KVM: SVM: Add clean-bit for intercetps, tsc-offset and pause filter count
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114         struct kvm_vcpu vcpu;
115         struct vmcb *vmcb;
116         unsigned long vmcb_pa;
117         struct svm_cpu_data *svm_data;
118         uint64_t asid_generation;
119         uint64_t sysenter_esp;
120         uint64_t sysenter_eip;
121
122         u64 next_rip;
123
124         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125         struct {
126                 u16 fs;
127                 u16 gs;
128                 u16 ldt;
129                 u64 gs_base;
130         } host;
131
132         u32 *msrpm;
133
134         struct nested_state nested;
135
136         bool nmi_singlestep;
137
138         unsigned int3_injected;
139         unsigned long int3_rip;
140         u32 apf_reason;
141 };
142
143 #define MSR_INVALID                     0xffffffffU
144
145 static struct svm_direct_access_msrs {
146         u32 index;   /* Index of the MSR */
147         bool always; /* True if intercept is always on */
148 } direct_access_msrs[] = {
149         { .index = MSR_STAR,                            .always = true  },
150         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
151 #ifdef CONFIG_X86_64
152         { .index = MSR_GS_BASE,                         .always = true  },
153         { .index = MSR_FS_BASE,                         .always = true  },
154         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
155         { .index = MSR_LSTAR,                           .always = true  },
156         { .index = MSR_CSTAR,                           .always = true  },
157         { .index = MSR_SYSCALL_MASK,                    .always = true  },
158 #endif
159         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
160         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
161         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
162         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
163         { .index = MSR_INVALID,                         .always = false },
164 };
165
166 /* enable NPT for AMD64 and X86 with PAE */
167 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
168 static bool npt_enabled = true;
169 #else
170 static bool npt_enabled;
171 #endif
172 static int npt = 1;
173
174 module_param(npt, int, S_IRUGO);
175
176 static int nested = 1;
177 module_param(nested, int, S_IRUGO);
178
179 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
180 static void svm_complete_interrupts(struct vcpu_svm *svm);
181
182 static int nested_svm_exit_handled(struct vcpu_svm *svm);
183 static int nested_svm_intercept(struct vcpu_svm *svm);
184 static int nested_svm_vmexit(struct vcpu_svm *svm);
185 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
186                                       bool has_error_code, u32 error_code);
187
188 enum {
189         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
190                             pause filter count */
191         VMCB_DIRTY_MAX,
192 };
193
194 #define VMCB_ALWAYS_DIRTY_MASK  0U
195
196 static inline void mark_all_dirty(struct vmcb *vmcb)
197 {
198         vmcb->control.clean = 0;
199 }
200
201 static inline void mark_all_clean(struct vmcb *vmcb)
202 {
203         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
204                                & ~VMCB_ALWAYS_DIRTY_MASK;
205 }
206
207 static inline void mark_dirty(struct vmcb *vmcb, int bit)
208 {
209         vmcb->control.clean &= ~(1 << bit);
210 }
211
212 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
213 {
214         return container_of(vcpu, struct vcpu_svm, vcpu);
215 }
216
217 static void recalc_intercepts(struct vcpu_svm *svm)
218 {
219         struct vmcb_control_area *c, *h;
220         struct nested_state *g;
221
222         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
223
224         if (!is_guest_mode(&svm->vcpu))
225                 return;
226
227         c = &svm->vmcb->control;
228         h = &svm->nested.hsave->control;
229         g = &svm->nested;
230
231         c->intercept_cr = h->intercept_cr | g->intercept_cr;
232         c->intercept_dr = h->intercept_dr | g->intercept_dr;
233         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
234         c->intercept = h->intercept | g->intercept;
235 }
236
237 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
238 {
239         if (is_guest_mode(&svm->vcpu))
240                 return svm->nested.hsave;
241         else
242                 return svm->vmcb;
243 }
244
245 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
246 {
247         struct vmcb *vmcb = get_host_vmcb(svm);
248
249         vmcb->control.intercept_cr |= (1U << bit);
250
251         recalc_intercepts(svm);
252 }
253
254 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
255 {
256         struct vmcb *vmcb = get_host_vmcb(svm);
257
258         vmcb->control.intercept_cr &= ~(1U << bit);
259
260         recalc_intercepts(svm);
261 }
262
263 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
264 {
265         struct vmcb *vmcb = get_host_vmcb(svm);
266
267         return vmcb->control.intercept_cr & (1U << bit);
268 }
269
270 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
271 {
272         struct vmcb *vmcb = get_host_vmcb(svm);
273
274         vmcb->control.intercept_dr |= (1U << bit);
275
276         recalc_intercepts(svm);
277 }
278
279 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
280 {
281         struct vmcb *vmcb = get_host_vmcb(svm);
282
283         vmcb->control.intercept_dr &= ~(1U << bit);
284
285         recalc_intercepts(svm);
286 }
287
288 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
289 {
290         struct vmcb *vmcb = get_host_vmcb(svm);
291
292         vmcb->control.intercept_exceptions |= (1U << bit);
293
294         recalc_intercepts(svm);
295 }
296
297 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
298 {
299         struct vmcb *vmcb = get_host_vmcb(svm);
300
301         vmcb->control.intercept_exceptions &= ~(1U << bit);
302
303         recalc_intercepts(svm);
304 }
305
306 static inline void set_intercept(struct vcpu_svm *svm, int bit)
307 {
308         struct vmcb *vmcb = get_host_vmcb(svm);
309
310         vmcb->control.intercept |= (1ULL << bit);
311
312         recalc_intercepts(svm);
313 }
314
315 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
316 {
317         struct vmcb *vmcb = get_host_vmcb(svm);
318
319         vmcb->control.intercept &= ~(1ULL << bit);
320
321         recalc_intercepts(svm);
322 }
323
324 static inline void enable_gif(struct vcpu_svm *svm)
325 {
326         svm->vcpu.arch.hflags |= HF_GIF_MASK;
327 }
328
329 static inline void disable_gif(struct vcpu_svm *svm)
330 {
331         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
332 }
333
334 static inline bool gif_set(struct vcpu_svm *svm)
335 {
336         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
337 }
338
339 static unsigned long iopm_base;
340
341 struct kvm_ldttss_desc {
342         u16 limit0;
343         u16 base0;
344         unsigned base1:8, type:5, dpl:2, p:1;
345         unsigned limit1:4, zero0:3, g:1, base2:8;
346         u32 base3;
347         u32 zero1;
348 } __attribute__((packed));
349
350 struct svm_cpu_data {
351         int cpu;
352
353         u64 asid_generation;
354         u32 max_asid;
355         u32 next_asid;
356         struct kvm_ldttss_desc *tss_desc;
357
358         struct page *save_area;
359 };
360
361 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
362 static uint32_t svm_features;
363
364 struct svm_init_data {
365         int cpu;
366         int r;
367 };
368
369 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
370
371 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
372 #define MSRS_RANGE_SIZE 2048
373 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
374
375 static u32 svm_msrpm_offset(u32 msr)
376 {
377         u32 offset;
378         int i;
379
380         for (i = 0; i < NUM_MSR_MAPS; i++) {
381                 if (msr < msrpm_ranges[i] ||
382                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
383                         continue;
384
385                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
386                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
387
388                 /* Now we have the u8 offset - but need the u32 offset */
389                 return offset / 4;
390         }
391
392         /* MSR not in any range */
393         return MSR_INVALID;
394 }
395
396 #define MAX_INST_SIZE 15
397
398 static inline void clgi(void)
399 {
400         asm volatile (__ex(SVM_CLGI));
401 }
402
403 static inline void stgi(void)
404 {
405         asm volatile (__ex(SVM_STGI));
406 }
407
408 static inline void invlpga(unsigned long addr, u32 asid)
409 {
410         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
411 }
412
413 static inline void force_new_asid(struct kvm_vcpu *vcpu)
414 {
415         to_svm(vcpu)->asid_generation--;
416 }
417
418 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
419 {
420         force_new_asid(vcpu);
421 }
422
423 static int get_npt_level(void)
424 {
425 #ifdef CONFIG_X86_64
426         return PT64_ROOT_LEVEL;
427 #else
428         return PT32E_ROOT_LEVEL;
429 #endif
430 }
431
432 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
433 {
434         vcpu->arch.efer = efer;
435         if (!npt_enabled && !(efer & EFER_LMA))
436                 efer &= ~EFER_LME;
437
438         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
439 }
440
441 static int is_external_interrupt(u32 info)
442 {
443         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
444         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
445 }
446
447 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
448 {
449         struct vcpu_svm *svm = to_svm(vcpu);
450         u32 ret = 0;
451
452         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
453                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
454         return ret & mask;
455 }
456
457 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
458 {
459         struct vcpu_svm *svm = to_svm(vcpu);
460
461         if (mask == 0)
462                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
463         else
464                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
465
466 }
467
468 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
469 {
470         struct vcpu_svm *svm = to_svm(vcpu);
471
472         if (svm->vmcb->control.next_rip != 0)
473                 svm->next_rip = svm->vmcb->control.next_rip;
474
475         if (!svm->next_rip) {
476                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
477                                 EMULATE_DONE)
478                         printk(KERN_DEBUG "%s: NOP\n", __func__);
479                 return;
480         }
481         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
482                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
483                        __func__, kvm_rip_read(vcpu), svm->next_rip);
484
485         kvm_rip_write(vcpu, svm->next_rip);
486         svm_set_interrupt_shadow(vcpu, 0);
487 }
488
489 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
490                                 bool has_error_code, u32 error_code,
491                                 bool reinject)
492 {
493         struct vcpu_svm *svm = to_svm(vcpu);
494
495         /*
496          * If we are within a nested VM we'd better #VMEXIT and let the guest
497          * handle the exception
498          */
499         if (!reinject &&
500             nested_svm_check_exception(svm, nr, has_error_code, error_code))
501                 return;
502
503         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
504                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
505
506                 /*
507                  * For guest debugging where we have to reinject #BP if some
508                  * INT3 is guest-owned:
509                  * Emulate nRIP by moving RIP forward. Will fail if injection
510                  * raises a fault that is not intercepted. Still better than
511                  * failing in all cases.
512                  */
513                 skip_emulated_instruction(&svm->vcpu);
514                 rip = kvm_rip_read(&svm->vcpu);
515                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
516                 svm->int3_injected = rip - old_rip;
517         }
518
519         svm->vmcb->control.event_inj = nr
520                 | SVM_EVTINJ_VALID
521                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
522                 | SVM_EVTINJ_TYPE_EXEPT;
523         svm->vmcb->control.event_inj_err = error_code;
524 }
525
526 static void svm_init_erratum_383(void)
527 {
528         u32 low, high;
529         int err;
530         u64 val;
531
532         if (!cpu_has_amd_erratum(amd_erratum_383))
533                 return;
534
535         /* Use _safe variants to not break nested virtualization */
536         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
537         if (err)
538                 return;
539
540         val |= (1ULL << 47);
541
542         low  = lower_32_bits(val);
543         high = upper_32_bits(val);
544
545         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
546
547         erratum_383_found = true;
548 }
549
550 static int has_svm(void)
551 {
552         const char *msg;
553
554         if (!cpu_has_svm(&msg)) {
555                 printk(KERN_INFO "has_svm: %s\n", msg);
556                 return 0;
557         }
558
559         return 1;
560 }
561
562 static void svm_hardware_disable(void *garbage)
563 {
564         cpu_svm_disable();
565 }
566
567 static int svm_hardware_enable(void *garbage)
568 {
569
570         struct svm_cpu_data *sd;
571         uint64_t efer;
572         struct desc_ptr gdt_descr;
573         struct desc_struct *gdt;
574         int me = raw_smp_processor_id();
575
576         rdmsrl(MSR_EFER, efer);
577         if (efer & EFER_SVME)
578                 return -EBUSY;
579
580         if (!has_svm()) {
581                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
582                        me);
583                 return -EINVAL;
584         }
585         sd = per_cpu(svm_data, me);
586
587         if (!sd) {
588                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
589                        me);
590                 return -EINVAL;
591         }
592
593         sd->asid_generation = 1;
594         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
595         sd->next_asid = sd->max_asid + 1;
596
597         native_store_gdt(&gdt_descr);
598         gdt = (struct desc_struct *)gdt_descr.address;
599         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
600
601         wrmsrl(MSR_EFER, efer | EFER_SVME);
602
603         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
604
605         svm_init_erratum_383();
606
607         return 0;
608 }
609
610 static void svm_cpu_uninit(int cpu)
611 {
612         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
613
614         if (!sd)
615                 return;
616
617         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
618         __free_page(sd->save_area);
619         kfree(sd);
620 }
621
622 static int svm_cpu_init(int cpu)
623 {
624         struct svm_cpu_data *sd;
625         int r;
626
627         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
628         if (!sd)
629                 return -ENOMEM;
630         sd->cpu = cpu;
631         sd->save_area = alloc_page(GFP_KERNEL);
632         r = -ENOMEM;
633         if (!sd->save_area)
634                 goto err_1;
635
636         per_cpu(svm_data, cpu) = sd;
637
638         return 0;
639
640 err_1:
641         kfree(sd);
642         return r;
643
644 }
645
646 static bool valid_msr_intercept(u32 index)
647 {
648         int i;
649
650         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
651                 if (direct_access_msrs[i].index == index)
652                         return true;
653
654         return false;
655 }
656
657 static void set_msr_interception(u32 *msrpm, unsigned msr,
658                                  int read, int write)
659 {
660         u8 bit_read, bit_write;
661         unsigned long tmp;
662         u32 offset;
663
664         /*
665          * If this warning triggers extend the direct_access_msrs list at the
666          * beginning of the file
667          */
668         WARN_ON(!valid_msr_intercept(msr));
669
670         offset    = svm_msrpm_offset(msr);
671         bit_read  = 2 * (msr & 0x0f);
672         bit_write = 2 * (msr & 0x0f) + 1;
673         tmp       = msrpm[offset];
674
675         BUG_ON(offset == MSR_INVALID);
676
677         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
678         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
679
680         msrpm[offset] = tmp;
681 }
682
683 static void svm_vcpu_init_msrpm(u32 *msrpm)
684 {
685         int i;
686
687         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
688
689         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
690                 if (!direct_access_msrs[i].always)
691                         continue;
692
693                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
694         }
695 }
696
697 static void add_msr_offset(u32 offset)
698 {
699         int i;
700
701         for (i = 0; i < MSRPM_OFFSETS; ++i) {
702
703                 /* Offset already in list? */
704                 if (msrpm_offsets[i] == offset)
705                         return;
706
707                 /* Slot used by another offset? */
708                 if (msrpm_offsets[i] != MSR_INVALID)
709                         continue;
710
711                 /* Add offset to list */
712                 msrpm_offsets[i] = offset;
713
714                 return;
715         }
716
717         /*
718          * If this BUG triggers the msrpm_offsets table has an overflow. Just
719          * increase MSRPM_OFFSETS in this case.
