pandora: defconfig: update
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/sysdev.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15 #include <linux/kaiser.h>
16
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24    NSEC = 10^-9 */
25 #define FSEC_PER_NSEC                   1000000L
26
27 #define HPET_DEV_USED_BIT               2
28 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID                  0x8
30 #define HPET_DEV_FSB_CAP                0x1000
31 #define HPET_DEV_PERI_CAP               0x2000
32
33 #define HPET_MIN_CYCLES                 128
34 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
37
38 /*
39  * HPET address is set in acpi/boot.c, when an ACPI entry exists
40  */
41 unsigned long                           hpet_address;
42 u8                                      hpet_blockid; /* OS timer block num */
43 u8                                      hpet_msi_disable;
44
45 #ifdef CONFIG_PCI_MSI
46 static unsigned long                    hpet_num_timers;
47 #endif
48 static void __iomem                     *hpet_virt_address;
49
50 struct hpet_dev {
51         struct clock_event_device       evt;
52         unsigned int                    num;
53         int                             cpu;
54         unsigned int                    irq;
55         unsigned int                    flags;
56         char                            name[10];
57 };
58
59 inline unsigned int hpet_readl(unsigned int a)
60 {
61         return readl(hpet_virt_address + a);
62 }
63
64 static inline void hpet_writel(unsigned int d, unsigned int a)
65 {
66         writel(d, hpet_virt_address + a);
67 }
68
69 #ifdef CONFIG_X86_64
70 #include <asm/pgtable.h>
71 #endif
72
73 static inline void hpet_set_mapping(void)
74 {
75         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
76 #ifdef CONFIG_X86_64
77         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
78         kaiser_add_mapping(__fix_to_virt(VSYSCALL_HPET), PAGE_SIZE,
79                            __PAGE_KERNEL_VVAR_NOCACHE);
80 #endif
81 }
82
83 static inline void hpet_clear_mapping(void)
84 {
85         iounmap(hpet_virt_address);
86         hpet_virt_address = NULL;
87 }
88
89 /*
90  * HPET command line enable / disable
91  */
92 static int boot_hpet_disable;
93 int hpet_force_user;
94 static int hpet_verbose;
95
96 static int __init hpet_setup(char *str)
97 {
98         if (str) {
99                 if (!strncmp("disable", str, 7))
100                         boot_hpet_disable = 1;
101                 if (!strncmp("force", str, 5))
102                         hpet_force_user = 1;
103                 if (!strncmp("verbose", str, 7))
104                         hpet_verbose = 1;
105         }
106         return 1;
107 }
108 __setup("hpet=", hpet_setup);
109
110 static int __init disable_hpet(char *str)
111 {
112         boot_hpet_disable = 1;
113         return 1;
114 }
115 __setup("nohpet", disable_hpet);
116
117 static inline int is_hpet_capable(void)
118 {
119         return !boot_hpet_disable && hpet_address;
120 }
121
122 /*
123  * HPET timer interrupt enable / disable
124  */
125 static int hpet_legacy_int_enabled;
126
127 /**
128  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
129  */
130 int is_hpet_enabled(void)
131 {
132         return is_hpet_capable() && hpet_legacy_int_enabled;
133 }
134 EXPORT_SYMBOL_GPL(is_hpet_enabled);
135
136 static void _hpet_print_config(const char *function, int line)
137 {
138         u32 i, timers, l, h;
139         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
140         l = hpet_readl(HPET_ID);
141         h = hpet_readl(HPET_PERIOD);
142         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
143         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
144         l = hpet_readl(HPET_CFG);
145         h = hpet_readl(HPET_STATUS);
146         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
147         l = hpet_readl(HPET_COUNTER);
148         h = hpet_readl(HPET_COUNTER+4);
149         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
150
151         for (i = 0; i < timers; i++) {
152                 l = hpet_readl(HPET_Tn_CFG(i));
153                 h = hpet_readl(HPET_Tn_CFG(i)+4);
154                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
155                        i, l, h);
156                 l = hpet_readl(HPET_Tn_CMP(i));
157                 h = hpet_readl(HPET_Tn_CMP(i)+4);
158                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
159                        i, l, h);
160                 l = hpet_readl(HPET_Tn_ROUTE(i));
161                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
162                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
163                        i, l, h);
164         }
165 }
166
167 #define hpet_print_config()                                     \
168 do {                                                            \
169         if (hpet_verbose)                                       \
170                 _hpet_print_config(__FUNCTION__, __LINE__);     \
171 } while (0)
172
173 /*
174  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
175  * timer 0 and timer 1 in case of RTC emulation.
