KVM: Use __print_symbolic() for vmexit tracepoints
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
55 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
56 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
57 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
58 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
59
60 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
61 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
62 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
63
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
65
66 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
67 #define TSC_RATIO_MIN           0x0000000000000001ULL
68 #define TSC_RATIO_MAX           0x000000ffffffffffULL
69
70 static bool erratum_383_found __read_mostly;
71
72 static const u32 host_save_user_msrs[] = {
73 #ifdef CONFIG_X86_64
74         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
75         MSR_FS_BASE,
76 #endif
77         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
78 };
79
80 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
81
82 struct kvm_vcpu;
83
84 struct nested_state {
85         struct vmcb *hsave;
86         u64 hsave_msr;
87         u64 vm_cr_msr;
88         u64 vmcb;
89
90         /* These are the merged vectors */
91         u32 *msrpm;
92
93         /* gpa pointers to the real vectors */
94         u64 vmcb_msrpm;
95         u64 vmcb_iopm;
96
97         /* A VMEXIT is required but not yet emulated */
98         bool exit_required;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114         struct kvm_vcpu vcpu;
115         struct vmcb *vmcb;
116         unsigned long vmcb_pa;
117         struct svm_cpu_data *svm_data;
118         uint64_t asid_generation;
119         uint64_t sysenter_esp;
120         uint64_t sysenter_eip;
121
122         u64 next_rip;
123
124         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125         struct {
126                 u16 fs;
127                 u16 gs;
128                 u16 ldt;
129                 u64 gs_base;
130         } host;
131
132         u32 *msrpm;
133
134         ulong nmi_iret_rip;
135
136         struct nested_state nested;
137
138         bool nmi_singlestep;
139
140         unsigned int3_injected;
141         unsigned long int3_rip;
142         u32 apf_reason;
143
144         u64  tsc_ratio;
145 };
146
147 static DEFINE_PER_CPU(u64, current_tsc_ratio);
148 #define TSC_RATIO_DEFAULT       0x0100000000ULL
149
150 #define MSR_INVALID                     0xffffffffU
151
152 static struct svm_direct_access_msrs {
153         u32 index;   /* Index of the MSR */
154         bool always; /* True if intercept is always on */
155 } direct_access_msrs[] = {
156         { .index = MSR_STAR,                            .always = true  },
157         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
158 #ifdef CONFIG_X86_64
159         { .index = MSR_GS_BASE,                         .always = true  },
160         { .index = MSR_FS_BASE,                         .always = true  },
161         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
162         { .index = MSR_LSTAR,                           .always = true  },
163         { .index = MSR_CSTAR,                           .always = true  },
164         { .index = MSR_SYSCALL_MASK,                    .always = true  },
165 #endif
166         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
167         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
168         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
169         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
170         { .index = MSR_INVALID,                         .always = false },
171 };
172
173 /* enable NPT for AMD64 and X86 with PAE */
174 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
175 static bool npt_enabled = true;
176 #else
177 static bool npt_enabled;
178 #endif
179 static int npt = 1;
180
181 module_param(npt, int, S_IRUGO);
182
183 static int nested = 1;
184 module_param(nested, int, S_IRUGO);
185
186 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
187 static void svm_complete_interrupts(struct vcpu_svm *svm);
188
189 static int nested_svm_exit_handled(struct vcpu_svm *svm);
190 static int nested_svm_intercept(struct vcpu_svm *svm);
191 static int nested_svm_vmexit(struct vcpu_svm *svm);
192 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
193                                       bool has_error_code, u32 error_code);
194 static u64 __scale_tsc(u64 ratio, u64 tsc);
195
196 enum {
197         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
198                             pause filter count */
199         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
200         VMCB_ASID,       /* ASID */
201         VMCB_INTR,       /* int_ctl, int_vector */
202         VMCB_NPT,        /* npt_en, nCR3, gPAT */
203         VMCB_CR,         /* CR0, CR3, CR4, EFER */
204         VMCB_DR,         /* DR6, DR7 */
205         VMCB_DT,         /* GDT, IDT */
206         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
207         VMCB_CR2,        /* CR2 only */
208         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
209         VMCB_DIRTY_MAX,
210 };
211
212 /* TPR and CR2 are always written before VMRUN */
213 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
214
215 static inline void mark_all_dirty(struct vmcb *vmcb)
216 {
217         vmcb->control.clean = 0;
218 }
219
220 static inline void mark_all_clean(struct vmcb *vmcb)
221 {
222         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
223                                & ~VMCB_ALWAYS_DIRTY_MASK;
224 }
225
226 static inline void mark_dirty(struct vmcb *vmcb, int bit)
227 {
228         vmcb->control.clean &= ~(1 << bit);
229 }
230
231 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
232 {
233         return container_of(vcpu, struct vcpu_svm, vcpu);
234 }
235
236 static void recalc_intercepts(struct vcpu_svm *svm)
237 {
238         struct vmcb_control_area *c, *h;
239         struct nested_state *g;
240
241         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
242
243         if (!is_guest_mode(&svm->vcpu))
244                 return;
245
246         c = &svm->vmcb->control;
247         h = &svm->nested.hsave->control;
248         g = &svm->nested;
249
250         c->intercept_cr = h->intercept_cr | g->intercept_cr;
251         c->intercept_dr = h->intercept_dr | g->intercept_dr;
252         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
253         c->intercept = h->intercept | g->intercept;
254 }
255
256 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
257 {
258         if (is_guest_mode(&svm->vcpu))
259                 return svm->nested.hsave;
260         else
261                 return svm->vmcb;
262 }
263
264 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
265 {
266         struct vmcb *vmcb = get_host_vmcb(svm);
267
268         vmcb->control.intercept_cr |= (1U << bit);
269
270         recalc_intercepts(svm);
271 }
272
273 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
274 {
275         struct vmcb *vmcb = get_host_vmcb(svm);
276
277         vmcb->control.intercept_cr &= ~(1U << bit);
278
279         recalc_intercepts(svm);
280 }
281
282 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         return vmcb->control.intercept_cr & (1U << bit);
287 }
288
289 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
290 {
291         struct vmcb *vmcb = get_host_vmcb(svm);
292
293         vmcb->control.intercept_dr |= (1U << bit);
294
295         recalc_intercepts(svm);
296 }
297
298 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
299 {
300         struct vmcb *vmcb = get_host_vmcb(svm);
301
302         vmcb->control.intercept_dr &= ~(1U << bit);
303
304         recalc_intercepts(svm);
305 }
306
307 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_exceptions |= (1U << bit);
312
313         recalc_intercepts(svm);
314 }
315
316 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
317 {
318         struct vmcb *vmcb = get_host_vmcb(svm);
319
320         vmcb->control.intercept_exceptions &= ~(1U << bit);
321
322         recalc_intercepts(svm);
323 }
324
325 static inline void set_intercept(struct vcpu_svm *svm, int bit)
326 {
327         struct vmcb *vmcb = get_host_vmcb(svm);
328
329         vmcb->control.intercept |= (1ULL << bit);
330
331         recalc_intercepts(svm);
332 }
333
334 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
335 {
336         struct vmcb *vmcb = get_host_vmcb(svm);
337
338         vmcb->control.intercept &= ~(1ULL << bit);
339
340         recalc_intercepts(svm);
341 }
342
343 static inline void enable_gif(struct vcpu_svm *svm)
344 {
345         svm->vcpu.arch.hflags |= HF_GIF_MASK;
346 }
347
348 static inline void disable_gif(struct vcpu_svm *svm)
349 {
350         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
351 }
352
353 static inline bool gif_set(struct vcpu_svm *svm)
354 {
355         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
356 }
357
358 static unsigned long iopm_base;
359
360 struct kvm_ldttss_desc {
361         u16 limit0;
362         u16 base0;
363         unsigned base1:8, type:5, dpl:2, p:1;
364         unsigned limit1:4, zero0:3, g:1, base2:8;
365         u32 base3;
366         u32 zero1;
367 } __attribute__((packed));
368
369 struct svm_cpu_data {
370         int cpu;
371
372         u64 asid_generation;
373         u32 max_asid;
374         u32 next_asid;
375         struct kvm_ldttss_desc *tss_desc;
376
377         struct page *save_area;
378 };
379
380 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
381
382 struct svm_init_data {
383         int cpu;
384         int r;
385 };
386
387 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
388
389 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
390 #define MSRS_RANGE_SIZE 2048
391 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
392
393 static u32 svm_msrpm_offset(u32 msr)
394 {
395         u32 offset;
396         int i;
397
398         for (i = 0; i < NUM_MSR_MAPS; i++) {
399                 if (msr < msrpm_ranges[i] ||
400                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
401                         continue;
402
403                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
404                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
405
406                 /* Now we have the u8 offset - but need the u32 offset */
407                 return offset / 4;
408         }
409
410         /* MSR not in any range */
411         return MSR_INVALID;
412 }
413
414 #define MAX_INST_SIZE 15
415
416 static inline void clgi(void)
417 {
418         asm volatile (__ex(SVM_CLGI));
419 }
420
421 static inline void stgi(void)
422 {
423         asm volatile (__ex(SVM_STGI));
424 }
425
426 static inline void invlpga(unsigned long addr, u32 asid)
427 {
428         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
429 }
430
431 static int get_npt_level(void)
432 {
433 #ifdef CONFIG_X86_64
434         return PT64_ROOT_LEVEL;
435 #else
436         return PT32E_ROOT_LEVEL;
437 #endif
438 }
439
440 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
441 {
442         vcpu->arch.efer = efer;
443         if (!npt_enabled && !(efer & EFER_LMA))
444                 efer &= ~EFER_LME;
445
446         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
447         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
448 }
449
450 static int is_external_interrupt(u32 info)
451 {
452         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
453         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
454 }
455
456 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
457 {
458         struct vcpu_svm *svm = to_svm(vcpu);
459         u32 ret = 0;
460
461         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
462                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
463         return ret & mask;
464 }
465
466 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
467 {
468         struct vcpu_svm *svm = to_svm(vcpu);
469
470         if (mask == 0)
471                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
472         else
473                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
474
475 }
476
477 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
478 {
479         struct vcpu_svm *svm = to_svm(vcpu);
480
481         if (svm->vmcb->control.next_rip != 0)
482                 svm->next_rip = svm->vmcb->control.next_rip;
483
484         if (!svm->next_rip) {
485                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
486                                 EMULATE_DONE)
487                         printk(KERN_DEBUG "%s: NOP\n", __func__);
488                 return;
489         }
490         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
491                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
492                        __func__, kvm_rip_read(vcpu), svm->next_rip);
493
494         kvm_rip_write(vcpu, svm->next_rip);
495         svm_set_interrupt_shadow(vcpu, 0);
496 }
497
498 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
499                                 bool has_error_code, u32 error_code,
500                                 bool reinject)
501 {
502         struct vcpu_svm *svm = to_svm(vcpu);
503
504         /*
505          * If we are within a nested VM we'd better #VMEXIT and let the guest
506          * handle the exception
507          */
508         if (!reinject &&
509             nested_svm_check_exception(svm, nr, has_error_code, error_code))
510                 return;
511
512         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
513                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
514
515                 /*
516                  * For guest debugging where we have to reinject #BP if some
517                  * INT3 is guest-owned:
518                  * Emulate nRIP by moving RIP forward. Will fail if injection
519                  * raises a fault that is not intercepted. Still better than
520                  * failing in all cases.
521                  */
522                 skip_emulated_instruction(&svm->vcpu);
523                 rip = kvm_rip_read(&svm->vcpu);
524                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
525                 svm->int3_injected = rip - old_rip;
526         }
527
528         svm->vmcb->control.event_inj = nr
529                 | SVM_EVTINJ_VALID
530                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
531                 | SVM_EVTINJ_TYPE_EXEPT;
532         svm->vmcb->control.event_inj_err = error_code;
533 }
534
535 static void svm_init_erratum_383(void)
536 {
537         u32 low, high;
538         int err;
539         u64 val;
540
541         if (!cpu_has_amd_erratum(amd_erratum_383))
542                 return;
543
544         /* Use _safe variants to not break nested virtualization */
545         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
546         if (err)
547                 return;
548
549         val |= (1ULL << 47);
550
551         low  = lower_32_bits(val);
552         high = upper_32_bits(val);
553
554         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
555
556         erratum_383_found = true;
557 }
558
559 static int has_svm(void)
560 {
561         const char *msg;
562
563         if (!cpu_has_svm(&msg)) {
564                 printk(KERN_INFO "has_svm: %s\n", msg);
565                 return 0;
566         }
567
568         return 1;
569 }
570
571 static void svm_hardware_disable(void *garbage)
572 {
573         /* Make sure we clean up behind us */
574         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
575                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
576
577         cpu_svm_disable();
578 }
579
580 static int svm_hardware_enable(void *garbage)
581 {
582
583         struct svm_cpu_data *sd;
584         uint64_t efer;
585         struct desc_ptr gdt_descr;
586         struct desc_struct *gdt;
587         int me = raw_smp_processor_id();
588
589         rdmsrl(MSR_EFER, efer);
590         if (efer & EFER_SVME)
591                 return -EBUSY;
592
593         if (!has_svm()) {
594                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
595                        me);
596                 return -EINVAL;
597         }
598         sd = per_cpu(svm_data, me);
599
600         if (!sd) {
601                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
602                        me);
603                 return -EINVAL;
604         }
605
606         sd->asid_generation = 1;
607         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
608         sd->next_asid = sd->max_asid + 1;
609
610         native_store_gdt(&gdt_descr);
611         gdt = (struct desc_struct *)gdt_descr.address;
612         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
613
614         wrmsrl(MSR_EFER, efer | EFER_SVME);
615
616         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
617
618         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
619                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
620                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
621         }
622
623         svm_init_erratum_383();
624
625         return 0;
626 }
627
628 static void svm_cpu_uninit(int cpu)
629 {
630         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
631
632         if (!sd)
633                 return;
634
635         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
636         __free_page(sd->save_area);
637         kfree(sd);
638 }
639
640 static int svm_cpu_init(int cpu)
641 {
642         struct svm_cpu_data *sd;
643         int r;
644
645         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
646         if (!sd)
647                 return -ENOMEM;
648         sd->cpu = cpu;
649         sd->save_area = alloc_page(GFP_KERNEL);
650         r = -ENOMEM;
651         if (!sd->save_area)
652                 goto err_1;
653
654         per_cpu(svm_data, cpu) = sd;
655
656         return 0;
657
658 err_1:
659         kfree(sd);
660         return r;
661
662 }
663
664 static bool valid_msr_intercept(u32 index)
665 {
666         int i;
667
668         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
669                 if (direct_access_msrs[i].index == index)
670                         return true;
671
672         return false;
673 }
674
675 static void set_msr_interception(u32 *msrpm, unsigned msr,
676                                  int read, int write)
677 {
678         u8 bit_read, bit_write;
679         unsigned long tmp;
680         u32 offset;
681
682         /*
683          * If this warning triggers extend the direct_access_msrs list at the
684          * beginning of the file
685          */
686         WARN_ON(!valid_msr_intercept(msr));
687
688         offset    = svm_msrpm_offset(msr);
689         bit_read  = 2 * (msr & 0x0f);
690         bit_write = 2 * (msr & 0x0f) + 1;
691         tmp       = msrpm[offset];
692
693         BUG_ON(offset == MSR_INVALID);
694
695         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
696         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
697
698         msrpm[offset] = tmp;
699 }
700
701 static void svm_vcpu_init_msrpm(u32 *msrpm)
702 {
703         int i;
704
705         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
706
707         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
708                 if (!direct_access_msrs[i].always)
709                         continue;
710
711                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
712         }
713 }
714
715 static void add_msr_offset(u32 offset)
716 {
717         int i;
718
719         for (i = 0; i < MSRPM_OFFSETS; ++i) {
720
721                 /* Offset already in list? */
722                 if (msrpm_offsets[i] == offset)
723                         return;
724
725                 /* Slot used by another offset? */
726                 if (msrpm_offsets[i] != MSR_INVALID)
727                         continue;
728
729                 /* Add offset to list */
730                 msrpm_offsets[i] = offset;
731
732                 return;
733         }
734
735         /*
736          * If this BUG triggers the msrpm_offsets table has an overflow. Just
737          * increase MSRPM_OFFSETS in this case.
