x86, hpet: Fix bug in RTC emulation
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 u8                                      hpet_blockid; /* OS timer block num */
37 u8                                      hpet_msi_disable;
38
39 #ifdef CONFIG_PCI_MSI
40 static unsigned long                    hpet_num_timers;
41 #endif
42 static void __iomem                     *hpet_virt_address;
43
44 struct hpet_dev {
45         struct clock_event_device       evt;
46         unsigned int                    num;
47         int                             cpu;
48         unsigned int                    irq;
49         unsigned int                    flags;
50         char                            name[10];
51 };
52
53 inline unsigned int hpet_readl(unsigned int a)
54 {
55         return readl(hpet_virt_address + a);
56 }
57
58 static inline void hpet_writel(unsigned int d, unsigned int a)
59 {
60         writel(d, hpet_virt_address + a);
61 }
62
63 #ifdef CONFIG_X86_64
64 #include <asm/pgtable.h>
65 #endif
66
67 static inline void hpet_set_mapping(void)
68 {
69         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70 #ifdef CONFIG_X86_64
71         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 #endif
73 }
74
75 static inline void hpet_clear_mapping(void)
76 {
77         iounmap(hpet_virt_address);
78         hpet_virt_address = NULL;
79 }
80
81 /*
82  * HPET command line enable / disable
83  */
84 static int boot_hpet_disable;
85 int hpet_force_user;
86 static int hpet_verbose;
87
88 static int __init hpet_setup(char *str)
89 {
90         if (str) {
91                 if (!strncmp("disable", str, 7))
92                         boot_hpet_disable = 1;
93                 if (!strncmp("force", str, 5))
94                         hpet_force_user = 1;
95                 if (!strncmp("verbose", str, 7))
96                         hpet_verbose = 1;
97         }
98         return 1;
99 }
100 __setup("hpet=", hpet_setup);
101
102 static int __init disable_hpet(char *str)
103 {
104         boot_hpet_disable = 1;
105         return 1;
106 }
107 __setup("nohpet", disable_hpet);
108
109 static inline int is_hpet_capable(void)
110 {
111         return !boot_hpet_disable && hpet_address;
112 }
113
114 /*
115  * HPET timer interrupt enable / disable
116  */
117 static int hpet_legacy_int_enabled;
118
119 /**
120  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121  */
122 int is_hpet_enabled(void)
123 {
124         return is_hpet_capable() && hpet_legacy_int_enabled;
125 }
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
127
128 static void _hpet_print_config(const char *function, int line)
129 {
130         u32 i, timers, l, h;
131         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132         l = hpet_readl(HPET_ID);
133         h = hpet_readl(HPET_PERIOD);
134         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136         l = hpet_readl(HPET_CFG);
137         h = hpet_readl(HPET_STATUS);
138         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139         l = hpet_readl(HPET_COUNTER);
140         h = hpet_readl(HPET_COUNTER+4);
141         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143         for (i = 0; i < timers; i++) {
144                 l = hpet_readl(HPET_Tn_CFG(i));
145                 h = hpet_readl(HPET_Tn_CFG(i)+4);
146                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147                        i, l, h);
148                 l = hpet_readl(HPET_Tn_CMP(i));
149                 h = hpet_readl(HPET_Tn_CMP(i)+4);
150                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151                        i, l, h);
152                 l = hpet_readl(HPET_Tn_ROUTE(i));
153                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155                        i, l, h);
156         }
157 }
158
159 #define hpet_print_config()                                     \
160 do {                                                            \
161         if (hpet_verbose)                                       \
162                 _hpet_print_config(__FUNCTION__, __LINE__);     \
163 } while (0)
164
165 /*
166  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167  * timer 0 and timer 1 in case of RTC emulation.
168  */
169 #ifdef CONFIG_HPET
170
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
172
173 static void hpet_reserve_platform_timers(unsigned int id)
174 {
175         struct hpet __iomem *hpet = hpet_virt_address;
176         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177         unsigned int nrtimers, i;
178         struct hpet_data hd;
179
180         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
182         memset(&hd, 0, sizeof(hd));
183         hd.hd_phys_address      = hpet_address;
184         hd.hd_address           = hpet;
185         hd.hd_nirqs             = nrtimers;
186         hpet_reserve_timer(&hd, 0);
187
188 #ifdef CONFIG_HPET_EMULATE_RTC
189         hpet_reserve_timer(&hd, 1);
190 #endif
191
192         /*
193          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
195          * don't bother configuring *any* comparator interrupts.