176  */
177 #ifdef CONFIG_HPET
178
179 static void hpet_reserve_msi_timers(struct hpet_data *hd);
180
181 static void hpet_reserve_platform_timers(unsigned int id)
182 {
183         struct hpet __iomem *hpet = hpet_virt_address;
184         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
185         unsigned int nrtimers, i;
186         struct hpet_data hd;
187
188         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
189
190         memset(&hd, 0, sizeof(hd));
191         hd.hd_phys_address      = hpet_address;
192         hd.hd_address           = hpet;
193         hd.hd_nirqs             = nrtimers;
194         hpet_reserve_timer(&hd, 0);
195
196 #ifdef CONFIG_HPET_EMULATE_RTC
197         hpet_reserve_timer(&hd, 1);
198 #endif
199
200         /*
201          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
203          * don't bother configuring *any* comparator interrupts.
204          */
205         hd.hd_irq[0] = HPET_LEGACY_8254;
206         hd.hd_irq[1] = HPET_LEGACY_RTC;
207
208         for (i = 2; i < nrtimers; timer++, i++) {
209                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
210                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
211         }
212
213         hpet_reserve_msi_timers(&hd);
214
215         hpet_alloc(&hd);
216
217 }
218 #else
219 static void hpet_reserve_platform_timers(unsigned int id) { }
220 #endif
221
222 /*
223  * Common hpet info
224  */
225 static unsigned long hpet_freq;
226
227 static void hpet_legacy_set_mode(enum clock_event_mode mode,
228                           struct clock_event_device *evt);
229 static int hpet_legacy_next_event(unsigned long delta,
230                            struct clock_event_device *evt);
231
232 /*
233  * The hpet clock event device
234  */
235 static struct clock_event_device hpet_clockevent = {
236         .name           = "hpet",
237         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
238         .set_mode       = hpet_legacy_set_mode,
239         .set_next_event = hpet_legacy_next_event,
240         .irq            = 0,
241         .rating         = 50,
242 };
243
244 static void hpet_stop_counter(void)
245 {
246         unsigned long cfg = hpet_readl(HPET_CFG);
247         cfg &= ~HPET_CFG_ENABLE;
248         hpet_writel(cfg, HPET_CFG);
249 }
250
251 static void hpet_reset_counter(void)
252 {
253         hpet_writel(0, HPET_COUNTER);
254         hpet_writel(0, HPET_COUNTER + 4);
255 }
256
257 static void hpet_start_counter(void)
258 {
259         unsigned int cfg = hpet_readl(HPET_CFG);
260         cfg |= HPET_CFG_ENABLE;
261         hpet_writel(cfg, HPET_CFG);
262 }
263
264 static void hpet_restart_counter(void)
265 {
266         hpet_stop_counter();
267         hpet_reset_counter();
268         hpet_start_counter();
269 }
270
271 static void hpet_resume_device(void)
272 {
273         force_hpet_resume();
274 }
275
276 static void hpet_resume_counter(struct clocksource *cs)
277 {
278         hpet_resume_device();
279         hpet_restart_counter();
280 }
281
282 static void hpet_enable_legacy_int(void)
283 {
284         unsigned int cfg = hpet_readl(HPET_CFG);
285
286         cfg |= HPET_CFG_LEGACY;
287         hpet_writel(cfg, HPET_CFG);
288         hpet_legacy_int_enabled = 1;
289 }
290
291 static void hpet_legacy_clockevent_register(void)
292 {
293         /* Start HPET legacy interrupts */
294         hpet_enable_legacy_int();
295
296         /*
297          * Start hpet with the boot cpu mask and make it
298          * global after the IO_APIC has been initialized.