720          */
721         BUG();
722 }
723
724 static void init_msrpm_offsets(void)
725 {
726         int i;
727
728         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
729
730         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
731                 u32 offset;
732
733                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
734                 BUG_ON(offset == MSR_INVALID);
735
736                 add_msr_offset(offset);
737         }
738 }
739
740 static void svm_enable_lbrv(struct vcpu_svm *svm)
741 {
742         u32 *msrpm = svm->msrpm;
743
744         svm->vmcb->control.lbr_ctl = 1;
745         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
746         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
747         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
748         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
749 }
750
751 static void svm_disable_lbrv(struct vcpu_svm *svm)
752 {
753         u32 *msrpm = svm->msrpm;
754
755         svm->vmcb->control.lbr_ctl = 0;
756         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
757         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
758         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
759         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
760 }
761
762 static __init int svm_hardware_setup(void)
763 {
764         int cpu;
765         struct page *iopm_pages;
766         void *iopm_va;
767         int r;
768
769         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
770
771         if (!iopm_pages)
772                 return -ENOMEM;
773
774         iopm_va = page_address(iopm_pages);
775         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
776         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
777
778         init_msrpm_offsets();
779
780         if (boot_cpu_has(X86_FEATURE_NX))
781                 kvm_enable_efer_bits(EFER_NX);
782
783         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
784                 kvm_enable_efer_bits(EFER_FFXSR);
785
786         if (nested) {
787                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
788                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
789         }
790
791         for_each_possible_cpu(cpu) {
792                 r = svm_cpu_init(cpu);
793                 if (r)
794                         goto err;
795         }
796
797         svm_features = cpuid_edx(SVM_CPUID_FUNC);
798
799         if (!boot_cpu_has(X86_FEATURE_NPT))
800                 npt_enabled = false;
801
802         if (npt_enabled && !npt) {
803                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
804                 npt_enabled = false;
805         }
806
807         if (npt_enabled) {
808                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
809                 kvm_enable_tdp();
810         } else
811                 kvm_disable_tdp();
812
813         return 0;
814
815 err:
816         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
817         iopm_base = 0;
818         return r;
819 }
820
821 static __exit void svm_hardware_unsetup(void)
822 {
823         int cpu;
824
825         for_each_possible_cpu(cpu)
826                 svm_cpu_uninit(cpu);
827
828         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
829         iopm_base = 0;
830 }
831
832 static void init_seg(struct vmcb_seg *seg)
833 {
834         seg->selector = 0;
835         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
836                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
837         seg->limit = 0xffff;
838         seg->base = 0;
839 }
840
841 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
842 {
843         seg->selector = 0;
844         seg->attrib = SVM_SELECTOR_P_MASK | type;
845         seg->limit = 0xffff;
846         seg->base = 0;
847 }
848
849 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
850 {
851         struct vcpu_svm *svm = to_svm(vcpu);
852         u64 g_tsc_offset = 0;
853
854         if (is_guest_mode(vcpu)) {
855                 g_tsc_offset = svm->vmcb->control.tsc_offset -
856                                svm->nested.hsave->control.tsc_offset;
857                 svm->nested.hsave->control.tsc_offset = offset;
858         }
859
860         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
861
862         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
863 }
864
865 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
866 {
867         struct vcpu_svm *svm = to_svm(vcpu);
868
869         svm->vmcb->control.tsc_offset += adjustment;
870         if (is_guest_mode(vcpu))
871                 svm->nested.hsave->control.tsc_offset += adjustment;
872         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
873 }
874
875 static void init_vmcb(struct vcpu_svm *svm)
876 {
877         struct vmcb_control_area *control = &svm->vmcb->control;
878         struct vmcb_save_area *save = &svm->vmcb->save;
879
880         svm->vcpu.fpu_active = 1;
881         svm->vcpu.arch.hflags = 0;
882
883         set_cr_intercept(svm, INTERCEPT_CR0_READ);
884         set_cr_intercept(svm, INTERCEPT_CR3_READ);
885         set_cr_intercept(svm, INTERCEPT_CR4_READ);
886         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
887         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
888         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
889         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
890
891         set_dr_intercept(svm, INTERCEPT_DR0_READ);
892         set_dr_intercept(svm, INTERCEPT_DR1_READ);
893         set_dr_intercept(svm, INTERCEPT_DR2_READ);
894         set_dr_intercept(svm, INTERCEPT_DR3_READ);
895         set_dr_intercept(svm, INTERCEPT_DR4_READ);
896         set_dr_intercept(svm, INTERCEPT_DR5_READ);
897         set_dr_intercept(svm, INTERCEPT_DR6_READ);
898         set_dr_intercept(svm, INTERCEPT_DR7_READ);
899
900         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
901         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
902         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
903         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
904         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
905         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
906         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
907         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
908
909         set_exception_intercept(svm, PF_VECTOR);
910         set_exception_intercept(svm, UD_VECTOR);
911         set_exception_intercept(svm, MC_VECTOR);
912
913         set_intercept(svm, INTERCEPT_INTR);
914         set_intercept(svm, INTERCEPT_NMI);
915         set_intercept(svm, INTERCEPT_SMI);
916         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
917         set_intercept(svm, INTERCEPT_CPUID);
918         set_intercept(svm, INTERCEPT_INVD);
919         set_intercept(svm, INTERCEPT_HLT);
920         set_intercept(svm, INTERCEPT_INVLPG);
921         set_intercept(svm, INTERCEPT_INVLPGA);
922         set_intercept(svm, INTERCEPT_IOIO_PROT);
923         set_intercept(svm, INTERCEPT_MSR_PROT);
924         set_intercept(svm, INTERCEPT_TASK_SWITCH);
925         set_intercept(svm, INTERCEPT_SHUTDOWN);
926         set_intercept(svm, INTERCEPT_VMRUN);
927         set_intercept(svm, INTERCEPT_VMMCALL);
928         set_intercept(svm, INTERCEPT_VMLOAD);
929         set_intercept(svm, INTERCEPT_VMSAVE);
930         set_intercept(svm, INTERCEPT_STGI);
931         set_intercept(svm, INTERCEPT_CLGI);
932         set_intercept(svm, INTERCEPT_SKINIT);
933         set_intercept(svm, INTERCEPT_WBINVD);
934         set_intercept(svm, INTERCEPT_MONITOR);
935         set_intercept(svm, INTERCEPT_MWAIT);
936
937         control->iopm_base_pa = iopm_base;
938         control->msrpm_base_pa = __pa(svm->msrpm);
939         control->int_ctl = V_INTR_MASKING_MASK;
940
941         init_seg(&save->es);
942         init_seg(&save->ss);
943         init_seg(&save->ds);
944         init_seg(&save->fs);
945         init_seg(&save->gs);
946
947         save->cs.selector = 0xf000;
948         /* Executable/Readable Code Segment */
949         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
950                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
951         save->cs.limit = 0xffff;
952         /*
953          * cs.base should really be 0xffff0000, but vmx can't handle that, so
954          * be consistent with it.
955          *
956          * Replace when we have real mode working for vmx.
957          */
958         save->cs.base = 0xf0000;
959
960         save->gdtr.limit = 0xffff;
961         save->idtr.limit = 0xffff;
962
963         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
964         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
965
966         svm_set_efer(&svm->vcpu, 0);
967         save->dr6 = 0xffff0ff0;
968         save->dr7 = 0x400;
969         save->rflags = 2;
970         save->rip = 0x0000fff0;
971         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
972
973         /*
974          * This is the guest-visible cr0 value.
