         struct vmcb_seg *s = svm_seg(vcpu, seg);
1306
1307         s->base = var->base;
1308         s->limit = var->limit;
1309         s->selector = var->selector;
1310         if (var->unusable)
1311                 s->attrib = 0;
1312         else {
1313                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1314                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1315                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1316                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1317                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1318                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1319                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1320                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1321         }
1322         if (seg == VCPU_SREG_CS)
1323                 svm->vmcb->save.cpl
1324                         = (svm->vmcb->save.cs.attrib
1325                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1326
1327 }
1328
1329 static void update_db_intercept(struct kvm_vcpu *vcpu)
1330 {
1331         struct vcpu_svm *svm = to_svm(vcpu);
1332
1333         svm->vmcb->control.intercept_exceptions &=
1334                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1335
1336         if (svm->nmi_singlestep)
1337                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1338
1339         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1340                 if (vcpu->guest_debug &
1341                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1342                         svm->vmcb->control.intercept_exceptions |=
1343                                 1 << DB_VECTOR;
1344                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1345                         svm->vmcb->control.intercept_exceptions |=
1346                                 1 << BP_VECTOR;
1347         } else
1348                 vcpu->guest_debug = 0;
1349 }
1350
1351 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1352 {
1353         struct vcpu_svm *svm = to_svm(vcpu);
1354
1355         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1356                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1357         else
1358                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1359
1360         update_db_intercept(vcpu);
1361 }
1362
1363 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1364 {
1365         if (sd->next_asid > sd->max_asid) {
1366                 ++sd->asid_generation;
1367                 sd->next_asid = 1;
1368                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1369         }
1370
1371         svm->asid_generation = sd->asid_generation;
1372         svm->vmcb->control.asid = sd->next_asid++;
1373 }
1374
1375 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1376 {
1377         struct vcpu_svm *svm = to_svm(vcpu);
1378
1379         svm->vmcb->save.dr7 = value;
1380 }
1381
1382 static int pf_interception(struct vcpu_svm *svm)
1383 {
1384         u64 fault_address = svm->vmcb->control.exit_info_2;
1385         u32 error_code;
1386         int r = 1;
1387
1388         switch (svm->apf_reason) {
1389         default:
1390                 error_code = svm->vmcb->control.exit_info_1;
1391
1392                 trace_kvm_page_fault(fault_address, error_code);
1393                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1394                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1395                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1396                 break;
1397         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1398                 svm->apf_reason = 0;
1399                 local_irq_disable();
1400                 kvm_async_pf_task_wait(fault_address);
1401                 local_irq_enable();
1402                 break;
1403         case KVM_PV_REASON_PAGE_READY:
1404                 svm->apf_reason = 0;
1405                 local_irq_disable();
1406                 kvm_async_pf_task_wake(fault_address);
1407                 local_irq_enable();
1408                 break;
1409         }
1410         return r;
1411 }
1412
1413 static int db_interception(struct vcpu_svm *svm)
1414 {
1415         struct kvm_run *kvm_run = svm->vcpu.run;
1416
1417         if (!(svm->vcpu.guest_debug &
1418               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1419                 !svm->nmi_singlestep) {
1420                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1421                 return 1;
1422         }
1423
1424         if (svm->nmi_singlestep) {
1425                 svm->nmi_singlestep = false;
1426                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1427                         svm->vmcb->save.rflags &=
1428                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1429                 update_db_intercept(&svm->vcpu);
1430         }
1431
1432         if (svm->vcpu.guest_debug &
1433             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1434                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1435                 kvm_run->debug.arch.pc =
1436                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1437                 kvm_run->debug.arch.exception = DB_VECTOR;
1438                 return 0;
1439         }
1440
1441         return 1;
1442 }
1443
1444 static int bp_interception(struct vcpu_svm *svm)
1445 {
1446         struct kvm_run *kvm_run = svm->vcpu.run;
1447
1448         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1449         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1450         kvm_run->debug.arch.exception = BP_VECTOR;
1451         return 0;
1452 }
1453
1454 static int ud_interception(struct vcpu_svm *svm)
1455 {
1456         int er;
1457
1458         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1459         if (er != EMULATE_DONE)
1460                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1461         return 1;
1462 }
1463
1464 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1465 {
1466         struct vcpu_svm *svm = to_svm(vcpu);
1467         u32 excp;
1468
1469         if (is_guest_mode(vcpu)) {
1470                 u32 h_excp, n_excp;
1471
1472                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1473                 n_excp  = svm->nested.intercept_exceptions;
1474                 h_excp &= ~(1 << NM_VECTOR);
1475                 excp    = h_excp | n_excp;
1476         } else {
1477                 excp  = svm->vmcb->control.intercept_exceptions;
1478                 excp &= ~(1 << NM_VECTOR);
1479         }
1480
1481         svm->vmcb->control.intercept_exceptions = excp;
1482
1483         svm->vcpu.fpu_active = 1;
1484         update_cr0_intercept(svm);
1485 }
1486
1487 static int nm_interception(struct vcpu_svm *svm)
1488 {
1489         svm_fpu_activate(&svm->vcpu);
1490         return 1;
1491 }
1492
1493 static bool is_erratum_383(void)
1494 {
1495         int err, i;
1496         u64 value;
1497
1498         if (!erratum_383_found)
1499                 return false;
1500
1501         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1502         if (err)
1503                 return false;
1504
1505         /* Bit 62 may or may not be set for this mce */
1506         value &= ~(1ULL << 62);
1507
1508         if (value != 0xb600000000010015ULL)
1509                 return false;
1510
1511         /* Clear MCi_STATUS registers */
1512         for (i = 0; i < 6; ++i)
1513                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1514
1515         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1516         if (!err) {
1517                 u32 low, high;
1518
1519                 value &= ~(1ULL << 2);
1520                 low    = lower_32_bits(value);
1521                 high   = upper_32_bits(value);
1522
1523                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1524         }
1525
1526         /* Flush tlb to evict multi-match entries */
1527         __flush_tlb_all();
1528
1529         return true;
1530 }
1531
1532 static void svm_handle_mce(struct vcpu_svm *svm)
1533 {
1534         if (is_erratum_383()) {
1535                 /*
1536                  * Erratum 383 triggered. Guest state is corrupt so kill the
1537                  * guest.
1538                  */
1539                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1540
1541                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1542
1543                 return;
1544         }
1545
1546         /*
1547          * On an #MC intercept the MCE handler is not called automatically in
1548          * the host. So do it by hand here.
1549          */
1550         asm volatile (
1551                 "int $0x12\n");
1552         /* not sure if we ever come back to this point */
1553
1554         return;
1555 }
1556
1557 static int mc_interception(struct vcpu_svm *svm)
1558 {
1559         return 1;
1560 }
1561
1562 static int shutdown_interception(struct vcpu_svm *svm)
1563 {
1564         struct kvm_run *kvm_run = svm->vcpu.run;
1565
1566         /*
1567          * VMCB is undefined after a SHUTDOWN intercept
1568          * so reinitialize it.