196          */
197         hd.hd_irq[0] = HPET_LEGACY_8254;
198         hd.hd_irq[1] = HPET_LEGACY_RTC;
199
200         for (i = 2; i < nrtimers; timer++, i++) {
201                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203         }
204
205         hpet_reserve_msi_timers(&hd);
206
207         hpet_alloc(&hd);
208
209 }
210 #else
211 static void hpet_reserve_platform_timers(unsigned int id) { }
212 #endif
213
214 /*
215  * Common hpet info
216  */
217 static unsigned long hpet_period;
218
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220                           struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222                            struct clock_event_device *evt);
223
224 /*
225  * The hpet clock event device
226  */
227 static struct clock_event_device hpet_clockevent = {
228         .name           = "hpet",
229         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230         .set_mode       = hpet_legacy_set_mode,
231         .set_next_event = hpet_legacy_next_event,
232         .shift          = 32,
233         .irq            = 0,
234         .rating         = 50,
235 };
236
237 static void hpet_stop_counter(void)
238 {
239         unsigned long cfg = hpet_readl(HPET_CFG);
240         cfg &= ~HPET_CFG_ENABLE;
241         hpet_writel(cfg, HPET_CFG);
242 }
243
244 static void hpet_reset_counter(void)
245 {
246         hpet_writel(0, HPET_COUNTER);
247         hpet_writel(0, HPET_COUNTER + 4);
248 }
249
250 static void hpet_start_counter(void)
251 {
252         unsigned int cfg = hpet_readl(HPET_CFG);
253         cfg |= HPET_CFG_ENABLE;
254         hpet_writel(cfg, HPET_CFG);
255 }
256
257 static void hpet_restart_counter(void)
258 {
259         hpet_stop_counter();
260         hpet_reset_counter();
261         hpet_start_counter();
262 }
263
264 static void hpet_resume_device(void)
265 {
266         force_hpet_resume();
267 }
268
269 static void hpet_resume_counter(struct clocksource *cs)
270 {
271         hpet_resume_device();
272         hpet_restart_counter();
273 }
274
275 static void hpet_enable_legacy_int(void)
276 {
277         unsigned int cfg = hpet_readl(HPET_CFG);
278
279         cfg |= HPET_CFG_LEGACY;
280         hpet_writel(cfg, HPET_CFG);
281         hpet_legacy_int_enabled = 1;
282 }
283
284 static void hpet_legacy_clockevent_register(void)
285 {
286         /* Start HPET legacy interrupts */
287         hpet_enable_legacy_int();
288
289         /*
290          * The mult factor is defined as (include/linux/clockchips.h)
291          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292          * hpet_period is in units of femtoseconds (per cycle), so
293          *  mult/2^shift = cyc/ns = 10^6/hpet_period
294          *  mult = (10^6 * 2^shift)/hpet_period
295          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296          */
297         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298                                       hpet_period, hpet_clockevent.shift);
299         /* Calculate the min / max delta */
300         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301                                                            &hpet_clockevent);
302         /* 5 usec minimum reprogramming delta. */
303         hpet_clockevent.min_delta_ns = 5000;
304
305         /*
306          * Start hpet with the boot cpu mask and make it
307          * global after the IO_APIC has been initialized.
308          */
309         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310         clockevents_register_device(&hpet_clockevent);
311         global_clock_event = &hpet_clockevent;
312         printk(KERN_DEBUG "hpet clockevent registered\n");
313 }
314
315 static int hpet_setup_msi_irq(unsigned int irq);
316
317 static void hpet_set_mode(enum clock_event_mode mode,
318                           struct clock_event_device *evt, int timer)
319 {
320         unsigned int cfg, cmp, now;
321         uint64_t delta;
322
323         switch (mode) {
324         case CLOCK_EVT_MODE_PERIODIC:
325                 hpet_stop_counter();
326                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327                 delta >>= evt->shift;
328                 now = hpet_readl(HPET_COUNTER);
329                 cmp = now + (unsigned int) delta;
330                 cfg = hpet_readl(HPET_Tn_CFG(timer));
331                 /* Make sure we use edge triggered interrupts */
332                 cfg &= ~HPET_TN_LEVEL;
333                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334                        HPET_TN_SETVAL | HPET_TN_32BIT;
335                 hpet_writel(cfg, HPET_Tn_CFG(timer));
336                 hpet_writel(cmp, HPET_Tn_CMP(timer));
337                 udelay(1);
338                 /*
339                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341                  * bit is automatically cleared after the first write.
