Merge branch 'for-linus' of git://git.infradead.org/users/eparis/selinux into for...
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define HPET_MIN_CYCLES                 128
31 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 u8                                      hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long                    hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58         return readl(hpet_virt_address + a);
59 }
60
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63         writel(d, hpet_virt_address + a);
64 }
65
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69
70 static inline void hpet_set_mapping(void)
71 {
72         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75 #endif
76 }
77
78 static inline void hpet_clear_mapping(void)
79 {
80         iounmap(hpet_virt_address);
81         hpet_virt_address = NULL;
82 }
83
84 /*
85  * HPET command line enable / disable
86  */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90
91 static int __init hpet_setup(char *str)
92 {
93         if (str) {
94                 if (!strncmp("disable", str, 7))
95                         boot_hpet_disable = 1;
96                 if (!strncmp("force", str, 5))
97                         hpet_force_user = 1;
98                 if (!strncmp("verbose", str, 7))
99                         hpet_verbose = 1;
100         }
101         return 1;
102 }
103 __setup("hpet=", hpet_setup);
104
105 static int __init disable_hpet(char *str)
106 {
107         boot_hpet_disable = 1;
108         return 1;
109 }
110 __setup("nohpet", disable_hpet);
111
112 static inline int is_hpet_capable(void)
113 {
114         return !boot_hpet_disable && hpet_address;
115 }
116
117 /*
118  * HPET timer interrupt enable / disable
119  */
120 static int hpet_legacy_int_enabled;
121
122 /**
123  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124  */
125 int is_hpet_enabled(void)
126 {
127         return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130
131 static void _hpet_print_config(const char *function, int line)
132 {
133         u32 i, timers, l, h;
134         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135         l = hpet_readl(HPET_ID);
136         h = hpet_readl(HPET_PERIOD);
137         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139         l = hpet_readl(HPET_CFG);
140         h = hpet_readl(HPET_STATUS);
141         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142         l = hpet_readl(HPET_COUNTER);
143         h = hpet_readl(HPET_COUNTER+4);
144         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145
146         for (i = 0; i < timers; i++) {
147                 l = hpet_readl(HPET_Tn_CFG(i));
148                 h = hpet_readl(HPET_Tn_CFG(i)+4);
149                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150                        i, l, h);
151                 l = hpet_readl(HPET_Tn_CMP(i));
152                 h = hpet_readl(HPET_Tn_CMP(i)+4);
153                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154                        i, l, h);
155                 l = hpet_readl(HPET_Tn_ROUTE(i));
156                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158                        i, l, h);
159         }
160 }
161
162 #define hpet_print_config()                                     \
163 do {                                                            \
164         if (hpet_verbose)                                       \
165                 _hpet_print_config(__FUNCTION__, __LINE__);     \
166 } while (0)
167
168 /*
169  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170  * timer 0 and timer 1 in case of RTC emulation.
171  */
172 #ifdef CONFIG_HPET
173
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178         struct hpet __iomem *hpet = hpet_virt_address;
179         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180         unsigned int nrtimers, i;
181         struct hpet_data hd;
182
183         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184
185         memset(&hd, 0, sizeof(hd));
186         hd.hd_phys_address      = hpet_address;
187         hd.hd_address           = hpet;
188         hd.hd_nirqs             = nrtimers;
189         hpet_reserve_timer(&hd, 0);
190
191 #ifdef CONFIG_HPET_EMULATE_RTC
192         hpet_reserve_timer(&hd, 1);
193 #endif
194
195         /*
196          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
198          * don't bother configuring *any* comparator interrupts.
