1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address;
36 u8 hpet_blockid; /* OS timer block num */
40 static unsigned long hpet_num_timers;
42 static void __iomem *hpet_virt_address;
45 struct clock_event_device evt;
53 inline unsigned int hpet_readl(unsigned int a)
55 return readl(hpet_virt_address + a);
58 static inline void hpet_writel(unsigned int d, unsigned int a)
60 writel(d, hpet_virt_address + a);
64 #include <asm/pgtable.h>
67 static inline void hpet_set_mapping(void)
69 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
71 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75 static inline void hpet_clear_mapping(void)
77 iounmap(hpet_virt_address);
78 hpet_virt_address = NULL;
82 * HPET command line enable / disable
84 static int boot_hpet_disable;
86 static int hpet_verbose;
88 static int __init hpet_setup(char *str)
91 if (!strncmp("disable", str, 7))
92 boot_hpet_disable = 1;
93 if (!strncmp("force", str, 5))
95 if (!strncmp("verbose", str, 7))
100 __setup("hpet=", hpet_setup);
102 static int __init disable_hpet(char *str)
104 boot_hpet_disable = 1;
107 __setup("nohpet", disable_hpet);
109 static inline int is_hpet_capable(void)
111 return !boot_hpet_disable && hpet_address;
115 * HPET timer interrupt enable / disable
117 static int hpet_legacy_int_enabled;
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122 int is_hpet_enabled(void)
124 return is_hpet_capable() && hpet_legacy_int_enabled;
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
128 static void _hpet_print_config(const char *function, int line)
131 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132 l = hpet_readl(HPET_ID);
133 h = hpet_readl(HPET_PERIOD);
134 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136 l = hpet_readl(HPET_CFG);
137 h = hpet_readl(HPET_STATUS);
138 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139 l = hpet_readl(HPET_COUNTER);
140 h = hpet_readl(HPET_COUNTER+4);
141 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143 for (i = 0; i < timers; i++) {
144 l = hpet_readl(HPET_Tn_CFG(i));
145 h = hpet_readl(HPET_Tn_CFG(i)+4);
146 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148 l = hpet_readl(HPET_Tn_CMP(i));
149 h = hpet_readl(HPET_Tn_CMP(i)+4);
150 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152 l = hpet_readl(HPET_Tn_ROUTE(i));
153 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
159 #define hpet_print_config() \
162 _hpet_print_config(__FUNCTION__, __LINE__); \
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
173 static void hpet_reserve_platform_timers(unsigned int id)
175 struct hpet __iomem *hpet = hpet_virt_address;
176 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177 unsigned int nrtimers, i;
180 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182 memset(&hd, 0, sizeof(hd));
183 hd.hd_phys_address = hpet_address;
184 hd.hd_address = hpet;
185 hd.hd_nirqs = nrtimers;
186 hpet_reserve_timer(&hd, 0);
188 #ifdef CONFIG_HPET_EMULATE_RTC
189 hpet_reserve_timer(&hd, 1);
193 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 * is wrong for i8259!) not the output IRQ. Many BIOS writers
195 * don't bother configuring *any* comparator interrupts.