1569          */
1570         clear_page(svm->vmcb);
1571         init_vmcb(svm);
1572
1573         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1574         return 0;
1575 }
1576
1577 static int io_interception(struct vcpu_svm *svm)
1578 {
1579         struct kvm_vcpu *vcpu = &svm->vcpu;
1580         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1581         int size, in, string;
1582         unsigned port;
1583
1584         ++svm->vcpu.stat.io_exits;
1585         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1586         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1587         if (string || in)
1588                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1589
1590         port = io_info >> 16;
1591         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1592         svm->next_rip = svm->vmcb->control.exit_info_2;
1593         skip_emulated_instruction(&svm->vcpu);
1594
1595         return kvm_fast_pio_out(vcpu, size, port);
1596 }
1597
1598 static int nmi_interception(struct vcpu_svm *svm)
1599 {
1600         return 1;
1601 }
1602
1603 static int intr_interception(struct vcpu_svm *svm)
1604 {
1605         ++svm->vcpu.stat.irq_exits;
1606         return 1;
1607 }
1608
1609 static int nop_on_interception(struct vcpu_svm *svm)
1610 {
1611         return 1;
1612 }
1613
1614 static int halt_interception(struct vcpu_svm *svm)
1615 {
1616         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1617         skip_emulated_instruction(&svm->vcpu);
1618         return kvm_emulate_halt(&svm->vcpu);
1619 }
1620
1621 static int vmmcall_interception(struct vcpu_svm *svm)
1622 {
1623         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1624         skip_emulated_instruction(&svm->vcpu);
1625         kvm_emulate_hypercall(&svm->vcpu);
1626         return 1;
1627 }
1628
1629 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1630 {
1631         struct vcpu_svm *svm = to_svm(vcpu);
1632
1633         return svm->nested.nested_cr3;
1634 }
1635
1636 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1637                                    unsigned long root)
1638 {
1639         struct vcpu_svm *svm = to_svm(vcpu);
1640
1641         svm->vmcb->control.nested_cr3 = root;
1642         force_new_asid(vcpu);
1643 }
1644
1645 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1646                                        struct x86_exception *fault)
1647 {
1648         struct vcpu_svm *svm = to_svm(vcpu);
1649
1650         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1651         svm->vmcb->control.exit_code_hi = 0;
1652         svm->vmcb->control.exit_info_1 = fault->error_code;
1653         svm->vmcb->control.exit_info_2 = fault->address;
1654
1655         nested_svm_vmexit(svm);
1656 }
1657
1658 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1659 {
1660         int r;
1661
1662         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1663
1664         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1665         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1666         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1667         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1668         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1669
1670         return r;
1671 }
1672
1673 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1674 {
1675         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1676 }
1677
1678 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1679 {
1680         if (!(svm->vcpu.arch.efer & EFER_SVME)
1681             || !is_paging(&svm->vcpu)) {
1682                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1683                 return 1;
1684         }
1685
1686         if (svm->vmcb->save.cpl) {
1687                 kvm_inject_gp(&svm->vcpu, 0);
1688                 return 1;
1689         }
1690
1691        return 0;
1692 }
1693
1694 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1695                                       bool has_error_code, u32 error_code)
1696 {
1697         int vmexit;
1698
1699         if (!is_guest_mode(&svm->vcpu))
1700                 return 0;
1701
1702         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1703         svm->vmcb->control.exit_code_hi = 0;
1704         svm->vmcb->control.exit_info_1 = error_code;
1705         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1706
1707         vmexit = nested_svm_intercept(svm);
1708         if (vmexit == NESTED_EXIT_DONE)
1709                 svm->nested.exit_required = true;
1710
1711         return vmexit;
1712 }
1713
1714 /* This function returns true if it is save to enable the irq window */
1715 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1716 {
1717         if (!is_guest_mode(&svm->vcpu))
1718                 return true;
1719
1720         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1721                 return true;
1722
1723         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1724                 return false;
1725
1726         /*
1727          * if vmexit was already requested (by intercepted exception
1728          * for instance) do not overwrite it with "external interrupt"
1729          * vmexit.
1730          */
1731         if (svm->nested.exit_required)
1732                 return false;
1733
1734         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1735         svm->vmcb->control.exit_info_1 = 0;
1736         svm->vmcb->control.exit_info_2 = 0;
1737
1738         if (svm->nested.intercept & 1ULL) {
1739                 /*
1740                  * The #vmexit can't be emulated here directly because this
1741                  * code path runs with irqs and preemtion disabled. A
1742                  * #vmexit emulation might sleep. Only signal request for
1743                  * the #vmexit here.
1744                  */
1745                 svm->nested.exit_required = true;
1746                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1747                 return false;
1748         }
1749
1750         return true;
1751 }
1752
1753 /* This function returns true if it is save to enable the nmi window */
1754 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1755 {
1756         if (!is_guest_mode(&svm->vcpu))
1757                 return true;
1758
1759         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1760                 return true;
1761
1762         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1763         svm->nested.exit_required = true;
1764
1765         return false;
1766 }
1767
1768 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1769 {
1770         struct page *page;
1771
1772         might_sleep();
1773
1774         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1775         if (is_error_page(page))
1776                 goto error;
1777
1778         *_page = page;
1779
1780         return kmap(page);
1781
1782 error:
1783         kvm_release_page_clean(page);
1784         kvm_inject_gp(&svm->vcpu, 0);
1785
1786         return NULL;
1787 }
1788
1789 static void nested_svm_unmap(struct page *page)
1790 {
1791         kunmap(page);
1792         kvm_release_page_dirty(page);
1793 }
1794
1795 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1796 {
1797         unsigned port;
1798         u8 val, bit;
1799         u64 gpa;
1800
1801         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1802                 return NESTED_EXIT_HOST;
1803
1804         port = svm->vmcb->control.exit_info_1 >> 16;
1805         gpa  = svm->nested.vmcb_iopm + (port / 8);
1806         bit  = port % 8;
1807         val  = 0;
1808
1809         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1810                 val &= (1 << bit);
1811
1812         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1813 }
1814
1815 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1816 {
1817         u32 offset, msr, value;
1818         int write, mask;
1819
1820         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1821                 return NESTED_EXIT_HOST;
1822
1823         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1824         offset = svm_msrpm_offset(msr);
1825         write  = svm->vmcb->control.exit_info_1 & 1;
1826         mask   = 1 << ((2 * (msr & 0xf)) + write);
1827
1828         if (offset == MSR_INVALID)
1829                 return NESTED_EXIT_DONE;
1830
1831         /* Offset is in 32 bit units but need in 8 bit units */
1832         offset *= 4;
1833
1834         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1835                 return NESTED_EXIT_DONE;
1836
1837         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1838 }
1839
1840 static int nested_svm_exit_special(struct vcpu_svm *svm)
1841 {
1842         u32 exit_code = svm->vmcb->control.exit_code;
1843
1844         switch (exit_code) {
1845         case SVM_EXIT_INTR:
1846         case SVM_EXIT_NMI:
1847         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1848                 return NESTED_EXIT_HOST;
1849         case SVM_EXIT_NPF:
1850                 /* For now we are always handling NPFs when using them */
1851                 if (npt_enabled)
1852                         return NESTED_EXIT_HOST;
1853                 break;
1854         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1855                 /* When we're shadowing, trap PFs, but not async PF */
1856                 if (!npt_enabled && svm->apf_reason == 0)
1857                         return NESTED_EXIT_HOST;
1858                 break;
1859         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1860                 nm_interception(svm);
1861                 break;
1862         default:
1863                 break;
1864         }
1865
1866         return NESTED_EXIT_CONTINUE;
1867 }
1868
1869 /*
1870  * If this function returns true, this #vmexit was already handled
1871  */
1872 static int nested_svm_intercept(struct vcpu_svm *svm)
1873 {
1874         u32 exit_code = svm->vmcb->control.exit_code;
1875         int vmexit = NESTED_EXIT_HOST;
1876
1877         switch (exit_code) {
1878         case SVM_EXIT_MSR:
1879                 vmexit = nested_svm_exit_handled_msr(svm);
1880                 break;
1881         case SVM_EXIT_IOIO:
1882                 vmexit = nested_svm_intercept_ioio(svm);
1883                 break;
1884         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1885                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1886                 if (svm->nested.intercept_cr_read & cr_bits)
1887                         vmexit = NESTED_EXIT_DONE;
1888                 break;
1889         }
1890         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1891                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1892                 if (svm->nested.intercept_cr_write & cr_bits)
1893                         vmexit = NESTED_EXIT_DONE;
1894                 break;
1895         }
1896         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1897                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1898                 if (svm->nested.intercept_dr_read & dr_bits)
1899                         vmexit = NESTED_EXIT_DONE;
1900                 break;
1901         }
1902         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1903                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1904                 if (svm->nested.intercept_dr_write & dr_bits)
1905                         vmexit = NESTED_EXIT_DONE;
1906                 break;
1907         }
1908         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1909                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1910                 if (svm->nested.intercept_exceptions & excp_bits)
1911                         vmexit = NESTED_EXIT_DONE;
1912                 /* async page fault always cause vmexit */
1913                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1914                          svm->apf_reason != 0)
1915                         vmexit = NESTED_EXIT_DONE;
1916                 break;
1917         }
1918         case SVM_EXIT_ERR: {
1919                 vmexit = NESTED_EXIT_DONE;
1920                 break;
1921         }
1922         default: {
1923                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1924                 if (svm->nested.intercept & exit_bits)
1925                         vmexit = NESTED_EXIT_DONE;
1926         }
1927         }
1928
1929         return vmexit;
1930 }
1931
1932 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1933 {
1934         int vmexit;
1935
1936         vmexit = nested_svm_intercept(svm);
1937
1938         if (vmexit == NESTED_EXIT_DONE)
1939                 nested_svm_vmexit(svm);
1940
1941         return vmexit;
1942 }
1943
1944 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1945 {
1946         struct vmcb_control_area *dst  = &dst_vmcb->control;