199          */
200         hd.hd_irq[0] = HPET_LEGACY_8254;
201         hd.hd_irq[1] = HPET_LEGACY_RTC;
202
203         for (i = 2; i < nrtimers; timer++, i++) {
204                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
205                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206         }
207
208         hpet_reserve_msi_timers(&hd);
209
210         hpet_alloc(&hd);
211
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216
217 /*
218  * Common hpet info
219  */
220 static unsigned long hpet_period;
221
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223                           struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225                            struct clock_event_device *evt);
226
227 /*
228  * The hpet clock event device
229  */
230 static struct clock_event_device hpet_clockevent = {
231         .name           = "hpet",
232         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233         .set_mode       = hpet_legacy_set_mode,
234         .set_next_event = hpet_legacy_next_event,
235         .shift          = 32,
236         .irq            = 0,
237         .rating         = 50,
238 };
239
240 static void hpet_stop_counter(void)
241 {
242         unsigned long cfg = hpet_readl(HPET_CFG);
243         cfg &= ~HPET_CFG_ENABLE;
244         hpet_writel(cfg, HPET_CFG);
245 }
246
247 static void hpet_reset_counter(void)
248 {
249         hpet_writel(0, HPET_COUNTER);
250         hpet_writel(0, HPET_COUNTER + 4);
251 }
252
253 static void hpet_start_counter(void)
254 {
255         unsigned int cfg = hpet_readl(HPET_CFG);
256         cfg |= HPET_CFG_ENABLE;
257         hpet_writel(cfg, HPET_CFG);
258 }
259
260 static void hpet_restart_counter(void)
261 {
262         hpet_stop_counter();
263         hpet_reset_counter();
264         hpet_start_counter();
265 }
266
267 static void hpet_resume_device(void)
268 {
269         force_hpet_resume();
270 }
271
272 static void hpet_resume_counter(struct clocksource *cs)
273 {
274         hpet_resume_device();
275         hpet_restart_counter();
276 }
277
278 static void hpet_enable_legacy_int(void)
279 {
280         unsigned int cfg = hpet_readl(HPET_CFG);
281
282         cfg |= HPET_CFG_LEGACY;
283         hpet_writel(cfg, HPET_CFG);
284         hpet_legacy_int_enabled = 1;
285 }
286
287 static void hpet_legacy_clockevent_register(void)
288 {
289         /* Start HPET legacy interrupts */
290         hpet_enable_legacy_int();
291
292         /*
293          * The mult factor is defined as (include/linux/clockchips.h)
294          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
295          * hpet_period is in units of femtoseconds (per cycle), so
296          *  mult/2^shift = cyc/ns = 10^6/hpet_period
297          *  mult = (10^6 * 2^shift)/hpet_period
298          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
299          */
300         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
301                                       hpet_period, hpet_clockevent.shift);
302         /* Calculate the min / max delta */
303         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
304                                                            &hpet_clockevent);
305         /* Setup minimum reprogramming delta. */
306         hpet_clockevent.min_delta_ns = clockevent_delta2ns(HPET_MIN_PROG_DELTA,
307                                                            &hpet_clockevent);
308
309         /*
310          * Start hpet with the boot cpu mask and make it
311          * global after the IO_APIC has been initialized.
312          */
313         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
314         clockevents_register_device(&hpet_clockevent);
315         global_clock_event = &hpet_clockevent;
316         printk(KERN_DEBUG "hpet clockevent registered\n");
317 }
318
319 static int hpet_setup_msi_irq(unsigned int irq);
320
321 static void hpet_set_mode(enum clock_event_mode mode,
322                           struct clock_event_device *evt, int timer)
323 {
324         unsigned int cfg, cmp, now;
325         uint64_t delta;
326
327         switch (mode) {
328         case CLOCK_EVT_MODE_PERIODIC:
329                 hpet_stop_counter();
330                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
331                 delta >>= evt->shift;
332                 now = hpet_readl(HPET_COUNTER);
333                 cmp = now + (unsigned int) delta;
334                 cfg = hpet_readl(HPET_Tn_CFG(timer));
335                 /* Make sure we use edge triggered interrupts */
336                 cfg &= ~HPET_TN_LEVEL;
337                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
338                        HPET_TN_SETVAL | HPET_TN_32BIT;
339                 hpet_writel(cfg, HPET_Tn_CFG(timer));
340                 hpet_writel(cmp, HPET_Tn_CMP(timer));
341                 udelay(1);
342                 /*
343                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
344                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
345                  * bit is automatically cleared after the first write.