342                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343                  * Publication # 24674)
344                  */
345                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346                 hpet_start_counter();
347                 hpet_print_config();
348                 break;
349
350         case CLOCK_EVT_MODE_ONESHOT:
351                 cfg = hpet_readl(HPET_Tn_CFG(timer));
352                 cfg &= ~HPET_TN_PERIODIC;
353                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354                 hpet_writel(cfg, HPET_Tn_CFG(timer));
355                 break;
356
357         case CLOCK_EVT_MODE_UNUSED:
358         case CLOCK_EVT_MODE_SHUTDOWN:
359                 cfg = hpet_readl(HPET_Tn_CFG(timer));
360                 cfg &= ~HPET_TN_ENABLE;
361                 hpet_writel(cfg, HPET_Tn_CFG(timer));
362                 break;
363
364         case CLOCK_EVT_MODE_RESUME:
365                 if (timer == 0) {
366                         hpet_enable_legacy_int();
367                 } else {
368                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369                         hpet_setup_msi_irq(hdev->irq);
370                         disable_irq(hdev->irq);
371                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372                         enable_irq(hdev->irq);
373                 }
374                 hpet_print_config();
375                 break;
376         }
377 }
378
379 static int hpet_next_event(unsigned long delta,
380                            struct clock_event_device *evt, int timer)
381 {
382         u32 cnt;
383
384         cnt = hpet_readl(HPET_COUNTER);
385         cnt += (u32) delta;
386         hpet_writel(cnt, HPET_Tn_CMP(timer));
387
388         /*
389          * We need to read back the CMP register on certain HPET
390          * implementations (ATI chipsets) which seem to delay the
391          * transfer of the compare register into the internal compare
392          * logic. With small deltas this might actually be too late as
393          * the counter could already be higher than the compare value
394          * at that point and we would wait for the next hpet interrupt
395          * forever. We found out that reading the CMP register back
396          * forces the transfer so we can rely on the comparison with
397          * the counter register below. If the read back from the
398          * compare register does not match the value we programmed
399          * then we might have a real hardware problem. We can not do
400          * much about it here, but at least alert the user/admin with
401          * a prominent warning.
402          * An erratum on some chipsets (ICH9,..), results in comparator read
403          * immediately following a write returning old value. Workaround
404          * for this is to read this value second time, when first
405          * read returns old value.
406          */
407         if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
408                 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
409                   KERN_WARNING "hpet: compare register read back failed.\n");
410         }
411
412         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
413 }
414
415 static void hpet_legacy_set_mode(enum clock_event_mode mode,
416                         struct clock_event_device *evt)
417 {
418         hpet_set_mode(mode, evt, 0);
419 }
420
421 static int hpet_legacy_next_event(unsigned long delta,
422                         struct clock_event_device *evt)
423 {
424         return hpet_next_event(delta, evt, 0);
425 }
426
427 /*
428  * HPET MSI Support
429  */
430 #ifdef CONFIG_PCI_MSI
431
432 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
433 static struct hpet_dev  *hpet_devs;
434
435 void hpet_msi_unmask(unsigned int irq)
436 {
437         struct hpet_dev *hdev = get_irq_data(irq);
438         unsigned int cfg;
439
440         /* unmask it */
441         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
442         cfg |= HPET_TN_FSB;
443         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
444 }
445
446 void hpet_msi_mask(unsigned int irq)
447 {
448         unsigned int cfg;
449         struct hpet_dev *hdev = get_irq_data(irq);
450
451         /* mask it */
452         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
453         cfg &= ~HPET_TN_FSB;
454         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
455 }
456
457 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
458 {
459         struct hpet_dev *hdev = get_irq_data(irq);
460
461         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
462         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