1947         struct vmcb_control_area *from = &from_vmcb->control;
1948
1949         dst->intercept_cr_read    = from->intercept_cr_read;
1950         dst->intercept_cr_write   = from->intercept_cr_write;
1951         dst->intercept_dr_read    = from->intercept_dr_read;
1952         dst->intercept_dr_write   = from->intercept_dr_write;
1953         dst->intercept_exceptions = from->intercept_exceptions;
1954         dst->intercept            = from->intercept;
1955         dst->iopm_base_pa         = from->iopm_base_pa;
1956         dst->msrpm_base_pa        = from->msrpm_base_pa;
1957         dst->tsc_offset           = from->tsc_offset;
1958         dst->asid                 = from->asid;
1959         dst->tlb_ctl              = from->tlb_ctl;
1960         dst->int_ctl              = from->int_ctl;
1961         dst->int_vector           = from->int_vector;
1962         dst->int_state            = from->int_state;
1963         dst->exit_code            = from->exit_code;
1964         dst->exit_code_hi         = from->exit_code_hi;
1965         dst->exit_info_1          = from->exit_info_1;
1966         dst->exit_info_2          = from->exit_info_2;
1967         dst->exit_int_info        = from->exit_int_info;
1968         dst->exit_int_info_err    = from->exit_int_info_err;
1969         dst->nested_ctl           = from->nested_ctl;
1970         dst->event_inj            = from->event_inj;
1971         dst->event_inj_err        = from->event_inj_err;
1972         dst->nested_cr3           = from->nested_cr3;
1973         dst->lbr_ctl              = from->lbr_ctl;
1974 }
1975
1976 static int nested_svm_vmexit(struct vcpu_svm *svm)
1977 {
1978         struct vmcb *nested_vmcb;
1979         struct vmcb *hsave = svm->nested.hsave;
1980         struct vmcb *vmcb = svm->vmcb;
1981         struct page *page;
1982
1983         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1984                                        vmcb->control.exit_info_1,
1985                                        vmcb->control.exit_info_2,
1986                                        vmcb->control.exit_int_info,
1987                                        vmcb->control.exit_int_info_err);
1988
1989         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1990         if (!nested_vmcb)
1991                 return 1;
1992
1993         /* Exit Guest-Mode */
1994         leave_guest_mode(&svm->vcpu);
1995         svm->nested.vmcb = 0;
1996
1997         /* Give the current vmcb to the guest */
1998         disable_gif(svm);
1999
2000         nested_vmcb->save.es     = vmcb->save.es;
2001         nested_vmcb->save.cs     = vmcb->save.cs;
2002         nested_vmcb->save.ss     = vmcb->save.ss;
2003         nested_vmcb->save.ds     = vmcb->save.ds;
2004         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2005         nested_vmcb->save.idtr   = vmcb->save.idtr;
2006         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2007         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2008         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2009         nested_vmcb->save.cr2    = vmcb->save.cr2;
2010         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2011         nested_vmcb->save.rflags = vmcb->save.rflags;
2012         nested_vmcb->save.rip    = vmcb->save.rip;
2013         nested_vmcb->save.rsp    = vmcb->save.rsp;
2014         nested_vmcb->save.rax    = vmcb->save.rax;
2015         nested_vmcb->save.dr7    = vmcb->save.dr7;
2016         nested_vmcb->save.dr6    = vmcb->save.dr6;
2017         nested_vmcb->save.cpl    = vmcb->save.cpl;
2018
2019         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2020         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2021         nested_vmcb->control.int_state         = vmcb->control.int_state;
2022         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2023         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2024         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2025         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2026         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2027         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2028         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2029
2030         /*
2031          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2032          * to make sure that we do not lose injected events. So check event_inj
2033          * here and copy it to exit_int_info if it is valid.
2034          * Exit_int_info and event_inj can't be both valid because the case
2035          * below only happens on a VMRUN instruction intercept which has
2036          * no valid exit_int_info set.
2037          */
2038         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2039                 struct vmcb_control_area *nc = &nested_vmcb->control;
2040
2041                 nc->exit_int_info     = vmcb->control.event_inj;
2042                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2043         }
2044
2045         nested_vmcb->control.tlb_ctl           = 0;
2046         nested_vmcb->control.event_inj         = 0;
2047         nested_vmcb->control.event_inj_err     = 0;
2048
2049         /* We always set V_INTR_MASKING and remember the old value in hflags */
2050         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2051                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2052
2053         /* Restore the original control entries */
2054         copy_vmcb_control_area(vmcb, hsave);
2055
2056         kvm_clear_exception_queue(&svm->vcpu);
2057         kvm_clear_interrupt_queue(&svm->vcpu);
2058
2059         svm->nested.nested_cr3 = 0;
2060
2061         /* Restore selected save entries */
2062         svm->vmcb->save.es = hsave->save.es;
2063         svm->vmcb->save.cs = hsave->save.cs;
2064         svm->vmcb->save.ss = hsave->save.ss;
2065         svm->vmcb->save.ds = hsave->save.ds;
2066         svm->vmcb->save.gdtr = hsave->save.gdtr;
2067         svm->vmcb->save.idtr = hsave->save.idtr;
2068         svm->vmcb->save.rflags = hsave->save.rflags;
2069         svm_set_efer(&svm->vcpu, hsave->save.efer);
2070         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2071         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2072         if (npt_enabled) {
2073                 svm->vmcb->save.cr3 = hsave->save.cr3;
2074                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2075         } else {
2076                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2077         }
2078         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2079         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2080         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2081         svm->vmcb->save.dr7 = 0;
2082         svm->vmcb->save.cpl = 0;
2083         svm->vmcb->control.exit_int_info = 0;
2084
2085         nested_svm_unmap(page);
2086
2087         nested_svm_uninit_mmu_context(&svm->vcpu);
2088         kvm_mmu_reset_context(&svm->vcpu);
2089         kvm_mmu_load(&svm->vcpu);
2090
2091         return 0;
2092 }
2093
2094 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2095 {
2096         /*
2097          * This function merges the msr permission bitmaps of kvm and the
2098          * nested vmcb. It is omptimized in that it only merges the parts where
2099          * the kvm msr permission bitmap may contain zero bits
2100          */
2101         int i;
2102
2103         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2104                 return true;
2105
2106         for (i = 0; i < MSRPM_OFFSETS; i++) {
2107                 u32 value, p;
2108                 u64 offset;
2109
2110                 if (msrpm_offsets[i] == 0xffffffff)
2111                         break;
2112
2113                 p      = msrpm_offsets[i];
2114                 offset = svm->nested.vmcb_msrpm + (p * 4);
2115
2116                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2117                         return false;
2118
2119                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2120         }
2121
2122         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2123
2124         return true;
2125 }
2126
2127 static bool nested_vmcb_checks(struct vmcb *vmcb)
2128 {
2129         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2130                 return false;
2131
2132         if (vmcb->control.asid == 0)
2133                 return false;
2134
2135         if (vmcb->control.nested_ctl && !npt_enabled)
2136                 return false;
2137
2138         return true;
2139 }
2140
2141 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2142 {
2143         struct vmcb *nested_vmcb;
2144         struct vmcb *hsave = svm->nested.hsave;
2145         struct vmcb *vmcb = svm->vmcb;
2146         struct page *page;
2147         u64 vmcb_gpa;
2148
2149         vmcb_gpa = svm->vmcb->save.rax;
2150
2151         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2152         if (!nested_vmcb)
2153                 return false;
2154
2155         if (!nested_vmcb_checks(nested_vmcb)) {
2156                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2157                 nested_vmcb->control.exit_code_hi = 0;
2158                 nested_vmcb->control.exit_info_1  = 0;
2159                 nested_vmcb->control.exit_info_2  = 0;
2160
2161                 nested_svm_unmap(page);
2162
2163                 return false;
2164         }
2165
2166         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2167                                nested_vmcb->save.rip,
2168                                nested_vmcb->control.int_ctl,
2169                                nested_vmcb->control.event_inj,
2170                                nested_vmcb->control.nested_ctl);
2171
2172         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2173                                     nested_vmcb->control.intercept_cr_write,
2174                                     nested_vmcb->control.intercept_exceptions,
2175                                     nested_vmcb->control.intercept);
2176
2177         /* Clear internal status */
2178         kvm_clear_exception_queue(&svm->vcpu);
2179         kvm_clear_interrupt_queue(&svm->vcpu);
2180
2181         /*
2182          * Save the old vmcb, so we don't need to pick what we save, but can
2183          * restore everything when a VMEXIT occurs
2184          */
2185         hsave->save.es     = vmcb->save.es;
2186         hsave->save.cs     = vmcb->save.cs;
2187         hsave->save.ss     = vmcb->save.ss;
2188         hsave->save.ds     = vmcb->save.ds;
2189         hsave->save.gdtr   = vmcb->save.gdtr;
2190         hsave->save.idtr   = vmcb->save.idtr;
2191         hsave->save.efer   = svm->vcpu.arch.efer;
2192         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2193         hsave->save.cr4    = svm->vcpu.arch.cr4;
2194         hsave->save.rflags = vmcb->save.rflags;
2195         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2196         hsave->save.rsp    = vmcb->save.rsp;
2197         hsave->save.rax    = vmcb->save.rax;
2198         if (npt_enabled)
2199                 hsave->save.cr3    = vmcb->save.cr3;
2200         else
2201                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2202
2203         copy_vmcb_control_area(hsave, vmcb);
2204
2205         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2206                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2207         else
2208                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2209
2210         if (nested_vmcb->control.nested_ctl) {
2211                 kvm_mmu_unload(&svm->vcpu);
2212                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2213                 nested_svm_init_mmu_context(&svm->vcpu);
2214         }
2215
2216         /* Load the nested guest state */
2217         svm->vmcb->save.es = nested_vmcb->save.es;
2218         svm->vmcb->save.cs = nested_vmcb->save.cs;
2219         svm->vmcb->save.ss = nested_vmcb->save.ss;
2220         svm->vmcb->save.ds = nested_vmcb->save.ds;
2221         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2222         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2223         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2224         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2225         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2226         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2227         if (npt_enabled) {
2228                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2229                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2230         } else
2231                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2232
2233         /* Guest paging mode is active - reset mmu */
2234         kvm_mmu_reset_context(&svm->vcpu);
2235