975          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
976          */
977         svm->vcpu.arch.cr0 = 0;
978         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
979
980         save->cr4 = X86_CR4_PAE;
981         /* rdx = ?? */
982
983         if (npt_enabled) {
984                 /* Setup VMCB for Nested Paging */
985                 control->nested_ctl = 1;
986                 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
987                 clr_intercept(svm, INTERCEPT_INVLPG);
988                 clr_exception_intercept(svm, PF_VECTOR);
989                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
990                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
991                 save->g_pat = 0x0007040600070406ULL;
992                 save->cr3 = 0;
993                 save->cr4 = 0;
994         }
995         force_new_asid(&svm->vcpu);
996
997         svm->nested.vmcb = 0;
998         svm->vcpu.arch.hflags = 0;
999
1000         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1001                 control->pause_filter_count = 3000;
1002                 set_intercept(svm, INTERCEPT_PAUSE);
1003         }
1004
1005         mark_all_dirty(svm->vmcb);
1006
1007         enable_gif(svm);
1008 }
1009
1010 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1011 {
1012         struct vcpu_svm *svm = to_svm(vcpu);
1013
1014         init_vmcb(svm);
1015
1016         if (!kvm_vcpu_is_bsp(vcpu)) {
1017                 kvm_rip_write(vcpu, 0);
1018                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1019                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1020         }
1021         vcpu->arch.regs_avail = ~0;
1022         vcpu->arch.regs_dirty = ~0;
1023
1024         return 0;
1025 }
1026
1027 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1028 {
1029         struct vcpu_svm *svm;
1030         struct page *page;
1031         struct page *msrpm_pages;
1032         struct page *hsave_page;
1033         struct page *nested_msrpm_pages;
1034         int err;
1035
1036         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1037         if (!svm) {
1038                 err = -ENOMEM;
1039                 goto out;
1040         }
1041
1042         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1043         if (err)
1044                 goto free_svm;
1045
1046         err = -ENOMEM;
1047         page = alloc_page(GFP_KERNEL);
1048         if (!page)
1049                 goto uninit;
1050
1051         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1052         if (!msrpm_pages)
1053                 goto free_page1;
1054
1055         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1056         if (!nested_msrpm_pages)
1057                 goto free_page2;
1058
1059         hsave_page = alloc_page(GFP_KERNEL);
1060         if (!hsave_page)
1061                 goto free_page3;
1062
1063         svm->nested.hsave = page_address(hsave_page);
1064
1065         svm->msrpm = page_address(msrpm_pages);
1066         svm_vcpu_init_msrpm(svm->msrpm);
1067
1068         svm->nested.msrpm = page_address(nested_msrpm_pages);
1069         svm_vcpu_init_msrpm(svm->nested.msrpm);
1070
1071         svm->vmcb = page_address(page);
1072         clear_page(svm->vmcb);
1073         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1074         svm->asid_generation = 0;
1075         init_vmcb(svm);
1076         kvm_write_tsc(&svm->vcpu, 0);
1077
1078         err = fx_init(&svm->vcpu);
1079         if (err)
1080                 goto free_page4;
1081
1082         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1083         if (kvm_vcpu_is_bsp(&svm->vcpu))
1084                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1085
1086         return &svm->vcpu;
1087
1088 free_page4:
1089         __free_page(hsave_page);
1090 free_page3:
1091         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1092 free_page2:
1093         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1094 free_page1:
1095         __free_page(page);
1096 uninit:
1097         kvm_vcpu_uninit(&svm->vcpu);
1098 free_svm:
1099         kmem_cache_free(kvm_vcpu_cache, svm);
1100 out:
1101         return ERR_PTR(err);
1102 }
1103
1104 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1105 {
1106         struct vcpu_svm *svm = to_svm(vcpu);
1107
1108         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1109         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1110         __free_page(virt_to_page(svm->nested.hsave));
1111         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1112         kvm_vcpu_uninit(vcpu);
1113         kmem_cache_free(kvm_vcpu_cache, svm);
1114 }
1115
1116 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1117 {
1118         struct vcpu_svm *svm = to_svm(vcpu);
1119         int i;
1120
1121         if (unlikely(cpu != vcpu->cpu)) {
1122                 svm->asid_generation = 0;
1123                 mark_all_dirty(svm->vmcb);
1124         }
1125
1126 #ifdef CONFIG_X86_64
1127         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1128 #endif
1129         savesegment(fs, svm->host.fs);
1130         savesegment(gs, svm->host.gs);
1131         svm->host.ldt = kvm_read_ldt();
1132
1133         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1134                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1135 }
1136
1137 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1138 {
1139         struct vcpu_svm *svm = to_svm(vcpu);
1140         int i;
1141
1142         ++vcpu->stat.host_state_reload;
1143         kvm_load_ldt(svm->host.ldt);
1144 #ifdef CONFIG_X86_64
1145         loadsegment(fs, svm->host.fs);
1146         load_gs_index(svm->host.gs);
1147         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1148 #else
1149         loadsegment(gs, svm->host.gs);
1150 #endif
1151         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1152                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1153 }
1154
1155 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1156 {
1157         return to_svm(vcpu)->vmcb->save.rflags;
1158 }
1159
1160 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1161 {
1162         to_svm(vcpu)->vmcb->save.rflags = rflags;
1163 }
1164
1165 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1166 {
1167         switch (reg) {
1168         case VCPU_EXREG_PDPTR:
1169                 BUG_ON(!npt_enabled);
1170                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1171                 break;
1172         default:
1173                 BUG();
1174         }
1175 }
1176
1177 static void svm_set_vintr(struct vcpu_svm *svm)
1178 {
1179         set_intercept(svm, INTERCEPT_VINTR);
1180 }
1181
1182 static void svm_clear_vintr(struct vcpu_svm *svm)
1183 {
1184         clr_intercept(svm, INTERCEPT_VINTR);
1185 }
1186
1187 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1188 {
1189         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1190
1191         switch (seg) {
1192         case VCPU_SREG_CS: return &save->cs;
1193         case VCPU_SREG_DS: return &save->ds;
1194         case VCPU_SREG_ES: return &save->es;
1195         case VCPU_SREG_FS: return &save->fs;
1196         case VCPU_SREG_GS: return &save->gs;
1197         case VCPU_SREG_SS: return &save->ss;
1198         case VCPU_SREG_TR: return &save->tr;
1199         case VCPU_SREG_LDTR: return &save->ldtr;
1200         }
1201         BUG();
1202         return NULL;
1203 }
1204
1205 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1206 {
1207         struct vmcb_seg *s = svm_seg(vcpu, seg);
1208
1209         return s->base;
1210 }
1211
1212 static void svm_get_segment(struct kvm_vcpu *vcpu,
1213                             struct kvm_segment *var, int seg)
1214 {
1215         struct vmcb_seg *s = svm_seg(vcpu, seg);
1216
1217         var->base = s->base;
1218         var->limit = s->limit;
1219         var->selector = s->selector;
1220         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1221         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1222         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1223         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1224         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1225         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1226         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1227         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1228
1229         /*
1230          * AMD's VMCB does not have an explicit unusable field, so emulate it
1231          * for cross vendor migration purposes by "not present"
1232          */
1233         var->unusable = !var->present || (var->type == 0);
1234
1235         switch (seg) {
1236         case VCPU_SREG_CS:
1237                 /*
1238                  * SVM always stores 0 for the 'G' bit in the CS selector in
1239                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1240                  * Intel's VMENTRY has a check on the 'G' bit.
1241                  */
1242                 var->g = s->limit > 0xfffff;
1243                 break;
1244         case VCPU_SREG_TR:
1245                 /*
1246                  * Work around a bug where the busy flag in the tr selector
1247                  * isn't exposed
1248                  */
1249                 var->type |= 0x2;
1250                 break;
1251         case VCPU_SREG_DS:
1252         case VCPU_SREG_ES:
1253         case VCPU_SREG_FS:
1254         case VCPU_SREG_GS:
1255                 /*
1256                  * The accessed bit must always be set in the segment
1257                  * descriptor cache, although it can be cleared in the
1258                  * descriptor, the cached bit always remains at 1. Since
1259                  * Intel has a check on this, set it here to support
1260                  * cross-vendor migration.
1261                  */
1262                 if (!var->unusable)
1263                         var->type |= 0x1;
1264                 break;
1265         case VCPU_SREG_SS:
1266                 /*
1267                  * On AMD CPUs sometimes the DB bit in the segment
1268                  * descriptor is left as 1, although the whole segment has
1269                  * been made unusable. Clear it here to pass an Intel VMX
1270                  * entry check when cross vendor migrating.
1271                  */
1272                 if (var->unusable)
1273                         var->db = 0;
1274                 break;
1275         }
1276 }
1277
1278 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1279 {
1280         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1281
1282         return save->cpl;
1283 }
1284
1285 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1286 {
1287         struct vcpu_svm *svm = to_svm(vcpu);
1288
1289         dt->size = svm->vmcb->save.idtr.limit;
1290         dt->address = svm->vmcb->save.idtr.base;
1291 }
1292
1293 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1294 {
1295         struct vcpu_svm *svm = to_svm(vcpu);
1296
1297         svm->vmcb->save.idtr.limit = dt->size;
1298         svm->vmcb->save.idtr.base = dt->address ;
1299 }
1300
1301 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1302 {
1303         struct vcpu_svm *svm = to_svm(vcpu);
1304
1305         dt->size = svm->vmcb->save.gdtr.limit;
1306         dt->address = svm->vmcb->save.gdtr.base;
1307 }
1308
1309 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1310 {
1311         struct vcpu_svm *svm = to_svm(vcpu);
1312
1313         svm->vmcb->save.gdtr.limit = dt->size;
1314         svm->vmcb->save.gdtr.base = dt->address ;
1315 }
1316
1317 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1318 {
1319 }
1320
1321 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1322 {
1323 }
1324
1325 static void update_cr0_intercept(struct vcpu_svm *svm)
1326 {
1327         ulong gcr0 = svm->vcpu.arch.cr0;
1328         u64 *hcr0 = &svm->vmcb->save.cr0;
1329
1330         if (!svm->vcpu.fpu_active)
1331                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1332         else
1333                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1334                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1335
1336
1337         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1338                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1339                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1340         } else {
1341                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1342                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1343         }
1344 }
1345
1346 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1347 {
1348         struct vcpu_svm *svm = to_svm(vcpu);
1349
1350         if (is_guest_mode(vcpu)) {
1351                 /*
1352                  * We are here because we run in nested mode, the host kvm
1353                  * intercepts cr0 writes but the l1 hypervisor does not.
1354                  * But the L1 hypervisor may intercept selective cr0 writes.
1355                  * This needs to be checked here.
1356                  */
1357                 unsigned long old, new;
1358
1359                 /* Remove bits that would trigger a real cr0 write intercept */
1360                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1361                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1362
1363                 if (old == new) {
1364                         /* cr0 write with ts and mp unchanged */
1365                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1366                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1367                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1368                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1369                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1370                                 return;
1371                         }
1372                 }
1373         }
1374
1375 #ifdef CONFIG_X86_64
1376         if (vcpu->arch.efer & EFER_LME) {
1377                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1378                         vcpu->arch.efer |= EFER_LMA;
1379                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1380                 }
1381
1382                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1383                         vcpu->arch.efer &= ~EFER_LMA;
1384                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1385                 }
1386         }
1387 #endif
1388         vcpu->arch.cr0 = cr0;
1389
1390         if (!npt_enabled)
1391                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1392
1393         if (!vcpu->fpu_active)
1394                 cr0 |= X86_CR0_TS;
1395         /*
1396          * re-enable caching here because the QEMU bios
1397          * does not do it - this results in some delay at
1398          * reboot
1399          */
1400         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1401         svm->vmcb->save.cr0 = cr0;
1402         update_cr0_intercept(svm);
1403 }
1404
1405 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1406 {
1407         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1408         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1409
1410         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1411                 force_new_asid(vcpu);
1412
1413         vcpu->arch.cr4 = cr4;
1414         if (!npt_enabled)
1415                 cr4 |= X86_CR4_PAE;
1416         cr4 |= host_cr4_mce;
1417         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1418 }
1419
1420 static void svm_set_segment(struct kvm_vcpu *vcpu,
1421                             struct kvm_segment *var, int seg)
1422 {
1423         struct vcpu_svm *svm = to_svm(vcpu);
1424         struct vmcb_seg *s = svm_seg(vcpu, seg);
1425
1426         s->base = var->base;
1427         s->limit = var->limit;
1428         s->selector = var->selector;
1429         if (var->unusable)
1430                 s->attrib = 0;
1431         else {
1432                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1433                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1434                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1435                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1436                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1437                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1438                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1439                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1440         }
1441         if (seg == VCPU_SREG_CS)
1442                 svm->vmcb->save.cpl
1443                         = (svm->vmcb->save.cs.attrib
1444                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1445
1446 }
1447
1448 static void update_db_intercept(struct kvm_vcpu *vcpu)
1449 {
1450         struct vcpu_svm *svm = to_svm(vcpu);
1451
1452         clr_exception_intercept(svm, DB_VECTOR);
1453         clr_exception_intercept(svm, BP_VECTOR);
1454
1455         if (svm->nmi_singlestep)
1456                 set_exception_intercept(svm, DB_VECTOR);
1457
1458         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1459                 if (vcpu->guest_debug &
1460                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1461                         set_exception_intercept(svm, DB_VECTOR);
1462                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1463                         set_exception_intercept(svm, BP_VECTOR);
1464         } else
1465                 vcpu->guest_debug = 0;
1466 }
1467
1468 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1469 {
1470         struct vcpu_svm *svm = to_svm(vcpu);
1471
1472         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1473                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1474         else
1475                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1476
1477         update_db_intercept(vcpu);
1478 }
1479
1480 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1481 {
1482         if (sd->next_asid > sd->max_asid) {
1483                 ++sd->asid_generation;
1484                 sd->next_asid = 1;
1485                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1486         }
1487
1488         svm->asid_generation = sd->asid_generation;
1489         svm->vmcb->control.asid = sd->next_asid++;
1490 }
1491
1492 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1493 {
1494         struct vcpu_svm *svm = to_svm(vcpu);
1495
1496         svm->vmcb->save.dr7 = value;
1497 }
1498
1499 static int pf_interception(struct vcpu_svm *svm)
1500 {
1501         u64 fault_address = svm->vmcb->control.exit_info_2;
1502         u32 error_code;
1503         int r = 1;
1504
1505         switch (svm->apf_reason) {
1506         default:
1507                 error_code = svm->vmcb->control.exit_info_1;
1508
1509                 trace_kvm_page_fault(fault_address, error_code);
1510                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1511                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1512                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1513                 break;
1514         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1515                 svm->apf_reason = 0;
1516                 local_irq_disable();
1517                 kvm_async_pf_task_wait(fault_address);
1518                 local_irq_enable();
1519                 break;
1520         case KVM_PV_REASON_PAGE_READY:
1521                 svm->apf_reason = 0;
1522                 local_irq_disable();
1523                 kvm_async_pf_task_wake(fault_address);
1524                 local_irq_enable();
1525                 break;
1526         }
1527         return r;
1528 }
1529
1530 static int db_interception(struct vcpu_svm *svm)
1531 {
1532         struct kvm_run *kvm_run = svm->vcpu.run;
1533
1534         if (!(svm->vcpu.guest_debug &
1535               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1536                 !svm->nmi_singlestep) {
1537                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1538                 return 1;
1539         }
1540
1541         if (svm->nmi_singlestep) {
1542                 svm->nmi_singlestep = false;
1543                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1544                         svm->vmcb->save.rflags &=
1545                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1546                 update_db_intercept(&svm->vcpu);
1547         }
1548
1549         if (svm->vcpu.guest_debug &
1550             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1551                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1552                 kvm_run->debug.arch.pc =
1553                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1554                 kvm_run->debug.arch.exception = DB_VECTOR;
1555                 return 0;
1556         }
1557
1558         return 1;
1559 }
1560
1561 static int bp_interception(struct vcpu_svm *svm)
1562 {
1563         struct kvm_run *kvm_run = svm->vcpu.run;
1564
1565         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1566         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1567         kvm_run->debug.arch.exception = BP_VECTOR;
1568         return 0;
1569 }
1570
1571 static int ud_interception(struct vcpu_svm *svm)
1572 {
1573         int er;
1574
1575         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1576         if (er != EMULATE_DONE)
1577                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1578         return 1;
1579 }
1580
1581 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1582 {
1583         struct vcpu_svm *svm = to_svm(vcpu);
1584
1585         clr_exception_intercept(svm, NM_VECTOR);
1586
1587         svm->vcpu.fpu_active = 1;
1588         update_cr0_intercept(svm);
1589 }
1590
1591 static int nm_interception(struct vcpu_svm *svm)
1592 {
1593         svm_fpu_activate(&svm->vcpu);
1594         return 1;
1595 }
1596
1597 static bool is_erratum_383(void)
1598 {
1599         int err, i;
1600         u64 value;
1601
1602         if (!erratum_383_found)
1603                 return false;
1604
1605         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1606         if (err)
1607                 return false;
1608
1609         /* Bit 62 may or may not be set for this mce */
1610         value &= ~(1ULL << 62);
1611
1612         if (value != 0xb600000000010015ULL)
1613                 return false;
1614
1615         /* Clear MCi_STATUS registers */
1616         for (i = 0; i < 6; ++i)
1617                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1618
1619         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1620         if (!err) {
1621                 u32 low, high;
1622
1623                 value &= ~(1ULL << 2);
1624                 low    = lower_32_bits(value);
1625                 high   = upper_32_bits(value);
1626
1627                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1628         }
1629
1630         /* Flush tlb to evict multi-match entries */
1631         __flush_tlb_all();
1632
1633         return true;
1634 }
1635
1636 static void svm_handle_mce(struct vcpu_svm *svm)
1637 {
1638         if (is_erratum_383()) {
1639                 /*
1640                  * Erratum 383 triggered. Guest state is corrupt so kill the
1641                  * guest.