463 }
464
465 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
466 {
467         struct hpet_dev *hdev = get_irq_data(irq);
468
469         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
470         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
471         msg->address_hi = 0;
472 }
473
474 static void hpet_msi_set_mode(enum clock_event_mode mode,
475                                 struct clock_event_device *evt)
476 {
477         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
478         hpet_set_mode(mode, evt, hdev->num);
479 }
480
481 static int hpet_msi_next_event(unsigned long delta,
482                                 struct clock_event_device *evt)
483 {
484         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
485         return hpet_next_event(delta, evt, hdev->num);
486 }
487
488 static int hpet_setup_msi_irq(unsigned int irq)
489 {
490         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
491                 destroy_irq(irq);
492                 return -EINVAL;
493         }
494         return 0;
495 }
496
497 static int hpet_assign_irq(struct hpet_dev *dev)
498 {
499         unsigned int irq;
500
501         irq = create_irq();
502         if (!irq)
503                 return -EINVAL;
504
505         set_irq_data(irq, dev);
506
507         if (hpet_setup_msi_irq(irq))
508                 return -EINVAL;
509
510         dev->irq = irq;
511         return 0;
512 }
513
514 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
515 {
516         struct hpet_dev *dev = (struct hpet_dev *)data;
517         struct clock_event_device *hevt = &dev->evt;
518
519         if (!hevt->event_handler) {
520                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
521                                 dev->num);
522                 return IRQ_HANDLED;
523         }
524
525         hevt->event_handler(hevt);
526         return IRQ_HANDLED;
527 }
528
529 static int hpet_setup_irq(struct hpet_dev *dev)
530 {
531
532         if (request_irq(dev->irq, hpet_interrupt_handler,
533                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
534                         dev->name, dev))
535                 return -1;
536
537         disable_irq(dev->irq);
538         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
539         enable_irq(dev->irq);
540
541         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
542                          dev->name, dev->irq);
543
544         return 0;
545 }
546
547 /* This should be called in specific @cpu */
548 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
549 {
550         struct clock_event_device *evt = &hdev->evt;
551         uint64_t hpet_freq;
552
553         WARN_ON(cpu != smp_processor_id());
554         if (!(hdev->flags & HPET_DEV_VALID))
555                 return;
556
557         if (hpet_setup_msi_irq(hdev->irq))
558                 return;
559
560         hdev->cpu = cpu;
561         per_cpu(cpu_hpet_dev, cpu) = hdev;
562         evt->name = hdev->name;
563         hpet_setup_irq(hdev);
564         evt->irq = hdev->irq;
565
566         evt->rating = 110;
567         evt->features = CLOCK_EVT_FEAT_ONESHOT;
568         if (hdev->flags & HPET_DEV_PERI_CAP)
569                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
570
571         evt->set_mode = hpet_msi_set_mode;
572         evt->set_next_event = hpet_msi_next_event;
573         evt->shift = 32;
574
575         /*
576          * The period is a femto seconds value. We need to calculate the
577          * scaled math multiplication factor for nanosecond to hpet tick
578          * conversion.
579          */
580         hpet_freq = 1000000000000000ULL;
581         do_div(hpet_freq, hpet_period);
582         evt->mult = div_sc((unsigned long) hpet_freq,
583                                       NSEC_PER_SEC, evt->shift);
584         /* Calculate the max delta */
585         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
586         /* 5 usec minimum reprogramming delta. */
587         evt->min_delta_ns = 5000;
588
589         evt->cpumask = cpumask_of(hdev->cpu);
590         clockevents_register_device(evt);
591 }
592
593 #ifdef CONFIG_HPET
594 /* Reserve at least one timer for userspace (/dev/hpet) */
595 #define RESERVE_TIMERS 1
596 #else
597 #define RESERVE_TIMERS 0
598 #endif
599
600 static void hpet_msi_capability_lookup(unsigned int start_timer)
601 {
602         unsigned int id;
603         unsigned int num_timers;
604         unsigned int num_timers_used = 0;
605         int i;
606
607         if (hpet_msi_disable)
608                 return;
609
610         if (boot_cpu_has(X86_FEATURE_ARAT))
611                 return;
612         id = hpet_readl(HPET_ID);
613