2236         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2237         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2238         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2239         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2240
2241         /* In case we don't even reach vcpu_run, the fields are not updated */
2242         svm->vmcb->save.rax = nested_vmcb->save.rax;
2243         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2244         svm->vmcb->save.rip = nested_vmcb->save.rip;
2245         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2246         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2247         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2248
2249         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2250         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2251
2252         /* cache intercepts */
2253         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2254         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2255         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2256         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2257         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2258         svm->nested.intercept            = nested_vmcb->control.intercept;
2259
2260         force_new_asid(&svm->vcpu);
2261         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2262         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2263                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2264         else
2265                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2266
2267         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2268                 /* We only want the cr8 intercept bits of the guest */
2269                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2270                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2271         }
2272
2273         /* We don't want to see VMMCALLs from a nested guest */
2274         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2275
2276         /*
2277          * We don't want a nested guest to be more powerful than the guest, so
2278          * all intercepts are ORed
2279          */
2280         svm->vmcb->control.intercept_cr_read |=
2281                 nested_vmcb->control.intercept_cr_read;
2282         svm->vmcb->control.intercept_cr_write |=
2283                 nested_vmcb->control.intercept_cr_write;
2284         svm->vmcb->control.intercept_dr_read |=
2285                 nested_vmcb->control.intercept_dr_read;
2286         svm->vmcb->control.intercept_dr_write |=
2287                 nested_vmcb->control.intercept_dr_write;
2288         svm->vmcb->control.intercept_exceptions |=
2289                 nested_vmcb->control.intercept_exceptions;
2290
2291         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2292
2293         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2294         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2295         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2296         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2297         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2298         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2299
2300         nested_svm_unmap(page);
2301
2302         /* Enter Guest-Mode */
2303         enter_guest_mode(&svm->vcpu);
2304
2305         svm->nested.vmcb = vmcb_gpa;
2306
2307         enable_gif(svm);
2308
2309         return true;
2310 }
2311
2312 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2313 {
2314         to_vmcb->save.fs = from_vmcb->save.fs;
2315         to_vmcb->save.gs = from_vmcb->save.gs;
2316         to_vmcb->save.tr = from_vmcb->save.tr;
2317         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2318         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2319         to_vmcb->save.star = from_vmcb->save.star;
2320         to_vmcb->save.lstar = from_vmcb->save.lstar;
2321         to_vmcb->save.cstar = from_vmcb->save.cstar;
2322         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2323         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2324         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2325         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2326 }
2327
2328 static int vmload_interception(struct vcpu_svm *svm)
2329 {
2330         struct vmcb *nested_vmcb;
2331         struct page *page;
2332
2333         if (nested_svm_check_permissions(svm))
2334                 return 1;
2335
2336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2337         skip_emulated_instruction(&svm->vcpu);
2338
2339         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2340         if (!nested_vmcb)
2341                 return 1;
2342
2343         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2344         nested_svm_unmap(page);
2345
2346         return 1;
2347 }
2348
2349 static int vmsave_interception(struct vcpu_svm *svm)
2350 {
2351         struct vmcb *nested_vmcb;
2352         struct page *page;
2353
2354         if (nested_svm_check_permissions(svm))
2355                 return 1;
2356
2357         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2358         skip_emulated_instruction(&svm->vcpu);
2359
2360         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2361         if (!nested_vmcb)
2362                 return 1;
2363
2364         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2365         nested_svm_unmap(page);
2366
2367         return 1;
2368 }
2369
2370 static int vmrun_interception(struct vcpu_svm *svm)
2371 {
2372         if (nested_svm_check_permissions(svm))
2373                 return 1;
2374
2375         /* Save rip after vmrun instruction */
2376         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2377
2378         if (!nested_svm_vmrun(svm))
2379                 return 1;
2380
2381         if (!nested_svm_vmrun_msrpm(svm))
2382                 goto failed;
2383
2384         return 1;
2385
2386 failed:
2387
2388         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2389         svm->vmcb->control.exit_code_hi = 0;
2390         svm->vmcb->control.exit_info_1  = 0;
2391         svm->vmcb->control.exit_info_2  = 0;
2392
2393         nested_svm_vmexit(svm);
2394
2395         return 1;
2396 }
2397
2398 static int stgi_interception(struct vcpu_svm *svm)
2399 {
2400         if (nested_svm_check_permissions(svm))
2401                 return 1;
2402
2403         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2404         skip_emulated_instruction(&svm->vcpu);
2405         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2406
2407         enable_gif(svm);
2408
2409         return 1;
2410 }
2411
2412 static int clgi_interception(struct vcpu_svm *svm)
2413 {
2414         if (nested_svm_check_permissions(svm))
2415                 return 1;
2416
2417         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2418         skip_emulated_instruction(&svm->vcpu);
2419
2420         disable_gif(svm);
2421
2422         /* After a CLGI no interrupts should come */
2423         svm_clear_vintr(svm);
2424         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2425
2426         return 1;
2427 }
2428
2429 static int invlpga_interception(struct vcpu_svm *svm)
2430 {
2431         struct kvm_vcpu *vcpu = &svm->vcpu;
2432
2433         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2434                           vcpu->arch.regs[VCPU_REGS_RAX]);
2435
2436         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2437         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2438
2439         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2440         skip_emulated_instruction(&svm->vcpu);
2441         return 1;
2442 }
2443
2444 static int skinit_interception(struct vcpu_svm *svm)
2445 {
2446         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2447
2448         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2449         return 1;
2450 }
2451
2452 static int invalid_op_interception(struct vcpu_svm *svm)
2453 {
2454         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2455         return 1;
2456 }
2457
2458 static int task_switch_interception(struct vcpu_svm *svm)
2459 {
2460         u16 tss_selector;
2461         int reason;
2462         int int_type = svm->vmcb->control.exit_int_info &
2463                 SVM_EXITINTINFO_TYPE_MASK;
2464         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2465         uint32_t type =
2466                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2467         uint32_t idt_v =
2468                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2469         bool has_error_code = false;
2470         u32 error_code = 0;
2471
2472         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2473
2474         if (svm->vmcb->control.exit_info_2 &
2475             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2476                 reason = TASK_SWITCH_IRET;
2477         else if (svm->vmcb->control.exit_info_2 &
2478                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2479                 reason = TASK_SWITCH_JMP;
2480         else if (idt_v)
2481                 reason = TASK_SWITCH_GATE;
2482         else
2483                 reason = TASK_SWITCH_CALL;
2484
2485         if (reason == TASK_SWITCH_GATE) {
2486                 switch (type) {
2487                 case SVM_EXITINTINFO_TYPE_NMI:
2488                         svm->vcpu.arch.nmi_injected = false;
2489                         break;
2490                 case SVM_EXITINTINFO_TYPE_EXEPT:
2491                         if (svm->vmcb->control.exit_info_2 &
2492                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2493                                 has_error_code = true;
2494                                 error_code =
2495                                         (u32)svm->vmcb->control.exit_info_2;
2496                         }
2497                         kvm_clear_exception_queue(&svm->vcpu);
2498                         break;
2499                 case SVM_EXITINTINFO_TYPE_INTR:
2500                         kvm_clear_interrupt_queue(&svm->vcpu);
2501                         break;
2502                 default:
2503                         break;
2504                 }
2505         }
2506
2507         if (reason != TASK_SWITCH_GATE ||
2508             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2509             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2510              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2511                 skip_emulated_instruction(&svm->vcpu);
2512
2513         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2514                                 has_error_code, error_code) == EMULATE_FAIL) {
2515                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2516                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2517                 svm->vcpu.run->internal.ndata = 0;
2518                 return 0;
2519         }
2520         return 1;
2521 }
2522
2523 static int cpuid_interception(struct vcpu_svm *svm)
2524 {
2525         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2526         kvm_emulate_cpuid(&svm->vcpu);
2527         return 1;
2528 }
2529
2530 static int iret_interception(struct vcpu_svm *svm)
2531 {
2532         ++svm->vcpu.stat.nmi_window_exits;
2533         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2534         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2535         return 1;
2536 }
2537
2538 static int invlpg_interception(struct vcpu_svm *svm)
2539 {
2540         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2541 }
2542
2543 static int emulate_on_interception(struct vcpu_svm *svm)
2544 {
2545         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2546 }
2547
2548 static int cr0_write_interception(struct vcpu_svm *svm)
2549 {
2550         struct kvm_vcpu *vcpu = &svm->vcpu;
2551         int r;
2552
2553         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2554
2555         if (svm->nested.vmexit_rip) {
2556                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2557                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2558                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2559                 svm->nested.vmexit_rip = 0;
2560         }
2561
2562         return r == EMULATE_DONE;
2563 }
2564
2565 static int cr8_write_interception(struct vcpu_svm *svm)
2566 {
2567         struct kvm_run *kvm_run = svm->vcpu.run;
2568
2569         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2570         /* instruction emulation calls kvm_set_cr8() */
2571         emulate_instruction(&svm->vcpu, 0, 0, 0);
2572         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2573                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2574                 return 1;