197 hd.hd_irq[0] = HPET_LEGACY_8254;
198 hd.hd_irq[1] = HPET_LEGACY_RTC;
200 for (i = 2; i < nrtimers; timer++, i++) {
201 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
205 hpet_reserve_msi_timers(&hd);
211 static void hpet_reserve_platform_timers(unsigned int id) { }
217 static unsigned long hpet_period;
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220 struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222 struct clock_event_device *evt);
225 * The hpet clock event device
227 static struct clock_event_device hpet_clockevent = {
229 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230 .set_mode = hpet_legacy_set_mode,
231 .set_next_event = hpet_legacy_next_event,
237 static void hpet_stop_counter(void)
239 unsigned long cfg = hpet_readl(HPET_CFG);
240 cfg &= ~HPET_CFG_ENABLE;
241 hpet_writel(cfg, HPET_CFG);
244 static void hpet_reset_counter(void)
246 hpet_writel(0, HPET_COUNTER);
247 hpet_writel(0, HPET_COUNTER + 4);
250 static void hpet_start_counter(void)
252 unsigned int cfg = hpet_readl(HPET_CFG);
253 cfg |= HPET_CFG_ENABLE;
254 hpet_writel(cfg, HPET_CFG);
257 static void hpet_restart_counter(void)
260 hpet_reset_counter();
261 hpet_start_counter();
264 static void hpet_resume_device(void)
269 static void hpet_resume_counter(struct clocksource *cs)
271 hpet_resume_device();
272 hpet_restart_counter();
275 static void hpet_enable_legacy_int(void)
277 unsigned int cfg = hpet_readl(HPET_CFG);
279 cfg |= HPET_CFG_LEGACY;
280 hpet_writel(cfg, HPET_CFG);
281 hpet_legacy_int_enabled = 1;
284 static void hpet_legacy_clockevent_register(void)
286 /* Start HPET legacy interrupts */
287 hpet_enable_legacy_int();
290 * The mult factor is defined as (include/linux/clockchips.h)
291 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 * hpet_period is in units of femtoseconds (per cycle), so
293 * mult/2^shift = cyc/ns = 10^6/hpet_period
294 * mult = (10^6 * 2^shift)/hpet_period
295 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298 hpet_period, hpet_clockevent.shift);
299 /* Calculate the min / max delta */
300 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302 /* 5 usec minimum reprogramming delta. */
303 hpet_clockevent.min_delta_ns = 5000;
306 * Start hpet with the boot cpu mask and make it
307 * global after the IO_APIC has been initialized.
309 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310 clockevents_register_device(&hpet_clockevent);
311 global_clock_event = &hpet_clockevent;
312 printk(KERN_DEBUG "hpet clockevent registered\n");
315 static int hpet_setup_msi_irq(unsigned int irq);
317 static void hpet_set_mode(enum clock_event_mode mode,
318 struct clock_event_device *evt, int timer)
320 unsigned int cfg, cmp, now;
324 case CLOCK_EVT_MODE_PERIODIC:
326 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327 delta >>= evt->shift;
328 now = hpet_readl(HPET_COUNTER);
329 cmp = now + (unsigned int) delta;
330 cfg = hpet_readl(HPET_Tn_CFG(timer));
331 /* Make sure we use edge triggered interrupts */
332 cfg &= ~HPET_TN_LEVEL;
333 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334 HPET_TN_SETVAL | HPET_TN_32BIT;
335 hpet_writel(cfg, HPET_Tn_CFG(timer));
336 hpet_writel(cmp, HPET_Tn_CMP(timer));
339 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 * bit is automatically cleared after the first write.
342 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 * Publication # 24674)
345 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346 hpet_start_counter();
350 case CLOCK_EVT_MODE_ONESHOT:
351 cfg = hpet_readl(HPET_Tn_CFG(timer));
352 cfg &= ~HPET_TN_PERIODIC;
353 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354 hpet_writel(cfg, HPET_Tn_CFG(timer));
357 case CLOCK_EVT_MODE_UNUSED:
358 case CLOCK_EVT_MODE_SHUTDOWN:
359 cfg = hpet_readl(HPET_Tn_CFG(timer));
360 cfg &= ~HPET_TN_ENABLE;
361 hpet_writel(cfg, HPET_Tn_CFG(timer));
364 case CLOCK_EVT_MODE_RESUME:
366 hpet_enable_legacy_int();
368 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369 hpet_setup_msi_irq(hdev->irq);
370 disable_irq(hdev->irq);
371 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372 enable_irq(hdev->irq);
379 static int hpet_next_event(unsigned long delta,
380 struct clock_event_device *evt, int timer)
384 cnt = hpet_readl(HPET_COUNTER);
386 hpet_writel(cnt, HPET_Tn_CMP(timer));
389 * We need to read back the CMP register on certain HPET
390 * implementations (ATI chipsets) which seem to delay the
391 * transfer of the compare register into the internal compare
392 * logic. With small deltas this might actually be too late as
393 * the counter could already be higher than the compare value
394 * at that point and we would wait for the next hpet interrupt
395 * forever. We found out that reading the CMP register back
396 * forces the transfer so we can rely on the comparison with
397 * the counter register below. If the read back from the
398 * compare register does not match the value we programmed
399 * then we might have a real hardware problem. We can not do
400 * much about it here, but at least alert the user/admin with
401 * a prominent warning.