1642                  */
1643                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1644
1645                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1646
1647                 return;
1648         }
1649
1650         /*
1651          * On an #MC intercept the MCE handler is not called automatically in
1652          * the host. So do it by hand here.
1653          */
1654         asm volatile (
1655                 "int $0x12\n");
1656         /* not sure if we ever come back to this point */
1657
1658         return;
1659 }
1660
1661 static int mc_interception(struct vcpu_svm *svm)
1662 {
1663         return 1;
1664 }
1665
1666 static int shutdown_interception(struct vcpu_svm *svm)
1667 {
1668         struct kvm_run *kvm_run = svm->vcpu.run;
1669
1670         /*
1671          * VMCB is undefined after a SHUTDOWN intercept
1672          * so reinitialize it.
1673          */
1674         clear_page(svm->vmcb);
1675         init_vmcb(svm);
1676
1677         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1678         return 0;
1679 }
1680
1681 static int io_interception(struct vcpu_svm *svm)
1682 {
1683         struct kvm_vcpu *vcpu = &svm->vcpu;
1684         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1685         int size, in, string;
1686         unsigned port;
1687
1688         ++svm->vcpu.stat.io_exits;
1689         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1690         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1691         if (string || in)
1692                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1693
1694         port = io_info >> 16;
1695         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1696         svm->next_rip = svm->vmcb->control.exit_info_2;
1697         skip_emulated_instruction(&svm->vcpu);
1698
1699         return kvm_fast_pio_out(vcpu, size, port);
1700 }
1701
1702 static int nmi_interception(struct vcpu_svm *svm)
1703 {
1704         return 1;
1705 }
1706
1707 static int intr_interception(struct vcpu_svm *svm)
1708 {
1709         ++svm->vcpu.stat.irq_exits;
1710         return 1;
1711 }
1712
1713 static int nop_on_interception(struct vcpu_svm *svm)
1714 {
1715         return 1;
1716 }
1717
1718 static int halt_interception(struct vcpu_svm *svm)
1719 {
1720         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1721         skip_emulated_instruction(&svm->vcpu);
1722         return kvm_emulate_halt(&svm->vcpu);
1723 }
1724
1725 static int vmmcall_interception(struct vcpu_svm *svm)
1726 {
1727         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1728         skip_emulated_instruction(&svm->vcpu);
1729         kvm_emulate_hypercall(&svm->vcpu);
1730         return 1;
1731 }
1732
1733 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1734 {
1735         struct vcpu_svm *svm = to_svm(vcpu);
1736
1737         return svm->nested.nested_cr3;
1738 }
1739
1740 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1741                                    unsigned long root)
1742 {
1743         struct vcpu_svm *svm = to_svm(vcpu);
1744
1745         svm->vmcb->control.nested_cr3 = root;
1746         force_new_asid(vcpu);
1747 }
1748
1749 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1750                                        struct x86_exception *fault)
1751 {
1752         struct vcpu_svm *svm = to_svm(vcpu);
1753
1754         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1755         svm->vmcb->control.exit_code_hi = 0;
1756         svm->vmcb->control.exit_info_1 = fault->error_code;
1757         svm->vmcb->control.exit_info_2 = fault->address;
1758
1759         nested_svm_vmexit(svm);
1760 }
1761
1762 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1763 {
1764         int r;
1765
1766         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1767
1768         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1769         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1770         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1771         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1772         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1773
1774         return r;
1775 }
1776
1777 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1778 {
1779         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1780 }
1781
1782 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1783 {
1784         if (!(svm->vcpu.arch.efer & EFER_SVME)
1785             || !is_paging(&svm->vcpu)) {
1786                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1787                 return 1;
1788         }
1789
1790         if (svm->vmcb->save.cpl) {
1791                 kvm_inject_gp(&svm->vcpu, 0);
1792                 return 1;
1793         }
1794
1795        return 0;
1796 }
1797
1798 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1799                                       bool has_error_code, u32 error_code)
1800 {
1801         int vmexit;
1802
1803         if (!is_guest_mode(&svm->vcpu))
1804                 return 0;
1805
1806         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1807         svm->vmcb->control.exit_code_hi = 0;
1808         svm->vmcb->control.exit_info_1 = error_code;
1809         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1810
1811         vmexit = nested_svm_intercept(svm);
1812         if (vmexit == NESTED_EXIT_DONE)
1813                 svm->nested.exit_required = true;
1814
1815         return vmexit;
1816 }
1817
1818 /* This function returns true if it is save to enable the irq window */
1819 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1820 {
1821         if (!is_guest_mode(&svm->vcpu))
1822                 return true;
1823
1824         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1825                 return true;
1826
1827         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1828                 return false;
1829
1830         /*
1831          * if vmexit was already requested (by intercepted exception
1832          * for instance) do not overwrite it with "external interrupt"
1833          * vmexit.
1834          */
1835         if (svm->nested.exit_required)
1836                 return false;
1837
1838         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1839         svm->vmcb->control.exit_info_1 = 0;
1840         svm->vmcb->control.exit_info_2 = 0;
1841
1842         if (svm->nested.intercept & 1ULL) {
1843                 /*
1844                  * The #vmexit can't be emulated here directly because this
1845                  * code path runs with irqs and preemtion disabled. A
1846                  * #vmexit emulation might sleep. Only signal request for
1847                  * the #vmexit here.
1848                  */
1849                 svm->nested.exit_required = true;
1850                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1851                 return false;
1852         }
1853
1854         return true;
1855 }
1856
1857 /* This function returns true if it is save to enable the nmi window */
1858 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1859 {
1860         if (!is_guest_mode(&svm->vcpu))
1861                 return true;
1862
1863         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1864                 return true;
1865
1866         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1867         svm->nested.exit_required = true;
1868
1869         return false;
1870 }
1871
1872 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1873 {
1874         struct page *page;
1875
1876         might_sleep();
1877
1878         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1879         if (is_error_page(page))
1880                 goto error;
1881
1882         *_page = page;
1883
1884         return kmap(page);
1885
1886 error:
1887         kvm_release_page_clean(page);
1888         kvm_inject_gp(&svm->vcpu, 0);
1889
1890         return NULL;
1891 }
1892
1893 static void nested_svm_unmap(struct page *page)
1894 {
1895         kunmap(page);
1896         kvm_release_page_dirty(page);
1897 }
1898
1899 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1900 {
1901         unsigned port;
1902         u8 val, bit;
1903         u64 gpa;
1904
1905         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1906                 return NESTED_EXIT_HOST;
1907
1908         port = svm->vmcb->control.exit_info_1 >> 16;
1909         gpa  = svm->nested.vmcb_iopm + (port / 8);
1910         bit  = port % 8;
1911         val  = 0;
1912
1913         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1914                 val &= (1 << bit);
1915
1916         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1917 }
1918
1919 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1920 {
1921         u32 offset, msr, value;
1922         int write, mask;
1923
1924         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1925                 return NESTED_EXIT_HOST;
1926
1927         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1928         offset = svm_msrpm_offset(msr);
1929         write  = svm->vmcb->control.exit_info_1 & 1;
1930         mask   = 1 << ((2 * (msr & 0xf)) + write);
1931
1932         if (offset == MSR_INVALID)
1933                 return NESTED_EXIT_DONE;
1934
1935         /* Offset is in 32 bit units but need in 8 bit units */
1936         offset *= 4;
1937
1938         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1939                 return NESTED_EXIT_DONE;
1940
1941         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1942 }
1943
1944 static int nested_svm_exit_special(struct vcpu_svm *svm)
1945 {
1946         u32 exit_code = svm->vmcb->control.exit_code;
1947
1948         switch (exit_code) {
1949         case SVM_EXIT_INTR:
1950         case SVM_EXIT_NMI:
1951         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1952                 return NESTED_EXIT_HOST;
1953         case SVM_EXIT_NPF:
1954                 /* For now we are always handling NPFs when using them */
1955                 if (npt_enabled)
1956                         return NESTED_EXIT_HOST;
1957                 break;
1958         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1959                 /* When we're shadowing, trap PFs, but not async PF */
1960                 if (!npt_enabled && svm->apf_reason == 0)
1961                         return NESTED_EXIT_HOST;
1962                 break;
1963         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1964                 nm_interception(svm);
1965                 break;
1966         default:
1967                 break;
1968         }
1969
1970         return NESTED_EXIT_CONTINUE;
1971 }
1972
1973 /*
1974  * If this function returns true, this #vmexit was already handled
1975  */
1976 static int nested_svm_intercept(struct vcpu_svm *svm)
1977 {
1978         u32 exit_code = svm->vmcb->control.exit_code;
1979         int vmexit = NESTED_EXIT_HOST;
1980
1981         switch (exit_code) {
1982         case SVM_EXIT_MSR:
1983                 vmexit = nested_svm_exit_handled_msr(svm);
1984                 break;
1985         case SVM_EXIT_IOIO:
1986                 vmexit = nested_svm_intercept_ioio(svm);
1987                 break;
1988         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1989                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
1990                 if (svm->nested.intercept_cr & bit)
1991                         vmexit = NESTED_EXIT_DONE;
1992                 break;
1993         }
1994         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
1995                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
1996                 if (svm->nested.intercept_dr & bit)
1997                         vmexit = NESTED_EXIT_DONE;
1998                 break;
1999         }
2000         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2001                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2002                 if (svm->nested.intercept_exceptions & excp_bits)
2003                         vmexit = NESTED_EXIT_DONE;
2004                 /* async page fault always cause vmexit */
2005                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2006                          svm->apf_reason != 0)
2007                         vmexit = NESTED_EXIT_DONE;
2008                 break;
2009         }
2010         case SVM_EXIT_ERR: {
2011                 vmexit = NESTED_EXIT_DONE;
2012                 break;
2013         }
2014         default: {
2015                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2016                 if (svm->nested.intercept & exit_bits)
2017                         vmexit = NESTED_EXIT_DONE;
2018         }
2019         }
2020
2021         return vmexit;
2022 }
2023
2024 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2025 {
2026         int vmexit;
2027
2028         vmexit = nested_svm_intercept(svm);
2029
2030         if (vmexit == NESTED_EXIT_DONE)
2031                 nested_svm_vmexit(svm);
2032
2033         return vmexit;
2034 }
2035
2036 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2037 {
2038         struct vmcb_control_area *dst  = &dst_vmcb->control;
2039         struct vmcb_control_area *from = &from_vmcb->control;
2040
2041         dst->intercept_cr         = from->intercept_cr;
2042         dst->intercept_dr         = from->intercept_dr;
2043         dst->intercept_exceptions = from->intercept_exceptions;
2044         dst->intercept            = from->intercept;
2045         dst->iopm_base_pa         = from->iopm_base_pa;
2046         dst->msrpm_base_pa        = from->msrpm_base_pa;
2047         dst->tsc_offset           = from->tsc_offset;
2048         dst->asid                 = from->asid;
2049         dst->tlb_ctl              = from->tlb_ctl;
2050         dst->int_ctl              = from->int_ctl;
2051         dst->int_vector           = from->int_vector;
2052         dst->int_state            = from->int_state;
2053         dst->exit_code            = from->exit_code;
2054         dst->exit_code_hi         = from->exit_code_hi;
2055         dst->exit_info_1          = from->exit_info_1;
2056         dst->exit_info_2          = from->exit_info_2;
2057         dst->exit_int_info        = from->exit_int_info;
2058         dst->exit_int_info_err    = from->exit_int_info_err;
2059         dst->nested_ctl           = from->nested_ctl;
2060         dst->event_inj            = from->event_inj;
2061         dst->event_inj_err        = from->event_inj_err;
2062         dst->nested_cr3           = from->nested_cr3;
2063         dst->lbr_ctl              = from->lbr_ctl;
2064 }
2065
2066 static int nested_svm_vmexit(struct vcpu_svm *svm)
2067 {
2068         struct vmcb *nested_vmcb;
2069         struct vmcb *hsave = svm->nested.hsave;
2070         struct vmcb *vmcb = svm->vmcb;
2071         struct page *page;
2072
2073         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2074                                        vmcb->control.exit_info_1,
2075                                        vmcb->control.exit_info_2,
2076                                        vmcb->control.exit_int_info,
2077                                        vmcb->control.exit_int_info_err);
2078
2079         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2080         if (!nested_vmcb)
2081                 return 1;
2082
2083         /* Exit Guest-Mode */
2084         leave_guest_mode(&svm->vcpu);
2085         svm->nested.vmcb = 0;
2086
2087         /* Give the current vmcb to the guest */
2088         disable_gif(svm);
2089
2090         nested_vmcb->save.es     = vmcb->save.es;
2091         nested_vmcb->save.cs     = vmcb->save.cs;
2092         nested_vmcb->save.ss     = vmcb->save.ss;
2093         nested_vmcb->save.ds     = vmcb->save.ds;
2094         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2095         nested_vmcb->save.idtr   = vmcb->save.idtr;
2096         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2097         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2098         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2099         nested_vmcb->save.cr2    = vmcb->save.cr2;
2100         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2101         nested_vmcb->save.rflags = vmcb->save.rflags;
2102         nested_vmcb->save.rip    = vmcb->save.rip;
2103         nested_vmcb->save.rsp    = vmcb->save.rsp;
2104         nested_vmcb->save.rax    = vmcb->save.rax;
2105         nested_vmcb->save.dr7    = vmcb->save.dr7;
2106         nested_vmcb->save.dr6    = vmcb->save.dr6;
2107         nested_vmcb->save.cpl    = vmcb->save.cpl;
2108
2109         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2110         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2111         nested_vmcb->control.int_state         = vmcb->control.int_state;
2112         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2113         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2114         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2115         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2116         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2117         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2118         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2119
2120         /*
2121          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2122          * to make sure that we do not lose injected events. So check event_inj
2123          * here and copy it to exit_int_info if it is valid.