2575         }
2576         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2577                 return 1;
2578         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2579         return 0;
2580 }
2581
2582 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2583 {
2584         struct vcpu_svm *svm = to_svm(vcpu);
2585
2586         switch (ecx) {
2587         case MSR_IA32_TSC: {
2588                 u64 tsc_offset;
2589
2590                 if (is_guest_mode(vcpu))
2591                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2592                 else
2593                         tsc_offset = svm->vmcb->control.tsc_offset;
2594
2595                 *data = tsc_offset + native_read_tsc();
2596                 break;
2597         }
2598         case MSR_STAR:
2599                 *data = svm->vmcb->save.star;
2600                 break;
2601 #ifdef CONFIG_X86_64
2602         case MSR_LSTAR:
2603                 *data = svm->vmcb->save.lstar;
2604                 break;
2605         case MSR_CSTAR:
2606                 *data = svm->vmcb->save.cstar;
2607                 break;
2608         case MSR_KERNEL_GS_BASE:
2609                 *data = svm->vmcb->save.kernel_gs_base;
2610                 break;
2611         case MSR_SYSCALL_MASK:
2612                 *data = svm->vmcb->save.sfmask;
2613                 break;
2614 #endif
2615         case MSR_IA32_SYSENTER_CS:
2616                 *data = svm->vmcb->save.sysenter_cs;
2617                 break;
2618         case MSR_IA32_SYSENTER_EIP:
2619                 *data = svm->sysenter_eip;
2620                 break;
2621         case MSR_IA32_SYSENTER_ESP:
2622                 *data = svm->sysenter_esp;
2623                 break;
2624         /*
2625          * Nobody will change the following 5 values in the VMCB so we can
2626          * safely return them on rdmsr. They will always be 0 until LBRV is
2627          * implemented.
2628          */
2629         case MSR_IA32_DEBUGCTLMSR:
2630                 *data = svm->vmcb->save.dbgctl;
2631                 break;
2632         case MSR_IA32_LASTBRANCHFROMIP:
2633                 *data = svm->vmcb->save.br_from;
2634                 break;
2635         case MSR_IA32_LASTBRANCHTOIP:
2636                 *data = svm->vmcb->save.br_to;
2637                 break;
2638         case MSR_IA32_LASTINTFROMIP:
2639                 *data = svm->vmcb->save.last_excp_from;
2640                 break;
2641         case MSR_IA32_LASTINTTOIP:
2642                 *data = svm->vmcb->save.last_excp_to;
2643                 break;
2644         case MSR_VM_HSAVE_PA:
2645                 *data = svm->nested.hsave_msr;
2646                 break;
2647         case MSR_VM_CR:
2648                 *data = svm->nested.vm_cr_msr;
2649                 break;
2650         case MSR_IA32_UCODE_REV:
2651                 *data = 0x01000065;
2652                 break;
2653         default:
2654                 return kvm_get_msr_common(vcpu, ecx, data);
2655         }
2656         return 0;
2657 }
2658
2659 static int rdmsr_interception(struct vcpu_svm *svm)
2660 {
2661         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2662         u64 data;
2663
2664         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2665                 trace_kvm_msr_read_ex(ecx);
2666                 kvm_inject_gp(&svm->vcpu, 0);
2667         } else {
2668                 trace_kvm_msr_read(ecx, data);
2669
2670                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2671                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2672                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2673                 skip_emulated_instruction(&svm->vcpu);
2674         }
2675         return 1;
2676 }
2677
2678 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2679 {
2680         struct vcpu_svm *svm = to_svm(vcpu);
2681         int svm_dis, chg_mask;
2682
2683         if (data & ~SVM_VM_CR_VALID_MASK)
2684                 return 1;
2685
2686         chg_mask = SVM_VM_CR_VALID_MASK;
2687
2688         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2689                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2690
2691         svm->nested.vm_cr_msr &= ~chg_mask;
2692         svm->nested.vm_cr_msr |= (data & chg_mask);
2693
2694         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2695
2696         /* check for svm_disable while efer.svme is set */
2697         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2698                 return 1;
2699
2700         return 0;
2701 }
2702
2703 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2704 {
2705         struct vcpu_svm *svm = to_svm(vcpu);
2706
2707         switch (ecx) {
2708         case MSR_IA32_TSC:
2709                 kvm_write_tsc(vcpu, data);
2710                 break;
2711         case MSR_STAR:
2712                 svm->vmcb->save.star = data;
2713                 break;
2714 #ifdef CONFIG_X86_64
2715         case MSR_LSTAR:
2716                 svm->vmcb->save.lstar = data;
2717                 break;
2718         case MSR_CSTAR:
2719                 svm->vmcb->save.cstar = data;
2720                 break;
2721         case MSR_KERNEL_GS_BASE:
2722                 svm->vmcb->save.kernel_gs_base = data;
2723                 break;
2724         case MSR_SYSCALL_MASK:
2725                 svm->vmcb->save.sfmask = data;
2726                 break;
2727 #endif
2728         case MSR_IA32_SYSENTER_CS:
2729                 svm->vmcb->save.sysenter_cs = data;
2730                 break;
2731         case MSR_IA32_SYSENTER_EIP:
2732                 svm->sysenter_eip = data;
2733                 svm->vmcb->save.sysenter_eip = data;
2734                 break;
2735         case MSR_IA32_SYSENTER_ESP:
2736                 svm->sysenter_esp = data;
2737                 svm->vmcb->save.sysenter_esp = data;
2738                 break;
2739         case MSR_IA32_DEBUGCTLMSR:
2740                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2741                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2742                                         __func__, data);
2743                         break;
2744                 }
2745                 if (data & DEBUGCTL_RESERVED_BITS)
2746                         return 1;
2747
2748                 svm->vmcb->save.dbgctl = data;
2749                 if (data & (1ULL<<0))
2750                         svm_enable_lbrv(svm);
2751                 else
2752                         svm_disable_lbrv(svm);
2753                 break;
2754         case MSR_VM_HSAVE_PA:
2755                 svm->nested.hsave_msr = data;
2756                 break;
2757         case MSR_VM_CR:
2758                 return svm_set_vm_cr(vcpu, data);
2759         case MSR_VM_IGNNE:
2760                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2761                 break;
2762         default:
2763                 return kvm_set_msr_common(vcpu, ecx, data);
2764         }
2765         return 0;
2766 }
2767
2768 static int wrmsr_interception(struct vcpu_svm *svm)
2769 {
2770         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2771         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2772                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2773
2774
2775         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2776         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2777                 trace_kvm_msr_write_ex(ecx, data);
2778                 kvm_inject_gp(&svm->vcpu, 0);
2779         } else {
2780                 trace_kvm_msr_write(ecx, data);
2781                 skip_emulated_instruction(&svm->vcpu);
2782         }
2783         return 1;
2784 }
2785
2786 static int msr_interception(struct vcpu_svm *svm)
2787 {
2788         if (svm->vmcb->control.exit_info_1)
2789                 return wrmsr_interception(svm);
2790         else
2791                 return rdmsr_interception(svm);
2792 }
2793
2794 static int interrupt_window_interception(struct vcpu_svm *svm)
2795 {
2796         struct kvm_run *kvm_run = svm->vcpu.run;
2797
2798         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799         svm_clear_vintr(svm);
2800         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2801         /*
2802          * If the user space waits to inject interrupts, exit as soon as
2803          * possible
2804          */
2805         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2806             kvm_run->request_interrupt_window &&
2807             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2808                 ++svm->vcpu.stat.irq_window_exits;
2809                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2810                 return 0;
2811         }
2812
2813         return 1;
2814 }
2815
2816 static int pause_interception(struct vcpu_svm *svm)
2817 {
2818         kvm_vcpu_on_spin(&(svm->vcpu));
2819         return 1;
2820 }
2821
2822 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2823         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2824         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2825         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2826         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2827         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2828         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2829         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2830         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2831         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2832         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2833         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2834         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2835         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2836         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2837         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2838         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2839         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2840         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2841         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2842         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2843         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2844         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2845         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2846         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2847         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2848         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2849         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2850         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2851         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2852         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2853         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2854         [SVM_EXIT_INTR]                         = intr_interception,
2855         [SVM_EXIT_NMI]                          = nmi_interception,
2856         [SVM_EXIT_SMI]                          = nop_on_interception,
2857         [SVM_EXIT_INIT]                         = nop_on_interception,
2858         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2859         [SVM_EXIT_CPUID]                        = cpuid_interception,
2860         [SVM_EXIT_IRET]                         = iret_interception,
2861         [SVM_EXIT_INVD]                         = emulate_on_interception,
2862         [SVM_EXIT_PAUSE]                        = pause_interception,
2863         [SVM_EXIT_HLT]                          = halt_interception,
2864         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2865         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2866         [SVM_EXIT_IOIO]                         = io_interception,
2867         [SVM_EXIT_MSR]                          = msr_interception,
2868         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2869         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2870         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2871         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2872         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2873         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2874         [SVM_EXIT_STGI]                         = stgi_interception,
2875         [SVM_EXIT_CLGI]                         = clgi_interception,
2876         [SVM_EXIT_SKINIT]                       = skinit_interception,
2877         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2878         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2879         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2880         [SVM_EXIT_NPF]                          = pf_interception,