346                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
347                  * Publication # 24674)
348                  */
349                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
350                 hpet_start_counter();
351                 hpet_print_config();
352                 break;
353
354         case CLOCK_EVT_MODE_ONESHOT:
355                 cfg = hpet_readl(HPET_Tn_CFG(timer));
356                 cfg &= ~HPET_TN_PERIODIC;
357                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
358                 hpet_writel(cfg, HPET_Tn_CFG(timer));
359                 break;
360
361         case CLOCK_EVT_MODE_UNUSED:
362         case CLOCK_EVT_MODE_SHUTDOWN:
363                 cfg = hpet_readl(HPET_Tn_CFG(timer));
364                 cfg &= ~HPET_TN_ENABLE;
365                 hpet_writel(cfg, HPET_Tn_CFG(timer));
366                 break;
367
368         case CLOCK_EVT_MODE_RESUME:
369                 if (timer == 0) {
370                         hpet_enable_legacy_int();
371                 } else {
372                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
373                         hpet_setup_msi_irq(hdev->irq);
374                         disable_irq(hdev->irq);
375                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
376                         enable_irq(hdev->irq);
377                 }
378                 hpet_print_config();
379                 break;
380         }
381 }
382
383 static int hpet_next_event(unsigned long delta,
384                            struct clock_event_device *evt, int timer)
385 {
386         u32 cnt;
387         s32 res;
388
389         cnt = hpet_readl(HPET_COUNTER);
390         cnt += (u32) delta;
391         hpet_writel(cnt, HPET_Tn_CMP(timer));
392
393         /*
394          * HPETs are a complete disaster. The compare register is
395          * based on a equal comparison and neither provides a less
396          * than or equal functionality (which would require to take
397          * the wraparound into account) nor a simple count down event
398          * mode. Further the write to the comparator register is
399          * delayed internally up to two HPET clock cycles in certain
400          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
401          * longer delays. We worked around that by reading back the
402          * compare register, but that required another workaround for
403          * ICH9,10 chips where the first readout after write can
404          * return the old stale value. We already had a minimum
405          * programming delta of 5us enforced, but a NMI or SMI hitting
406          * between the counter readout and the comparator write can
407          * move us behind that point easily. Now instead of reading
408          * the compare register back several times, we make the ETIME
409          * decision based on the following: Return ETIME if the
410          * counter value after the write is less than HPET_MIN_CYCLES
411          * away from the event or if the counter is already ahead of
412          * the event. The minimum programming delta for the generic
413          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
414          */
415         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
416
417         return res < HPET_MIN_CYCLES ? -ETIME : 0;
418 }
419
420 static void hpet_legacy_set_mode(enum clock_event_mode mode,
421                         struct clock_event_device *evt)
422 {
423         hpet_set_mode(mode, evt, 0);
424 }
425
426 static int hpet_legacy_next_event(unsigned long delta,
427                         struct clock_event_device *evt)
428 {
429         return hpet_next_event(delta, evt, 0);
430 }
431
432 /*
433  * HPET MSI Support
434  */
435 #ifdef CONFIG_PCI_MSI
436
437 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
438 static struct hpet_dev  *hpet_devs;
439
440 void hpet_msi_unmask(struct irq_data *data)
441 {
442         struct hpet_dev *hdev = data->handler_data;
443         unsigned int cfg;
444
445         /* unmask it */
446         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447         cfg |= HPET_TN_FSB;
448         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450
451 void hpet_msi_mask(struct irq_data *data)
452 {
453         struct hpet_dev *hdev = data->handler_data;
454         unsigned int cfg;
455
456         /* mask it */
457         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458         cfg &= ~HPET_TN_FSB;
459         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460 }
461
462 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
463 {
464         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
465         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
466 }
467