738          */
739         BUG();
740 }
741
742 static void init_msrpm_offsets(void)
743 {
744         int i;
745
746         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
747
748         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
749                 u32 offset;
750
751                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
752                 BUG_ON(offset == MSR_INVALID);
753
754                 add_msr_offset(offset);
755         }
756 }
757
758 static void svm_enable_lbrv(struct vcpu_svm *svm)
759 {
760         u32 *msrpm = svm->msrpm;
761
762         svm->vmcb->control.lbr_ctl = 1;
763         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
764         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
765         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
766         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
767 }
768
769 static void svm_disable_lbrv(struct vcpu_svm *svm)
770 {
771         u32 *msrpm = svm->msrpm;
772
773         svm->vmcb->control.lbr_ctl = 0;
774         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
775         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
776         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
777         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
778 }
779
780 static __init int svm_hardware_setup(void)
781 {
782         int cpu;
783         struct page *iopm_pages;
784         void *iopm_va;
785         int r;
786
787         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
788
789         if (!iopm_pages)
790                 return -ENOMEM;
791
792         iopm_va = page_address(iopm_pages);
793         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
794         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
795
796         init_msrpm_offsets();
797
798         if (boot_cpu_has(X86_FEATURE_NX))
799                 kvm_enable_efer_bits(EFER_NX);
800
801         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
802                 kvm_enable_efer_bits(EFER_FFXSR);
803
804         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
805                 u64 max;
806
807                 kvm_has_tsc_control = true;
808
809                 /*
810                  * Make sure the user can only configure tsc_khz values that
811                  * fit into a signed integer.
812                  * A min value is not calculated needed because it will always
813                  * be 1 on all machines and a value of 0 is used to disable
814                  * tsc-scaling for the vcpu.
815                  */
816                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
817
818                 kvm_max_guest_tsc_khz = max;
819         }
820
821         if (nested) {
822                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
823                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
824         }
825
826         for_each_possible_cpu(cpu) {
827                 r = svm_cpu_init(cpu);
828                 if (r)
829                         goto err;
830         }
831
832         if (!boot_cpu_has(X86_FEATURE_NPT))
833                 npt_enabled = false;
834
835         if (npt_enabled && !npt) {
836                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
837                 npt_enabled = false;
838         }
839
840         if (npt_enabled) {
841                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
842                 kvm_enable_tdp();
843         } else
844                 kvm_disable_tdp();
845
846         return 0;
847
848 err:
849         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
850         iopm_base = 0;
851         return r;
852 }
853
854 static __exit void svm_hardware_unsetup(void)
855 {
856         int cpu;
857
858         for_each_possible_cpu(cpu)
859                 svm_cpu_uninit(cpu);
860
861         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
862         iopm_base = 0;
863 }
864
865 static void init_seg(struct vmcb_seg *seg)
866 {
867         seg->selector = 0;
868         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
869                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
870         seg->limit = 0xffff;
871         seg->base = 0;
872 }
873
874 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
875 {
876         seg->selector = 0;
877         seg->attrib = SVM_SELECTOR_P_MASK | type;
878         seg->limit = 0xffff;
879         seg->base = 0;
880 }
881
882 static u64 __scale_tsc(u64 ratio, u64 tsc)
883 {
884         u64 mult, frac, _tsc;
885
886         mult  = ratio >> 32;
887         frac  = ratio & ((1ULL << 32) - 1);
888
889         _tsc  = tsc;
890         _tsc *= mult;
891         _tsc += (tsc >> 32) * frac;
892         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
893
894         return _tsc;
895 }
896
897 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
898 {
899         struct vcpu_svm *svm = to_svm(vcpu);
900         u64 _tsc = tsc;
901
902         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
903                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
904
905         return _tsc;
906 }
907
908 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
909 {
910         struct vcpu_svm *svm = to_svm(vcpu);
911         u64 ratio;
912         u64 khz;
913
914         /* TSC scaling supported? */
915         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
916                 return;
917
918         /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
919         if (user_tsc_khz == 0) {
920                 vcpu->arch.virtual_tsc_khz = 0;
921                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
922                 return;
923         }
924
925         khz = user_tsc_khz;
926
927         /* TSC scaling required  - calculate ratio */
928         ratio = khz << 32;
929         do_div(ratio, tsc_khz);
930
931         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
932                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
933                                 user_tsc_khz);
934                 return;
935         }
936         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
937         svm->tsc_ratio             = ratio;
938 }
939
940 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
941 {
942         struct vcpu_svm *svm = to_svm(vcpu);
943         u64 g_tsc_offset = 0;
944
945         if (is_guest_mode(vcpu)) {
946                 g_tsc_offset = svm->vmcb->control.tsc_offset -
947                                svm->nested.hsave->control.tsc_offset;
948                 svm->nested.hsave->control.tsc_offset = offset;
949         }
950
951         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
952
953         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
954 }
955
956 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
957 {
958         struct vcpu_svm *svm = to_svm(vcpu);
959
960         svm->vmcb->control.tsc_offset += adjustment;
961         if (is_guest_mode(vcpu))
962                 svm->nested.hsave->control.tsc_offset += adjustment;
963         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
964 }
965
966 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
967 {
968         u64 tsc;
969
970         tsc = svm_scale_tsc(vcpu, native_read_tsc());
971
972         return target_tsc - tsc;
973 }
974
975 static void init_vmcb(struct vcpu_svm *svm)
976 {
977         struct vmcb_control_area *control = &svm->vmcb->control;
978         struct vmcb_save_area *save = &svm->vmcb->save;
979
980         svm->vcpu.fpu_active = 1;
981         svm->vcpu.arch.hflags = 0;
982
983         set_cr_intercept(svm, INTERCEPT_CR0_READ);
984         set_cr_intercept(svm, INTERCEPT_CR3_READ);
985         set_cr_intercept(svm, INTERCEPT_CR4_READ);
986         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
987         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
988         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
989         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
990
991         set_dr_intercept(svm, INTERCEPT_DR0_READ);
992         set_dr_intercept(svm, INTERCEPT_DR1_READ);
993         set_dr_intercept(svm, INTERCEPT_DR2_READ);
994         set_dr_intercept(svm, INTERCEPT_DR3_READ);
995         set_dr_intercept(svm, INTERCEPT_DR4_READ);
996         set_dr_intercept(svm, INTERCEPT_DR5_READ);
997         set_dr_intercept(svm, INTERCEPT_DR6_READ);
998         set_dr_intercept(svm, INTERCEPT_DR7_READ);
999
1000         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1001         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1002         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1003         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1004         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1005         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1006         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1007         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1008
1009         set_exception_intercept(svm, PF_VECTOR);
1010         set_exception_intercept(svm, UD_VECTOR);
1011         set_exception_intercept(svm, MC_VECTOR);
1012
1013         set_intercept(svm, INTERCEPT_INTR);
1014         set_intercept(svm, INTERCEPT_NMI);
1015         set_intercept(svm, INTERCEPT_SMI);
1016         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1017         set_intercept(svm, INTERCEPT_CPUID);
1018         set_intercept(svm, INTERCEPT_INVD);
1019         set_intercept(svm, INTERCEPT_HLT);
1020         set_intercept(svm, INTERCEPT_INVLPG);
1021         set_intercept(svm, INTERCEPT_INVLPGA);
1022         set_intercept(svm, INTERCEPT_IOIO_PROT);
1023         set_intercept(svm, INTERCEPT_MSR_PROT);
1024         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1025         set_intercept(svm, INTERCEPT_SHUTDOWN);
1026         set_intercept(svm, INTERCEPT_VMRUN);
1027         set_intercept(svm, INTERCEPT_VMMCALL);
1028         set_intercept(svm, INTERCEPT_VMLOAD);
1029         set_intercept(svm, INTERCEPT_VMSAVE);
1030         set_intercept(svm, INTERCEPT_STGI);
1031         set_intercept(svm, INTERCEPT_CLGI);
1032         set_intercept(svm, INTERCEPT_SKINIT);
1033         set_intercept(svm, INTERCEPT_WBINVD);
1034         set_intercept(svm, INTERCEPT_MONITOR);
1035         set_intercept(svm, INTERCEPT_MWAIT);
1036         set_intercept(svm, INTERCEPT_XSETBV);
1037
1038         control->iopm_base_pa = iopm_base;
1039         control->msrpm_base_pa = __pa(svm->msrpm);
1040         control->int_ctl = V_INTR_MASKING_MASK;
1041
1042         init_seg(&save->es);
1043         init_seg(&save->ss);
1044         init_seg(&save->ds);
1045         init_seg(&save->fs);
1046         init_seg(&save->gs);
1047
1048         save->cs.selector = 0xf000;
1049         /* Executable/Readable Code Segment */
1050         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1051                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1052         save->cs.limit = 0xffff;
1053         /*
1054          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1055          * be consistent with it.
1056          *
1057          * Replace when we have real mode working for vmx.
1058          */
1059         save->cs.base = 0xf0000;
1060
1061         save->gdtr.limit = 0xffff;
1062         save->idtr.limit = 0xffff;
1063
1064         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1065         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1066
1067         svm_set_efer(&svm->vcpu, 0);
1068         save->dr6 = 0xffff0ff0;
1069         save->dr7 = 0x400;
1070         kvm_set_rflags(&svm->vcpu, 2);
1071         save->rip = 0x0000fff0;
1072         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1073
1074         /*
1075          * This is the guest-visible cr0 value.