614         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
615         num_timers++; /* Value read out starts from 0 */
616         hpet_print_config();
617
618         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619         if (!hpet_devs)
620                 return;
621
622         hpet_num_timers = num_timers;
623
624         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627
628                 /* Only consider HPET timer with MSI support */
629                 if (!(cfg & HPET_TN_FSB_CAP))
630                         continue;
631
632                 hdev->flags = 0;
633                 if (cfg & HPET_TN_PERIODIC_CAP)
634                         hdev->flags |= HPET_DEV_PERI_CAP;
635                 hdev->num = i;
636
637                 sprintf(hdev->name, "hpet%d", i);
638                 if (hpet_assign_irq(hdev))
639                         continue;
640
641                 hdev->flags |= HPET_DEV_FSB_CAP;
642                 hdev->flags |= HPET_DEV_VALID;
643                 num_timers_used++;
644                 if (num_timers_used == num_possible_cpus())
645                         break;
646         }
647
648         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649                 num_timers, num_timers_used);
650 }
651
652 #ifdef CONFIG_HPET
653 static void hpet_reserve_msi_timers(struct hpet_data *hd)
654 {
655         int i;
656
657         if (!hpet_devs)
658                 return;
659
660         for (i = 0; i < hpet_num_timers; i++) {
661                 struct hpet_dev *hdev = &hpet_devs[i];
662
663                 if (!(hdev->flags & HPET_DEV_VALID))
664                         continue;
665
666                 hd->hd_irq[hdev->num] = hdev->irq;
667                 hpet_reserve_timer(hd, hdev->num);
668         }
669 }
670 #endif
671
672 static struct hpet_dev *hpet_get_unused_timer(void)
673 {
674         int i;
675
676         if (!hpet_devs)
677                 return NULL;
678
679         for (i = 0; i < hpet_num_timers; i++) {
680                 struct hpet_dev *hdev = &hpet_devs[i];
681
682                 if (!(hdev->flags & HPET_DEV_VALID))
683                         continue;
684                 if (test_and_set_bit(HPET_DEV_USED_BIT,
685                         (unsigned long *)&hdev->flags))
686                         continue;
687                 return hdev;
688         }
689         return NULL;
690 }
691
692 struct hpet_work_struct {
693         struct delayed_work work;
694         struct completion complete;
695 };
696
697 static void hpet_work(struct work_struct *w)
698 {
699         struct hpet_dev *hdev;
700         int cpu = smp_processor_id();
701         struct hpet_work_struct *hpet_work;
702
703         hpet_work = container_of(w, struct hpet_work_struct, work.work);
704
705         hdev = hpet_get_unused_timer();
706         if (hdev)
707                 init_one_hpet_msi_clockevent(hdev, cpu);
708
709         complete(&hpet_work->complete);
710 }
711
712 static int hpet_cpuhp_notify(struct notifier_block *n,
713                 unsigned long action, void *hcpu)
714 {
715         unsigned long cpu = (unsigned long)hcpu;
716         struct hpet_work_struct work;
717         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
718
719         switch (action & 0xf) {
720         case CPU_ONLINE:
721                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
722                 init_completion(&work.complete);
723                 /* FIXME: add schedule_work_on() */
724                 schedule_delayed_work_on(cpu, &work.work, 0);
725                 wait_for_completion(&work.complete);
726                 destroy_timer_on_stack(&work.work.timer);
727                 break;
728         case CPU_DEAD:
729                 if (hdev) {
730                         free_irq(hdev->irq, hdev);
731                         hdev->flags &= ~HPET_DEV_USED;
732                         per_cpu(cpu_hpet_dev, cpu) = NULL;
733                 }
734                 break;
735         }
736         return NOTIFY_OK;
737 }
738 #else
739
740 static int hpet_setup_msi_irq(unsigned int irq)
741 {
742         return 0;
743 }
744 static void hpet_msi_capability_lookup(unsigned int start_timer)
745 {
746         return;
747 }
748
749 #ifdef CONFIG_HPET
750 static void hpet_reserve_msi_timers(struct hpet_data *hd)
751 {
752         return;
753 }
754 #endif
755
756 static int hpet_cpuhp_notify(struct notifier_block *n,
757                 unsigned long action, void *hcpu)
758 {
759         return NOTIFY_OK;
760 }
761
762 #endif
763
764 /*
765  * Clock source related code
766  */
767 static cycle_t read_hpet(struct clocksource *cs)
768 {
769         return (cycle_t)hpet_readl(HPET_COUNTER);
770 }
771
772 #ifdef CONFIG_X86_64