468 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
469 {
470         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472         msg->address_hi = 0;
473 }
474
475 static void hpet_msi_set_mode(enum clock_event_mode mode,
476                                 struct clock_event_device *evt)
477 {
478         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479         hpet_set_mode(mode, evt, hdev->num);
480 }
481
482 static int hpet_msi_next_event(unsigned long delta,
483                                 struct clock_event_device *evt)
484 {
485         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486         return hpet_next_event(delta, evt, hdev->num);
487 }
488
489 static int hpet_setup_msi_irq(unsigned int irq)
490 {
491         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
492                 destroy_irq(irq);
493                 return -EINVAL;
494         }
495         return 0;
496 }
497
498 static int hpet_assign_irq(struct hpet_dev *dev)
499 {
500         unsigned int irq;
501
502         irq = create_irq_nr(0, -1);
503         if (!irq)
504                 return -EINVAL;
505
506         irq_set_handler_data(irq, dev);
507
508         if (hpet_setup_msi_irq(irq))
509                 return -EINVAL;
510
511         dev->irq = irq;
512         return 0;
513 }
514
515 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
516 {
517         struct hpet_dev *dev = (struct hpet_dev *)data;
518         struct clock_event_device *hevt = &dev->evt;
519
520         if (!hevt->event_handler) {
521                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
522                                 dev->num);
523                 return IRQ_HANDLED;
524         }
525
526         hevt->event_handler(hevt);
527         return IRQ_HANDLED;
528 }
529
530 static int hpet_setup_irq(struct hpet_dev *dev)
531 {
532
533         if (request_irq(dev->irq, hpet_interrupt_handler,
534                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
535                         dev->name, dev))
536                 return -1;
537
538         disable_irq(dev->irq);
539         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
540         enable_irq(dev->irq);
541
542         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
543                          dev->name, dev->irq);
544
545         return 0;
546 }
547
548 /* This should be called in specific @cpu */
549 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
550 {
551         struct clock_event_device *evt = &hdev->evt;
552         uint64_t hpet_freq;
553
554         WARN_ON(cpu != smp_processor_id());
555         if (!(hdev->flags & HPET_DEV_VALID))
556                 return;
557
558         if (hpet_setup_msi_irq(hdev->irq))
559                 return;
560
561         hdev->cpu = cpu;
562         per_cpu(cpu_hpet_dev, cpu) = hdev;
563         evt->name = hdev->name;
564         hpet_setup_irq(hdev);
565         evt->irq = hdev->irq;
566
567         evt->rating = 110;
568         evt->features = CLOCK_EVT_FEAT_ONESHOT;
569         if (hdev->flags & HPET_DEV_PERI_CAP)
570                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571
572         evt->set_mode = hpet_msi_set_mode;
573         evt->set_next_event = hpet_msi_next_event;
574         evt->shift = 32;
575
576         /*
577          * The period is a femto seconds value. We need to calculate the
578          * scaled math multiplication factor for nanosecond to hpet tick
579          * conversion.
580          */
581         hpet_freq = FSEC_PER_SEC;
582         do_div(hpet_freq, hpet_period);
583         evt->mult = div_sc((unsigned long) hpet_freq,
584                                       NSEC_PER_SEC, evt->shift);
585         /* Calculate the max delta */
586         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
587         /* 5 usec minimum reprogramming delta. */
588         evt->min_delta_ns = 5000;
589
590         evt->cpumask = cpumask_of(hdev->cpu);
591         clockevents_register_device(evt);
592 }
593
594 #ifdef CONFIG_HPET
595 /* Reserve at least one timer for userspace (/dev/hpet) */
596 #define RESERVE_TIMERS 1
597 #else
598 #define RESERVE_TIMERS 0
599 #endif
600
601 static void hpet_msi_capability_lookup(unsigned int start_timer)
602 {
603         unsigned int id;
604         unsigned int num_timers;
605         unsigned int num_timers_used = 0;
606         int i;
607
608         if (hpet_msi_disable)
609                 return;
610
611         if (boot_cpu_has(X86_FEATURE_ARAT))
612                 return;
613         id = hpet_readl(HPET_ID);
614
615         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
616         num_timers++; /* Value read out starts from 0 */
617         hpet_print_config();
618
619         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