1076          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1077          */
1078         svm->vcpu.arch.cr0 = 0;
1079         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1080
1081         save->cr4 = X86_CR4_PAE;
1082         /* rdx = ?? */
1083
1084         if (npt_enabled) {
1085                 /* Setup VMCB for Nested Paging */
1086                 control->nested_ctl = 1;
1087                 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
1088                 clr_intercept(svm, INTERCEPT_INVLPG);
1089                 clr_exception_intercept(svm, PF_VECTOR);
1090                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1091                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1092                 save->g_pat = 0x0007040600070406ULL;
1093                 save->cr3 = 0;
1094                 save->cr4 = 0;
1095         }
1096         svm->asid_generation = 0;
1097
1098         svm->nested.vmcb = 0;
1099         svm->vcpu.arch.hflags = 0;
1100
1101         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1102                 control->pause_filter_count = 3000;
1103                 set_intercept(svm, INTERCEPT_PAUSE);
1104         }
1105
1106         mark_all_dirty(svm->vmcb);
1107
1108         enable_gif(svm);
1109 }
1110
1111 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1112 {
1113         struct vcpu_svm *svm = to_svm(vcpu);
1114
1115         init_vmcb(svm);
1116
1117         if (!kvm_vcpu_is_bsp(vcpu)) {
1118                 kvm_rip_write(vcpu, 0);
1119                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1120                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1121         }
1122         vcpu->arch.regs_avail = ~0;
1123         vcpu->arch.regs_dirty = ~0;
1124
1125         return 0;
1126 }
1127
1128 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1129 {
1130         struct vcpu_svm *svm;
1131         struct page *page;
1132         struct page *msrpm_pages;
1133         struct page *hsave_page;
1134         struct page *nested_msrpm_pages;
1135         int err;
1136
1137         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1138         if (!svm) {
1139                 err = -ENOMEM;
1140                 goto out;
1141         }
1142
1143         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1144
1145         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1146         if (err)
1147                 goto free_svm;
1148
1149         err = -ENOMEM;
1150         page = alloc_page(GFP_KERNEL);
1151         if (!page)
1152                 goto uninit;
1153
1154         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1155         if (!msrpm_pages)
1156                 goto free_page1;
1157
1158         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159         if (!nested_msrpm_pages)
1160                 goto free_page2;
1161
1162         hsave_page = alloc_page(GFP_KERNEL);
1163         if (!hsave_page)
1164                 goto free_page3;
1165
1166         svm->nested.hsave = page_address(hsave_page);
1167
1168         svm->msrpm = page_address(msrpm_pages);
1169         svm_vcpu_init_msrpm(svm->msrpm);
1170
1171         svm->nested.msrpm = page_address(nested_msrpm_pages);
1172         svm_vcpu_init_msrpm(svm->nested.msrpm);
1173
1174         svm->vmcb = page_address(page);
1175         clear_page(svm->vmcb);
1176         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1177         svm->asid_generation = 0;
1178         init_vmcb(svm);
1179         kvm_write_tsc(&svm->vcpu, 0);
1180
1181         err = fx_init(&svm->vcpu);
1182         if (err)
1183                 goto free_page4;
1184
1185         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1186         if (kvm_vcpu_is_bsp(&svm->vcpu))
1187                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1188
1189         return &svm->vcpu;
1190
1191 free_page4:
1192         __free_page(hsave_page);
1193 free_page3:
1194         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1195 free_page2:
1196         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1197 free_page1:
1198         __free_page(page);
1199 uninit:
1200         kvm_vcpu_uninit(&svm->vcpu);
1201 free_svm:
1202         kmem_cache_free(kvm_vcpu_cache, svm);
1203 out:
1204         return ERR_PTR(err);
1205 }
1206
1207 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1208 {
1209         struct vcpu_svm *svm = to_svm(vcpu);
1210
1211         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1212         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1213         __free_page(virt_to_page(svm->nested.hsave));
1214         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1215         kvm_vcpu_uninit(vcpu);
1216         kmem_cache_free(kvm_vcpu_cache, svm);
1217 }
1218
1219 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1220 {
1221         struct vcpu_svm *svm = to_svm(vcpu);
1222         int i;
1223
1224         if (unlikely(cpu != vcpu->cpu)) {
1225                 svm->asid_generation = 0;
1226                 mark_all_dirty(svm->vmcb);
1227         }
1228
1229 #ifdef CONFIG_X86_64
1230         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1231 #endif
1232         savesegment(fs, svm->host.fs);
1233         savesegment(gs, svm->host.gs);
1234         svm->host.ldt = kvm_read_ldt();
1235
1236         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1237                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1238
1239         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1240             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1241                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1242                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1243         }
1244 }
1245
1246 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1247 {
1248         struct vcpu_svm *svm = to_svm(vcpu);
1249         int i;
1250
1251         ++vcpu->stat.host_state_reload;
1252         kvm_load_ldt(svm->host.ldt);
1253 #ifdef CONFIG_X86_64
1254         loadsegment(fs, svm->host.fs);
1255         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1256         load_gs_index(svm->host.gs);
1257 #else
1258 #ifdef CONFIG_X86_32_LAZY_GS
1259         loadsegment(gs, svm->host.gs);
1260 #endif
1261 #endif
1262         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1263                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1264 }
1265
1266 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1267 {
1268         return to_svm(vcpu)->vmcb->save.rflags;
1269 }
1270
1271 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1272 {
1273         to_svm(vcpu)->vmcb->save.rflags = rflags;
1274 }
1275
1276 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1277 {
1278         switch (reg) {
1279         case VCPU_EXREG_PDPTR:
1280                 BUG_ON(!npt_enabled);
1281                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1282                 break;
1283         default:
1284                 BUG();
1285         }
1286 }
1287
1288 static void svm_set_vintr(struct vcpu_svm *svm)
1289 {
1290         set_intercept(svm, INTERCEPT_VINTR);
1291 }
1292
1293 static void svm_clear_vintr(struct vcpu_svm *svm)
1294 {
1295         clr_intercept(svm, INTERCEPT_VINTR);
1296 }
1297
1298 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1299 {
1300         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1301
1302         switch (seg) {
1303         case VCPU_SREG_CS: return &save->cs;
1304         case VCPU_SREG_DS: return &save->ds;
1305         case VCPU_SREG_ES: return &save->es;
1306         case VCPU_SREG_FS: return &save->fs;
1307         case VCPU_SREG_GS: return &save->gs;
1308         case VCPU_SREG_SS: return &save->ss;
1309         case VCPU_SREG_TR: return &save->tr;
1310         case VCPU_SREG_LDTR: return &save->ldtr;
1311         }
1312         BUG();
1313         return NULL;
1314 }
1315
1316 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1317 {
1318         struct vmcb_seg *s = svm_seg(vcpu, seg);
1319
1320         return s->base;
1321 }
1322
1323 static void svm_get_segment(struct kvm_vcpu *vcpu,
1324                             struct kvm_segment *var, int seg)
1325 {
1326         struct vmcb_seg *s = svm_seg(vcpu, seg);
1327
1328         var->base = s->base;
1329         var->limit = s->limit;
1330         var->selector = s->selector;
1331         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1332         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1333         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1334         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1335         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1336         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1337         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1338         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1339
1340         /*
1341          * AMD's VMCB does not have an explicit unusable field, so emulate it
1342          * for cross vendor migration purposes by "not present"
1343          */
1344         var->unusable = !var->present || (var->type == 0);
1345
1346         switch (seg) {
1347         case VCPU_SREG_CS:
1348                 /*
1349                  * SVM always stores 0 for the 'G' bit in the CS selector in
1350                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1351                  * Intel's VMENTRY has a check on the 'G' bit.
1352                  */
1353                 var->g = s->limit > 0xfffff;
1354                 break;
1355         case VCPU_SREG_TR:
1356                 /*
1357                  * Work around a bug where the busy flag in the tr selector
1358                  * isn't exposed
1359                  */
1360                 var->type |= 0x2;
1361                 break;
1362         case VCPU_SREG_DS:
1363         case VCPU_SREG_ES:
1364         case VCPU_SREG_FS:
1365         case VCPU_SREG_GS:
1366                 /*
1367                  * The accessed bit must always be set in the segment
1368                  * descriptor cache, although it can be cleared in the
1369                  * descriptor, the cached bit always remains at 1. Since
1370                  * Intel has a check on this, set it here to support
1371                  * cross-vendor migration.
1372                  */
1373                 if (!var->unusable)
1374                         var->type |= 0x1;
1375                 break;
1376         case VCPU_SREG_SS:
1377                 /*
1378                  * On AMD CPUs sometimes the DB bit in the segment
1379                  * descriptor is left as 1, although the whole segment has
1380                  * been made unusable. Clear it here to pass an Intel VMX
1381                  * entry check when cross vendor migrating.
1382                  */
1383                 if (var->unusable)
1384                         var->db = 0;
1385                 break;
1386         }
1387 }
1388
1389 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1390 {
1391         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1392
1393         return save->cpl;
1394 }
1395
1396 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1397 {
1398         struct vcpu_svm *svm = to_svm(vcpu);
1399
1400         dt->size = svm->vmcb->save.idtr.limit;
1401         dt->address = svm->vmcb->save.idtr.base;
1402 }
1403
1404 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1405 {
1406         struct vcpu_svm *svm = to_svm(vcpu);
1407
1408         svm->vmcb->save.idtr.limit = dt->size;
1409         svm->vmcb->save.idtr.base = dt->address ;
1410         mark_dirty(svm->vmcb, VMCB_DT);
1411 }
1412
1413 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1414 {
1415         struct vcpu_svm *svm = to_svm(vcpu);
1416
1417         dt->size = svm->vmcb->save.gdtr.limit;
1418         dt->address = svm->vmcb->save.gdtr.base;
1419 }
1420
1421 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1422 {
1423         struct vcpu_svm *svm = to_svm(vcpu);
1424
1425         svm->vmcb->save.gdtr.limit = dt->size;
1426         svm->vmcb->save.gdtr.base = dt->address ;
1427         mark_dirty(svm->vmcb, VMCB_DT);
1428 }
1429
1430 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1431 {
1432 }
1433
1434 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1435 {
1436 }
1437
1438 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441
1442 static void update_cr0_intercept(struct vcpu_svm *svm)
1443 {
1444         ulong gcr0 = svm->vcpu.arch.cr0;
1445         u64 *hcr0 = &svm->vmcb->save.cr0;
1446
1447         if (!svm->vcpu.fpu_active)
1448                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1449         else
1450                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1451                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1452
1453         mark_dirty(svm->vmcb, VMCB_CR);
1454
1455         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1456                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1457                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1458         } else {
1459                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1460                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1461         }
1462 }
1463
1464 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1465 {
1466         struct vcpu_svm *svm = to_svm(vcpu);
1467
1468 #ifdef CONFIG_X86_64
1469         if (vcpu->arch.efer & EFER_LME) {
1470                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1471                         vcpu->arch.efer |= EFER_LMA;
1472                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1473                 }
1474
1475                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1476                         vcpu->arch.efer &= ~EFER_LMA;
1477                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1478                 }
1479         }
1480 #endif
1481         vcpu->arch.cr0 = cr0;
1482
1483         if (!npt_enabled)
1484                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1485
1486         if (!vcpu->fpu_active)
1487                 cr0 |= X86_CR0_TS;
1488         /*
1489          * re-enable caching here because the QEMU bios
1490          * does not do it - this results in some delay at
1491          * reboot
1492          */
1493         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1494         svm->vmcb->save.cr0 = cr0;
1495         mark_dirty(svm->vmcb, VMCB_CR);
1496         update_cr0_intercept(svm);
1497 }
1498
1499 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1500 {
1501         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1502         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1503
1504         if (cr4 & X86_CR4_VMXE)
1505                 return 1;
1506
1507         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1508                 svm_flush_tlb(vcpu);
1509
1510         vcpu->arch.cr4 = cr4;
1511         if (!npt_enabled)
1512                 cr4 |= X86_CR4_PAE;
1513         cr4 |= host_cr4_mce;
1514         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1515         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1516         return 0;
1517 }
1518
1519 static void svm_set_segment(struct kvm_vcpu *vcpu,
1520                             struct kvm_segment *var, int seg)
1521 {
1522         struct vcpu_svm *svm = to_svm(vcpu);
1523         struct vmcb_seg *s = svm_seg(vcpu, seg);
1524
1525         s->base = var->base;
1526         s->limit = var->limit;
1527         s->selector = var->selector;
1528         if (var->unusable)
1529                 s->attrib = 0;
1530         else {
1531                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1532                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1533                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1534                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1535                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1536                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1537                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1538                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1539         }
1540         if (seg == VCPU_SREG_CS)
1541                 svm->vmcb->save.cpl
1542                         = (svm->vmcb->save.cs.attrib
1543                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1544
1545         mark_dirty(svm->vmcb, VMCB_SEG);
1546 }
1547
1548 static void update_db_intercept(struct kvm_vcpu *vcpu)
1549 {
1550         struct vcpu_svm *svm = to_svm(vcpu);
1551
1552         clr_exception_intercept(svm, DB_VECTOR);
1553         clr_exception_intercept(svm, BP_VECTOR);
1554
1555         if (svm->nmi_singlestep)
1556                 set_exception_intercept(svm, DB_VECTOR);
1557
1558         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1559                 if (vcpu->guest_debug &
1560                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1561                         set_exception_intercept(svm, DB_VECTOR);
1562                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1563                         set_exception_intercept(svm, BP_VECTOR);
1564         } else
1565                 vcpu->guest_debug = 0;
1566 }
1567
1568 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1569 {
1570         struct vcpu_svm *svm = to_svm(vcpu);
1571
1572         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1573                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1574         else
1575                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1576
1577         mark_dirty(svm->vmcb, VMCB_DR);
1578
1579         update_db_intercept(vcpu);
1580 }
1581
1582 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1583 {
1584         if (sd->next_asid > sd->max_asid) {
1585                 ++sd->asid_generation;
1586                 sd->next_asid = 1;
1587                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1588         }
1589
1590         svm->asid_generation = sd->asid_generation;
1591         svm->vmcb->control.asid = sd->next_asid++;
1592
1593         mark_dirty(svm->vmcb, VMCB_ASID);
1594 }
1595
1596 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1597 {
1598         struct vcpu_svm *svm = to_svm(vcpu);
1599
1600         svm->vmcb->save.dr7 = value;
1601         mark_dirty(svm->vmcb, VMCB_DR);
1602 }
1603
1604 static int pf_interception(struct vcpu_svm *svm)
1605 {
1606         u64 fault_address = svm->vmcb->control.exit_info_2;
1607         u32 error_code;
1608         int r = 1;
1609
1610         switch (svm->apf_reason) {
1611         default:
1612                 error_code = svm->vmcb->control.exit_info_1;
1613
1614                 trace_kvm_page_fault(fault_address, error_code);
1615                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1616                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1617                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1618                         svm->vmcb->control.insn_bytes,
1619                         svm->vmcb->control.insn_len);
1620                 break;
1621         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1622                 svm->apf_reason = 0;
1623                 local_irq_disable();
1624                 kvm_async_pf_task_wait(fault_address);
1625                 local_irq_enable();
1626                 break;
1627         case KVM_PV_REASON_PAGE_READY:
1628                 svm->apf_reason = 0;
1629                 local_irq_disable();
1630                 kvm_async_pf_task_wake(fault_address);
1631                 local_irq_enable();
1632                 break;
1633         }
1634         return r;
1635 }
1636
1637 static int db_interception(struct vcpu_svm *svm)
1638 {
1639         struct kvm_run *kvm_run = svm->vcpu.run;
1640
1641         if (!(svm->vcpu.guest_debug &
1642               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1643                 !svm->nmi_singlestep) {
1644                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1645                 return 1;
1646         }
1647
1648         if (svm->nmi_singlestep) {
1649                 svm->nmi_singlestep = false;
1650                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1651                         svm->vmcb->save.rflags &=
1652                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1653                 update_db_intercept(&svm->vcpu);
1654         }
1655
1656         if (svm->vcpu.guest_debug &
1657             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1658                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1659                 kvm_run->debug.arch.pc =
1660                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1661                 kvm_run->debug.arch.exception = DB_VECTOR;
1662                 return 0;
1663         }
1664
1665         return 1;
1666 }
1667
1668 static int bp_interception(struct vcpu_svm *svm)
1669 {
1670         struct kvm_run *kvm_run = svm->vcpu.run;
1671
1672         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1673         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1674         kvm_run->debug.arch.exception = BP_VECTOR;
1675         return 0;
1676 }
1677
1678 static int ud_interception(struct vcpu_svm *svm)
1679 {
1680         int er;
1681
1682         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1683         if (er != EMULATE_DONE)
1684                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1685         return 1;
1686 }
1687
1688 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1689 {
1690         struct vcpu_svm *svm = to_svm(vcpu);
1691
1692         clr_exception_intercept(svm, NM_VECTOR);
1693
1694         svm->vcpu.fpu_active = 1;
1695         update_cr0_intercept(svm);
1696 }
1697
1698 static int nm_interception(struct vcpu_svm *svm)
1699 {
1700         svm_fpu_activate(&svm->vcpu);
1701         return 1;
1702 }
1703
1704 static bool is_erratum_383(void)
1705 {
1706         int err, i;
1707         u64 value;
1708
1709         if (!erratum_383_found)
1710                 return false;
1711
1712         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1713         if (err)
1714                 return false;
1715
1716         /* Bit 62 may or may not be set for this mce */
1717         value &= ~(1ULL << 62);
1718
1719         if (value != 0xb600000000010015ULL)
1720                 return false;
1721
1722         /* Clear MCi_STATUS registers */
1723         for (i = 0; i < 6; ++i)
1724                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1725
1726         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1727         if (!err) {
1728                 u32 low, high;
1729
1730                 value &= ~(1ULL << 2);
1731                 low    = lower_32_bits(value);
1732                 high   = upper_32_bits(value);
1733
1734                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1735         }
1736
1737         /* Flush tlb to evict multi-match entries */
1738         __flush_tlb_all();
1739
1740         return true;
1741 }
1742
1743 static void svm_handle_mce(struct vcpu_svm *svm)
1744 {
1745         if (is_erratum_383()) {
1746                 /*
1747                  * Erratum 383 triggered. Guest state is corrupt so kill the
1748                  * guest.