2124          * Exit_int_info and event_inj can't be both valid because the case
2125          * below only happens on a VMRUN instruction intercept which has
2126          * no valid exit_int_info set.
2127          */
2128         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2129                 struct vmcb_control_area *nc = &nested_vmcb->control;
2130
2131                 nc->exit_int_info     = vmcb->control.event_inj;
2132                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2133         }
2134
2135         nested_vmcb->control.tlb_ctl           = 0;
2136         nested_vmcb->control.event_inj         = 0;
2137         nested_vmcb->control.event_inj_err     = 0;
2138
2139         /* We always set V_INTR_MASKING and remember the old value in hflags */
2140         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2141                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2142
2143         /* Restore the original control entries */
2144         copy_vmcb_control_area(vmcb, hsave);
2145
2146         kvm_clear_exception_queue(&svm->vcpu);
2147         kvm_clear_interrupt_queue(&svm->vcpu);
2148
2149         svm->nested.nested_cr3 = 0;
2150
2151         /* Restore selected save entries */
2152         svm->vmcb->save.es = hsave->save.es;
2153         svm->vmcb->save.cs = hsave->save.cs;
2154         svm->vmcb->save.ss = hsave->save.ss;
2155         svm->vmcb->save.ds = hsave->save.ds;
2156         svm->vmcb->save.gdtr = hsave->save.gdtr;
2157         svm->vmcb->save.idtr = hsave->save.idtr;
2158         svm->vmcb->save.rflags = hsave->save.rflags;
2159         svm_set_efer(&svm->vcpu, hsave->save.efer);
2160         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2161         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2162         if (npt_enabled) {
2163                 svm->vmcb->save.cr3 = hsave->save.cr3;
2164                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2165         } else {
2166                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2167         }
2168         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2169         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2170         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2171         svm->vmcb->save.dr7 = 0;
2172         svm->vmcb->save.cpl = 0;
2173         svm->vmcb->control.exit_int_info = 0;
2174
2175         mark_all_dirty(svm->vmcb);
2176
2177         nested_svm_unmap(page);
2178
2179         nested_svm_uninit_mmu_context(&svm->vcpu);
2180         kvm_mmu_reset_context(&svm->vcpu);
2181         kvm_mmu_load(&svm->vcpu);
2182
2183         return 0;
2184 }
2185
2186 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2187 {
2188         /*
2189          * This function merges the msr permission bitmaps of kvm and the
2190          * nested vmcb. It is omptimized in that it only merges the parts where
2191          * the kvm msr permission bitmap may contain zero bits
2192          */
2193         int i;
2194
2195         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2196                 return true;
2197
2198         for (i = 0; i < MSRPM_OFFSETS; i++) {
2199                 u32 value, p;
2200                 u64 offset;
2201
2202                 if (msrpm_offsets[i] == 0xffffffff)
2203                         break;
2204
2205                 p      = msrpm_offsets[i];
2206                 offset = svm->nested.vmcb_msrpm + (p * 4);
2207
2208                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2209                         return false;
2210
2211                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2212         }
2213
2214         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2215
2216         return true;
2217 }
2218
2219 static bool nested_vmcb_checks(struct vmcb *vmcb)
2220 {
2221         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2222                 return false;
2223
2224         if (vmcb->control.asid == 0)
2225                 return false;
2226
2227         if (vmcb->control.nested_ctl && !npt_enabled)
2228                 return false;
2229
2230         return true;
2231 }
2232
2233 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2234 {
2235         struct vmcb *nested_vmcb;
2236         struct vmcb *hsave = svm->nested.hsave;
2237         struct vmcb *vmcb = svm->vmcb;
2238         struct page *page;
2239         u64 vmcb_gpa;
2240
2241         vmcb_gpa = svm->vmcb->save.rax;
2242
2243         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2244         if (!nested_vmcb)
2245                 return false;
2246
2247         if (!nested_vmcb_checks(nested_vmcb)) {
2248                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2249                 nested_vmcb->control.exit_code_hi = 0;
2250                 nested_vmcb->control.exit_info_1  = 0;
2251                 nested_vmcb->control.exit_info_2  = 0;
2252
2253                 nested_svm_unmap(page);
2254
2255                 return false;
2256         }
2257
2258         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2259                                nested_vmcb->save.rip,
2260                                nested_vmcb->control.int_ctl,
2261                                nested_vmcb->control.event_inj,
2262                                nested_vmcb->control.nested_ctl);
2263
2264         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2265                                     nested_vmcb->control.intercept_cr >> 16,
2266                                     nested_vmcb->control.intercept_exceptions,
2267                                     nested_vmcb->control.intercept);
2268
2269         /* Clear internal status */
2270         kvm_clear_exception_queue(&svm->vcpu);
2271         kvm_clear_interrupt_queue(&svm->vcpu);
2272
2273         /*
2274          * Save the old vmcb, so we don't need to pick what we save, but can
2275          * restore everything when a VMEXIT occurs
2276          */
2277         hsave->save.es     = vmcb->save.es;
2278         hsave->save.cs     = vmcb->save.cs;
2279         hsave->save.ss     = vmcb->save.ss;
2280         hsave->save.ds     = vmcb->save.ds;
2281         hsave->save.gdtr   = vmcb->save.gdtr;
2282         hsave->save.idtr   = vmcb->save.idtr;
2283         hsave->save.efer   = svm->vcpu.arch.efer;
2284         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2285         hsave->save.cr4    = svm->vcpu.arch.cr4;
2286         hsave->save.rflags = vmcb->save.rflags;
2287         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2288         hsave->save.rsp    = vmcb->save.rsp;
2289         hsave->save.rax    = vmcb->save.rax;
2290         if (npt_enabled)
2291                 hsave->save.cr3    = vmcb->save.cr3;
2292         else
2293                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2294
2295         copy_vmcb_control_area(hsave, vmcb);
2296
2297         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2298                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2299         else
2300                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2301
2302         if (nested_vmcb->control.nested_ctl) {
2303                 kvm_mmu_unload(&svm->vcpu);
2304                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2305                 nested_svm_init_mmu_context(&svm->vcpu);
2306         }
2307
2308         /* Load the nested guest state */
2309         svm->vmcb->save.es = nested_vmcb->save.es;
2310         svm->vmcb->save.cs = nested_vmcb->save.cs;
2311         svm->vmcb->save.ss = nested_vmcb->save.ss;
2312         svm->vmcb->save.ds = nested_vmcb->save.ds;
2313         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2314         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2315         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2316         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2317         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2318         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2319         if (npt_enabled) {
2320                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2321                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2322         } else
2323                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2324
2325         /* Guest paging mode is active - reset mmu */
2326         kvm_mmu_reset_context(&svm->vcpu);
2327
2328         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2329         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2330         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2331         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2332
2333         /* In case we don't even reach vcpu_run, the fields are not updated */
2334         svm->vmcb->save.rax = nested_vmcb->save.rax;
2335         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2336         svm->vmcb->save.rip = nested_vmcb->save.rip;
2337         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2338         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2339         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2340
2341         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2342         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2343
2344         /* cache intercepts */
2345         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2346         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2347         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2348         svm->nested.intercept            = nested_vmcb->control.intercept;
2349
2350         force_new_asid(&svm->vcpu);
2351         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2352         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2353                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2354         else
2355                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2356
2357         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2358                 /* We only want the cr8 intercept bits of the guest */
2359                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2360                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2361         }
2362
2363         /* We don't want to see VMMCALLs from a nested guest */
2364         clr_intercept(svm, INTERCEPT_VMMCALL);
2365
2366         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2367         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2368         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2369         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2370         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2371         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2372
2373         nested_svm_unmap(page);
2374
2375         /* Enter Guest-Mode */
2376         enter_guest_mode(&svm->vcpu);
2377
2378         /*
2379          * Merge guest and host intercepts - must be called  with vcpu in
2380          * guest-mode to take affect here
2381          */
2382         recalc_intercepts(svm);
2383
2384         svm->nested.vmcb = vmcb_gpa;
2385
2386         enable_gif(svm);
2387
2388         mark_all_dirty(svm->vmcb);
2389
2390         return true;
2391 }
2392
2393 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2394 {
2395         to_vmcb->save.fs = from_vmcb->save.fs;
2396         to_vmcb->save.gs = from_vmcb->save.gs;
2397         to_vmcb->save.tr = from_vmcb->save.tr;
2398         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2399         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2400         to_vmcb->save.star = from_vmcb->save.star;
2401         to_vmcb->save.lstar = from_vmcb->save.lstar;
2402         to_vmcb->save.cstar = from_vmcb->save.cstar;
2403         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2404         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2405         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2406         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2407 }
2408
2409 static int vmload_interception(struct vcpu_svm *svm)
2410 {
2411         struct vmcb *nested_vmcb;
2412         struct page *page;
2413
2414         if (nested_svm_check_permissions(svm))
2415                 return 1;
2416
2417         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2418         skip_emulated_instruction(&svm->vcpu);
2419
2420         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2421         if (!nested_vmcb)
2422                 return 1;
2423
2424         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2425         nested_svm_unmap(page);
2426
2427         return 1;
2428 }
2429
2430 static int vmsave_interception(struct vcpu_svm *svm)
2431 {
2432         struct vmcb *nested_vmcb;
2433         struct page *page;
2434
2435         if (nested_svm_check_permissions(svm))
2436                 return 1;
2437
2438         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2439         skip_emulated_instruction(&svm->vcpu);
2440
2441         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2442         if (!nested_vmcb)
2443                 return 1;
2444
2445         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2446         nested_svm_unmap(page);
2447
2448         return 1;
2449 }
2450
2451 static int vmrun_interception(struct vcpu_svm *svm)
2452 {
2453         if (nested_svm_check_permissions(svm))
2454                 return 1;
2455
2456         /* Save rip after vmrun instruction */
2457         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2458
2459         if (!nested_svm_vmrun(svm))
2460                 return 1;
2461
2462         if (!nested_svm_vmrun_msrpm(svm))
2463                 goto failed;
2464
2465         return 1;
2466
2467 failed:
2468
2469         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2470         svm->vmcb->control.exit_code_hi = 0;
2471         svm->vmcb->control.exit_info_1  = 0;
2472         svm->vmcb->control.exit_info_2  = 0;
2473
2474         nested_svm_vmexit(svm);
2475
2476         return 1;
2477 }
2478
2479 static int stgi_interception(struct vcpu_svm *svm)
2480 {
2481         if (nested_svm_check_permissions(svm))
2482                 return 1;
2483
2484         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2485         skip_emulated_instruction(&svm->vcpu);
2486         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2487
2488         enable_gif(svm);
2489
2490         return 1;
2491 }
2492
2493 static int clgi_interception(struct vcpu_svm *svm)
2494 {
2495         if (nested_svm_check_permissions(svm))
2496                 return 1;
2497
2498         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2499         skip_emulated_instruction(&svm->vcpu);
2500
2501         disable_gif(svm);
2502
2503         /* After a CLGI no interrupts should come */
2504         svm_clear_vintr(svm);
2505         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2506
2507         return 1;
2508 }
2509
2510 static int invlpga_interception(struct vcpu_svm *svm)
2511 {
2512         struct kvm_vcpu *vcpu = &svm->vcpu;
2513
2514         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2515                           vcpu->arch.regs[VCPU_REGS_RAX]);
2516
2517         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2518         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2519
2520         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2521         skip_emulated_instruction(&svm->vcpu);
2522         return 1;
2523 }
2524
2525 static int skinit_interception(struct vcpu_svm *svm)
2526 {
2527         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2528
2529         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2530         return 1;
2531 }
2532
2533 static int invalid_op_interception(struct vcpu_svm *svm)
2534 {
2535         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2536         return 1;
2537 }
2538
2539 static int task_switch_interception(struct vcpu_svm *svm)
2540 {
2541         u16 tss_selector;
2542         int reason;
2543         int int_type = svm->vmcb->control.exit_int_info &
2544                 SVM_EXITINTINFO_TYPE_MASK;
2545         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2546         uint32_t type =
2547                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2548         uint32_t idt_v =
2549                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2550         bool has_error_code = false;
2551         u32 error_code = 0;
2552