620         if (!hpet_devs)
621                 return;
622
623         hpet_num_timers = num_timers;
624
625         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
626                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
627                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
628
629                 /* Only consider HPET timer with MSI support */
630                 if (!(cfg & HPET_TN_FSB_CAP))
631                         continue;
632
633                 hdev->flags = 0;
634                 if (cfg & HPET_TN_PERIODIC_CAP)
635                         hdev->flags |= HPET_DEV_PERI_CAP;
636                 hdev->num = i;
637
638                 sprintf(hdev->name, "hpet%d", i);
639                 if (hpet_assign_irq(hdev))
640                         continue;
641
642                 hdev->flags |= HPET_DEV_FSB_CAP;
643                 hdev->flags |= HPET_DEV_VALID;
644                 num_timers_used++;
645                 if (num_timers_used == num_possible_cpus())
646                         break;
647         }
648
649         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650                 num_timers, num_timers_used);
651 }
652
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656         int i;
657
658         if (!hpet_devs)
659                 return;
660
661         for (i = 0; i < hpet_num_timers; i++) {
662                 struct hpet_dev *hdev = &hpet_devs[i];
663
664                 if (!(hdev->flags & HPET_DEV_VALID))
665                         continue;
666
667                 hd->hd_irq[hdev->num] = hdev->irq;
668                 hpet_reserve_timer(hd, hdev->num);
669         }
670 }
671 #endif
672
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675         int i;
676
677         if (!hpet_devs)
678                 return NULL;
679
680         for (i = 0; i < hpet_num_timers; i++) {
681                 struct hpet_dev *hdev = &hpet_devs[i];
682
683                 if (!(hdev->flags & HPET_DEV_VALID))
684                         continue;
685                 if (test_and_set_bit(HPET_DEV_USED_BIT,
686                         (unsigned long *)&hdev->flags))
687                         continue;
688                 return hdev;
689         }
690         return NULL;
691 }
692
693 struct hpet_work_struct {
694         struct delayed_work work;
695         struct completion complete;
696 };
697
698 static void hpet_work(struct work_struct *w)
699 {
700         struct hpet_dev *hdev;
701         int cpu = smp_processor_id();
702         struct hpet_work_struct *hpet_work;
703
704         hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706         hdev = hpet_get_unused_timer();
707         if (hdev)
708                 init_one_hpet_msi_clockevent(hdev, cpu);
709
710         complete(&hpet_work->complete);
711 }
712
713 static int hpet_cpuhp_notify(struct notifier_block *n,
714                 unsigned long action, void *hcpu)
715 {
716         unsigned long cpu = (unsigned long)hcpu;
717         struct hpet_work_struct work;
718         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719
720         switch (action & 0xf) {
721         case CPU_ONLINE:
722                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
723                 init_completion(&work.complete);
724                 /* FIXME: add schedule_work_on() */
725                 schedule_delayed_work_on(cpu, &work.work, 0);
726                 wait_for_completion(&work.complete);
727                 destroy_timer_on_stack(&work.work.timer);
728                 break;
729         case CPU_DEAD:
730                 if (hdev) {
731                         free_irq(hdev->irq, hdev);
732                         hdev->flags &= ~HPET_DEV_USED;
733                         per_cpu(cpu_hpet_dev, cpu) = NULL;
734                 }
735                 break;
736         }
737         return NOTIFY_OK;
738 }
739 #else
740
741 static int hpet_setup_msi_irq(unsigned int irq)
742 {
743         return 0;
744 }
745 static void hpet_msi_capability_lookup(unsigned int start_timer)
746 {
747         return;
748 }
749
750 #ifdef CONFIG_HPET
751 static void hpet_reserve_msi_timers(struct hpet_data *hd)
752 {
753         return;
754 }
755 #endif
756
757 static int hpet_cpuhp_notify(struct notifier_block *n,
758                 unsigned long action, void *hcpu)
759 {
760         return NOTIFY_OK;
761 }
762
763 #endif
764
765 /*
766  * Clock source related code
767  */
768 static cycle_t read_hpet(struct clocksource *cs)
769 {
770         return (cycle_t)hpet_readl(HPET_COUNTER);
771 }
772
773 #ifdef CONFIG_X86_64
774 static cycle_t __vsyscall_fn vread_hpet(void)
775 {
776         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
777 }
778 #endif
779
780 static struct clocksource clocksource_hpet = {