1749                  */
1750                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1751
1752                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1753
1754                 return;
1755         }
1756
1757         /*
1758          * On an #MC intercept the MCE handler is not called automatically in
1759          * the host. So do it by hand here.
1760          */
1761         asm volatile (
1762                 "int $0x12\n");
1763         /* not sure if we ever come back to this point */
1764
1765         return;
1766 }
1767
1768 static int mc_interception(struct vcpu_svm *svm)
1769 {
1770         return 1;
1771 }
1772
1773 static int shutdown_interception(struct vcpu_svm *svm)
1774 {
1775         struct kvm_run *kvm_run = svm->vcpu.run;
1776
1777         /*
1778          * VMCB is undefined after a SHUTDOWN intercept
1779          * so reinitialize it.
1780          */
1781         clear_page(svm->vmcb);
1782         init_vmcb(svm);
1783
1784         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1785         return 0;
1786 }
1787
1788 static int io_interception(struct vcpu_svm *svm)
1789 {
1790         struct kvm_vcpu *vcpu = &svm->vcpu;
1791         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1792         int size, in, string;
1793         unsigned port;
1794
1795         ++svm->vcpu.stat.io_exits;
1796         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1797         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1798         if (string || in)
1799                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1800
1801         port = io_info >> 16;
1802         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1803         svm->next_rip = svm->vmcb->control.exit_info_2;
1804         skip_emulated_instruction(&svm->vcpu);
1805
1806         return kvm_fast_pio_out(vcpu, size, port);
1807 }
1808
1809 static int nmi_interception(struct vcpu_svm *svm)
1810 {
1811         return 1;
1812 }
1813
1814 static int intr_interception(struct vcpu_svm *svm)
1815 {
1816         ++svm->vcpu.stat.irq_exits;
1817         return 1;
1818 }
1819
1820 static int nop_on_interception(struct vcpu_svm *svm)
1821 {
1822         return 1;
1823 }
1824
1825 static int halt_interception(struct vcpu_svm *svm)
1826 {
1827         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1828         skip_emulated_instruction(&svm->vcpu);
1829         return kvm_emulate_halt(&svm->vcpu);
1830 }
1831
1832 static int vmmcall_interception(struct vcpu_svm *svm)
1833 {
1834         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1835         skip_emulated_instruction(&svm->vcpu);
1836         kvm_emulate_hypercall(&svm->vcpu);
1837         return 1;
1838 }
1839
1840 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1841 {
1842         struct vcpu_svm *svm = to_svm(vcpu);
1843
1844         return svm->nested.nested_cr3;
1845 }
1846
1847 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1848                                    unsigned long root)
1849 {
1850         struct vcpu_svm *svm = to_svm(vcpu);
1851
1852         svm->vmcb->control.nested_cr3 = root;
1853         mark_dirty(svm->vmcb, VMCB_NPT);
1854         svm_flush_tlb(vcpu);
1855 }
1856
1857 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1858                                        struct x86_exception *fault)
1859 {
1860         struct vcpu_svm *svm = to_svm(vcpu);
1861
1862         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1863         svm->vmcb->control.exit_code_hi = 0;
1864         svm->vmcb->control.exit_info_1 = fault->error_code;
1865         svm->vmcb->control.exit_info_2 = fault->address;
1866
1867         nested_svm_vmexit(svm);
1868 }
1869
1870 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1871 {
1872         int r;
1873
1874         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1875
1876         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1877         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1878         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1879         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1880         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1881
1882         return r;
1883 }
1884
1885 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1886 {
1887         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1888 }
1889
1890 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1891 {
1892         if (!(svm->vcpu.arch.efer & EFER_SVME)
1893             || !is_paging(&svm->vcpu)) {
1894                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1895                 return 1;
1896         }
1897
1898         if (svm->vmcb->save.cpl) {
1899                 kvm_inject_gp(&svm->vcpu, 0);
1900                 return 1;
1901         }
1902
1903        return 0;
1904 }
1905
1906 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1907                                       bool has_error_code, u32 error_code)
1908 {
1909         int vmexit;
1910
1911         if (!is_guest_mode(&svm->vcpu))
1912                 return 0;
1913
1914         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1915         svm->vmcb->control.exit_code_hi = 0;
1916         svm->vmcb->control.exit_info_1 = error_code;
1917         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1918
1919         vmexit = nested_svm_intercept(svm);
1920         if (vmexit == NESTED_EXIT_DONE)
1921                 svm->nested.exit_required = true;
1922
1923         return vmexit;
1924 }
1925
1926 /* This function returns true if it is save to enable the irq window */
1927 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1928 {
1929         if (!is_guest_mode(&svm->vcpu))
1930                 return true;
1931
1932         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1933                 return true;
1934
1935         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1936                 return false;
1937
1938         /*
1939          * if vmexit was already requested (by intercepted exception
1940          * for instance) do not overwrite it with "external interrupt"
1941          * vmexit.
1942          */
1943         if (svm->nested.exit_required)
1944                 return false;
1945
1946         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1947         svm->vmcb->control.exit_info_1 = 0;
1948         svm->vmcb->control.exit_info_2 = 0;
1949
1950         if (svm->nested.intercept & 1ULL) {
1951                 /*
1952                  * The #vmexit can't be emulated here directly because this
1953                  * code path runs with irqs and preemtion disabled. A
1954                  * #vmexit emulation might sleep. Only signal request for
1955                  * the #vmexit here.
1956                  */
1957                 svm->nested.exit_required = true;
1958                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1959                 return false;
1960         }
1961
1962         return true;
1963 }
1964
1965 /* This function returns true if it is save to enable the nmi window */
1966 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1967 {
1968         if (!is_guest_mode(&svm->vcpu))
1969                 return true;
1970
1971         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1972                 return true;
1973
1974         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1975         svm->nested.exit_required = true;
1976
1977         return false;
1978 }
1979
1980 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1981 {
1982         struct page *page;
1983
1984         might_sleep();
1985
1986         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1987         if (is_error_page(page))
1988                 goto error;
1989
1990         *_page = page;
1991
1992         return kmap(page);
1993
1994 error:
1995         kvm_release_page_clean(page);
1996         kvm_inject_gp(&svm->vcpu, 0);
1997
1998         return NULL;
1999 }
2000
2001 static void nested_svm_unmap(struct page *page)
2002 {
2003         kunmap(page);
2004         kvm_release_page_dirty(page);
2005 }
2006
2007 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2008 {
2009         unsigned port;
2010         u8 val, bit;
2011         u64 gpa;
2012
2013         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2014                 return NESTED_EXIT_HOST;
2015
2016         port = svm->vmcb->control.exit_info_1 >> 16;
2017         gpa  = svm->nested.vmcb_iopm + (port / 8);
2018         bit  = port % 8;
2019         val  = 0;
2020
2021         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2022                 val &= (1 << bit);
2023
2024         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2025 }
2026
2027 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2028 {
2029         u32 offset, msr, value;
2030         int write, mask;
2031
2032         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2033                 return NESTED_EXIT_HOST;
2034
2035         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2036         offset = svm_msrpm_offset(msr);
2037         write  = svm->vmcb->control.exit_info_1 & 1;
2038         mask   = 1 << ((2 * (msr & 0xf)) + write);
2039
2040         if (offset == MSR_INVALID)
2041                 return NESTED_EXIT_DONE;
2042
2043         /* Offset is in 32 bit units but need in 8 bit units */
2044         offset *= 4;
2045
2046         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2047                 return NESTED_EXIT_DONE;
2048
2049         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2050 }
2051
2052 static int nested_svm_exit_special(struct vcpu_svm *svm)
2053 {
2054         u32 exit_code = svm->vmcb->control.exit_code;
2055
2056         switch (exit_code) {
2057         case SVM_EXIT_INTR:
2058         case SVM_EXIT_NMI:
2059         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2060                 return NESTED_EXIT_HOST;
2061         case SVM_EXIT_NPF:
2062                 /* For now we are always handling NPFs when using them */
2063                 if (npt_enabled)
2064                         return NESTED_EXIT_HOST;
2065                 break;
2066         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2067                 /* When we're shadowing, trap PFs, but not async PF */
2068                 if (!npt_enabled && svm->apf_reason == 0)
2069                         return NESTED_EXIT_HOST;
2070                 break;
2071         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2072                 nm_interception(svm);
2073                 break;
2074         default:
2075                 break;
2076         }
2077
2078         return NESTED_EXIT_CONTINUE;
2079 }
2080
2081 /*
2082  * If this function returns true, this #vmexit was already handled
2083  */
2084 static int nested_svm_intercept(struct vcpu_svm *svm)
2085 {
2086         u32 exit_code = svm->vmcb->control.exit_code;
2087         int vmexit = NESTED_EXIT_HOST;
2088
2089         switch (exit_code) {
2090         case SVM_EXIT_MSR:
2091                 vmexit = nested_svm_exit_handled_msr(svm);
2092                 break;
2093         case SVM_EXIT_IOIO:
2094                 vmexit = nested_svm_intercept_ioio(svm);
2095                 break;
2096         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2097                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2098                 if (svm->nested.intercept_cr & bit)
2099                         vmexit = NESTED_EXIT_DONE;
2100                 break;
2101         }
2102         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2103                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2104                 if (svm->nested.intercept_dr & bit)
2105                         vmexit = NESTED_EXIT_DONE;
2106                 break;
2107         }
2108         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2109                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2110                 if (svm->nested.intercept_exceptions & excp_bits)
2111                         vmexit = NESTED_EXIT_DONE;
2112                 /* async page fault always cause vmexit */
2113                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2114                          svm->apf_reason != 0)
2115                         vmexit = NESTED_EXIT_DONE;
2116                 break;
2117         }
2118         case SVM_EXIT_ERR: {
2119                 vmexit = NESTED_EXIT_DONE;
2120                 break;
2121         }
2122         default: {
2123                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2124                 if (svm->nested.intercept & exit_bits)
2125                         vmexit = NESTED_EXIT_DONE;
2126         }
2127         }
2128
2129         return vmexit;
2130 }
2131
2132 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2133 {
2134         int vmexit;
2135
2136         vmexit = nested_svm_intercept(svm);
2137
2138         if (vmexit == NESTED_EXIT_DONE)
2139                 nested_svm_vmexit(svm);
2140
2141         return vmexit;
2142 }
2143
2144 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2145 {
2146         struct vmcb_control_area *dst  = &dst_vmcb->control;
2147         struct vmcb_control_area *from = &from_vmcb->control;
2148
2149         dst->intercept_cr         = from->intercept_cr;
2150         dst->intercept_dr         = from->intercept_dr;
2151         dst->intercept_exceptions = from->intercept_exceptions;
2152         dst->intercept            = from->intercept;
2153         dst->iopm_base_pa         = from->iopm_base_pa;
2154         dst->msrpm_base_pa        = from->msrpm_base_pa;
2155         dst->tsc_offset           = from->tsc_offset;
2156         dst->asid                 = from->asid;
2157         dst->tlb_ctl              = from->tlb_ctl;
2158         dst->int_ctl              = from->int_ctl;
2159         dst->int_vector           = from->int_vector;
2160         dst->int_state            = from->int_state;
2161         dst->exit_code            = from->exit_code;
2162         dst->exit_code_hi         = from->exit_code_hi;
2163         dst->exit_info_1          = from->exit_info_1;
2164         dst->exit_info_2          = from->exit_info_2;
2165         dst->exit_int_info        = from->exit_int_info;
2166         dst->exit_int_info_err    = from->exit_int_info_err;
2167         dst->nested_ctl           = from->nested_ctl;
2168         dst->event_inj            = from->event_inj;
2169         dst->event_inj_err        = from->event_inj_err;
2170         dst->nested_cr3           = from->nested_cr3;
2171         dst->lbr_ctl              = from->lbr_ctl;
2172 }
2173
2174 static int nested_svm_vmexit(struct vcpu_svm *svm)
2175 {
2176         struct vmcb *nested_vmcb;
2177         struct vmcb *hsave = svm->nested.hsave;
2178         struct vmcb *vmcb = svm->vmcb;
2179         struct page *page;
2180
2181         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2182                                        vmcb->control.exit_info_1,
2183                                        vmcb->control.exit_info_2,
2184                                        vmcb->control.exit_int_info,
2185                                        vmcb->control.exit_int_info_err,
2186                                        KVM_ISA_SVM);
2187
2188         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2189         if (!nested_vmcb)
2190                 return 1;
2191
2192         /* Exit Guest-Mode */
2193         leave_guest_mode(&svm->vcpu);
2194         svm->nested.vmcb = 0;
2195
2196         /* Give the current vmcb to the guest */
2197         disable_gif(svm);
2198
2199         nested_vmcb->save.es     = vmcb->save.es;
2200         nested_vmcb->save.cs     = vmcb->save.cs;
2201         nested_vmcb->save.ss     = vmcb->save.ss;
2202         nested_vmcb->save.ds     = vmcb->save.ds;
2203         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2204         nested_vmcb->save.idtr   = vmcb->save.idtr;
2205         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2206         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2207         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2208         nested_vmcb->save.cr2    = vmcb->save.cr2;
2209         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2210         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2211         nested_vmcb->save.rip    = vmcb->save.rip;
2212         nested_vmcb->save.rsp    = vmcb->save.rsp;
2213         nested_vmcb->save.rax    = vmcb->save.rax;
2214         nested_vmcb->save.dr7    = vmcb->save.dr7;
2215         nested_vmcb->save.dr6    = vmcb->save.dr6;
2216         nested_vmcb->save.cpl    = vmcb->save.cpl;
2217
2218         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2219         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2220         nested_vmcb->control.int_state         = vmcb->control.int_state;
2221         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2222         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2223         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2224         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2225         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2226         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2227         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2228
2229         /*
2230          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2231          * to make sure that we do not lose injected events. So check event_inj
2232          * here and copy it to exit_int_info if it is valid.