2553         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2554
2555         if (svm->vmcb->control.exit_info_2 &
2556             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2557                 reason = TASK_SWITCH_IRET;
2558         else if (svm->vmcb->control.exit_info_2 &
2559                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2560                 reason = TASK_SWITCH_JMP;
2561         else if (idt_v)
2562                 reason = TASK_SWITCH_GATE;
2563         else
2564                 reason = TASK_SWITCH_CALL;
2565
2566         if (reason == TASK_SWITCH_GATE) {
2567                 switch (type) {
2568                 case SVM_EXITINTINFO_TYPE_NMI:
2569                         svm->vcpu.arch.nmi_injected = false;
2570                         break;
2571                 case SVM_EXITINTINFO_TYPE_EXEPT:
2572                         if (svm->vmcb->control.exit_info_2 &
2573                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2574                                 has_error_code = true;
2575                                 error_code =
2576                                         (u32)svm->vmcb->control.exit_info_2;
2577                         }
2578                         kvm_clear_exception_queue(&svm->vcpu);
2579                         break;
2580                 case SVM_EXITINTINFO_TYPE_INTR:
2581                         kvm_clear_interrupt_queue(&svm->vcpu);
2582                         break;
2583                 default:
2584                         break;
2585                 }
2586         }
2587
2588         if (reason != TASK_SWITCH_GATE ||
2589             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2590             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2591              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2592                 skip_emulated_instruction(&svm->vcpu);
2593
2594         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2595                                 has_error_code, error_code) == EMULATE_FAIL) {
2596                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2597                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2598                 svm->vcpu.run->internal.ndata = 0;
2599                 return 0;
2600         }
2601         return 1;
2602 }
2603
2604 static int cpuid_interception(struct vcpu_svm *svm)
2605 {
2606         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2607         kvm_emulate_cpuid(&svm->vcpu);
2608         return 1;
2609 }
2610
2611 static int iret_interception(struct vcpu_svm *svm)
2612 {
2613         ++svm->vcpu.stat.nmi_window_exits;
2614         clr_intercept(svm, INTERCEPT_IRET);
2615         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2616         return 1;
2617 }
2618
2619 static int invlpg_interception(struct vcpu_svm *svm)
2620 {
2621         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2622 }
2623
2624 static int emulate_on_interception(struct vcpu_svm *svm)
2625 {
2626         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2627 }
2628
2629 static int cr0_write_interception(struct vcpu_svm *svm)
2630 {
2631         struct kvm_vcpu *vcpu = &svm->vcpu;
2632         int r;
2633
2634         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2635
2636         if (svm->nested.vmexit_rip) {
2637                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2638                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2639                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2640                 svm->nested.vmexit_rip = 0;
2641         }
2642
2643         return r == EMULATE_DONE;
2644 }
2645
2646 static int cr8_write_interception(struct vcpu_svm *svm)
2647 {
2648         struct kvm_run *kvm_run = svm->vcpu.run;
2649
2650         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2651         /* instruction emulation calls kvm_set_cr8() */
2652         emulate_instruction(&svm->vcpu, 0, 0, 0);
2653         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2654                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2655                 return 1;
2656         }
2657         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2658                 return 1;
2659         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2660         return 0;
2661 }
2662
2663 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2664 {
2665         struct vcpu_svm *svm = to_svm(vcpu);
2666
2667         switch (ecx) {
2668         case MSR_IA32_TSC: {
2669                 struct vmcb *vmcb = get_host_vmcb(svm);
2670
2671                 *data = vmcb->control.tsc_offset + native_read_tsc();
2672                 break;
2673         }
2674         case MSR_STAR:
2675                 *data = svm->vmcb->save.star;
2676                 break;
2677 #ifdef CONFIG_X86_64
2678         case MSR_LSTAR:
2679                 *data = svm->vmcb->save.lstar;
2680                 break;
2681         case MSR_CSTAR:
2682                 *data = svm->vmcb->save.cstar;
2683                 break;
2684         case MSR_KERNEL_GS_BASE:
2685                 *data = svm->vmcb->save.kernel_gs_base;
2686                 break;
2687         case MSR_SYSCALL_MASK:
2688                 *data = svm->vmcb->save.sfmask;
2689                 break;
2690 #endif
2691         case MSR_IA32_SYSENTER_CS:
2692                 *data = svm->vmcb->save.sysenter_cs;
2693                 break;
2694         case MSR_IA32_SYSENTER_EIP:
2695                 *data = svm->sysenter_eip;
2696                 break;
2697         case MSR_IA32_SYSENTER_ESP:
2698                 *data = svm->sysenter_esp;
2699                 break;
2700         /*
2701          * Nobody will change the following 5 values in the VMCB so we can
2702          * safely return them on rdmsr. They will always be 0 until LBRV is
2703          * implemented.
2704          */
2705         case MSR_IA32_DEBUGCTLMSR:
2706                 *data = svm->vmcb->save.dbgctl;
2707                 break;
2708         case MSR_IA32_LASTBRANCHFROMIP:
2709                 *data = svm->vmcb->save.br_from;
2710                 break;
2711         case MSR_IA32_LASTBRANCHTOIP:
2712                 *data = svm->vmcb->save.br_to;
2713                 break;
2714         case MSR_IA32_LASTINTFROMIP:
2715                 *data = svm->vmcb->save.last_excp_from;
2716                 break;
2717         case MSR_IA32_LASTINTTOIP:
2718                 *data = svm->vmcb->save.last_excp_to;
2719                 break;
2720         case MSR_VM_HSAVE_PA:
2721                 *data = svm->nested.hsave_msr;
2722                 break;
2723         case MSR_VM_CR:
2724                 *data = svm->nested.vm_cr_msr;
2725                 break;
2726         case MSR_IA32_UCODE_REV:
2727                 *data = 0x01000065;
2728                 break;
2729         default:
2730                 return kvm_get_msr_common(vcpu, ecx, data);
2731         }
2732         return 0;
2733 }
2734
2735 static int rdmsr_interception(struct vcpu_svm *svm)
2736 {
2737         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2738         u64 data;
2739
2740         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2741                 trace_kvm_msr_read_ex(ecx);
2742                 kvm_inject_gp(&svm->vcpu, 0);
2743         } else {
2744                 trace_kvm_msr_read(ecx, data);
2745
2746                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2747                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2748                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2749                 skip_emulated_instruction(&svm->vcpu);
2750         }
2751         return 1;
2752 }
2753
2754 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2755 {
2756         struct vcpu_svm *svm = to_svm(vcpu);
2757         int svm_dis, chg_mask;
2758
2759         if (data & ~SVM_VM_CR_VALID_MASK)
2760                 return 1;
2761
2762         chg_mask = SVM_VM_CR_VALID_MASK;
2763
2764         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2765                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2766
2767         svm->nested.vm_cr_msr &= ~chg_mask;
2768         svm->nested.vm_cr_msr |= (data & chg_mask);
2769
2770         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2771
2772         /* check for svm_disable while efer.svme is set */
2773         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2774                 return 1;
2775
2776         return 0;
2777 }
2778
2779 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2780 {
2781         struct vcpu_svm *svm = to_svm(vcpu);
2782
2783         switch (ecx) {
2784         case MSR_IA32_TSC:
2785                 kvm_write_tsc(vcpu, data);
2786                 break;
2787         case MSR_STAR:
2788                 svm->vmcb->save.star = data;
2789                 break;
2790 #ifdef CONFIG_X86_64
2791         case MSR_LSTAR:
2792                 svm->vmcb->save.lstar = data;
2793                 break;
2794         case MSR_CSTAR:
2795                 svm->vmcb->save.cstar = data;
2796                 break;
2797         case MSR_KERNEL_GS_BASE:
2798                 svm->vmcb->save.kernel_gs_base = data;
2799                 break;
2800         case MSR_SYSCALL_MASK:
2801                 svm->vmcb->save.sfmask = data;
2802                 break;
2803 #endif
2804         case MSR_IA32_SYSENTER_CS:
2805                 svm->vmcb->save.sysenter_cs = data;
2806                 break;
2807         case MSR_IA32_SYSENTER_EIP:
2808                 svm->sysenter_eip = data;
2809                 svm->vmcb->save.sysenter_eip = data;
2810                 break;
2811         case MSR_IA32_SYSENTER_ESP:
2812                 svm->sysenter_esp = data;
2813                 svm->vmcb->save.sysenter_esp = data;
2814                 break;
2815         case MSR_IA32_DEBUGCTLMSR:
2816                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2817                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2818                                         __func__, data);
2819                         break;
2820                 }
2821                 if (data & DEBUGCTL_RESERVED_BITS)
2822                         return 1;
2823
2824                 svm->vmcb->save.dbgctl = data;
2825                 if (data & (1ULL<<0))
2826                         svm_enable_lbrv(svm);
2827                 else
2828                         svm_disable_lbrv(svm);
2829                 break;
2830         case MSR_VM_HSAVE_PA:
2831                 svm->nested.hsave_msr = data;
2832                 break;
2833         case MSR_VM_CR:
2834                 return svm_set_vm_cr(vcpu, data);
2835         case MSR_VM_IGNNE:
2836                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2837                 break;
2838         default:
2839                 return kvm_set_msr_common(vcpu, ecx, data);
2840         }
2841         return 0;
2842 }
2843
2844 static int wrmsr_interception(struct vcpu_svm *svm)
2845 {
2846         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2847         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2848                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2849
2850
2851         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2852         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2853                 trace_kvm_msr_write_ex(ecx, data);
2854                 kvm_inject_gp(&svm->vcpu, 0);
2855         } else {
2856                 trace_kvm_msr_write(ecx, data);
2857                 skip_emulated_instruction(&svm->vcpu);
2858         }
2859         return 1;
2860 }
2861
2862 static int msr_interception(struct vcpu_svm *svm)
2863 {
2864         if (svm->vmcb->control.exit_info_1)
2865                 return wrmsr_interception(svm);
2866         else
2867                 return rdmsr_interception(svm);
2868 }
2869
2870 static int interrupt_window_interception(struct vcpu_svm *svm)
2871 {
2872         struct kvm_run *kvm_run = svm->vcpu.run;
2873
2874         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2875         svm_clear_vintr(svm);
2876         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2877         /*
2878          * If the user space waits to inject interrupts, exit as soon as
2879          * possible
2880          */
2881         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2882             kvm_run->request_interrupt_window &&
2883             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2884                 ++svm->vcpu.stat.irq_window_exits;
2885                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2886                 return 0;
2887         }
2888
2889         return 1;
2890 }
2891
2892 static int pause_interception(struct vcpu_svm *svm)
2893 {
2894         kvm_vcpu_on_spin(&(svm->vcpu));
2895         return 1;
2896 }
2897
2898 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2899         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2900         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2901         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2902         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2903         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2904         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2905         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2906         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2907         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2908         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2909         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2910         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2911         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2912         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2913         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2914         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2915         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2916         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2917         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2918         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2919         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2920         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2921         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2922         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2923         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2924         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2925         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2926         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2927         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2928         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2929         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2930         [SVM_EXIT_INTR]                         = intr_interception,
2931         [SVM_EXIT_NMI]                          = nmi_interception,
2932         [SVM_EXIT_SMI]                          = nop_on_interception,
2933         [SVM_EXIT_INIT]                         = nop_on_interception,
2934         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2935         [SVM_EXIT_CPUID]                        = cpuid_interception,
2936         [SVM_EXIT_IRET]                         = iret_interception,
2937         [SVM_EXIT_INVD]                         = emulate_on_interception,
2938         [SVM_EXIT_PAUSE]                        = pause_interception,
2939         [SVM_EXIT_HLT]                          = halt_interception,
2940         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2941         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2942         [SVM_EXIT_IOIO]                         = io_interception,
2943         [SVM_EXIT_MSR]                          = msr_interception,
2944         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2945         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2946         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2947         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2948         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2949         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2950         [SVM_EXIT_STGI]                         = stgi_interception,
2951         [SVM_EXIT_CLGI]                         = clgi_interception,