299          */
300         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
301         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
302                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
303         global_clock_event = &hpet_clockevent;
304         printk(KERN_DEBUG "hpet clockevent registered\n");
305 }
306
307 static int hpet_setup_msi_irq(unsigned int irq);
308
309 static void hpet_set_mode(enum clock_event_mode mode,
310                           struct clock_event_device *evt, int timer)
311 {
312         unsigned int cfg, cmp, now;
313         uint64_t delta;
314
315         switch (mode) {
316         case CLOCK_EVT_MODE_PERIODIC:
317                 hpet_stop_counter();
318                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
319                 delta >>= evt->shift;
320                 now = hpet_readl(HPET_COUNTER);
321                 cmp = now + (unsigned int) delta;
322                 cfg = hpet_readl(HPET_Tn_CFG(timer));
323                 /* Make sure we use edge triggered interrupts */
324                 cfg &= ~HPET_TN_LEVEL;
325                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
326                        HPET_TN_SETVAL | HPET_TN_32BIT;
327                 hpet_writel(cfg, HPET_Tn_CFG(timer));
328                 hpet_writel(cmp, HPET_Tn_CMP(timer));
329                 udelay(1);
330                 /*
331                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
332                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
333                  * bit is automatically cleared after the first write.
334                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
335                  * Publication # 24674)
336                  */
337                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
338                 hpet_start_counter();
339                 hpet_print_config();
340                 break;
341
342         case CLOCK_EVT_MODE_ONESHOT:
343                 cfg = hpet_readl(HPET_Tn_CFG(timer));
344                 cfg &= ~HPET_TN_PERIODIC;
345                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
346                 hpet_writel(cfg, HPET_Tn_CFG(timer));
347                 break;
348
349         case CLOCK_EVT_MODE_UNUSED:
350         case CLOCK_EVT_MODE_SHUTDOWN:
351                 cfg = hpet_readl(HPET_Tn_CFG(timer));
352                 cfg &= ~HPET_TN_ENABLE;
353                 hpet_writel(cfg, HPET_Tn_CFG(timer));
354                 break;
355
356         case CLOCK_EVT_MODE_RESUME:
357                 if (timer == 0) {
358                         hpet_enable_legacy_int();
359                 } else {
360                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
361                         hpet_setup_msi_irq(hdev->irq);
362                         disable_irq(hdev->irq);
363                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
364                         enable_irq(hdev->irq);
365                 }
366                 hpet_print_config();
367                 break;
368         }
369 }
370
371 static int hpet_next_event(unsigned long delta,
372                            struct clock_event_device *evt, int timer)
373 {
374         u32 cnt;
375         s32 res;
376
377         cnt = hpet_readl(HPET_COUNTER);
378         cnt += (u32) delta;
379         hpet_writel(cnt, HPET_Tn_CMP(timer));
380
381         /*
382          * HPETs are a complete disaster. The compare register is
383          * based on a equal comparison and neither provides a less
384          * than or equal functionality (which would require to take
385          * the wraparound into account) nor a simple count down event
386          * mode. Further the write to the comparator register is
387          * delayed internally up to two HPET clock cycles in certain
388          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
389          * longer delays. We worked around that by reading back the
390          * compare register, but that required another workaround for
391          * ICH9,10 chips where the first readout after write can
392          * return the old stale value. We already had a minimum
393          * programming delta of 5us enforced, but a NMI or SMI hitting
394          * between the counter readout and the comparator write can
395          * move us behind that point easily. Now instead of reading
396          * the compare register back several times, we make the ETIME
397          * decision based on the following: Return ETIME if the
398          * counter value after the write is less than HPET_MIN_CYCLES
399          * away from the event or if the counter is already ahead of
400          * the event. The minimum programming delta for the generic
401          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
402          */
403         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
404