2233          * Exit_int_info and event_inj can't be both valid because the case
2234          * below only happens on a VMRUN instruction intercept which has
2235          * no valid exit_int_info set.
2236          */
2237         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2238                 struct vmcb_control_area *nc = &nested_vmcb->control;
2239
2240                 nc->exit_int_info     = vmcb->control.event_inj;
2241                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2242         }
2243
2244         nested_vmcb->control.tlb_ctl           = 0;
2245         nested_vmcb->control.event_inj         = 0;
2246         nested_vmcb->control.event_inj_err     = 0;
2247
2248         /* We always set V_INTR_MASKING and remember the old value in hflags */
2249         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2250                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2251
2252         /* Restore the original control entries */
2253         copy_vmcb_control_area(vmcb, hsave);
2254
2255         kvm_clear_exception_queue(&svm->vcpu);
2256         kvm_clear_interrupt_queue(&svm->vcpu);
2257
2258         svm->nested.nested_cr3 = 0;
2259
2260         /* Restore selected save entries */
2261         svm->vmcb->save.es = hsave->save.es;
2262         svm->vmcb->save.cs = hsave->save.cs;
2263         svm->vmcb->save.ss = hsave->save.ss;
2264         svm->vmcb->save.ds = hsave->save.ds;
2265         svm->vmcb->save.gdtr = hsave->save.gdtr;
2266         svm->vmcb->save.idtr = hsave->save.idtr;
2267         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2268         svm_set_efer(&svm->vcpu, hsave->save.efer);
2269         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2270         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2271         if (npt_enabled) {
2272                 svm->vmcb->save.cr3 = hsave->save.cr3;
2273                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2274         } else {
2275                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2276         }
2277         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2278         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2279         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2280         svm->vmcb->save.dr7 = 0;
2281         svm->vmcb->save.cpl = 0;
2282         svm->vmcb->control.exit_int_info = 0;
2283
2284         mark_all_dirty(svm->vmcb);
2285
2286         nested_svm_unmap(page);
2287
2288         nested_svm_uninit_mmu_context(&svm->vcpu);
2289         kvm_mmu_reset_context(&svm->vcpu);
2290         kvm_mmu_load(&svm->vcpu);
2291
2292         return 0;
2293 }
2294
2295 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2296 {
2297         /*
2298          * This function merges the msr permission bitmaps of kvm and the
2299          * nested vmcb. It is omptimized in that it only merges the parts where
2300          * the kvm msr permission bitmap may contain zero bits
2301          */
2302         int i;
2303
2304         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2305                 return true;
2306
2307         for (i = 0; i < MSRPM_OFFSETS; i++) {
2308                 u32 value, p;
2309                 u64 offset;
2310
2311                 if (msrpm_offsets[i] == 0xffffffff)
2312                         break;
2313
2314                 p      = msrpm_offsets[i];
2315                 offset = svm->nested.vmcb_msrpm + (p * 4);
2316
2317                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2318                         return false;
2319
2320                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2321         }
2322
2323         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2324
2325         return true;
2326 }
2327
2328 static bool nested_vmcb_checks(struct vmcb *vmcb)
2329 {
2330         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2331                 return false;
2332
2333         if (vmcb->control.asid == 0)
2334                 return false;
2335
2336         if (vmcb->control.nested_ctl && !npt_enabled)
2337                 return false;
2338
2339         return true;
2340 }
2341
2342 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2343 {
2344         struct vmcb *nested_vmcb;
2345         struct vmcb *hsave = svm->nested.hsave;
2346         struct vmcb *vmcb = svm->vmcb;
2347         struct page *page;
2348         u64 vmcb_gpa;
2349
2350         vmcb_gpa = svm->vmcb->save.rax;
2351
2352         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2353         if (!nested_vmcb)
2354                 return false;
2355
2356         if (!nested_vmcb_checks(nested_vmcb)) {
2357                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2358                 nested_vmcb->control.exit_code_hi = 0;
2359                 nested_vmcb->control.exit_info_1  = 0;
2360                 nested_vmcb->control.exit_info_2  = 0;
2361
2362                 nested_svm_unmap(page);
2363
2364                 return false;
2365         }
2366
2367         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2368                                nested_vmcb->save.rip,
2369                                nested_vmcb->control.int_ctl,
2370                                nested_vmcb->control.event_inj,
2371                                nested_vmcb->control.nested_ctl);
2372
2373         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2374                                     nested_vmcb->control.intercept_cr >> 16,
2375                                     nested_vmcb->control.intercept_exceptions,
2376                                     nested_vmcb->control.intercept);
2377
2378         /* Clear internal status */
2379         kvm_clear_exception_queue(&svm->vcpu);
2380         kvm_clear_interrupt_queue(&svm->vcpu);
2381
2382         /*
2383          * Save the old vmcb, so we don't need to pick what we save, but can
2384          * restore everything when a VMEXIT occurs
2385          */
2386         hsave->save.es     = vmcb->save.es;
2387         hsave->save.cs     = vmcb->save.cs;
2388         hsave->save.ss     = vmcb->save.ss;
2389         hsave->save.ds     = vmcb->save.ds;
2390         hsave->save.gdtr   = vmcb->save.gdtr;
2391         hsave->save.idtr   = vmcb->save.idtr;
2392         hsave->save.efer   = svm->vcpu.arch.efer;
2393         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2394         hsave->save.cr4    = svm->vcpu.arch.cr4;
2395         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2396         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2397         hsave->save.rsp    = vmcb->save.rsp;
2398         hsave->save.rax    = vmcb->save.rax;
2399         if (npt_enabled)
2400                 hsave->save.cr3    = vmcb->save.cr3;
2401         else
2402                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2403
2404         copy_vmcb_control_area(hsave, vmcb);
2405
2406         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2407                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2408         else
2409                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2410
2411         if (nested_vmcb->control.nested_ctl) {
2412                 kvm_mmu_unload(&svm->vcpu);
2413                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2414                 nested_svm_init_mmu_context(&svm->vcpu);
2415         }
2416
2417         /* Load the nested guest state */
2418         svm->vmcb->save.es = nested_vmcb->save.es;
2419         svm->vmcb->save.cs = nested_vmcb->save.cs;
2420         svm->vmcb->save.ss = nested_vmcb->save.ss;
2421         svm->vmcb->save.ds = nested_vmcb->save.ds;
2422         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2423         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2424         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2425         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2426         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2427         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2428         if (npt_enabled) {
2429                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2430                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2431         } else
2432                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2433
2434         /* Guest paging mode is active - reset mmu */
2435         kvm_mmu_reset_context(&svm->vcpu);
2436
2437         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2438         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2439         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2440         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2441
2442         /* In case we don't even reach vcpu_run, the fields are not updated */
2443         svm->vmcb->save.rax = nested_vmcb->save.rax;
2444         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2445         svm->vmcb->save.rip = nested_vmcb->save.rip;
2446         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2447         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2448         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2449
2450         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2451         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2452
2453         /* cache intercepts */
2454         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2455         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2456         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2457         svm->nested.intercept            = nested_vmcb->control.intercept;
2458
2459         svm_flush_tlb(&svm->vcpu);
2460         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2461         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2462                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2463         else
2464                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2465
2466         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2467                 /* We only want the cr8 intercept bits of the guest */
2468                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2469                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2470         }
2471
2472         /* We don't want to see VMMCALLs from a nested guest */
2473         clr_intercept(svm, INTERCEPT_VMMCALL);
2474
2475         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2476         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2477         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2478         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2479         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2480         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2481
2482         nested_svm_unmap(page);
2483
2484         /* Enter Guest-Mode */
2485         enter_guest_mode(&svm->vcpu);
2486
2487         /*
2488          * Merge guest and host intercepts - must be called  with vcpu in
2489          * guest-mode to take affect here
2490          */
2491         recalc_intercepts(svm);
2492
2493         svm->nested.vmcb = vmcb_gpa;
2494
2495         enable_gif(svm);
2496
2497         mark_all_dirty(svm->vmcb);
2498
2499         return true;
2500 }
2501
2502 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2503 {
2504         to_vmcb->save.fs = from_vmcb->save.fs;
2505         to_vmcb->save.gs = from_vmcb->save.gs;
2506         to_vmcb->save.tr = from_vmcb->save.tr;
2507         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2508         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2509         to_vmcb->save.star = from_vmcb->save.star;
2510         to_vmcb->save.lstar = from_vmcb->save.lstar;
2511         to_vmcb->save.cstar = from_vmcb->save.cstar;
2512         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2513         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2514         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2515         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2516 }
2517
2518 static int vmload_interception(struct vcpu_svm *svm)
2519 {
2520         struct vmcb *nested_vmcb;
2521         struct page *page;
2522
2523         if (nested_svm_check_permissions(svm))
2524                 return 1;
2525
2526         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2527         if (!nested_vmcb)
2528                 return 1;
2529
2530         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2531         skip_emulated_instruction(&svm->vcpu);
2532
2533         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2534         nested_svm_unmap(page);
2535
2536         return 1;
2537 }
2538
2539 static int vmsave_interception(struct vcpu_svm *svm)
2540 {
2541         struct vmcb *nested_vmcb;
2542         struct page *page;
2543
2544         if (nested_svm_check_permissions(svm))
2545                 return 1;
2546
2547         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2548         if (!nested_vmcb)
2549                 return 1;
2550
2551         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2552         skip_emulated_instruction(&svm->vcpu);
2553
2554         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2555         nested_svm_unmap(page);
2556
2557         return 1;
2558 }
2559
2560 static int vmrun_interception(struct vcpu_svm *svm)
2561 {
2562         if (nested_svm_check_permissions(svm))
2563                 return 1;
2564
2565         /* Save rip after vmrun instruction */
2566         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2567
2568         if (!nested_svm_vmrun(svm))
2569                 return 1;
2570
2571         if (!nested_svm_vmrun_msrpm(svm))
2572                 goto failed;
2573
2574         return 1;
2575
2576 failed:
2577
2578         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2579         svm->vmcb->control.exit_code_hi = 0;
2580         svm->vmcb->control.exit_info_1  = 0;
2581         svm->vmcb->control.exit_info_2  = 0;
2582
2583         nested_svm_vmexit(svm);
2584
2585         return 1;
2586 }
2587
2588 static int stgi_interception(struct vcpu_svm *svm)
2589 {
2590         if (nested_svm_check_permissions(svm))
2591                 return 1;
2592
2593         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2594         skip_emulated_instruction(&svm->vcpu);
2595         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2596
2597         enable_gif(svm);
2598
2599         return 1;
2600 }
2601
2602 static int clgi_interception(struct vcpu_svm *svm)
2603 {
2604         if (nested_svm_check_permissions(svm))
2605                 return 1;
2606
2607         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2608         skip_emulated_instruction(&svm->vcpu);
2609
2610         disable_gif(svm);
2611
2612         /* After a CLGI no interrupts should come */
2613         svm_clear_vintr(svm);
2614         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2615
2616         mark_dirty(svm->vmcb, VMCB_INTR);
2617
2618         return 1;
2619 }
2620
2621 static int invlpga_interception(struct vcpu_svm *svm)
2622 {
2623         struct kvm_vcpu *vcpu = &svm->vcpu;
2624
2625         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2626                           vcpu->arch.regs[VCPU_REGS_RAX]);
2627
2628         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2629         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2630
2631         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2632         skip_emulated_instruction(&svm->vcpu);
2633         return 1;
2634 }
2635
2636 static int skinit_interception(struct vcpu_svm *svm)
2637 {
2638         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2639
2640         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2641         return 1;
2642 }
2643
2644 static int xsetbv_interception(struct vcpu_svm *svm)
2645 {
2646         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2647         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2648
2649         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2650                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2651                 skip_emulated_instruction(&svm->vcpu);
2652         }
2653
2654         return 1;
2655 }
2656
2657 static int invalid_op_interception(struct vcpu_svm *svm)
2658 {
2659         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2660         return 1;
2661 }
2662
2663 static int task_switch_interception(struct vcpu_svm *svm)
2664 {
2665         u16 tss_selector;
2666         int reason;
2667         int int_type = svm->vmcb->control.exit_int_info &
2668                 SVM_EXITINTINFO_TYPE_MASK;
2669         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2670         uint32_t type =
2671                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2672         uint32_t idt_v =
2673                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2674         bool has_error_code = false;
2675         u32 error_code = 0;
2676
2677         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2678
2679         if (svm->vmcb->control.exit_info_2 &
2680             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2681                 reason = TASK_SWITCH_IRET;
2682         else if (svm->vmcb->control.exit_info_2 &
2683                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2684                 reason = TASK_SWITCH_JMP;
2685         else if (idt_v)
2686                 reason = TASK_SWITCH_GATE;
2687         else
2688                 reason = TASK_SWITCH_CALL;
2689
2690         if (reason == TASK_SWITCH_GATE) {
2691                 switch (type) {
2692                 case SVM_EXITINTINFO_TYPE_NMI:
2693                         svm->vcpu.arch.nmi_injected = false;
2694                         break;
2695                 case SVM_EXITINTINFO_TYPE_EXEPT:
2696                         if (svm->vmcb->control.exit_info_2 &
2697                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2698                                 has_error_code = true;
2699                                 error_code =
2700                                         (u32)svm->vmcb->control.exit_info_2;
2701                         }
2702                         kvm_clear_exception_queue(&svm->vcpu);
2703                         break;
2704                 case SVM_EXITINTINFO_TYPE_INTR:
2705                         kvm_clear_interrupt_queue(&svm->vcpu);
2706                         break;
2707                 default:
2708                         break;
2709                 }
2710         }
2711
2712         if (reason != TASK_SWITCH_GATE ||
2713             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2714             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2715              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2716                 skip_emulated_instruction(&svm->vcpu);
2717
2718         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2719                                 has_error_code, error_code) == EMULATE_FAIL) {