781         .name           = "hpet",
782         .rating         = 250,
783         .read           = read_hpet,
784         .mask           = HPET_MASK,
785         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
786         .resume         = hpet_resume_counter,
787 #ifdef CONFIG_X86_64
788         .vread          = vread_hpet,
789 #endif
790 };
791
792 static int hpet_clocksource_register(void)
793 {
794         u64 start, now;
795         u64 hpet_freq;
796         cycle_t t1;
797
798         /* Start the counter */
799         hpet_restart_counter();
800
801         /* Verify whether hpet counter works */
802         t1 = hpet_readl(HPET_COUNTER);
803         rdtscll(start);
804
805         /*
806          * We don't know the TSC frequency yet, but waiting for
807          * 200000 TSC cycles is safe:
808          * 4 GHz == 50us
809          * 1 GHz == 200us
810          */
811         do {
812                 rep_nop();
813                 rdtscll(now);
814         } while ((now - start) < 200000UL);
815
816         if (t1 == hpet_readl(HPET_COUNTER)) {
817                 printk(KERN_WARNING
818                        "HPET counter not counting. HPET disabled\n");
819                 return -ENODEV;
820         }
821
822         /*
823          * The definition of mult is (include/linux/clocksource.h)
824          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
825          * so we first need to convert hpet_period to ns/cyc units:
826          *  mult/2^shift = ns/cyc = hpet_period/10^6
827          *  mult = (hpet_period * 2^shift)/10^6
828          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
829          */
830
831         /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
832          *
833          * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
834          * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
835          */
836         hpet_freq = FSEC_PER_SEC;
837         do_div(hpet_freq, hpet_period);
838         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
839
840         return 0;
841 }
842
843 /**
844  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
845  */
846 int __init hpet_enable(void)
847 {
848         unsigned int id;
849         int i;
850
851         if (!is_hpet_capable())
852                 return 0;
853
854         hpet_set_mapping();
855
856         /*
857          * Read the period and check for a sane value:
858          */
859         hpet_period = hpet_readl(HPET_PERIOD);
860
861         /*
862          * AMD SB700 based systems with spread spectrum enabled use a
863          * SMM based HPET emulation to provide proper frequency
864          * setting. The SMM code is initialized with the first HPET
865          * register access and takes some time to complete. During
866          * this time the config register reads 0xffffffff. We check
867          * for max. 1000 loops whether the config register reads a non
868          * 0xffffffff value to make sure that HPET is up and running
869          * before we go further. A counting loop is safe, as the HPET
870          * access takes thousands of CPU cycles. On non SB700 based
871          * machines this check is only done once and has no side
872          * effects.
873          */
874         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
875                 if (i == 1000) {
876                         printk(KERN_WARNING
877                                "HPET config register value = 0xFFFFFFFF. "
878                                "Disabling HPET\n");
879                         goto out_nohpet;
880                 }
881         }
882
883         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
884                 goto out_nohpet;
885
886         /*
887          * Read the HPET ID register to retrieve the IRQ routing
888          * information and the number of channels
889          */
890         id = hpet_readl(HPET_ID);
891         hpet_print_config();
892
893 #ifdef CONFIG_HPET_EMULATE_RTC
894         /*
895          * The legacy routing mode needs at least two channels, tick timer
896          * and the rtc emulation channel.
897          */
898         if (!(id & HPET_ID_NUMBER))
899                 goto out_nohpet;
900 #endif
901
902         if (hpet_clocksource_register())
903                 goto out_nohpet;
904
905         if (id & HPET_ID_LEGSUP) {
906                 hpet_legacy_clockevent_register();
907                 return 1;
908         }
909         return 0;
910
911 out_nohpet:
912         hpet_clear_mapping();
913         hpet_address = 0;
914         return 0;
915 }
916
917 /*
918  * Needs to be late, as the reserve_timer code calls kalloc !
919  *
920  * Not a problem on i386 as hpet_enable is called from late_time_init,
921  * but on x86_64 it is necessary !