405         return res < HPET_MIN_CYCLES ? -ETIME : 0;
406 }
407
408 static void hpet_legacy_set_mode(enum clock_event_mode mode,
409                         struct clock_event_device *evt)
410 {
411         hpet_set_mode(mode, evt, 0);
412 }
413
414 static int hpet_legacy_next_event(unsigned long delta,
415                         struct clock_event_device *evt)
416 {
417         return hpet_next_event(delta, evt, 0);
418 }
419
420 /*
421  * HPET MSI Support
422  */
423 #ifdef CONFIG_PCI_MSI
424
425 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
426 static struct hpet_dev  *hpet_devs;
427
428 void hpet_msi_unmask(struct irq_data *data)
429 {
430         struct hpet_dev *hdev = data->handler_data;
431         unsigned int cfg;
432
433         /* unmask it */
434         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
435         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
436         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
437 }
438
439 void hpet_msi_mask(struct irq_data *data)
440 {
441         struct hpet_dev *hdev = data->handler_data;
442         unsigned int cfg;
443
444         /* mask it */
445         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
446         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
447         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
448 }
449
450 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
451 {
452         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
453         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
454 }
455
456 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
457 {
458         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
459         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
460         msg->address_hi = 0;
461 }
462
463 static void hpet_msi_set_mode(enum clock_event_mode mode,
464                                 struct clock_event_device *evt)
465 {
466         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
467         hpet_set_mode(mode, evt, hdev->num);
468 }
469
470 static int hpet_msi_next_event(unsigned long delta,
471                                 struct clock_event_device *evt)
472 {
473         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
474         return hpet_next_event(delta, evt, hdev->num);
475 }
476
477 static int hpet_setup_msi_irq(unsigned int irq)
478 {
479         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
480                 destroy_irq(irq);
481                 return -EINVAL;
482         }
483         return 0;
484 }
485
486 static int hpet_assign_irq(struct hpet_dev *dev)
487 {
488         unsigned int irq;
489
490         irq = create_irq_nr(0, -1);
491         if (!irq)
492                 return -EINVAL;
493
494         irq_set_handler_data(irq, dev);
495
496         if (hpet_setup_msi_irq(irq))
497                 return -EINVAL;
498
499         dev->irq = irq;
500         return 0;
501 }
502
503 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
504 {
505         struct hpet_dev *dev = (struct hpet_dev *)data;
506         struct clock_event_device *hevt = &dev->evt;
507
508         if (!hevt->event_handler) {
509                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
510                                 dev->num);
511                 return IRQ_HANDLED;
512         }
513
514         hevt->event_handler(hevt);
515         return IRQ_HANDLED;
516 }
517
518 static int hpet_setup_irq(struct hpet_dev *dev)
519 {
520
521         if (request_irq(dev->irq, hpet_interrupt_handler,
522                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
523                         dev->name, dev))
524                 return -1;
525
526         disable_irq(dev->irq);
527         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
528         enable_irq(dev->irq);
529
530         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
531                          dev->name, dev->irq);
532
533         return 0;
534 }
535
536 /* This should be called in specific @cpu */
537 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
538 {
539         struct clock_event_device *evt = &hdev->evt;
540
541         WARN_ON(cpu != smp_processor_id());
542         if (!(hdev->flags & HPET_DEV_VALID))
543                 return;
544
545         if (hpet_setup_msi_irq(hdev->irq))
546                 return;
547
548         hdev->cpu = cpu;
549         per_cpu(cpu_hpet_dev, cpu) = hdev;
550         evt->name = hdev->name;
551         hpet_setup_irq(hdev);
552         evt->irq = hdev->irq;
553
554         evt->rating = 110;
555         evt->features = CLOCK_EVT_FEAT_ONESHOT;
556         if (hdev->flags & HPET_DEV_PERI_CAP)
557                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
558
559         evt->set_mode = hpet_msi_set_mode;
560         evt->set_next_event = hpet_msi_next_event;
561         evt->cpumask = cpumask_of(hdev->cpu);
562
563         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