2720                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2721                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2722                 svm->vcpu.run->internal.ndata = 0;
2723                 return 0;
2724         }
2725         return 1;
2726 }
2727
2728 static int cpuid_interception(struct vcpu_svm *svm)
2729 {
2730         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2731         kvm_emulate_cpuid(&svm->vcpu);
2732         return 1;
2733 }
2734
2735 static int iret_interception(struct vcpu_svm *svm)
2736 {
2737         ++svm->vcpu.stat.nmi_window_exits;
2738         clr_intercept(svm, INTERCEPT_IRET);
2739         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2740         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2741         return 1;
2742 }
2743
2744 static int invlpg_interception(struct vcpu_svm *svm)
2745 {
2746         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2747                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2748
2749         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2750         skip_emulated_instruction(&svm->vcpu);
2751         return 1;
2752 }
2753
2754 static int emulate_on_interception(struct vcpu_svm *svm)
2755 {
2756         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2757 }
2758
2759 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2760 {
2761         unsigned long cr0 = svm->vcpu.arch.cr0;
2762         bool ret = false;
2763         u64 intercept;
2764
2765         intercept = svm->nested.intercept;
2766
2767         if (!is_guest_mode(&svm->vcpu) ||
2768             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2769                 return false;
2770
2771         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2772         val &= ~SVM_CR0_SELECTIVE_MASK;
2773
2774         if (cr0 ^ val) {
2775                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2776                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2777         }
2778
2779         return ret;
2780 }
2781
2782 #define CR_VALID (1ULL << 63)
2783
2784 static int cr_interception(struct vcpu_svm *svm)
2785 {
2786         int reg, cr;
2787         unsigned long val;
2788         int err;
2789
2790         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2791                 return emulate_on_interception(svm);
2792
2793         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2794                 return emulate_on_interception(svm);
2795
2796         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2797         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2798
2799         err = 0;
2800         if (cr >= 16) { /* mov to cr */
2801                 cr -= 16;
2802                 val = kvm_register_read(&svm->vcpu, reg);
2803                 switch (cr) {
2804                 case 0:
2805                         if (!check_selective_cr0_intercepted(svm, val))
2806                                 err = kvm_set_cr0(&svm->vcpu, val);
2807                         else
2808                                 return 1;
2809
2810                         break;
2811                 case 3:
2812                         err = kvm_set_cr3(&svm->vcpu, val);
2813                         break;
2814                 case 4:
2815                         err = kvm_set_cr4(&svm->vcpu, val);
2816                         break;
2817                 case 8:
2818                         err = kvm_set_cr8(&svm->vcpu, val);
2819                         break;
2820                 default:
2821                         WARN(1, "unhandled write to CR%d", cr);
2822                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2823                         return 1;
2824                 }
2825         } else { /* mov from cr */
2826                 switch (cr) {
2827                 case 0:
2828                         val = kvm_read_cr0(&svm->vcpu);
2829                         break;
2830                 case 2:
2831                         val = svm->vcpu.arch.cr2;
2832                         break;
2833                 case 3:
2834                         val = kvm_read_cr3(&svm->vcpu);
2835                         break;
2836                 case 4:
2837                         val = kvm_read_cr4(&svm->vcpu);
2838                         break;
2839                 case 8:
2840                         val = kvm_get_cr8(&svm->vcpu);
2841                         break;
2842                 default:
2843                         WARN(1, "unhandled read from CR%d", cr);
2844                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2845                         return 1;
2846                 }
2847                 kvm_register_write(&svm->vcpu, reg, val);
2848         }
2849         kvm_complete_insn_gp(&svm->vcpu, err);
2850
2851         return 1;
2852 }
2853
2854 static int dr_interception(struct vcpu_svm *svm)
2855 {
2856         int reg, dr;
2857         unsigned long val;
2858         int err;
2859
2860         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2861                 return emulate_on_interception(svm);
2862
2863         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2864         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2865
2866         if (dr >= 16) { /* mov to DRn */
2867                 val = kvm_register_read(&svm->vcpu, reg);
2868                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2869         } else {
2870                 err = kvm_get_dr(&svm->vcpu, dr, &val);
2871                 if (!err)
2872                         kvm_register_write(&svm->vcpu, reg, val);
2873         }
2874
2875         skip_emulated_instruction(&svm->vcpu);
2876
2877         return 1;
2878 }
2879
2880 static int cr8_write_interception(struct vcpu_svm *svm)
2881 {
2882         struct kvm_run *kvm_run = svm->vcpu.run;
2883         int r;
2884
2885         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2886         /* instruction emulation calls kvm_set_cr8() */
2887         r = cr_interception(svm);
2888         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2889                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2890                 return r;
2891         }
2892         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2893                 return r;
2894         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2895         return 0;
2896 }
2897
2898 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2899 {
2900         struct vcpu_svm *svm = to_svm(vcpu);
2901
2902         switch (ecx) {
2903         case MSR_IA32_TSC: {
2904                 struct vmcb *vmcb = get_host_vmcb(svm);
2905
2906                 *data = vmcb->control.tsc_offset +
2907                         svm_scale_tsc(vcpu, native_read_tsc());
2908
2909                 break;
2910         }
2911         case MSR_STAR:
2912                 *data = svm->vmcb->save.star;
2913                 break;
2914 #ifdef CONFIG_X86_64
2915         case MSR_LSTAR:
2916                 *data = svm->vmcb->save.lstar;
2917                 break;
2918         case MSR_CSTAR:
2919                 *data = svm->vmcb->save.cstar;
2920                 break;
2921         case MSR_KERNEL_GS_BASE:
2922                 *data = svm->vmcb->save.kernel_gs_base;
2923                 break;
2924         case MSR_SYSCALL_MASK:
2925                 *data = svm->vmcb->save.sfmask;
2926                 break;
2927 #endif
2928         case MSR_IA32_SYSENTER_CS:
2929                 *data = svm->vmcb->save.sysenter_cs;
2930                 break;
2931         case MSR_IA32_SYSENTER_EIP:
2932                 *data = svm->sysenter_eip;
2933                 break;
2934         case MSR_IA32_SYSENTER_ESP:
2935                 *data = svm->sysenter_esp;
2936                 break;
2937         /*
2938          * Nobody will change the following 5 values in the VMCB so we can
2939          * safely return them on rdmsr. They will always be 0 until LBRV is
2940          * implemented.
2941          */
2942         case MSR_IA32_DEBUGCTLMSR:
2943                 *data = svm->vmcb->save.dbgctl;
2944                 break;
2945         case MSR_IA32_LASTBRANCHFROMIP:
2946                 *data = svm->vmcb->save.br_from;
2947                 break;
2948         case MSR_IA32_LASTBRANCHTOIP:
2949                 *data = svm->vmcb->save.br_to;
2950                 break;
2951         case MSR_IA32_LASTINTFROMIP:
2952                 *data = svm->vmcb->save.last_excp_from;
2953                 break;
2954         case MSR_IA32_LASTINTTOIP:
2955                 *data = svm->vmcb->save.last_excp_to;
2956                 break;
2957         case MSR_VM_HSAVE_PA:
2958                 *data = svm->nested.hsave_msr;
2959                 break;
2960         case MSR_VM_CR:
2961                 *data = svm->nested.vm_cr_msr;
2962                 break;
2963         case MSR_IA32_UCODE_REV:
2964                 *data = 0x01000065;
2965                 break;
2966         default:
2967                 return kvm_get_msr_common(vcpu, ecx, data);
2968         }
2969         return 0;
2970 }
2971
2972 static int rdmsr_interception(struct vcpu_svm *svm)
2973 {
2974         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2975         u64 data;
2976
2977         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2978                 trace_kvm_msr_read_ex(ecx);
2979                 kvm_inject_gp(&svm->vcpu, 0);
2980         } else {
2981                 trace_kvm_msr_read(ecx, data);
2982
2983                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2984                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2985                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2986                 skip_emulated_instruction(&svm->vcpu);
2987         }
2988         return 1;
2989 }
2990
2991 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2992 {
2993         struct vcpu_svm *svm = to_svm(vcpu);
2994         int svm_dis, chg_mask;
2995
2996         if (data & ~SVM_VM_CR_VALID_MASK)
2997                 return 1;
2998
2999         chg_mask = SVM_VM_CR_VALID_MASK;
3000
3001         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3002                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3003
3004         svm->nested.vm_cr_msr &= ~chg_mask;
3005         svm->nested.vm_cr_msr |= (data & chg_mask);
3006
3007         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3008
3009         /* check for svm_disable while efer.svme is set */
3010         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3011                 return 1;
3012
3013         return 0;
3014 }
3015
3016 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3017 {
3018         struct vcpu_svm *svm = to_svm(vcpu);
3019
3020         switch (ecx) {
3021         case MSR_IA32_TSC:
3022                 kvm_write_tsc(vcpu, data);
3023                 break;
3024         case MSR_STAR:
3025                 svm->vmcb->save.star = data;
3026                 break;
3027 #ifdef CONFIG_X86_64
3028         case MSR_LSTAR:
3029                 svm->vmcb->save.lstar = data;
3030                 break;
3031         case MSR_CSTAR:
3032                 svm->vmcb->save.cstar = data;
3033                 break;
3034         case MSR_KERNEL_GS_BASE:
3035                 svm->vmcb->save.kernel_gs_base = data;
3036                 break;
3037         case MSR_SYSCALL_MASK:
3038                 svm->vmcb->save.sfmask = data;
3039                 break;
3040 #endif
3041         case MSR_IA32_SYSENTER_CS:
3042                 svm->vmcb->save.sysenter_cs = data;
3043                 break;
3044         case MSR_IA32_SYSENTER_EIP:
3045                 svm->sysenter_eip = data;
3046                 svm->vmcb->save.sysenter_eip = data;
3047                 break;
3048         case MSR_IA32_SYSENTER_ESP:
3049                 svm->sysenter_esp = data;
3050                 svm->vmcb->save.sysenter_esp = data;
3051                 break;
3052         case MSR_IA32_DEBUGCTLMSR:
3053                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3054                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3055                                         __func__, data);
3056                         break;
3057                 }
3058                 if (data & DEBUGCTL_RESERVED_BITS)
3059                         return 1;
3060
3061                 svm->vmcb->save.dbgctl = data;
3062                 mark_dirty(svm->vmcb, VMCB_LBR);
3063                 if (data & (1ULL<<0))
3064                         svm_enable_lbrv(svm);
3065                 else
3066                         svm_disable_lbrv(svm);
3067                 break;
3068         case MSR_VM_HSAVE_PA:
3069                 svm->nested.hsave_msr = data;
3070                 break;
3071         case MSR_VM_CR:
3072                 return svm_set_vm_cr(vcpu, data);
3073         case MSR_VM_IGNNE:
3074                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3075                 break;
3076         default:
3077                 return kvm_set_msr_common(vcpu, ecx, data);
3078         }
3079         return 0;
3080 }
3081
3082 static int wrmsr_interception(struct vcpu_svm *svm)
3083 {
3084         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3085         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3086                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3087
3088
3089         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3090         if (svm_set_msr(&svm->vcpu, ecx, data)) {
3091                 trace_kvm_msr_write_ex(ecx, data);
3092                 kvm_inject_gp(&svm->vcpu, 0);
3093         } else {
3094                 trace_kvm_msr_write(ecx, data);
3095                 skip_emulated_instruction(&svm->vcpu);
3096         }
3097         return 1;
3098 }
3099
3100 static int msr_interception(struct vcpu_svm *svm)
3101 {
3102         if (svm->vmcb->control.exit_info_1)
3103                 return wrmsr_interception(svm);
3104         else
3105                 return rdmsr_interception(svm);
3106 }
3107
3108 static int interrupt_window_interception(struct vcpu_svm *svm)
3109 {
3110         struct kvm_run *kvm_run = svm->vcpu.run;
3111
3112         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3113         svm_clear_vintr(svm);
3114         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3115         mark_dirty(svm->vmcb, VMCB_INTR);
3116         /*
3117          * If the user space waits to inject interrupts, exit as soon as
3118          * possible
3119          */
3120         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3121             kvm_run->request_interrupt_window &&
3122             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3123                 ++svm->vcpu.stat.irq_window_exits;
3124                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3125                 return 0;
3126         }
3127
3128         return 1;
3129 }
3130
3131 static int pause_interception(struct vcpu_svm *svm)
3132 {
3133         kvm_vcpu_on_spin(&(svm->vcpu));
3134         return 1;
3135 }
3136
3137 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3138         [SVM_EXIT_READ_CR0]                     = cr_interception,
3139         [SVM_EXIT_READ_CR3]                     = cr_interception,
3140         [SVM_EXIT_READ_CR4]                     = cr_interception,
3141         [SVM_EXIT_READ_CR8]                     = cr_interception,
3142         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3143         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3144         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3145         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3146         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3147         [SVM_EXIT_READ_DR0]                     = dr_interception,
3148         [SVM_EXIT_READ_DR1]                     = dr_interception,
3149         [SVM_EXIT_READ_DR2]                     = dr_interception,
3150         [SVM_EXIT_READ_DR3]                     = dr_interception,
3151         [SVM_EXIT_READ_DR4]                     = dr_interception,
3152         [SVM_EXIT_READ_DR5]                     = dr_interception,
3153         [SVM_EXIT_READ_DR6]                     = dr_interception,
3154         [SVM_EXIT_READ_DR7]                     = dr_interception,
3155         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3156         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3157         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3158         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3159         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3160         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3161         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3162         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3163         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3164         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3165         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3166         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3167         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3168         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3169         [SVM_EXIT_INTR]                         = intr_interception,
3170         [SVM_EXIT_NMI]                          = nmi_interception,
3171         [SVM_EXIT_SMI]                          = nop_on_interception,
3172         [SVM_EXIT_INIT]                         = nop_on_interception,
3173         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3174         [SVM_EXIT_CPUID]                        = cpuid_interception,
3175         [SVM_EXIT_IRET]                         = iret_interception,
3176         [SVM_EXIT_INVD]                         = emulate_on_interception,
3177         [SVM_EXIT_PAUSE]                        = pause_interception,
3178         [SVM_EXIT_HLT]                          = halt_interception,
3179         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3180         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3181         [SVM_EXIT_IOIO]                         = io_interception,
3182         [SVM_EXIT_MSR]                          = msr_interception,
3183         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3184         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3185         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3186         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3187         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3188         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3189         [SVM_EXIT_STGI]                         = stgi_interception,
3190         [SVM_EXIT_CLGI]                         = clgi_interception,
3191         [SVM_EXIT_SKINIT]                       = skinit_interception,
3192         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3193         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3194         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3195         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3196         [SVM_EXIT_NPF]                          = pf_interception,