773 static cycle_t __vsyscall_fn vread_hpet(void)
774 {
775         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
776 }
777 #endif
778
779 static struct clocksource clocksource_hpet = {
780         .name           = "hpet",
781         .rating         = 250,
782         .read           = read_hpet,
783         .mask           = HPET_MASK,
784         .shift          = HPET_SHIFT,
785         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
786         .resume         = hpet_resume_counter,
787 #ifdef CONFIG_X86_64
788         .vread          = vread_hpet,
789 #endif
790 };
791
792 static int hpet_clocksource_register(void)
793 {
794         u64 start, now;
795         cycle_t t1;
796
797         /* Start the counter */
798         hpet_restart_counter();
799
800         /* Verify whether hpet counter works */
801         t1 = hpet_readl(HPET_COUNTER);
802         rdtscll(start);
803
804         /*
805          * We don't know the TSC frequency yet, but waiting for
806          * 200000 TSC cycles is safe:
807          * 4 GHz == 50us
808          * 1 GHz == 200us
809          */
810         do {
811                 rep_nop();
812                 rdtscll(now);
813         } while ((now - start) < 200000UL);
814
815         if (t1 == hpet_readl(HPET_COUNTER)) {
816                 printk(KERN_WARNING
817                        "HPET counter not counting. HPET disabled\n");
818                 return -ENODEV;
819         }
820
821         /*
822          * The definition of mult is (include/linux/clocksource.h)
823          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
824          * so we first need to convert hpet_period to ns/cyc units:
825          *  mult/2^shift = ns/cyc = hpet_period/10^6
826          *  mult = (hpet_period * 2^shift)/10^6
827          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
828          */
829         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
830
831         clocksource_register(&clocksource_hpet);
832
833         return 0;
834 }
835
836 /**
837  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
838  */
839 int __init hpet_enable(void)
840 {
841         unsigned int id;
842         int i;
843
844         if (!is_hpet_capable())
845                 return 0;
846
847         hpet_set_mapping();
848
849         /*
850          * Read the period and check for a sane value:
851          */
852         hpet_period = hpet_readl(HPET_PERIOD);
853
854         /*
855          * AMD SB700 based systems with spread spectrum enabled use a
856          * SMM based HPET emulation to provide proper frequency
857          * setting. The SMM code is initialized with the first HPET
858          * register access and takes some time to complete. During
859          * this time the config register reads 0xffffffff. We check
860          * for max. 1000 loops whether the config register reads a non
861          * 0xffffffff value to make sure that HPET is up and running
862          * before we go further. A counting loop is safe, as the HPET
863          * access takes thousands of CPU cycles. On non SB700 based
864          * machines this check is only done once and has no side
865          * effects.
866          */
867         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
868                 if (i == 1000) {
869                         printk(KERN_WARNING
870                                "HPET config register value = 0xFFFFFFFF. "
871                                "Disabling HPET\n");
872                         goto out_nohpet;
873                 }
874         }
875
876         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
877                 goto out_nohpet;
878
879         /*
880          * Read the HPET ID register to retrieve the IRQ routing
881          * information and the number of channels
882          */
883         id = hpet_readl(HPET_ID);
884         hpet_print_config();
885
886 #ifdef CONFIG_HPET_EMULATE_RTC
887         /*
888          * The legacy routing mode needs at least two channels, tick timer
889          * and the rtc emulation channel.
890          */
891         if (!(id & HPET_ID_NUMBER))
892                 goto out_nohpet;
893 #endif
894
895         if (hpet_clocksource_register())
896                 goto out_nohpet;
897
898         if (id & HPET_ID_LEGSUP) {
899                 hpet_legacy_clockevent_register();
900                 return 1;
901         }
902         return 0;
903
904 out_nohpet:
905         hpet_clear_mapping();
906         hpet_address = 0;
907         return 0;
908 }
909
910 /*
911  * Needs to be late, as the reserve_timer code calls kalloc !
912  *
913  * Not a problem on i386 as hpet_enable is called from late_time_init,
914  * but on x86_64 it is necessary !