564                                         0x7FFFFFFF);
565 }
566
567 #ifdef CONFIG_HPET
568 /* Reserve at least one timer for userspace (/dev/hpet) */
569 #define RESERVE_TIMERS 1
570 #else
571 #define RESERVE_TIMERS 0
572 #endif
573
574 static void hpet_msi_capability_lookup(unsigned int start_timer)
575 {
576         unsigned int id;
577         unsigned int num_timers;
578         unsigned int num_timers_used = 0;
579         int i;
580
581         if (hpet_msi_disable)
582                 return;
583
584         if (boot_cpu_has(X86_FEATURE_ARAT))
585                 return;
586         id = hpet_readl(HPET_ID);
587
588         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
589         num_timers++; /* Value read out starts from 0 */
590         hpet_print_config();
591
592         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
593         if (!hpet_devs)
594                 return;
595
596         hpet_num_timers = num_timers;
597
598         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
599                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
600                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
601
602                 /* Only consider HPET timer with MSI support */
603                 if (!(cfg & HPET_TN_FSB_CAP))
604                         continue;
605
606                 hdev->flags = 0;
607                 if (cfg & HPET_TN_PERIODIC_CAP)
608                         hdev->flags |= HPET_DEV_PERI_CAP;
609                 hdev->num = i;
610
611                 sprintf(hdev->name, "hpet%d", i);
612                 if (hpet_assign_irq(hdev))
613                         continue;
614
615                 hdev->flags |= HPET_DEV_FSB_CAP;
616                 hdev->flags |= HPET_DEV_VALID;
617                 num_timers_used++;
618                 if (num_timers_used == num_possible_cpus())
619                         break;
620         }
621
622         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623                 num_timers, num_timers_used);
624 }
625
626 #ifdef CONFIG_HPET
627 static void hpet_reserve_msi_timers(struct hpet_data *hd)
628 {
629         int i;
630
631         if (!hpet_devs)
632                 return;
633
634         for (i = 0; i < hpet_num_timers; i++) {
635                 struct hpet_dev *hdev = &hpet_devs[i];
636
637                 if (!(hdev->flags & HPET_DEV_VALID))
638                         continue;
639
640                 hd->hd_irq[hdev->num] = hdev->irq;
641                 hpet_reserve_timer(hd, hdev->num);
642         }
643 }
644 #endif
645
646 static struct hpet_dev *hpet_get_unused_timer(void)
647 {
648         int i;
649
650         if (!hpet_devs)
651                 return NULL;
652
653         for (i = 0; i < hpet_num_timers; i++) {
654                 struct hpet_dev *hdev = &hpet_devs[i];
655
656                 if (!(hdev->flags & HPET_DEV_VALID))
657                         continue;
658                 if (test_and_set_bit(HPET_DEV_USED_BIT,
659                         (unsigned long *)&hdev->flags))
660                         continue;
661                 return hdev;
662         }
663         return NULL;
664 }
665
666 struct hpet_work_struct {
667         struct delayed_work work;
668         struct completion complete;
669 };
670
671 static void hpet_work(struct work_struct *w)
672 {
673         struct hpet_dev *hdev;
674         int cpu = smp_processor_id();
675         struct hpet_work_struct *hpet_work;
676
677         hpet_work = container_of(w, struct hpet_work_struct, work.work);
678
679         hdev = hpet_get_unused_timer();
680         if (hdev)
681                 init_one_hpet_msi_clockevent(hdev, cpu);
682
683         complete(&hpet_work->complete);
684 }
685
686 static int hpet_cpuhp_notify(struct notifier_block *n,
687                 unsigned long action, void *hcpu)
688 {
689         unsigned long cpu = (unsigned long)hcpu;
690         struct hpet_work_struct work;
691         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
692
693         switch (action & 0xf) {
694         case CPU_ONLINE:
695                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
696                 init_completion(&work.complete);
697                 /* FIXME: add schedule_work_on() */
698                 schedule_delayed_work_on(cpu, &work.work, 0);
699                 wait_for_completion(&work.complete);
700                 destroy_timer_on_stack(&work.work.timer);
701                 break;
702         case CPU_DEAD:
703                 if (hdev) {
704                         free_irq(hdev->irq, hdev);
705                         hdev->flags &= ~HPET_DEV_USED;
706                         per_cpu(cpu_hpet_dev, cpu) = NULL;
707                 }
708                 break;
709         }
710         return NOTIFY_OK;
711 }
712 #else
713
714 static int hpet_setup_msi_irq(unsigned int irq)
715 {
716         return 0;
717 }