922  */
923 static __init int hpet_late_init(void)
924 {
925         int cpu;
926
927         if (boot_hpet_disable)
928                 return -ENODEV;
929
930         if (!hpet_address) {
931                 if (!force_hpet_address)
932                         return -ENODEV;
933
934                 hpet_address = force_hpet_address;
935                 hpet_enable();
936         }
937
938         if (!hpet_virt_address)
939                 return -ENODEV;
940
941         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
942                 hpet_msi_capability_lookup(2);
943         else
944                 hpet_msi_capability_lookup(0);
945
946         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
947         hpet_print_config();
948
949         if (hpet_msi_disable)
950                 return 0;
951
952         if (boot_cpu_has(X86_FEATURE_ARAT))
953                 return 0;
954
955         for_each_online_cpu(cpu) {
956                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
957         }
958
959         /* This notifier should be called after workqueue is ready */
960         hotcpu_notifier(hpet_cpuhp_notify, -20);
961
962         return 0;
963 }
964 fs_initcall(hpet_late_init);
965
966 void hpet_disable(void)
967 {
968         if (is_hpet_capable() && hpet_virt_address) {
969                 unsigned int cfg = hpet_readl(HPET_CFG);
970
971                 if (hpet_legacy_int_enabled) {
972                         cfg &= ~HPET_CFG_LEGACY;
973                         hpet_legacy_int_enabled = 0;
974                 }
975                 cfg &= ~HPET_CFG_ENABLE;
976                 hpet_writel(cfg, HPET_CFG);
977         }
978 }
979
980 #ifdef CONFIG_HPET_EMULATE_RTC
981
982 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
983  * is enabled, we support RTC interrupt functionality in software.
984  * RTC has 3 kinds of interrupts:
985  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
986  *    is updated
987  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
988  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
989  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
990  * (1) and (2) above are implemented using polling at a frequency of
991  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
992  * overhead. (DEFAULT_RTC_INT_FREQ)
993  * For (3), we use interrupts at 64Hz or user specified periodic
994  * frequency, whichever is higher.
995  */
996 #include <linux/mc146818rtc.h>
997 #include <linux/rtc.h>
998 #include <asm/rtc.h>
999
1000 #define DEFAULT_RTC_INT_FREQ    64
1001 #define DEFAULT_RTC_SHIFT       6
1002 #define RTC_NUM_INTS            1
1003
1004 static unsigned long hpet_rtc_flags;
1005 static int hpet_prev_update_sec;
1006 static struct rtc_time hpet_alarm_time;
1007 static unsigned long hpet_pie_count;
1008 static u32 hpet_t1_cmp;
1009 static u32 hpet_default_delta;
1010 static u32 hpet_pie_delta;
1011 static unsigned long hpet_pie_limit;
1012
1013 static rtc_irq_handler irq_handler;
1014
1015 /*
1016  * Check that the hpet counter c1 is ahead of the c2
1017  */
1018 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1019 {
1020         return (s32)(c2 - c1) < 0;
1021 }
1022
1023 /*
1024  * Registers a IRQ handler.
1025  */
1026 int hpet_register_irq_handler(rtc_irq_handler handler)
1027 {
1028         if (!is_hpet_enabled())
1029                 return -ENODEV;
1030         if (irq_handler)
1031                 return -EBUSY;
1032
1033         irq_handler = handler;
1034
1035         return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1038
1039 /*
1040  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1041  * and does cleanup.
1042  */
1043 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1044 {
1045         if (!is_hpet_enabled())
1046                 return;
1047
1048         irq_handler = NULL;
1049         hpet_rtc_flags = 0;
1050 }
1051 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1052
1053 /*
1054  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1055  * is not supported by all HPET implementations for timer 1.
1056  *
1057  * hpet_rtc_timer_init() is called when the rtc is initialized.
1058  */
1059 int hpet_rtc_timer_init(void)
1060 {
1061         unsigned int cfg, cnt, delta;
1062         unsigned long flags;
1063
1064         if (!is_hpet_enabled())
1065                 return 0;
1066
1067         if (!hpet_default_delta) {
1068                 uint64_t clc;
1069
1070                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1071                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1072                 hpet_default_delta = clc;
1073         }
1074
1075         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1076                 delta = hpet_default_delta;
1077         else
1078                 delta = hpet_pie_delta;
1079
1080         local_irq_save(flags);
1081
1082         cnt = delta + hpet_readl(HPET_COUNTER);
1083         hpet_writel(cnt, HPET_T1_CMP);
1084         hpet_t1_cmp = cnt;
1085
1086         cfg = hpet_readl(HPET_T1_CFG);
1087         cfg &= ~HPET_TN_PERIODIC;
1088         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1089         hpet_writel(cfg, HPET_T1_CFG);
1090
1091         local_irq_restore(flags);
1092
1093         return 1;
1094 }
1095 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1096
1097 /*
1098  * The functions below are called from rtc driver.