2881 };
2882
2883 void dump_vmcb(struct kvm_vcpu *vcpu)
2884 {
2885         struct vcpu_svm *svm = to_svm(vcpu);
2886         struct vmcb_control_area *control = &svm->vmcb->control;
2887         struct vmcb_save_area *save = &svm->vmcb->save;
2888
2889         pr_err("VMCB Control Area:\n");
2890         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2891         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2892         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2893         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2894         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2895         pr_err("intercepts:         %016llx\n", control->intercept);
2896         pr_err("pause filter count: %d\n", control->pause_filter_count);
2897         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2898         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2899         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2900         pr_err("asid:               %d\n", control->asid);
2901         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2902         pr_err("int_ctl:            %08x\n", control->int_ctl);
2903         pr_err("int_vector:         %08x\n", control->int_vector);
2904         pr_err("int_state:          %08x\n", control->int_state);
2905         pr_err("exit_code:          %08x\n", control->exit_code);
2906         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2907         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2908         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2909         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2910         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2911         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2912         pr_err("event_inj:          %08x\n", control->event_inj);
2913         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2914         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2915         pr_err("next_rip:           %016llx\n", control->next_rip);
2916         pr_err("VMCB State Save Area:\n");
2917         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2918                 save->es.selector, save->es.attrib,
2919                 save->es.limit, save->es.base);
2920         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2921                 save->cs.selector, save->cs.attrib,
2922                 save->cs.limit, save->cs.base);
2923         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2924                 save->ss.selector, save->ss.attrib,
2925                 save->ss.limit, save->ss.base);
2926         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2927                 save->ds.selector, save->ds.attrib,
2928                 save->ds.limit, save->ds.base);
2929         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2930                 save->fs.selector, save->fs.attrib,
2931                 save->fs.limit, save->fs.base);
2932         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2933                 save->gs.selector, save->gs.attrib,
2934                 save->gs.limit, save->gs.base);
2935         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2936                 save->gdtr.selector, save->gdtr.attrib,
2937                 save->gdtr.limit, save->gdtr.base);
2938         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2939                 save->ldtr.selector, save->ldtr.attrib,
2940                 save->ldtr.limit, save->ldtr.base);
2941         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2942                 save->idtr.selector, save->idtr.attrib,
2943                 save->idtr.limit, save->idtr.base);
2944         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2945                 save->tr.selector, save->tr.attrib,
2946                 save->tr.limit, save->tr.base);
2947         pr_err("cpl:            %d                efer:         %016llx\n",
2948                 save->cpl, save->efer);
2949         pr_err("cr0:            %016llx cr2:          %016llx\n",
2950                 save->cr0, save->cr2);
2951         pr_err("cr3:            %016llx cr4:          %016llx\n",
2952                 save->cr3, save->cr4);
2953         pr_err("dr6:            %016llx dr7:          %016llx\n",
2954                 save->dr6, save->dr7);
2955         pr_err("rip:            %016llx rflags:       %016llx\n",
2956                 save->rip, save->rflags);
2957         pr_err("rsp:            %016llx rax:          %016llx\n",
2958                 save->rsp, save->rax);
2959         pr_err("star:           %016llx lstar:        %016llx\n",
2960                 save->star, save->lstar);
2961         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2962                 save->cstar, save->sfmask);
2963         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2964                 save->kernel_gs_base, save->sysenter_cs);
2965         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2966                 save->sysenter_esp, save->sysenter_eip);
2967         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2968                 save->g_pat, save->dbgctl);
2969         pr_err("br_from:        %016llx br_to:        %016llx\n",
2970                 save->br_from, save->br_to);
2971         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2972                 save->last_excp_from, save->last_excp_to);
2973
2974 }
2975
2976 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2977 {
2978         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2979
2980         *info1 = control->exit_info_1;
2981         *info2 = control->exit_info_2;
2982 }
2983
2984 static int handle_exit(struct kvm_vcpu *vcpu)
2985 {
2986         struct vcpu_svm *svm = to_svm(vcpu);
2987         struct kvm_run *kvm_run = vcpu->run;
2988         u32 exit_code = svm->vmcb->control.exit_code;
2989
2990         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2991
2992         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2993                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2994         if (npt_enabled)
2995                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2996
2997         if (unlikely(svm->nested.exit_required)) {
2998                 nested_svm_vmexit(svm);
2999                 svm->nested.exit_required = false;
3000
3001                 return 1;
3002         }
3003
3004         if (is_guest_mode(vcpu)) {
3005                 int vmexit;
3006
3007                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3008                                         svm->vmcb->control.exit_info_1,
3009                                         svm->vmcb->control.exit_info_2,
3010                                         svm->vmcb->control.exit_int_info,
3011                                         svm->vmcb->control.exit_int_info_err);
3012
3013                 vmexit = nested_svm_exit_special(svm);
3014
3015                 if (vmexit == NESTED_EXIT_CONTINUE)
3016                         vmexit = nested_svm_exit_handled(svm);
3017
3018                 if (vmexit == NESTED_EXIT_DONE)
3019                         return 1;
3020         }
3021
3022         svm_complete_interrupts(svm);
3023
3024         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3025                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3026                 kvm_run->fail_entry.hardware_entry_failure_reason
3027                         = svm->vmcb->control.exit_code;
3028                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3029                 dump_vmcb(vcpu);
3030                 return 0;
3031         }
3032
3033         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3034             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3035             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3036             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3037                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3038                        "exit_code 0x%x\n",
3039                        __func__, svm->vmcb->control.exit_int_info,
3040                        exit_code);
3041
3042         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3043             || !svm_exit_handlers[exit_code]) {
3044                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3045                 kvm_run->hw.hardware_exit_reason = exit_code;
3046                 return 0;
3047         }
3048
3049         return svm_exit_handlers[exit_code](svm);
3050 }
3051
3052 static void reload_tss(struct kvm_vcpu *vcpu)
3053 {
3054         int cpu = raw_smp_processor_id();
3055
3056         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3057         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3058         load_TR_desc();
3059 }
3060
3061 static void pre_svm_run(struct vcpu_svm *svm)
3062 {
3063         int cpu = raw_smp_processor_id();
3064
3065         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3066
3067         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3068         /* FIXME: handle wraparound of asid_generation */
3069         if (svm->asid_generation != sd->asid_generation)
3070                 new_asid(svm, sd);
3071 }
3072
3073 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3074 {
3075         struct vcpu_svm *svm = to_svm(vcpu);
3076
3077         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3078         vcpu->arch.hflags |= HF_NMI_MASK;
3079         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3080         ++vcpu->stat.nmi_injections;
3081 }
3082
3083 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3084 {
3085         struct vmcb_control_area *control;
3086
3087         control = &svm->vmcb->control;
3088         control->int_vector = irq;
3089         control->int_ctl &= ~V_INTR_PRIO_MASK;
3090         control->int_ctl |= V_IRQ_MASK |
3091                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3092 }
3093
3094 static void svm_set_irq(struct kvm_vcpu *vcpu)
3095 {
3096         struct vcpu_svm *svm = to_svm(vcpu);
3097
3098         BUG_ON(!(gif_set(svm)));
3099
3100         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3101         ++vcpu->stat.irq_injections;
3102
3103         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3104                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3105 }
3106
3107 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3108 {
3109         struct vcpu_svm *svm = to_svm(vcpu);
3110
3111         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3112                 return;
3113
3114         if (irr == -1)
3115                 return;
3116
3117         if (tpr >= irr)
3118                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3119 }
3120
3121 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3122 {
3123         struct vcpu_svm *svm = to_svm(vcpu);
3124         struct vmcb *vmcb = svm->vmcb;
3125         int ret;
3126         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3127               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3128         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3129
3130         return ret;
3131 }
3132
3133 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3134 {
3135         struct vcpu_svm *svm = to_svm(vcpu);
3136
3137         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3138 }
3139
3140 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3141 {
3142         struct vcpu_svm *svm = to_svm(vcpu);
3143
3144         if (masked) {
3145                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3146                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3147         } else {
3148                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3149                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3150         }
3151 }
3152
3153 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3154 {
3155         struct vcpu_svm *svm = to_svm(vcpu);
3156         struct vmcb *vmcb = svm->vmcb;
3157         int ret;
3158
3159         if (!gif_set(svm) ||
3160              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3161                 return 0;
3162
3163         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3164
3165         if (is_guest_mode(vcpu))
3166                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3167
3168         return ret;
3169 }
3170
3171 static void enable_irq_window(struct kvm_vcpu *vcpu)
3172 {
3173         struct vcpu_svm *svm = to_svm(vcpu);
3174
3175         /*
3176          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3177          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3178          * get that intercept, this function will be called again though and
3179          * we'll get the vintr intercept.