718 static void hpet_msi_capability_lookup(unsigned int start_timer)
719 {
720         return;
721 }
722
723 #ifdef CONFIG_HPET
724 static void hpet_reserve_msi_timers(struct hpet_data *hd)
725 {
726         return;
727 }
728 #endif
729
730 static int hpet_cpuhp_notify(struct notifier_block *n,
731                 unsigned long action, void *hcpu)
732 {
733         return NOTIFY_OK;
734 }
735
736 #endif
737
738 /*
739  * Clock source related code
740  */
741 static cycle_t read_hpet(struct clocksource *cs)
742 {
743         return (cycle_t)hpet_readl(HPET_COUNTER);
744 }
745
746 static struct clocksource clocksource_hpet = {
747         .name           = "hpet",
748         .rating         = 250,
749         .read           = read_hpet,
750         .mask           = HPET_MASK,
751         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
752         .resume         = hpet_resume_counter,
753 #ifdef CONFIG_X86_64
754         .archdata       = { .vclock_mode = VCLOCK_HPET },
755 #endif
756 };
757
758 static int hpet_clocksource_register(void)
759 {
760         u64 start, now;
761         cycle_t t1;
762
763         /* Start the counter */
764         hpet_restart_counter();
765
766         /* Verify whether hpet counter works */
767         t1 = hpet_readl(HPET_COUNTER);
768         rdtscll(start);
769
770         /*
771          * We don't know the TSC frequency yet, but waiting for
772          * 200000 TSC cycles is safe:
773          * 4 GHz == 50us
774          * 1 GHz == 200us
775          */
776         do {
777                 rep_nop();
778                 rdtscll(now);
779         } while ((now - start) < 200000UL);
780
781         if (t1 == hpet_readl(HPET_COUNTER)) {
782                 printk(KERN_WARNING
783                        "HPET counter not counting. HPET disabled\n");
784                 return -ENODEV;
785         }
786
787         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
788         return 0;
789 }
790
791 /**
792  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
793  */
794 int __init hpet_enable(void)
795 {
796         unsigned long hpet_period;
797         unsigned int id;
798         u64 freq;
799         int i;
800
801         if (!is_hpet_capable())
802                 return 0;
803
804         hpet_set_mapping();
805
806         /*
807          * Read the period and check for a sane value:
808          */
809         hpet_period = hpet_readl(HPET_PERIOD);
810
811         /*
812          * AMD SB700 based systems with spread spectrum enabled use a
813          * SMM based HPET emulation to provide proper frequency
814          * setting. The SMM code is initialized with the first HPET
815          * register access and takes some time to complete. During
816          * this time the config register reads 0xffffffff. We check
817          * for max. 1000 loops whether the config register reads a non
818          * 0xffffffff value to make sure that HPET is up and running
819          * before we go further. A counting loop is safe, as the HPET
820          * access takes thousands of CPU cycles. On non SB700 based
821          * machines this check is only done once and has no side
822          * effects.
823          */
824         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
825                 if (i == 1000) {
826                         printk(KERN_WARNING
827                                "HPET config register value = 0xFFFFFFFF. "
828                                "Disabling HPET\n");
829                         goto out_nohpet;
830                 }
831         }
832
833         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
834                 goto out_nohpet;
835
836         /*
837          * The period is a femto seconds value. Convert it to a
838          * frequency.
839          */
840         freq = FSEC_PER_SEC;
841         do_div(freq, hpet_period);
842         hpet_freq = freq;
843
844         /*
845          * Read the HPET ID register to retrieve the IRQ routing
846          * information and the number of channels
847          */
848         id = hpet_readl(HPET_ID);
849         hpet_print_config();
850
851 #ifdef CONFIG_HPET_EMULATE_RTC
852         /*
853          * The legacy routing mode needs at least two channels, tick timer
854          * and the rtc emulation channel.
855          */
856         if (!(id & HPET_ID_NUMBER))
857                 goto out_nohpet;
858 #endif
859
860         if (hpet_clocksource_register())
861                 goto out_nohpet;
862
863         if (id & HPET_ID_LEGSUP) {
864                 hpet_legacy_clockevent_register();
865                 return 1;
866         }
867         return 0;
868
869 out_nohpet:
870         hpet_clear_mapping();
871         hpet_address = 0;
872         return 0;
873 }
874
875 /*
876  * Needs to be late, as the reserve_timer code calls kalloc !
877  *
878  * Not a problem on i386 as hpet_enable is called from late_time_init,
879  * but on x86_64 it is necessary !