3197 };
3198
3199 static void dump_vmcb(struct kvm_vcpu *vcpu)
3200 {
3201         struct vcpu_svm *svm = to_svm(vcpu);
3202         struct vmcb_control_area *control = &svm->vmcb->control;
3203         struct vmcb_save_area *save = &svm->vmcb->save;
3204
3205         pr_err("VMCB Control Area:\n");
3206         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3207         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3208         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3209         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3210         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3211         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3212         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3213         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3214         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3215         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3216         pr_err("%-20s%d\n", "asid:", control->asid);
3217         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3218         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3219         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3220         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3221         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3222         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3223         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3224         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3225         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3226         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3227         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3228         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3229         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3230         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3231         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3232         pr_err("VMCB State Save Area:\n");
3233         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3234                "es:",
3235                save->es.selector, save->es.attrib,
3236                save->es.limit, save->es.base);
3237         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3238                "cs:",
3239                save->cs.selector, save->cs.attrib,
3240                save->cs.limit, save->cs.base);
3241         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3242                "ss:",
3243                save->ss.selector, save->ss.attrib,
3244                save->ss.limit, save->ss.base);
3245         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3246                "ds:",
3247                save->ds.selector, save->ds.attrib,
3248                save->ds.limit, save->ds.base);
3249         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3250                "fs:",
3251                save->fs.selector, save->fs.attrib,
3252                save->fs.limit, save->fs.base);
3253         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3254                "gs:",
3255                save->gs.selector, save->gs.attrib,
3256                save->gs.limit, save->gs.base);
3257         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3258                "gdtr:",
3259                save->gdtr.selector, save->gdtr.attrib,
3260                save->gdtr.limit, save->gdtr.base);
3261         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3262                "ldtr:",
3263                save->ldtr.selector, save->ldtr.attrib,
3264                save->ldtr.limit, save->ldtr.base);
3265         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3266                "idtr:",
3267                save->idtr.selector, save->idtr.attrib,
3268                save->idtr.limit, save->idtr.base);
3269         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3270                "tr:",
3271                save->tr.selector, save->tr.attrib,
3272                save->tr.limit, save->tr.base);
3273         pr_err("cpl:            %d                efer:         %016llx\n",
3274                 save->cpl, save->efer);
3275         pr_err("%-15s %016llx %-13s %016llx\n",
3276                "cr0:", save->cr0, "cr2:", save->cr2);
3277         pr_err("%-15s %016llx %-13s %016llx\n",
3278                "cr3:", save->cr3, "cr4:", save->cr4);
3279         pr_err("%-15s %016llx %-13s %016llx\n",
3280                "dr6:", save->dr6, "dr7:", save->dr7);
3281         pr_err("%-15s %016llx %-13s %016llx\n",
3282                "rip:", save->rip, "rflags:", save->rflags);
3283         pr_err("%-15s %016llx %-13s %016llx\n",
3284                "rsp:", save->rsp, "rax:", save->rax);
3285         pr_err("%-15s %016llx %-13s %016llx\n",
3286                "star:", save->star, "lstar:", save->lstar);
3287         pr_err("%-15s %016llx %-13s %016llx\n",
3288                "cstar:", save->cstar, "sfmask:", save->sfmask);
3289         pr_err("%-15s %016llx %-13s %016llx\n",
3290                "kernel_gs_base:", save->kernel_gs_base,
3291                "sysenter_cs:", save->sysenter_cs);
3292         pr_err("%-15s %016llx %-13s %016llx\n",
3293                "sysenter_esp:", save->sysenter_esp,
3294                "sysenter_eip:", save->sysenter_eip);
3295         pr_err("%-15s %016llx %-13s %016llx\n",
3296                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3297         pr_err("%-15s %016llx %-13s %016llx\n",
3298                "br_from:", save->br_from, "br_to:", save->br_to);
3299         pr_err("%-15s %016llx %-13s %016llx\n",
3300                "excp_from:", save->last_excp_from,
3301                "excp_to:", save->last_excp_to);
3302 }
3303
3304 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3305 {
3306         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3307
3308         *info1 = control->exit_info_1;
3309         *info2 = control->exit_info_2;
3310 }
3311
3312 static int handle_exit(struct kvm_vcpu *vcpu)
3313 {
3314         struct vcpu_svm *svm = to_svm(vcpu);
3315         struct kvm_run *kvm_run = vcpu->run;
3316         u32 exit_code = svm->vmcb->control.exit_code;
3317
3318         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3319
3320         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3321                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3322         if (npt_enabled)
3323                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3324
3325         if (unlikely(svm->nested.exit_required)) {
3326                 nested_svm_vmexit(svm);
3327                 svm->nested.exit_required = false;
3328
3329                 return 1;
3330         }
3331
3332         if (is_guest_mode(vcpu)) {
3333                 int vmexit;
3334
3335                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3336                                         svm->vmcb->control.exit_info_1,
3337                                         svm->vmcb->control.exit_info_2,
3338                                         svm->vmcb->control.exit_int_info,
3339                                         svm->vmcb->control.exit_int_info_err,
3340                                         KVM_ISA_SVM);
3341
3342                 vmexit = nested_svm_exit_special(svm);
3343
3344                 if (vmexit == NESTED_EXIT_CONTINUE)
3345                         vmexit = nested_svm_exit_handled(svm);
3346
3347                 if (vmexit == NESTED_EXIT_DONE)
3348                         return 1;
3349         }
3350
3351         svm_complete_interrupts(svm);
3352
3353         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3354                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3355                 kvm_run->fail_entry.hardware_entry_failure_reason
3356                         = svm->vmcb->control.exit_code;
3357                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3358                 dump_vmcb(vcpu);
3359                 return 0;
3360         }
3361
3362         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3363             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3364             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3365             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3366                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3367                        "exit_code 0x%x\n",
3368                        __func__, svm->vmcb->control.exit_int_info,
3369                        exit_code);
3370
3371         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3372             || !svm_exit_handlers[exit_code]) {
3373                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3374                 kvm_run->hw.hardware_exit_reason = exit_code;
3375                 return 0;
3376         }
3377
3378         return svm_exit_handlers[exit_code](svm);
3379 }
3380
3381 static void reload_tss(struct kvm_vcpu *vcpu)
3382 {
3383         int cpu = raw_smp_processor_id();
3384
3385         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3386         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3387         load_TR_desc();
3388 }
3389
3390 static void pre_svm_run(struct vcpu_svm *svm)
3391 {
3392         int cpu = raw_smp_processor_id();
3393
3394         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3395
3396         /* FIXME: handle wraparound of asid_generation */
3397         if (svm->asid_generation != sd->asid_generation)
3398                 new_asid(svm, sd);
3399 }
3400
3401 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3402 {
3403         struct vcpu_svm *svm = to_svm(vcpu);
3404
3405         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3406         vcpu->arch.hflags |= HF_NMI_MASK;
3407         set_intercept(svm, INTERCEPT_IRET);
3408         ++vcpu->stat.nmi_injections;
3409 }
3410
3411 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3412 {
3413         struct vmcb_control_area *control;
3414
3415         control = &svm->vmcb->control;
3416         control->int_vector = irq;
3417         control->int_ctl &= ~V_INTR_PRIO_MASK;
3418         control->int_ctl |= V_IRQ_MASK |
3419                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3420         mark_dirty(svm->vmcb, VMCB_INTR);
3421 }
3422
3423 static void svm_set_irq(struct kvm_vcpu *vcpu)
3424 {
3425         struct vcpu_svm *svm = to_svm(vcpu);
3426
3427         BUG_ON(!(gif_set(svm)));
3428
3429         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3430         ++vcpu->stat.irq_injections;
3431
3432         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3433                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3434 }
3435
3436 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3437 {
3438         struct vcpu_svm *svm = to_svm(vcpu);
3439
3440         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3441                 return;
3442
3443         if (irr == -1)
3444                 return;
3445
3446         if (tpr >= irr)
3447                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3448 }
3449
3450 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3451 {
3452         struct vcpu_svm *svm = to_svm(vcpu);
3453         struct vmcb *vmcb = svm->vmcb;
3454         int ret;
3455         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3456               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3457         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3458
3459         return ret;
3460 }
3461
3462 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3463 {
3464         struct vcpu_svm *svm = to_svm(vcpu);
3465
3466         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3467 }
3468
3469 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3470 {
3471         struct vcpu_svm *svm = to_svm(vcpu);
3472
3473         if (masked) {
3474                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3475                 set_intercept(svm, INTERCEPT_IRET);
3476         } else {
3477                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3478                 clr_intercept(svm, INTERCEPT_IRET);
3479         }
3480 }
3481
3482 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3483 {
3484         struct vcpu_svm *svm = to_svm(vcpu);
3485         struct vmcb *vmcb = svm->vmcb;
3486         int ret;
3487
3488         if (!gif_set(svm) ||
3489              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3490                 return 0;
3491
3492         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3493
3494         if (is_guest_mode(vcpu))
3495                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3496
3497         return ret;
3498 }
3499
3500 static void enable_irq_window(struct kvm_vcpu *vcpu)
3501 {
3502         struct vcpu_svm *svm = to_svm(vcpu);
3503
3504         /*
3505          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3506          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3507          * get that intercept, this function will be called again though and
3508          * we'll get the vintr intercept.
3509          */
3510         if (gif_set(svm) && nested_svm_intr(svm)) {
3511                 svm_set_vintr(svm);
3512                 svm_inject_irq(svm, 0x0);
3513         }
3514 }
3515
3516 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3517 {
3518         struct vcpu_svm *svm = to_svm(vcpu);
3519
3520         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3521             == HF_NMI_MASK)
3522                 return; /* IRET will cause a vm exit */
3523
3524         /*
3525          * Something prevents NMI from been injected. Single step over possible
3526          * problem (IRET or exception injection or interrupt shadow)
3527          */
3528         svm->nmi_singlestep = true;
3529         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3530         update_db_intercept(vcpu);
3531 }
3532
3533 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3534 {
3535         return 0;
3536 }
3537
3538 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3539 {
3540         struct vcpu_svm *svm = to_svm(vcpu);
3541
3542         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3543                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3544         else
3545                 svm->asid_generation--;
3546 }
3547
3548 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3549 {
3550 }
3551
3552 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3553 {
3554         struct vcpu_svm *svm = to_svm(vcpu);
3555
3556         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3557                 return;
3558
3559         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3560                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3561                 kvm_set_cr8(vcpu, cr8);
3562         }
3563 }
3564
3565 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3566 {
3567         struct vcpu_svm *svm = to_svm(vcpu);
3568         u64 cr8;
3569
3570         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3571                 return;
3572
3573         cr8 = kvm_get_cr8(vcpu);
3574         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3575         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3576 }
3577
3578 static void svm_complete_interrupts(struct vcpu_svm *svm)
3579 {
3580         u8 vector;
3581         int type;
3582         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3583         unsigned int3_injected = svm->int3_injected;
3584
3585         svm->int3_injected = 0;
3586
3587         /*
3588          * If we've made progress since setting HF_IRET_MASK, we've
3589          * executed an IRET and can allow NMI injection.
3590          */
3591         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3592             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3593                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3594                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3595         }
3596
3597         svm->vcpu.arch.nmi_injected = false;
3598         kvm_clear_exception_queue(&svm->vcpu);
3599         kvm_clear_interrupt_queue(&svm->vcpu);
3600
3601         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3602                 return;
3603
3604         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3605
3606         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3607         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3608
3609         switch (type) {
3610         case SVM_EXITINTINFO_TYPE_NMI:
3611                 svm->vcpu.arch.nmi_injected = true;
3612                 break;
3613         case SVM_EXITINTINFO_TYPE_EXEPT:
3614                 /*
3615                  * In case of software exceptions, do not reinject the vector,
3616                  * but re-execute the instruction instead. Rewind RIP first
3617                  * if we emulated INT3 before.
3618                  */
3619                 if (kvm_exception_is_soft(vector)) {
3620                         if (vector == BP_VECTOR && int3_injected &&
3621                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3622                                 kvm_rip_write(&svm->vcpu,
3623                                               kvm_rip_read(&svm->vcpu) -
3624                                               int3_injected);
3625                         break;
3626                 }
3627                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3628                         u32 err = svm->vmcb->control.exit_int_info_err;
3629                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3630
3631                 } else
3632                         kvm_requeue_exception(&svm->vcpu, vector);
3633                 break;
3634         case SVM_EXITINTINFO_TYPE_INTR:
3635                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3636                 break;
3637         default:
3638                 break;
3639         }
3640 }
3641
3642 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3643 {
3644         struct vcpu_svm *svm = to_svm(vcpu);
3645         struct vmcb_control_area *control = &svm->vmcb->control;
3646
3647         control->exit_int_info = control->event_inj;
3648         control->exit_int_info_err = control->event_inj_err;
3649         control->event_inj = 0;
3650         svm_complete_interrupts(svm);
3651 }
3652
3653 #ifdef CONFIG_X86_64
3654 #define R "r"
3655 #else
3656 #define R "e"
3657 #endif
3658
3659 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3660 {
3661         struct vcpu_svm *svm = to_svm(vcpu);
3662
3663         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3664         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3665         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3666
3667         /*
3668          * A vmexit emulation is required before the vcpu can be executed
3669          * again.