1099  * Return 0 if HPET is not being used.
1100  * Otherwise do the necessary changes and return 1.
1101  */
1102 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1103 {
1104         if (!is_hpet_enabled())
1105                 return 0;
1106
1107         hpet_rtc_flags &= ~bit_mask;
1108         return 1;
1109 }
1110 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1111
1112 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1113 {
1114         unsigned long oldbits = hpet_rtc_flags;
1115
1116         if (!is_hpet_enabled())
1117                 return 0;
1118
1119         hpet_rtc_flags |= bit_mask;
1120
1121         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1122                 hpet_prev_update_sec = -1;
1123
1124         if (!oldbits)
1125                 hpet_rtc_timer_init();
1126
1127         return 1;
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1130
1131 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1132                         unsigned char sec)
1133 {
1134         if (!is_hpet_enabled())
1135                 return 0;
1136
1137         hpet_alarm_time.tm_hour = hrs;
1138         hpet_alarm_time.tm_min = min;
1139         hpet_alarm_time.tm_sec = sec;
1140
1141         return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1144
1145 int hpet_set_periodic_freq(unsigned long freq)
1146 {
1147         uint64_t clc;
1148
1149         if (!is_hpet_enabled())
1150                 return 0;
1151
1152         if (freq <= DEFAULT_RTC_INT_FREQ)
1153                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1154         else {
1155                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1156                 do_div(clc, freq);
1157                 clc >>= hpet_clockevent.shift;
1158                 hpet_pie_delta = clc;
1159                 hpet_pie_limit = 0;
1160         }
1161         return 1;
1162 }
1163 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1164
1165 int hpet_rtc_dropped_irq(void)
1166 {
1167         return is_hpet_enabled();
1168 }
1169 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1170
1171 static void hpet_rtc_timer_reinit(void)
1172 {
1173         unsigned int cfg, delta;
1174         int lost_ints = -1;
1175
1176         if (unlikely(!hpet_rtc_flags)) {
1177                 cfg = hpet_readl(HPET_T1_CFG);
1178                 cfg &= ~HPET_TN_ENABLE;
1179                 hpet_writel(cfg, HPET_T1_CFG);
1180                 return;
1181         }
1182
1183         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1184                 delta = hpet_default_delta;
1185         else
1186                 delta = hpet_pie_delta;
1187
1188         /*
1189          * Increment the comparator value until we are ahead of the
1190          * current count.
1191          */
1192         do {
1193                 hpet_t1_cmp += delta;
1194                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1195                 lost_ints++;
1196         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1197
1198         if (lost_ints) {
1199                 if (hpet_rtc_flags & RTC_PIE)
1200                         hpet_pie_count += lost_ints;
1201                 if (printk_ratelimit())
1202                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1203                                 lost_ints);
1204         }
1205 }
1206
1207 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1208 {
1209         struct rtc_time curr_time;
1210         unsigned long rtc_int_flag = 0;
1211
1212         hpet_rtc_timer_reinit();
1213         memset(&curr_time, 0, sizeof(struct rtc_time));
1214
1215         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1216                 get_rtc_time(&curr_time);
1217
1218         if (hpet_rtc_flags & RTC_UIE &&
1219             curr_time.tm_sec != hpet_prev_update_sec) {
1220                 if (hpet_prev_update_sec >= 0)
1221                         rtc_int_flag = RTC_UF;
1222                 hpet_prev_update_sec = curr_time.tm_sec;
1223         }
1224
1225         if (hpet_rtc_flags & RTC_PIE &&
1226             ++hpet_pie_count >= hpet_pie_limit) {
1227                 rtc_int_flag |= RTC_PF;
1228                 hpet_pie_count = 0;
1229         }
1230
1231         if (hpet_rtc_flags & RTC_AIE &&
1232             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1233             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1234             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1235                         rtc_int_flag |= RTC_AF;
1236
1237         if (rtc_int_flag) {
1238                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1239                 if (irq_handler)
1240                         irq_handler(rtc_int_flag, dev_id);
1241         }
1242         return IRQ_HANDLED;
1243 }
1244 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1245 #endif