880  */
881 static __init int hpet_late_init(void)
882 {
883         int cpu;
884
885         if (boot_hpet_disable)
886                 return -ENODEV;
887
888         if (!hpet_address) {
889                 if (!force_hpet_address)
890                         return -ENODEV;
891
892                 hpet_address = force_hpet_address;
893                 hpet_enable();
894         }
895
896         if (!hpet_virt_address)
897                 return -ENODEV;
898
899         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
900                 hpet_msi_capability_lookup(2);
901         else
902                 hpet_msi_capability_lookup(0);
903
904         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
905         hpet_print_config();
906
907         if (hpet_msi_disable)
908                 return 0;
909
910         if (boot_cpu_has(X86_FEATURE_ARAT))
911                 return 0;
912
913         for_each_online_cpu(cpu) {
914                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
915         }
916
917         /* This notifier should be called after workqueue is ready */
918         hotcpu_notifier(hpet_cpuhp_notify, -20);
919
920         return 0;
921 }
922 fs_initcall(hpet_late_init);
923
924 void hpet_disable(void)
925 {
926         if (is_hpet_capable() && hpet_virt_address) {
927                 unsigned int cfg = hpet_readl(HPET_CFG);
928
929                 if (hpet_legacy_int_enabled) {
930                         cfg &= ~HPET_CFG_LEGACY;
931                         hpet_legacy_int_enabled = 0;
932                 }
933                 cfg &= ~HPET_CFG_ENABLE;
934                 hpet_writel(cfg, HPET_CFG);
935         }
936 }
937
938 #ifdef CONFIG_HPET_EMULATE_RTC
939
940 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
941  * is enabled, we support RTC interrupt functionality in software.
942  * RTC has 3 kinds of interrupts:
943  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
944  *    is updated
945  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
946  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
947  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
948  * (1) and (2) above are implemented using polling at a frequency of
949  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
950  * overhead. (DEFAULT_RTC_INT_FREQ)
951  * For (3), we use interrupts at 64Hz or user specified periodic
952  * frequency, whichever is higher.
953  */
954 #include <linux/mc146818rtc.h>
955 #include <linux/rtc.h>
956 #include <asm/rtc.h>
957
958 #define DEFAULT_RTC_INT_FREQ    64
959 #define DEFAULT_RTC_SHIFT       6
960 #define RTC_NUM_INTS            1
961
962 static unsigned long hpet_rtc_flags;
963 static int hpet_prev_update_sec;
964 static struct rtc_time hpet_alarm_time;
965 static unsigned long hpet_pie_count;
966 static u32 hpet_t1_cmp;
967 static u32 hpet_default_delta;
968 static u32 hpet_pie_delta;
969 static unsigned long hpet_pie_limit;
970
971 static rtc_irq_handler irq_handler;
972
973 /*
974  * Check that the hpet counter c1 is ahead of the c2
975  */
976 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
977 {
978         return (s32)(c2 - c1) < 0;
979 }
980
981 /*
982  * Registers a IRQ handler.
983  */
984 int hpet_register_irq_handler(rtc_irq_handler handler)
985 {
986         if (!is_hpet_enabled())
987                 return -ENODEV;
988         if (irq_handler)
989                 return -EBUSY;
990
991         irq_handler = handler;
992
993         return 0;
994 }
995 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
996
997 /*
998  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
999  * and does cleanup.
1000  */
1001 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1002 {
1003         if (!is_hpet_enabled())
1004                 return;
1005
1006         irq_handler = NULL;
1007         hpet_rtc_flags = 0;
1008 }
1009 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1010
1011 /*
1012  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1013  * is not supported by all HPET implementations for timer 1.
1014  *
1015  * hpet_rtc_timer_init() is called when the rtc is initialized.
1016  */
1017 int hpet_rtc_timer_init(void)
1018 {
1019         unsigned int cfg, cnt, delta;
1020         unsigned long flags;
1021
1022         if (!is_hpet_enabled())
1023                 return 0;
1024
1025         if (!hpet_default_delta) {
1026                 uint64_t clc;
1027
1028                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1029                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1030                 hpet_default_delta = clc;
1031         }
1032
1033         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1034                 delta = hpet_default_delta;
1035         else
1036                 delta = hpet_pie_delta;
1037
1038         local_irq_save(flags);
1039
1040         cnt = delta + hpet_readl(HPET_COUNTER);
1041         hpet_writel(cnt, HPET_T1_CMP);
1042         hpet_t1_cmp = cnt;
1043
1044         cfg = hpet_readl(HPET_T1_CFG);
1045         cfg &= ~HPET_TN_PERIODIC;
1046         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1047         hpet_writel(cfg, HPET_T1_CFG);
1048
1049         local_irq_restore(flags);
1050
1051         return 1;
1052 }
1053 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1054
1055 static void hpet_disable_rtc_channel(void)
1056 {
1057         unsigned long cfg;
1058         cfg = hpet_readl(HPET_T1_CFG);
1059         cfg &= ~HPET_TN_ENABLE;
1060         hpet_writel(cfg, HPET_T1_CFG);
1061 }
1062
1063 /*
1064  * The functions below are called from rtc driver.