3180          */
3181         if (gif_set(svm) && nested_svm_intr(svm)) {
3182                 svm_set_vintr(svm);
3183                 svm_inject_irq(svm, 0x0);
3184         }
3185 }
3186
3187 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3188 {
3189         struct vcpu_svm *svm = to_svm(vcpu);
3190
3191         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3192             == HF_NMI_MASK)
3193                 return; /* IRET will cause a vm exit */
3194
3195         /*
3196          * Something prevents NMI from been injected. Single step over possible
3197          * problem (IRET or exception injection or interrupt shadow)
3198          */
3199         svm->nmi_singlestep = true;
3200         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3201         update_db_intercept(vcpu);
3202 }
3203
3204 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3205 {
3206         return 0;
3207 }
3208
3209 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3210 {
3211         force_new_asid(vcpu);
3212 }
3213
3214 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3215 {
3216 }
3217
3218 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3219 {
3220         struct vcpu_svm *svm = to_svm(vcpu);
3221
3222         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3223                 return;
3224
3225         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3226                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3227                 kvm_set_cr8(vcpu, cr8);
3228         }
3229 }
3230
3231 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3232 {
3233         struct vcpu_svm *svm = to_svm(vcpu);
3234         u64 cr8;
3235
3236         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3237                 return;
3238
3239         cr8 = kvm_get_cr8(vcpu);
3240         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3241         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3242 }
3243
3244 static void svm_complete_interrupts(struct vcpu_svm *svm)
3245 {
3246         u8 vector;
3247         int type;
3248         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3249         unsigned int3_injected = svm->int3_injected;
3250
3251         svm->int3_injected = 0;
3252
3253         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3254                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3255                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3256         }
3257
3258         svm->vcpu.arch.nmi_injected = false;
3259         kvm_clear_exception_queue(&svm->vcpu);
3260         kvm_clear_interrupt_queue(&svm->vcpu);
3261
3262         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3263                 return;
3264
3265         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3266
3267         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3268         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3269
3270         switch (type) {
3271         case SVM_EXITINTINFO_TYPE_NMI:
3272                 svm->vcpu.arch.nmi_injected = true;
3273                 break;
3274         case SVM_EXITINTINFO_TYPE_EXEPT:
3275                 /*
3276                  * In case of software exceptions, do not reinject the vector,
3277                  * but re-execute the instruction instead. Rewind RIP first
3278                  * if we emulated INT3 before.
3279                  */
3280                 if (kvm_exception_is_soft(vector)) {
3281                         if (vector == BP_VECTOR && int3_injected &&
3282                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3283                                 kvm_rip_write(&svm->vcpu,
3284                                               kvm_rip_read(&svm->vcpu) -
3285                                               int3_injected);
3286                         break;
3287                 }
3288                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3289                         u32 err = svm->vmcb->control.exit_int_info_err;
3290                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3291
3292                 } else
3293                         kvm_requeue_exception(&svm->vcpu, vector);
3294                 break;
3295         case SVM_EXITINTINFO_TYPE_INTR:
3296                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3297                 break;
3298         default:
3299                 break;
3300         }
3301 }
3302
3303 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3304 {
3305         struct vcpu_svm *svm = to_svm(vcpu);
3306         struct vmcb_control_area *control = &svm->vmcb->control;
3307
3308         control->exit_int_info = control->event_inj;
3309         control->exit_int_info_err = control->event_inj_err;
3310         control->event_inj = 0;
3311         svm_complete_interrupts(svm);
3312 }
3313
3314 #ifdef CONFIG_X86_64
3315 #define R "r"
3316 #else
3317 #define R "e"
3318 #endif
3319
3320 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3321 {
3322         struct vcpu_svm *svm = to_svm(vcpu);
3323
3324         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3325         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3326         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3327
3328         /*
3329          * A vmexit emulation is required before the vcpu can be executed
3330          * again.
3331          */
3332         if (unlikely(svm->nested.exit_required))
3333                 return;
3334
3335         pre_svm_run(svm);
3336
3337         sync_lapic_to_cr8(vcpu);
3338
3339         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3340
3341         clgi();
3342
3343         local_irq_enable();
3344
3345         asm volatile (
3346                 "push %%"R"bp; \n\t"
3347                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3348                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3349                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3350                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3351                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3352                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3353 #ifdef CONFIG_X86_64
3354                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3355                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3356                 "mov %c[r10](%[svm]), %%r10 \n\t"
3357                 "mov %c[r11](%[svm]), %%r11 \n\t"
3358                 "mov %c[r12](%[svm]), %%r12 \n\t"
3359                 "mov %c[r13](%[svm]), %%r13 \n\t"
3360                 "mov %c[r14](%[svm]), %%r14 \n\t"
3361                 "mov %c[r15](%[svm]), %%r15 \n\t"
3362 #endif
3363
3364                 /* Enter guest mode */
3365                 "push %%"R"ax \n\t"
3366                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3367                 __ex(SVM_VMLOAD) "\n\t"
3368                 __ex(SVM_VMRUN) "\n\t"
3369                 __ex(SVM_VMSAVE) "\n\t"
3370                 "pop %%"R"ax \n\t"
3371
3372                 /* Save guest registers, load host registers */
3373                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3374                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3375                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3376                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3377                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3378                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3379 #ifdef CONFIG_X86_64
3380                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3381                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3382                 "mov %%r10, %c[r10](%[svm]) \n\t"
3383                 "mov %%r11, %c[r11](%[svm]) \n\t"
3384                 "mov %%r12, %c[r12](%[svm]) \n\t"
3385                 "mov %%r13, %c[r13](%[svm]) \n\t"
3386                 "mov %%r14, %c[r14](%[svm]) \n\t"
3387                 "mov %%r15, %c[r15](%[svm]) \n\t"
3388 #endif
3389                 "pop %%"R"bp"
3390                 :
3391                 : [svm]"a"(svm),
3392                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3393                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3394                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3395                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3396                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3397                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3398                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3399 #ifdef CONFIG_X86_64
3400                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3401                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3402                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3403                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3404                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3405                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3406                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3407                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3408 #endif
3409                 : "cc", "memory"
3410                 , R"bx", R"cx", R"dx", R"si", R"di"
3411 #ifdef CONFIG_X86_64
3412                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3413 #endif
3414                 );
3415
3416 #ifdef CONFIG_X86_64
3417         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3418 #else
3419         loadsegment(fs, svm->host.fs);
3420 #endif
3421
3422         reload_tss(vcpu);
3423
3424         local_irq_disable();
3425
3426         stgi();
3427
3428         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3429         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3430         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3431         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3432
3433         sync_cr8_to_lapic(vcpu);
3434
3435         svm->next_rip = 0;
3436
3437         /* if exit due to PF check for async PF */
3438         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3439                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3440
3441         if (npt_enabled) {
3442                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3443                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3444         }
3445
3446         /*
3447          * We need to handle MC intercepts here before the vcpu has a chance to