915  */
916 static __init int hpet_late_init(void)
917 {
918         int cpu;
919
920         if (boot_hpet_disable)
921                 return -ENODEV;
922
923         if (!hpet_address) {
924                 if (!force_hpet_address)
925                         return -ENODEV;
926
927                 hpet_address = force_hpet_address;
928                 hpet_enable();
929         }
930
931         if (!hpet_virt_address)
932                 return -ENODEV;
933
934         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
935                 hpet_msi_capability_lookup(2);
936         else
937                 hpet_msi_capability_lookup(0);
938
939         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
940         hpet_print_config();
941
942         if (hpet_msi_disable)
943                 return 0;
944
945         if (boot_cpu_has(X86_FEATURE_ARAT))
946                 return 0;
947
948         for_each_online_cpu(cpu) {
949                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
950         }
951
952         /* This notifier should be called after workqueue is ready */
953         hotcpu_notifier(hpet_cpuhp_notify, -20);
954
955         return 0;
956 }
957 fs_initcall(hpet_late_init);
958
959 void hpet_disable(void)
960 {
961         if (is_hpet_capable()) {
962                 unsigned int cfg = hpet_readl(HPET_CFG);
963
964                 if (hpet_legacy_int_enabled) {
965                         cfg &= ~HPET_CFG_LEGACY;
966                         hpet_legacy_int_enabled = 0;
967                 }
968                 cfg &= ~HPET_CFG_ENABLE;
969                 hpet_writel(cfg, HPET_CFG);
970         }
971 }
972
973 #ifdef CONFIG_HPET_EMULATE_RTC
974
975 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
976  * is enabled, we support RTC interrupt functionality in software.
977  * RTC has 3 kinds of interrupts:
978  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
979  *    is updated
980  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
981  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
982  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
983  * (1) and (2) above are implemented using polling at a frequency of
984  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
985  * overhead. (DEFAULT_RTC_INT_FREQ)
986  * For (3), we use interrupts at 64Hz or user specified periodic
987  * frequency, whichever is higher.
988  */
989 #include <linux/mc146818rtc.h>
990 #include <linux/rtc.h>
991 #include <asm/rtc.h>
992
993 #define DEFAULT_RTC_INT_FREQ    64
994 #define DEFAULT_RTC_SHIFT       6
995 #define RTC_NUM_INTS            1
996
997 static unsigned long hpet_rtc_flags;
998 static int hpet_prev_update_sec;
999 static struct rtc_time hpet_alarm_time;
1000 static unsigned long hpet_pie_count;
1001 static u32 hpet_t1_cmp;
1002 static u32 hpet_default_delta;
1003 static u32 hpet_pie_delta;
1004 static unsigned long hpet_pie_limit;
1005
1006 static rtc_irq_handler irq_handler;
1007
1008 /*
1009  * Check that the hpet counter c1 is ahead of the c2
1010  */
1011 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1012 {
1013         return (s32)(c2 - c1) < 0;
1014 }
1015
1016 /*
1017  * Registers a IRQ handler.
1018  */
1019 int hpet_register_irq_handler(rtc_irq_handler handler)
1020 {
1021         if (!is_hpet_enabled())
1022                 return -ENODEV;
1023         if (irq_handler)
1024                 return -EBUSY;
1025
1026         irq_handler = handler;
1027
1028         return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1031
1032 /*
1033  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1034  * and does cleanup.
1035  */
1036 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1037 {
1038         if (!is_hpet_enabled())
1039                 return;
1040
1041         irq_handler = NULL;
1042         hpet_rtc_flags = 0;
1043 }
1044 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1045
1046 /*
1047  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1048  * is not supported by all HPET implementations for timer 1.
1049  *
1050  * hpet_rtc_timer_init() is called when the rtc is initialized.
1051  */
1052 int hpet_rtc_timer_init(void)
1053 {
1054         unsigned int cfg, cnt, delta;
1055         unsigned long flags;
1056
1057         if (!is_hpet_enabled())
1058                 return 0;
1059
1060         if (!hpet_default_delta) {
1061                 uint64_t clc;
1062
1063                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1064                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1065                 hpet_default_delta = clc;
1066         }
1067
1068         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1069                 delta = hpet_default_delta;
1070         else
1071                 delta = hpet_pie_delta;
1072
1073         local_irq_save(flags);
1074
1075         cnt = delta + hpet_readl(HPET_COUNTER);
1076         hpet_writel(cnt, HPET_T1_CMP);
1077         hpet_t1_cmp = cnt;
1078
1079         cfg = hpet_readl(HPET_T1_CFG);
1080         cfg &= ~HPET_TN_PERIODIC;
1081         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1082         hpet_writel(cfg, HPET_T1_CFG);
1083
1084         local_irq_restore(flags);
1085
1086         return 1;
1087 }
1088 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1089
1090 /*
1091  * The functions below are called from rtc driver.