3670          */
3671         if (unlikely(svm->nested.exit_required))
3672                 return;
3673
3674         pre_svm_run(svm);
3675
3676         sync_lapic_to_cr8(vcpu);
3677
3678         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3679
3680         clgi();
3681
3682         local_irq_enable();
3683
3684         asm volatile (
3685                 "push %%"R"bp; \n\t"
3686                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3687                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3688                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3689                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3690                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3691                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3692 #ifdef CONFIG_X86_64
3693                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3694                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3695                 "mov %c[r10](%[svm]), %%r10 \n\t"
3696                 "mov %c[r11](%[svm]), %%r11 \n\t"
3697                 "mov %c[r12](%[svm]), %%r12 \n\t"
3698                 "mov %c[r13](%[svm]), %%r13 \n\t"
3699                 "mov %c[r14](%[svm]), %%r14 \n\t"
3700                 "mov %c[r15](%[svm]), %%r15 \n\t"
3701 #endif
3702
3703                 /* Enter guest mode */
3704                 "push %%"R"ax \n\t"
3705                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3706                 __ex(SVM_VMLOAD) "\n\t"
3707                 __ex(SVM_VMRUN) "\n\t"
3708                 __ex(SVM_VMSAVE) "\n\t"
3709                 "pop %%"R"ax \n\t"
3710
3711                 /* Save guest registers, load host registers */
3712                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3713                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3714                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3715                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3716                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3717                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3718 #ifdef CONFIG_X86_64
3719                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3720                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3721                 "mov %%r10, %c[r10](%[svm]) \n\t"
3722                 "mov %%r11, %c[r11](%[svm]) \n\t"
3723                 "mov %%r12, %c[r12](%[svm]) \n\t"
3724                 "mov %%r13, %c[r13](%[svm]) \n\t"
3725                 "mov %%r14, %c[r14](%[svm]) \n\t"
3726                 "mov %%r15, %c[r15](%[svm]) \n\t"
3727 #endif
3728                 "pop %%"R"bp"
3729                 :
3730                 : [svm]"a"(svm),
3731                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3732                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3733                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3734                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3735                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3736                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3737                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3738 #ifdef CONFIG_X86_64
3739                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3740                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3741                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3742                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3743                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3744                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3745                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3746                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3747 #endif
3748                 : "cc", "memory"
3749                 , R"bx", R"cx", R"dx", R"si", R"di"
3750 #ifdef CONFIG_X86_64
3751                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3752 #endif
3753                 );
3754
3755 #ifdef CONFIG_X86_64
3756         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3757 #else
3758         loadsegment(fs, svm->host.fs);
3759 #ifndef CONFIG_X86_32_LAZY_GS
3760         loadsegment(gs, svm->host.gs);
3761 #endif
3762 #endif
3763
3764         reload_tss(vcpu);
3765
3766         local_irq_disable();
3767
3768         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3769         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3770         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3771         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3772
3773         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3774                 kvm_before_handle_nmi(&svm->vcpu);
3775
3776         stgi();
3777
3778         /* Any pending NMI will happen here */
3779
3780         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3781                 kvm_after_handle_nmi(&svm->vcpu);
3782
3783         sync_cr8_to_lapic(vcpu);
3784
3785         svm->next_rip = 0;
3786
3787         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3788
3789         /* if exit due to PF check for async PF */
3790         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3791                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3792
3793         if (npt_enabled) {
3794                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3795                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3796         }
3797
3798         /*
3799          * We need to handle MC intercepts here before the vcpu has a chance to
3800          * change the physical cpu
3801          */
3802         if (unlikely(svm->vmcb->control.exit_code ==
3803                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3804                 svm_handle_mce(svm);
3805
3806         mark_all_clean(svm->vmcb);
3807 }
3808
3809 #undef R
3810
3811 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3812 {
3813         struct vcpu_svm *svm = to_svm(vcpu);
3814
3815         svm->vmcb->save.cr3 = root;
3816         mark_dirty(svm->vmcb, VMCB_CR);
3817         svm_flush_tlb(vcpu);
3818 }
3819
3820 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3821 {
3822         struct vcpu_svm *svm = to_svm(vcpu);
3823
3824         svm->vmcb->control.nested_cr3 = root;
3825         mark_dirty(svm->vmcb, VMCB_NPT);
3826
3827         /* Also sync guest cr3 here in case we live migrate */
3828         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3829         mark_dirty(svm->vmcb, VMCB_CR);
3830
3831         svm_flush_tlb(vcpu);
3832 }
3833
3834 static int is_disabled(void)
3835 {
3836         u64 vm_cr;
3837
3838         rdmsrl(MSR_VM_CR, vm_cr);
3839         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3840                 return 1;
3841
3842         return 0;
3843 }
3844
3845 static void
3846 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3847 {
3848         /*
3849          * Patch in the VMMCALL instruction:
3850          */
3851         hypercall[0] = 0x0f;
3852         hypercall[1] = 0x01;
3853         hypercall[2] = 0xd9;
3854 }
3855
3856 static void svm_check_processor_compat(void *rtn)
3857 {
3858         *(int *)rtn = 0;
3859 }
3860
3861 static bool svm_cpu_has_accelerated_tpr(void)
3862 {
3863         return false;
3864 }
3865
3866 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3867 {
3868         return 0;
3869 }
3870
3871 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3872 {
3873 }
3874
3875 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3876 {
3877         switch (func) {
3878         case 0x80000001:
3879                 if (nested)
3880                         entry->ecx |= (1 << 2); /* Set SVM bit */
3881                 break;
3882         case 0x8000000A:
3883                 entry->eax = 1; /* SVM revision 1 */
3884                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3885                                    ASID emulation to nested SVM */
3886                 entry->ecx = 0; /* Reserved */
3887                 entry->edx = 0; /* Per default do not support any
3888                                    additional features */
3889
3890                 /* Support next_rip if host supports it */
3891                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3892                         entry->edx |= SVM_FEATURE_NRIP;
3893
3894                 /* Support NPT for the guest if enabled */
3895                 if (npt_enabled)
3896                         entry->edx |= SVM_FEATURE_NPT;
3897
3898                 break;
3899         }
3900 }
3901
3902 static int svm_get_lpage_level(void)
3903 {
3904         return PT_PDPE_LEVEL;
3905 }
3906
3907 static bool svm_rdtscp_supported(void)
3908 {
3909         return false;
3910 }
3911
3912 static bool svm_has_wbinvd_exit(void)
3913 {
3914         return true;
3915 }
3916
3917 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3918 {
3919         struct vcpu_svm *svm = to_svm(vcpu);
3920
3921         set_exception_intercept(svm, NM_VECTOR);
3922         update_cr0_intercept(svm);
3923 }
3924
3925 #define PRE_EX(exit)  { .exit_code = (exit), \
3926                         .stage = X86_ICPT_PRE_EXCEPT, }
3927 #define POST_EX(exit) { .exit_code = (exit), \
3928                         .stage = X86_ICPT_POST_EXCEPT, }
3929 #define POST_MEM(exit) { .exit_code = (exit), \
3930                         .stage = X86_ICPT_POST_MEMACCESS, }
3931
3932 static struct __x86_intercept {
3933         u32 exit_code;
3934         enum x86_intercept_stage stage;
3935 } x86_intercept_map[] = {
3936         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3937         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3938         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3939         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3940         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3941         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3942         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3943         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3944         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3945         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3946         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3947         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3948         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3949         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3950         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3951         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3952         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3953         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3954         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3955         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3956         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3957         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3958         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3959         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3960         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3961         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3962         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3963         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3964         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3965         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3966         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3967         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3968         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3969         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3970         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3971         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3972         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3973         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3974         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3975         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3976         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3977         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3978         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3979         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3980         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3981         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3982 };
3983
3984 #undef PRE_EX
3985 #undef POST_EX
3986 #undef POST_MEM
3987
3988 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3989                                struct x86_instruction_info *info,
3990                                enum x86_intercept_stage stage)
3991 {
3992         struct vcpu_svm *svm = to_svm(vcpu);
3993         int vmexit, ret = X86EMUL_CONTINUE;
3994         struct __x86_intercept icpt_info;
3995         struct vmcb *vmcb = svm->vmcb;
3996
3997         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3998                 goto out;
3999
4000         icpt_info = x86_intercept_map[info->intercept];
4001
4002         if (stage != icpt_info.stage)
4003                 goto out;
4004
4005         switch (icpt_info.exit_code) {
4006         case SVM_EXIT_READ_CR0:
4007                 if (info->intercept == x86_intercept_cr_read)
4008                         icpt_info.exit_code += info->modrm_reg;
4009                 break;
4010         case SVM_EXIT_WRITE_CR0: {
4011                 unsigned long cr0, val;
4012                 u64 intercept;
4013
4014                 if (info->intercept == x86_intercept_cr_write)
4015                         icpt_info.exit_code += info->modrm_reg;
4016
4017                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4018                         break;
4019
4020                 intercept = svm->nested.intercept;
4021
4022                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4023                         break;
4024
4025                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4026                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4027
4028                 if (info->intercept == x86_intercept_lmsw) {
4029                         cr0 &= 0xfUL;
4030                         val &= 0xfUL;
4031                         /* lmsw can't clear PE - catch this here */
4032                         if (cr0 & X86_CR0_PE)
4033                                 val |= X86_CR0_PE;
4034                 }
4035
4036                 if (cr0 ^ val)
4037                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4038
4039                 break;
4040         }
4041         case SVM_EXIT_READ_DR0:
4042         case SVM_EXIT_WRITE_DR0:
4043                 icpt_info.exit_code += info->modrm_reg;
4044                 break;
4045         case SVM_EXIT_MSR:
4046                 if (info->intercept == x86_intercept_wrmsr)
4047                         vmcb->control.exit_info_1 = 1;
4048                 else
4049                         vmcb->control.exit_info_1 = 0;
4050                 break;
4051         case SVM_EXIT_PAUSE:
4052                 /*
4053                  * We get this for NOP only, but pause
4054                  * is rep not, check this here
4055                  */
4056                 if (info->rep_prefix != REPE_PREFIX)
4057                         goto out;
4058         case SVM_EXIT_IOIO: {
4059                 u64 exit_info;
4060                 u32 bytes;
4061
4062                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4063
4064                 if (info->intercept == x86_intercept_in ||
4065                     info->intercept == x86_intercept_ins) {
4066                         exit_info |= SVM_IOIO_TYPE_MASK;
4067                         bytes = info->src_bytes;
4068                 } else {
4069                         bytes = info->dst_bytes;
4070                 }
4071
4072                 if (info->intercept == x86_intercept_outs ||
4073                     info->intercept == x86_intercept_ins)
4074                         exit_info |= SVM_IOIO_STR_MASK;
4075
4076                 if (info->rep_prefix)
4077                         exit_info |= SVM_IOIO_REP_MASK;
4078
4079                 bytes = min(bytes, 4u);
4080
4081                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4082
4083                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4084
4085                 vmcb->control.exit_info_1 = exit_info;
4086                 vmcb->control.exit_info_2 = info->next_rip;
4087
4088                 break;
4089         }
4090         default:
4091                 break;
4092         }
4093
4094         vmcb->control.next_rip  = info->next_rip;
4095         vmcb->control.exit_code = icpt_info.exit_code;
4096         vmexit = nested_svm_exit_handled(svm);
4097
4098         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4099                                            : X86EMUL_CONTINUE;
4100
4101 out:
4102         return ret;
4103 }
4104
4105 static struct kvm_x86_ops svm_x86_ops = {
4106         .cpu_has_kvm_support = has_svm,
4107         .disabled_by_bios = is_disabled,
4108         .hardware_setup = svm_hardware_setup,
4109         .hardware_unsetup = svm_hardware_unsetup,
4110         .check_processor_compatibility = svm_check_processor_compat,
4111         .hardware_enable = svm_hardware_enable,
4112         .hardware_disable = svm_hardware_disable,
4113         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4114
4115         .vcpu_create = svm_create_vcpu,
4116         .vcpu_free = svm_free_vcpu,
4117         .vcpu_reset = svm_vcpu_reset,
4118
4119         .prepare_guest_switch = svm_prepare_guest_switch,
4120         .vcpu_load = svm_vcpu_load,
4121         .vcpu_put = svm_vcpu_put,
4122
4123         .set_guest_debug = svm_guest_debug,
4124         .get_msr = svm_get_msr,
4125         .set_msr = svm_set_msr,
4126         .get_segment_base = svm_get_segment_base,
4127         .get_segment = svm_get_segment,
4128         .set_segment = svm_set_segment,
4129         .get_cpl = svm_get_cpl,
4130         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4131         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4132         .decache_cr3 = svm_decache_cr3,
4133         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4134         .set_cr0 = svm_set_cr0,
4135         .set_cr3 = svm_set_cr3,
4136         .set_cr4 = svm_set_cr4,
4137         .set_efer = svm_set_efer,
4138         .get_idt = svm_get_idt,
4139         .set_idt = svm_set_idt,
4140         .get_gdt = svm_get_gdt,
4141         .set_gdt = svm_set_gdt,
4142         .set_dr7 = svm_set_dr7,
4143         .cache_reg = svm_cache_reg,
4144         .get_rflags = svm_get_rflags,
4145         .set_rflags = svm_set_rflags,
4146         .fpu_activate = svm_fpu_activate,
4147         .fpu_deactivate = svm_fpu_deactivate,
4148
4149         .tlb_flush = svm_flush_tlb,
4150
4151         .run = svm_vcpu_run,
4152         .handle_exit = handle_exit,
4153         .skip_emulated_instruction = skip_emulated_instruction,
4154         .set_interrupt_shadow = svm_set_interrupt_shadow,
4155         .get_interrupt_shadow = svm_get_interrupt_shadow,
4156         .patch_hypercall = svm_patch_hypercall,
4157         .set_irq = svm_set_irq,
4158         .set_nmi = svm_inject_nmi,
4159         .queue_exception = svm_queue_exception,
4160         .cancel_injection = svm_cancel_injection,
4161         .interrupt_allowed = svm_interrupt_allowed,
4162         .nmi_allowed = svm_nmi_allowed,
4163         .get_nmi_mask = svm_get_nmi_mask,
4164         .set_nmi_mask = svm_set_nmi_mask,
4165         .enable_nmi_window = enable_nmi_window,
4166         .enable_irq_window = enable_irq_window,
4167         .update_cr8_intercept = update_cr8_intercept,
4168
4169         .set_tss_addr = svm_set_tss_addr,
4170         .get_tdp_level = get_npt_level,
4171         .get_mt_mask = svm_get_mt_mask,
4172
4173         .get_exit_info = svm_get_exit_info,
4174
4175         .get_lpage_level = svm_get_lpage_level,
4176
4177         .cpuid_update = svm_cpuid_update,
4178
4179         .rdtscp_supported = svm_rdtscp_supported,
4180
4181         .set_supported_cpuid = svm_set_supported_cpuid,
4182
4183         .has_wbinvd_exit = svm_has_wbinvd_exit,
4184
4185         .set_tsc_khz = svm_set_tsc_khz,
4186         .write_tsc_offset = svm_write_tsc_offset,
4187         .adjust_tsc_offset = svm_adjust_tsc_offset,
4188         .compute_tsc_offset = svm_compute_tsc_offset,
4189
4190         .set_tdp_cr3 = set_tdp_cr3,
4191
4192         .check_intercept = svm_check_intercept,
4193 };
4194
4195 static int __init svm_init(void)
4196 {
4197         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4198                         __alignof__(struct vcpu_svm), THIS_MODULE);
4199 }
4200
4201 static void __exit svm_exit(void)
4202 {
4203         kvm_exit();
4204 }
4205
4206 module_init(svm_init)
4207 module_exit(svm_exit)