3448          * change the physical cpu
3449          */
3450         if (unlikely(svm->vmcb->control.exit_code ==
3451                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3452                 svm_handle_mce(svm);
3453 }
3454
3455 #undef R
3456
3457 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3458 {
3459         struct vcpu_svm *svm = to_svm(vcpu);
3460
3461         svm->vmcb->save.cr3 = root;
3462         force_new_asid(vcpu);
3463 }
3464
3465 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3466 {
3467         struct vcpu_svm *svm = to_svm(vcpu);
3468
3469         svm->vmcb->control.nested_cr3 = root;
3470
3471         /* Also sync guest cr3 here in case we live migrate */
3472         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3473
3474         force_new_asid(vcpu);
3475 }
3476
3477 static int is_disabled(void)
3478 {
3479         u64 vm_cr;
3480
3481         rdmsrl(MSR_VM_CR, vm_cr);
3482         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3483                 return 1;
3484
3485         return 0;
3486 }
3487
3488 static void
3489 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3490 {
3491         /*
3492          * Patch in the VMMCALL instruction:
3493          */
3494         hypercall[0] = 0x0f;
3495         hypercall[1] = 0x01;
3496         hypercall[2] = 0xd9;
3497 }
3498
3499 static void svm_check_processor_compat(void *rtn)
3500 {
3501         *(int *)rtn = 0;
3502 }
3503
3504 static bool svm_cpu_has_accelerated_tpr(void)
3505 {
3506         return false;
3507 }
3508
3509 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3510 {
3511         return 0;
3512 }
3513
3514 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3515 {
3516 }
3517
3518 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3519 {
3520         switch (func) {
3521         case 0x00000001:
3522                 /* Mask out xsave bit as long as it is not supported by SVM */
3523                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3524                 break;
3525         case 0x80000001:
3526                 if (nested)
3527                         entry->ecx |= (1 << 2); /* Set SVM bit */
3528                 break;
3529         case 0x8000000A:
3530                 entry->eax = 1; /* SVM revision 1 */
3531                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3532                                    ASID emulation to nested SVM */
3533                 entry->ecx = 0; /* Reserved */
3534                 entry->edx = 0; /* Per default do not support any
3535                                    additional features */
3536
3537                 /* Support next_rip if host supports it */
3538                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3539                         entry->edx |= SVM_FEATURE_NRIP;
3540
3541                 /* Support NPT for the guest if enabled */
3542                 if (npt_enabled)
3543                         entry->edx |= SVM_FEATURE_NPT;
3544
3545                 break;
3546         }
3547 }
3548
3549 static const struct trace_print_flags svm_exit_reasons_str[] = {
3550         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3551         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3552         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3553         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3554         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3555         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3556         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3557         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3558         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3559         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3560         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3561         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3562         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3563         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3564         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3565         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3566         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3567         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3568         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3569         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3570         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3571         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3572         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3573         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3574         { SVM_EXIT_INTR,                        "interrupt" },
3575         { SVM_EXIT_NMI,                         "nmi" },
3576         { SVM_EXIT_SMI,                         "smi" },
3577         { SVM_EXIT_INIT,                        "init" },
3578         { SVM_EXIT_VINTR,                       "vintr" },
3579         { SVM_EXIT_CPUID,                       "cpuid" },
3580         { SVM_EXIT_INVD,                        "invd" },
3581         { SVM_EXIT_HLT,                         "hlt" },
3582         { SVM_EXIT_INVLPG,                      "invlpg" },
3583         { SVM_EXIT_INVLPGA,                     "invlpga" },
3584         { SVM_EXIT_IOIO,                        "io" },
3585         { SVM_EXIT_MSR,                         "msr" },
3586         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3587         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3588         { SVM_EXIT_VMRUN,                       "vmrun" },
3589         { SVM_EXIT_VMMCALL,                     "hypercall" },
3590         { SVM_EXIT_VMLOAD,                      "vmload" },
3591         { SVM_EXIT_VMSAVE,                      "vmsave" },
3592         { SVM_EXIT_STGI,                        "stgi" },
3593         { SVM_EXIT_CLGI,                        "clgi" },
3594         { SVM_EXIT_SKINIT,                      "skinit" },
3595         { SVM_EXIT_WBINVD,                      "wbinvd" },
3596         { SVM_EXIT_MONITOR,                     "monitor" },
3597         { SVM_EXIT_MWAIT,                       "mwait" },
3598         { SVM_EXIT_NPF,                         "npf" },
3599         { -1, NULL }
3600 };
3601
3602 static int svm_get_lpage_level(void)
3603 {
3604         return PT_PDPE_LEVEL;
3605 }
3606
3607 static bool svm_rdtscp_supported(void)
3608 {
3609         return false;
3610 }
3611
3612 static bool svm_has_wbinvd_exit(void)
3613 {
3614         return true;
3615 }
3616
3617 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620
3621         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3622         if (is_guest_mode(vcpu))
3623                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3624         update_cr0_intercept(svm);
3625 }
3626
3627 static struct kvm_x86_ops svm_x86_ops = {
3628         .cpu_has_kvm_support = has_svm,
3629         .disabled_by_bios = is_disabled,
3630         .hardware_setup = svm_hardware_setup,
3631         .hardware_unsetup = svm_hardware_unsetup,
3632         .check_processor_compatibility = svm_check_processor_compat,
3633         .hardware_enable = svm_hardware_enable,
3634         .hardware_disable = svm_hardware_disable,
3635         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3636
3637         .vcpu_create = svm_create_vcpu,
3638         .vcpu_free = svm_free_vcpu,
3639         .vcpu_reset = svm_vcpu_reset,
3640
3641         .prepare_guest_switch = svm_prepare_guest_switch,
3642         .vcpu_load = svm_vcpu_load,
3643         .vcpu_put = svm_vcpu_put,
3644
3645         .set_guest_debug = svm_guest_debug,
3646         .get_msr = svm_get_msr,
3647         .set_msr = svm_set_msr,
3648         .get_segment_base = svm_get_segment_base,
3649         .get_segment = svm_get_segment,
3650         .set_segment = svm_set_segment,
3651         .get_cpl = svm_get_cpl,
3652         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3653         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3654         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3655         .set_cr0 = svm_set_cr0,
3656         .set_cr3 = svm_set_cr3,
3657         .set_cr4 = svm_set_cr4,
3658         .set_efer = svm_set_efer,
3659         .get_idt = svm_get_idt,
3660         .set_idt = svm_set_idt,
3661         .get_gdt = svm_get_gdt,
3662         .set_gdt = svm_set_gdt,
3663         .set_dr7 = svm_set_dr7,
3664         .cache_reg = svm_cache_reg,
3665         .get_rflags = svm_get_rflags,
3666         .set_rflags = svm_set_rflags,
3667         .fpu_activate = svm_fpu_activate,
3668         .fpu_deactivate = svm_fpu_deactivate,
3669
3670         .tlb_flush = svm_flush_tlb,
3671
3672         .run = svm_vcpu_run,
3673         .handle_exit = handle_exit,
3674         .skip_emulated_instruction = skip_emulated_instruction,
3675         .set_interrupt_shadow = svm_set_interrupt_shadow,
3676         .get_interrupt_shadow = svm_get_interrupt_shadow,
3677         .patch_hypercall = svm_patch_hypercall,
3678         .set_irq = svm_set_irq,
3679         .set_nmi = svm_inject_nmi,
3680         .queue_exception = svm_queue_exception,
3681         .cancel_injection = svm_cancel_injection,
3682         .interrupt_allowed = svm_interrupt_allowed,
3683         .nmi_allowed = svm_nmi_allowed,
3684         .get_nmi_mask = svm_get_nmi_mask,
3685         .set_nmi_mask = svm_set_nmi_mask,
3686         .enable_nmi_window = enable_nmi_window,
3687         .enable_irq_window = enable_irq_window,
3688         .update_cr8_intercept = update_cr8_intercept,
3689
3690         .set_tss_addr = svm_set_tss_addr,
3691         .get_tdp_level = get_npt_level,
3692         .get_mt_mask = svm_get_mt_mask,
3693
3694         .get_exit_info = svm_get_exit_info,
3695         .exit_reasons_str = svm_exit_reasons_str,
3696
3697         .get_lpage_level = svm_get_lpage_level,
3698
3699         .cpuid_update = svm_cpuid_update,
3700
3701         .rdtscp_supported = svm_rdtscp_supported,
3702
3703         .set_supported_cpuid = svm_set_supported_cpuid,
3704
3705         .has_wbinvd_exit = svm_has_wbinvd_exit,
3706
3707         .write_tsc_offset = svm_write_tsc_offset,
3708         .adjust_tsc_offset = svm_adjust_tsc_offset,
3709
3710         .set_tdp_cr3 = set_tdp_cr3,
3711 };
3712
3713 static int __init svm_init(void)
3714 {
3715         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3716                         __alignof__(struct vcpu_svm), THIS_MODULE);
3717 }
3718
3719 static void __exit svm_exit(void)
3720 {
3721         kvm_exit();
3722 }
3723
3724 module_init(svm_init)
3725 module_exit(svm_exit)