1092  * Return 0 if HPET is not being used.
1093  * Otherwise do the necessary changes and return 1.
1094  */
1095 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1096 {
1097         if (!is_hpet_enabled())
1098                 return 0;
1099
1100         hpet_rtc_flags &= ~bit_mask;
1101         return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1104
1105 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1106 {
1107         unsigned long oldbits = hpet_rtc_flags;
1108
1109         if (!is_hpet_enabled())
1110                 return 0;
1111
1112         hpet_rtc_flags |= bit_mask;
1113
1114         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1115                 hpet_prev_update_sec = -1;
1116
1117         if (!oldbits)
1118                 hpet_rtc_timer_init();
1119
1120         return 1;
1121 }
1122 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1123
1124 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1125                         unsigned char sec)
1126 {
1127         if (!is_hpet_enabled())
1128                 return 0;
1129
1130         hpet_alarm_time.tm_hour = hrs;
1131         hpet_alarm_time.tm_min = min;
1132         hpet_alarm_time.tm_sec = sec;
1133
1134         return 1;
1135 }
1136 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1137
1138 int hpet_set_periodic_freq(unsigned long freq)
1139 {
1140         uint64_t clc;
1141
1142         if (!is_hpet_enabled())
1143                 return 0;
1144
1145         if (freq <= DEFAULT_RTC_INT_FREQ)
1146                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1147         else {
1148                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1149                 do_div(clc, freq);
1150                 clc >>= hpet_clockevent.shift;
1151                 hpet_pie_delta = clc;
1152                 hpet_pie_limit = 0;
1153         }
1154         return 1;
1155 }
1156 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1157
1158 int hpet_rtc_dropped_irq(void)
1159 {
1160         return is_hpet_enabled();
1161 }
1162 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1163
1164 static void hpet_rtc_timer_reinit(void)
1165 {
1166         unsigned int cfg, delta;
1167         int lost_ints = -1;
1168
1169         if (unlikely(!hpet_rtc_flags)) {
1170                 cfg = hpet_readl(HPET_T1_CFG);
1171                 cfg &= ~HPET_TN_ENABLE;
1172                 hpet_writel(cfg, HPET_T1_CFG);
1173                 return;
1174         }
1175
1176         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1177                 delta = hpet_default_delta;
1178         else
1179                 delta = hpet_pie_delta;
1180
1181         /*
1182          * Increment the comparator value until we are ahead of the
1183          * current count.
1184          */
1185         do {
1186                 hpet_t1_cmp += delta;
1187                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1188                 lost_ints++;
1189         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1190
1191         if (lost_ints) {
1192                 if (hpet_rtc_flags & RTC_PIE)
1193                         hpet_pie_count += lost_ints;
1194                 if (printk_ratelimit())
1195                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1196                                 lost_ints);
1197         }
1198 }
1199
1200 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1201 {
1202         struct rtc_time curr_time;
1203         unsigned long rtc_int_flag = 0;
1204
1205         hpet_rtc_timer_reinit();
1206         memset(&curr_time, 0, sizeof(struct rtc_time));
1207
1208         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1209                 get_rtc_time(&curr_time);
1210
1211         if (hpet_rtc_flags & RTC_UIE &&
1212             curr_time.tm_sec != hpet_prev_update_sec) {
1213                 if (hpet_prev_update_sec >= 0)
1214                         rtc_int_flag = RTC_UF;
1215                 hpet_prev_update_sec = curr_time.tm_sec;
1216         }
1217
1218         if (hpet_rtc_flags & RTC_PIE &&
1219             ++hpet_pie_count >= hpet_pie_limit) {
1220                 rtc_int_flag |= RTC_PF;
1221                 hpet_pie_count = 0;
1222         }
1223
1224         if (hpet_rtc_flags & RTC_AIE &&
1225             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1226             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1227             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1228                         rtc_int_flag |= RTC_AF;
1229
1230         if (rtc_int_flag) {
1231                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1232                 if (irq_handler)
1233                         irq_handler(rtc_int_flag, dev_id);
1234         }
1235         return IRQ_HANDLED;
1236 }
1237 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1238 #endif