2952         [SVM_EXIT_SKINIT]                       = skinit_interception,
2953         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2954         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2955         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2956         [SVM_EXIT_NPF]                          = pf_interception,
2957 };
2958
2959 void dump_vmcb(struct kvm_vcpu *vcpu)
2960 {
2961         struct vcpu_svm *svm = to_svm(vcpu);
2962         struct vmcb_control_area *control = &svm->vmcb->control;
2963         struct vmcb_save_area *save = &svm->vmcb->save;
2964
2965         pr_err("VMCB Control Area:\n");
2966         pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff);
2967         pr_err("cr_write:           %04x\n", control->intercept_cr >> 16);
2968         pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff);
2969         pr_err("dr_write:           %04x\n", control->intercept_dr >> 16);
2970         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2971         pr_err("intercepts:         %016llx\n", control->intercept);
2972         pr_err("pause filter count: %d\n", control->pause_filter_count);
2973         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2974         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2975         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2976         pr_err("asid:               %d\n", control->asid);
2977         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2978         pr_err("int_ctl:            %08x\n", control->int_ctl);
2979         pr_err("int_vector:         %08x\n", control->int_vector);
2980         pr_err("int_state:          %08x\n", control->int_state);
2981         pr_err("exit_code:          %08x\n", control->exit_code);
2982         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2983         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2984         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2985         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2986         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2987         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2988         pr_err("event_inj:          %08x\n", control->event_inj);
2989         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2990         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2991         pr_err("next_rip:           %016llx\n", control->next_rip);
2992         pr_err("VMCB State Save Area:\n");
2993         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2994                 save->es.selector, save->es.attrib,
2995                 save->es.limit, save->es.base);
2996         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2997                 save->cs.selector, save->cs.attrib,
2998                 save->cs.limit, save->cs.base);
2999         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
3000                 save->ss.selector, save->ss.attrib,
3001                 save->ss.limit, save->ss.base);
3002         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
3003                 save->ds.selector, save->ds.attrib,
3004                 save->ds.limit, save->ds.base);
3005         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
3006                 save->fs.selector, save->fs.attrib,
3007                 save->fs.limit, save->fs.base);
3008         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
3009                 save->gs.selector, save->gs.attrib,
3010                 save->gs.limit, save->gs.base);
3011         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3012                 save->gdtr.selector, save->gdtr.attrib,
3013                 save->gdtr.limit, save->gdtr.base);
3014         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3015                 save->ldtr.selector, save->ldtr.attrib,
3016                 save->ldtr.limit, save->ldtr.base);
3017         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3018                 save->idtr.selector, save->idtr.attrib,
3019                 save->idtr.limit, save->idtr.base);
3020         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
3021                 save->tr.selector, save->tr.attrib,
3022                 save->tr.limit, save->tr.base);
3023         pr_err("cpl:            %d                efer:         %016llx\n",
3024                 save->cpl, save->efer);
3025         pr_err("cr0:            %016llx cr2:          %016llx\n",
3026                 save->cr0, save->cr2);
3027         pr_err("cr3:            %016llx cr4:          %016llx\n",
3028                 save->cr3, save->cr4);
3029         pr_err("dr6:            %016llx dr7:          %016llx\n",
3030                 save->dr6, save->dr7);
3031         pr_err("rip:            %016llx rflags:       %016llx\n",
3032                 save->rip, save->rflags);
3033         pr_err("rsp:            %016llx rax:          %016llx\n",
3034                 save->rsp, save->rax);
3035         pr_err("star:           %016llx lstar:        %016llx\n",
3036                 save->star, save->lstar);
3037         pr_err("cstar:          %016llx sfmask:       %016llx\n",
3038                 save->cstar, save->sfmask);
3039         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
3040                 save->kernel_gs_base, save->sysenter_cs);
3041         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
3042                 save->sysenter_esp, save->sysenter_eip);
3043         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
3044                 save->g_pat, save->dbgctl);
3045         pr_err("br_from:        %016llx br_to:        %016llx\n",
3046                 save->br_from, save->br_to);
3047         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
3048                 save->last_excp_from, save->last_excp_to);
3049
3050 }
3051
3052 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3053 {
3054         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3055
3056         *info1 = control->exit_info_1;
3057         *info2 = control->exit_info_2;
3058 }
3059
3060 static int handle_exit(struct kvm_vcpu *vcpu)
3061 {
3062         struct vcpu_svm *svm = to_svm(vcpu);
3063         struct kvm_run *kvm_run = vcpu->run;
3064         u32 exit_code = svm->vmcb->control.exit_code;
3065
3066         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3067
3068         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3069                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3070         if (npt_enabled)
3071                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3072
3073         if (unlikely(svm->nested.exit_required)) {
3074                 nested_svm_vmexit(svm);
3075                 svm->nested.exit_required = false;
3076
3077                 return 1;
3078         }
3079
3080         if (is_guest_mode(vcpu)) {
3081                 int vmexit;
3082
3083                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3084                                         svm->vmcb->control.exit_info_1,
3085                                         svm->vmcb->control.exit_info_2,
3086                                         svm->vmcb->control.exit_int_info,
3087                                         svm->vmcb->control.exit_int_info_err);
3088
3089                 vmexit = nested_svm_exit_special(svm);
3090
3091                 if (vmexit == NESTED_EXIT_CONTINUE)
3092                         vmexit = nested_svm_exit_handled(svm);
3093
3094                 if (vmexit == NESTED_EXIT_DONE)
3095                         return 1;
3096         }
3097
3098         svm_complete_interrupts(svm);
3099
3100         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3101                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3102                 kvm_run->fail_entry.hardware_entry_failure_reason
3103                         = svm->vmcb->control.exit_code;
3104                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3105                 dump_vmcb(vcpu);
3106                 return 0;
3107         }
3108
3109         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3110             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3111             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3112             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3113                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3114                        "exit_code 0x%x\n",
3115                        __func__, svm->vmcb->control.exit_int_info,
3116                        exit_code);
3117
3118         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3119             || !svm_exit_handlers[exit_code]) {
3120                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3121                 kvm_run->hw.hardware_exit_reason = exit_code;
3122                 return 0;
3123         }
3124
3125         return svm_exit_handlers[exit_code](svm);
3126 }
3127
3128 static void reload_tss(struct kvm_vcpu *vcpu)
3129 {
3130         int cpu = raw_smp_processor_id();
3131
3132         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3133         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3134         load_TR_desc();
3135 }
3136
3137 static void pre_svm_run(struct vcpu_svm *svm)
3138 {
3139         int cpu = raw_smp_processor_id();
3140
3141         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3142
3143         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3144         /* FIXME: handle wraparound of asid_generation */
3145         if (svm->asid_generation != sd->asid_generation)
3146                 new_asid(svm, sd);
3147 }
3148
3149 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3150 {
3151         struct vcpu_svm *svm = to_svm(vcpu);
3152
3153         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3154         vcpu->arch.hflags |= HF_NMI_MASK;
3155         set_intercept(svm, INTERCEPT_IRET);
3156         ++vcpu->stat.nmi_injections;
3157 }
3158
3159 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3160 {
3161         struct vmcb_control_area *control;
3162
3163         control = &svm->vmcb->control;
3164         control->int_vector = irq;
3165         control->int_ctl &= ~V_INTR_PRIO_MASK;
3166         control->int_ctl |= V_IRQ_MASK |
3167                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3168 }
3169
3170 static void svm_set_irq(struct kvm_vcpu *vcpu)
3171 {
3172         struct vcpu_svm *svm = to_svm(vcpu);
3173
3174         BUG_ON(!(gif_set(svm)));
3175
3176         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3177         ++vcpu->stat.irq_injections;
3178
3179         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3180                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3181 }
3182
3183 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3184 {
3185         struct vcpu_svm *svm = to_svm(vcpu);
3186
3187         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3188                 return;
3189
3190         if (irr == -1)
3191                 return;
3192
3193         if (tpr >= irr)
3194                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3195 }
3196
3197 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3198 {
3199         struct vcpu_svm *svm = to_svm(vcpu);
3200         struct vmcb *vmcb = svm->vmcb;
3201         int ret;
3202         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3203               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3204         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3205
3206         return ret;
3207 }
3208
3209 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3210 {
3211         struct vcpu_svm *svm = to_svm(vcpu);
3212
3213         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3214 }
3215
3216 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3217 {
3218         struct vcpu_svm *svm = to_svm(vcpu);
3219
3220         if (masked) {
3221                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3222                 set_intercept(svm, INTERCEPT_IRET);
3223         } else {
3224                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3225                 clr_intercept(svm, INTERCEPT_IRET);
3226         }
3227 }
3228
3229 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3230 {
3231         struct vcpu_svm *svm = to_svm(vcpu);
3232         struct vmcb *vmcb = svm->vmcb;
3233         int ret;
3234
3235         if (!gif_set(svm) ||
3236              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3237                 return 0;
3238
3239         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3240
3241         if (is_guest_mode(vcpu))
3242                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3243
3244         return ret;
3245 }
3246
3247 static void enable_irq_window(struct kvm_vcpu *vcpu)
3248 {
3249         struct vcpu_svm *svm = to_svm(vcpu);
3250
3251         /*
3252          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3253          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3254          * get that intercept, this function will be called again though and
3255          * we'll get the vintr intercept.
3256          */
3257         if (gif_set(svm) && nested_svm_intr(svm)) {
3258                 svm_set_vintr(svm);
3259                 svm_inject_irq(svm, 0x0);
3260         }
3261 }
3262
3263 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3264 {
3265         struct vcpu_svm *svm = to_svm(vcpu);
3266
3267         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3268             == HF_NMI_MASK)
3269                 return; /* IRET will cause a vm exit */
3270
3271         /*
3272          * Something prevents NMI from been injected. Single step over possible
3273          * problem (IRET or exception injection or interrupt shadow)
3274          */
3275         svm->nmi_singlestep = true;
3276         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3277         update_db_intercept(vcpu);
3278 }
3279
3280 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3281 {
3282         return 0;
3283 }
3284
3285 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3286 {
3287         force_new_asid(vcpu);
3288 }
3289
3290 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3291 {
3292 }
3293
3294 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3295 {
3296         struct vcpu_svm *svm = to_svm(vcpu);
3297
3298         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3299                 return;
3300
3301         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3302                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3303                 kvm_set_cr8(vcpu, cr8);
3304         }
3305 }
3306
3307 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3308 {
3309         struct vcpu_svm *svm = to_svm(vcpu);
3310         u64 cr8;
3311
3312         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3313                 return;
3314
3315         cr8 = kvm_get_cr8(vcpu);
3316         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3317         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3318 }
3319
3320 static void svm_complete_interrupts(struct vcpu_svm *svm)
3321 {
3322         u8 vector;
3323         int type;
3324         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3325         unsigned int3_injected = svm->int3_injected;
3326
3327         svm->int3_injected = 0;
3328
3329         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3330                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3331                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3332         }
3333
3334         svm->vcpu.arch.nmi_injected = false;
3335         kvm_clear_exception_queue(&svm->vcpu);
3336         kvm_clear_interrupt_queue(&svm->vcpu);
3337
3338         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3339                 return;
3340
3341         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3342
3343         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3344         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3345
3346         switch (type) {
3347         case SVM_EXITINTINFO_TYPE_NMI:
3348                 svm->vcpu.arch.nmi_injected = true;
3349                 break;
3350         case SVM_EXITINTINFO_TYPE_EXEPT:
3351                 /*
3352                  * In case of software exceptions, do not reinject the vector,
3353                  * but re-execute the instruction instead. Rewind RIP first
3354                  * if we emulated INT3 before.