1065  * Return 0 if HPET is not being used.
1066  * Otherwise do the necessary changes and return 1.
1067  */
1068 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1069 {
1070         if (!is_hpet_enabled())
1071                 return 0;
1072
1073         hpet_rtc_flags &= ~bit_mask;
1074         if (unlikely(!hpet_rtc_flags))
1075                 hpet_disable_rtc_channel();
1076
1077         return 1;
1078 }
1079 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1080
1081 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1082 {
1083         unsigned long oldbits = hpet_rtc_flags;
1084
1085         if (!is_hpet_enabled())
1086                 return 0;
1087
1088         hpet_rtc_flags |= bit_mask;
1089
1090         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1091                 hpet_prev_update_sec = -1;
1092
1093         if (!oldbits)
1094                 hpet_rtc_timer_init();
1095
1096         return 1;
1097 }
1098 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1099
1100 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1101                         unsigned char sec)
1102 {
1103         if (!is_hpet_enabled())
1104                 return 0;
1105
1106         hpet_alarm_time.tm_hour = hrs;
1107         hpet_alarm_time.tm_min = min;
1108         hpet_alarm_time.tm_sec = sec;
1109
1110         return 1;
1111 }
1112 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1113
1114 int hpet_set_periodic_freq(unsigned long freq)
1115 {
1116         uint64_t clc;
1117
1118         if (!is_hpet_enabled())
1119                 return 0;
1120
1121         if (freq <= DEFAULT_RTC_INT_FREQ)
1122                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1123         else {
1124                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1125                 do_div(clc, freq);
1126                 clc >>= hpet_clockevent.shift;
1127                 hpet_pie_delta = clc;
1128                 hpet_pie_limit = 0;
1129         }
1130         return 1;
1131 }
1132 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1133
1134 int hpet_rtc_dropped_irq(void)
1135 {
1136         return is_hpet_enabled();
1137 }
1138 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1139
1140 static void hpet_rtc_timer_reinit(void)
1141 {
1142         unsigned int delta;
1143         int lost_ints = -1;
1144
1145         if (unlikely(!hpet_rtc_flags))
1146                 hpet_disable_rtc_channel();
1147
1148         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1149                 delta = hpet_default_delta;
1150         else
1151                 delta = hpet_pie_delta;
1152
1153         /*
1154          * Increment the comparator value until we are ahead of the
1155          * current count.
1156          */
1157         do {
1158                 hpet_t1_cmp += delta;
1159                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1160                 lost_ints++;
1161         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1162
1163         if (lost_ints) {
1164                 if (hpet_rtc_flags & RTC_PIE)
1165                         hpet_pie_count += lost_ints;
1166                 if (printk_ratelimit())
1167                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1168                                 lost_ints);
1169         }
1170 }
1171
1172 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1173 {
1174         struct rtc_time curr_time;
1175         unsigned long rtc_int_flag = 0;
1176
1177         hpet_rtc_timer_reinit();
1178         memset(&curr_time, 0, sizeof(struct rtc_time));
1179
1180         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1181                 get_rtc_time(&curr_time);
1182
1183         if (hpet_rtc_flags & RTC_UIE &&
1184             curr_time.tm_sec != hpet_prev_update_sec) {
1185                 if (hpet_prev_update_sec >= 0)
1186                         rtc_int_flag = RTC_UF;
1187                 hpet_prev_update_sec = curr_time.tm_sec;
1188         }
1189
1190         if (hpet_rtc_flags & RTC_PIE &&
1191             ++hpet_pie_count >= hpet_pie_limit) {
1192                 rtc_int_flag |= RTC_PF;
1193                 hpet_pie_count = 0;
1194         }
1195
1196         if (hpet_rtc_flags & RTC_AIE &&
1197             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1198             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1199             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1200                         rtc_int_flag |= RTC_AF;
1201
1202         if (rtc_int_flag) {
1203                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1204                 if (irq_handler)
1205                         irq_handler(rtc_int_flag, dev_id);
1206         }
1207         return IRQ_HANDLED;
1208 }
1209 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1210 #endif