3355                  */
3356                 if (kvm_exception_is_soft(vector)) {
3357                         if (vector == BP_VECTOR && int3_injected &&
3358                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3359                                 kvm_rip_write(&svm->vcpu,
3360                                               kvm_rip_read(&svm->vcpu) -
3361                                               int3_injected);
3362                         break;
3363                 }
3364                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3365                         u32 err = svm->vmcb->control.exit_int_info_err;
3366                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3367
3368                 } else
3369                         kvm_requeue_exception(&svm->vcpu, vector);
3370                 break;
3371         case SVM_EXITINTINFO_TYPE_INTR:
3372                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3373                 break;
3374         default:
3375                 break;
3376         }
3377 }
3378
3379 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3380 {
3381         struct vcpu_svm *svm = to_svm(vcpu);
3382         struct vmcb_control_area *control = &svm->vmcb->control;
3383
3384         control->exit_int_info = control->event_inj;
3385         control->exit_int_info_err = control->event_inj_err;
3386         control->event_inj = 0;
3387         svm_complete_interrupts(svm);
3388 }
3389
3390 #ifdef CONFIG_X86_64
3391 #define R "r"
3392 #else
3393 #define R "e"
3394 #endif
3395
3396 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3397 {
3398         struct vcpu_svm *svm = to_svm(vcpu);
3399
3400         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3401         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3402         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3403
3404         /*
3405          * A vmexit emulation is required before the vcpu can be executed
3406          * again.
3407          */
3408         if (unlikely(svm->nested.exit_required))
3409                 return;
3410
3411         pre_svm_run(svm);
3412
3413         sync_lapic_to_cr8(vcpu);
3414
3415         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3416
3417         clgi();
3418
3419         local_irq_enable();
3420
3421         asm volatile (
3422                 "push %%"R"bp; \n\t"
3423                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3424                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3425                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3426                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3427                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3428                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3429 #ifdef CONFIG_X86_64
3430                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3431                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3432                 "mov %c[r10](%[svm]), %%r10 \n\t"
3433                 "mov %c[r11](%[svm]), %%r11 \n\t"
3434                 "mov %c[r12](%[svm]), %%r12 \n\t"
3435                 "mov %c[r13](%[svm]), %%r13 \n\t"
3436                 "mov %c[r14](%[svm]), %%r14 \n\t"
3437                 "mov %c[r15](%[svm]), %%r15 \n\t"
3438 #endif
3439
3440                 /* Enter guest mode */
3441                 "push %%"R"ax \n\t"
3442                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3443                 __ex(SVM_VMLOAD) "\n\t"
3444                 __ex(SVM_VMRUN) "\n\t"
3445                 __ex(SVM_VMSAVE) "\n\t"
3446                 "pop %%"R"ax \n\t"
3447
3448                 /* Save guest registers, load host registers */
3449                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3450                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3451                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3452                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3453                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3454                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3455 #ifdef CONFIG_X86_64
3456                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3457                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3458                 "mov %%r10, %c[r10](%[svm]) \n\t"
3459                 "mov %%r11, %c[r11](%[svm]) \n\t"
3460                 "mov %%r12, %c[r12](%[svm]) \n\t"
3461                 "mov %%r13, %c[r13](%[svm]) \n\t"
3462                 "mov %%r14, %c[r14](%[svm]) \n\t"
3463                 "mov %%r15, %c[r15](%[svm]) \n\t"
3464 #endif
3465                 "pop %%"R"bp"
3466                 :
3467                 : [svm]"a"(svm),
3468                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3469                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3470                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3471                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3472                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3473                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3474                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3475 #ifdef CONFIG_X86_64
3476                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3477                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3478                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3479                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3480                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3481                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3482                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3483                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3484 #endif
3485                 : "cc", "memory"
3486                 , R"bx", R"cx", R"dx", R"si", R"di"
3487 #ifdef CONFIG_X86_64
3488                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3489 #endif
3490                 );
3491
3492 #ifdef CONFIG_X86_64
3493         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3494 #else
3495         loadsegment(fs, svm->host.fs);
3496 #endif
3497
3498         reload_tss(vcpu);
3499
3500         local_irq_disable();
3501
3502         stgi();
3503
3504         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3505         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3506         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3507         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3508
3509         sync_cr8_to_lapic(vcpu);
3510
3511         svm->next_rip = 0;
3512
3513         /* if exit due to PF check for async PF */
3514         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3515                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3516
3517         if (npt_enabled) {
3518                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3519                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3520         }
3521
3522         /*
3523          * We need to handle MC intercepts here before the vcpu has a chance to
3524          * change the physical cpu
3525          */
3526         if (unlikely(svm->vmcb->control.exit_code ==
3527                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3528                 svm_handle_mce(svm);
3529
3530         mark_all_clean(svm->vmcb);
3531 }
3532
3533 #undef R
3534
3535 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3536 {
3537         struct vcpu_svm *svm = to_svm(vcpu);
3538
3539         svm->vmcb->save.cr3 = root;
3540         force_new_asid(vcpu);
3541 }
3542
3543 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3544 {
3545         struct vcpu_svm *svm = to_svm(vcpu);
3546
3547         svm->vmcb->control.nested_cr3 = root;
3548
3549         /* Also sync guest cr3 here in case we live migrate */
3550         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3551
3552         force_new_asid(vcpu);
3553 }
3554
3555 static int is_disabled(void)
3556 {
3557         u64 vm_cr;
3558
3559         rdmsrl(MSR_VM_CR, vm_cr);
3560         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3561                 return 1;
3562
3563         return 0;
3564 }
3565
3566 static void
3567 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3568 {
3569         /*
3570          * Patch in the VMMCALL instruction:
3571          */
3572         hypercall[0] = 0x0f;
3573         hypercall[1] = 0x01;
3574         hypercall[2] = 0xd9;
3575 }
3576
3577 static void svm_check_processor_compat(void *rtn)
3578 {
3579         *(int *)rtn = 0;
3580 }
3581
3582 static bool svm_cpu_has_accelerated_tpr(void)
3583 {
3584         return false;
3585 }
3586
3587 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3588 {
3589         return 0;
3590 }
3591
3592 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3593 {
3594 }
3595
3596 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3597 {
3598         switch (func) {
3599         case 0x00000001:
3600                 /* Mask out xsave bit as long as it is not supported by SVM */
3601                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3602                 break;
3603         case 0x80000001:
3604                 if (nested)
3605                         entry->ecx |= (1 << 2); /* Set SVM bit */
3606                 break;
3607         case 0x8000000A:
3608                 entry->eax = 1; /* SVM revision 1 */
3609                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3610                                    ASID emulation to nested SVM */
3611                 entry->ecx = 0; /* Reserved */
3612                 entry->edx = 0; /* Per default do not support any
3613                                    additional features */
3614
3615                 /* Support next_rip if host supports it */
3616                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3617                         entry->edx |= SVM_FEATURE_NRIP;
3618
3619                 /* Support NPT for the guest if enabled */
3620                 if (npt_enabled)
3621                         entry->edx |= SVM_FEATURE_NPT;
3622
3623                 break;
3624         }
3625 }
3626
3627 static const struct trace_print_flags svm_exit_reasons_str[] = {
3628         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3629         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3630         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3631         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3632         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3633         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3634         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3635         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3636         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3637         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3638         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3639         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3640         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3641         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3642         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3643         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3644         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3645         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3646         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3647         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3648         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3649         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3650         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3651         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3652         { SVM_EXIT_INTR,                        "interrupt" },
3653         { SVM_EXIT_NMI,                         "nmi" },
3654         { SVM_EXIT_SMI,                         "smi" },
3655         { SVM_EXIT_INIT,                        "init" },
3656         { SVM_EXIT_VINTR,                       "vintr" },
3657         { SVM_EXIT_CPUID,                       "cpuid" },
3658         { SVM_EXIT_INVD,                        "invd" },
3659         { SVM_EXIT_HLT,                         "hlt" },
3660         { SVM_EXIT_INVLPG,                      "invlpg" },
3661         { SVM_EXIT_INVLPGA,                     "invlpga" },
3662         { SVM_EXIT_IOIO,                        "io" },
3663         { SVM_EXIT_MSR,                         "msr" },
3664         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3665         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3666         { SVM_EXIT_VMRUN,                       "vmrun" },
3667         { SVM_EXIT_VMMCALL,                     "hypercall" },
3668         { SVM_EXIT_VMLOAD,                      "vmload" },
3669         { SVM_EXIT_VMSAVE,                      "vmsave" },
3670         { SVM_EXIT_STGI,                        "stgi" },
3671         { SVM_EXIT_CLGI,                        "clgi" },
3672         { SVM_EXIT_SKINIT,                      "skinit" },
3673         { SVM_EXIT_WBINVD,                      "wbinvd" },
3674         { SVM_EXIT_MONITOR,                     "monitor" },
3675         { SVM_EXIT_MWAIT,                       "mwait" },
3676         { SVM_EXIT_NPF,                         "npf" },
3677         { -1, NULL }
3678 };
3679
3680 static int svm_get_lpage_level(void)
3681 {
3682         return PT_PDPE_LEVEL;
3683 }
3684
3685 static bool svm_rdtscp_supported(void)
3686 {
3687         return false;
3688 }
3689
3690 static bool svm_has_wbinvd_exit(void)
3691 {
3692         return true;
3693 }
3694
3695 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3696 {
3697         struct vcpu_svm *svm = to_svm(vcpu);
3698
3699         set_exception_intercept(svm, NM_VECTOR);
3700         update_cr0_intercept(svm);
3701 }
3702
3703 static struct kvm_x86_ops svm_x86_ops = {
3704         .cpu_has_kvm_support = has_svm,
3705         .disabled_by_bios = is_disabled,
3706         .hardware_setup = svm_hardware_setup,
3707         .hardware_unsetup = svm_hardware_unsetup,
3708         .check_processor_compatibility = svm_check_processor_compat,
3709         .hardware_enable = svm_hardware_enable,
3710         .hardware_disable = svm_hardware_disable,
3711         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3712
3713         .vcpu_create = svm_create_vcpu,
3714         .vcpu_free = svm_free_vcpu,
3715         .vcpu_reset = svm_vcpu_reset,
3716
3717         .prepare_guest_switch = svm_prepare_guest_switch,
3718         .vcpu_load = svm_vcpu_load,
3719         .vcpu_put = svm_vcpu_put,
3720
3721         .set_guest_debug = svm_guest_debug,
3722         .get_msr = svm_get_msr,
3723         .set_msr = svm_set_msr,
3724         .get_segment_base = svm_get_segment_base,
3725         .get_segment = svm_get_segment,
3726         .set_segment = svm_set_segment,
3727         .get_cpl = svm_get_cpl,
3728         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3729         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3730         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3731         .set_cr0 = svm_set_cr0,
3732         .set_cr3 = svm_set_cr3,
3733         .set_cr4 = svm_set_cr4,
3734         .set_efer = svm_set_efer,
3735         .get_idt = svm_get_idt,
3736         .set_idt = svm_set_idt,
3737         .get_gdt = svm_get_gdt,
3738         .set_gdt = svm_set_gdt,
3739         .set_dr7 = svm_set_dr7,
3740         .cache_reg = svm_cache_reg,
3741         .get_rflags = svm_get_rflags,
3742         .set_rflags = svm_set_rflags,
3743         .fpu_activate = svm_fpu_activate,
3744         .fpu_deactivate = svm_fpu_deactivate,
3745
3746         .tlb_flush = svm_flush_tlb,
3747
3748         .run = svm_vcpu_run,
3749         .handle_exit = handle_exit,
3750         .skip_emulated_instruction = skip_emulated_instruction,
3751         .set_interrupt_shadow = svm_set_interrupt_shadow,
3752         .get_interrupt_shadow = svm_get_interrupt_shadow,
3753         .patch_hypercall = svm_patch_hypercall,
3754         .set_irq = svm_set_irq,
3755         .set_nmi = svm_inject_nmi,
3756         .queue_exception = svm_queue_exception,
3757         .cancel_injection = svm_cancel_injection,
3758         .interrupt_allowed = svm_interrupt_allowed,
3759         .nmi_allowed = svm_nmi_allowed,
3760         .get_nmi_mask = svm_get_nmi_mask,
3761         .set_nmi_mask = svm_set_nmi_mask,
3762         .enable_nmi_window = enable_nmi_window,
3763         .enable_irq_window = enable_irq_window,
3764         .update_cr8_intercept = update_cr8_intercept,
3765
3766         .set_tss_addr = svm_set_tss_addr,
3767         .get_tdp_level = get_npt_level,
3768         .get_mt_mask = svm_get_mt_mask,
3769
3770         .get_exit_info = svm_get_exit_info,
3771         .exit_reasons_str = svm_exit_reasons_str,
3772
3773         .get_lpage_level = svm_get_lpage_level,
3774
3775         .cpuid_update = svm_cpuid_update,
3776
3777         .rdtscp_supported = svm_rdtscp_supported,
3778
3779         .set_supported_cpuid = svm_set_supported_cpuid,
3780
3781         .has_wbinvd_exit = svm_has_wbinvd_exit,
3782
3783         .write_tsc_offset = svm_write_tsc_offset,
3784         .adjust_tsc_offset = svm_adjust_tsc_offset,
3785
3786         .set_tdp_cr3 = set_tdp_cr3,
3787 };
3788
3789 static int __init svm_init(void)
3790 {
3791         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3792                         __alignof__(struct vcpu_svm), THIS_MODULE);
3793 }
3794
3795 static void __exit svm_exit(void)
3796 {
3797         kvm_exit();
3798 }
3799
3800 module_init(svm_init)
3801 module_exit(svm_exit)