403 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
404 KERN_WARNING "hpet: compare register read back failed.\n");
406 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
409 static void hpet_legacy_set_mode(enum clock_event_mode mode,
410 struct clock_event_device *evt)
412 hpet_set_mode(mode, evt, 0);
415 static int hpet_legacy_next_event(unsigned long delta,
416 struct clock_event_device *evt)
418 return hpet_next_event(delta, evt, 0);
424 #ifdef CONFIG_PCI_MSI
426 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
427 static struct hpet_dev *hpet_devs;
429 void hpet_msi_unmask(unsigned int irq)
431 struct hpet_dev *hdev = get_irq_data(irq);
435 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
437 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
440 void hpet_msi_mask(unsigned int irq)
443 struct hpet_dev *hdev = get_irq_data(irq);
446 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
448 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
451 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
453 struct hpet_dev *hdev = get_irq_data(irq);
455 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
456 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
459 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
461 struct hpet_dev *hdev = get_irq_data(irq);
463 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
464 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
468 static void hpet_msi_set_mode(enum clock_event_mode mode,
469 struct clock_event_device *evt)
471 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
472 hpet_set_mode(mode, evt, hdev->num);
475 static int hpet_msi_next_event(unsigned long delta,
476 struct clock_event_device *evt)
478 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479 return hpet_next_event(delta, evt, hdev->num);
482 static int hpet_setup_msi_irq(unsigned int irq)
484 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
491 static int hpet_assign_irq(struct hpet_dev *dev)
499 set_irq_data(irq, dev);
501 if (hpet_setup_msi_irq(irq))
508 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
510 struct hpet_dev *dev = (struct hpet_dev *)data;
511 struct clock_event_device *hevt = &dev->evt;
513 if (!hevt->event_handler) {
514 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
519 hevt->event_handler(hevt);
523 static int hpet_setup_irq(struct hpet_dev *dev)
526 if (request_irq(dev->irq, hpet_interrupt_handler,
527 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
531 disable_irq(dev->irq);
532 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
533 enable_irq(dev->irq);
535 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
536 dev->name, dev->irq);
541 /* This should be called in specific @cpu */
542 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
544 struct clock_event_device *evt = &hdev->evt;
547 WARN_ON(cpu != smp_processor_id());
548 if (!(hdev->flags & HPET_DEV_VALID))
551 if (hpet_setup_msi_irq(hdev->irq))
555 per_cpu(cpu_hpet_dev, cpu) = hdev;
556 evt->name = hdev->name;
557 hpet_setup_irq(hdev);
558 evt->irq = hdev->irq;
561 evt->features = CLOCK_EVT_FEAT_ONESHOT;
562 if (hdev->flags & HPET_DEV_PERI_CAP)
563 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
565 evt->set_mode = hpet_msi_set_mode;
566 evt->set_next_event = hpet_msi_next_event;
570 * The period is a femto seconds value. We need to calculate the
571 * scaled math multiplication factor for nanosecond to hpet tick
574 hpet_freq = 1000000000000000ULL;
575 do_div(hpet_freq, hpet_period);
576 evt->mult = div_sc((unsigned long) hpet_freq,
577 NSEC_PER_SEC, evt->shift);
578 /* Calculate the max delta */
579 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
580 /* 5 usec minimum reprogramming delta. */
581 evt->min_delta_ns = 5000;
583 evt->cpumask = cpumask_of(hdev->cpu);
584 clockevents_register_device(evt);
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
591 #define RESERVE_TIMERS 0
594 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 unsigned int num_timers;
598 unsigned int num_timers_used = 0;
601 if (hpet_msi_disable)
604 if (boot_cpu_has(X86_FEATURE_ARAT))
606 id = hpet_readl(HPET_ID);
608 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
609 num_timers++; /* Value read out starts from 0 */
612 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
616 hpet_num_timers = num_timers;
618 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
619 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
620 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
622 /* Only consider HPET timer with MSI support */
623 if (!(cfg & HPET_TN_FSB_CAP))
627 if (cfg & HPET_TN_PERIODIC_CAP)
628 hdev->flags |= HPET_DEV_PERI_CAP;
631 sprintf(hdev->name, "hpet%d", i);
632 if (hpet_assign_irq(hdev))
635 hdev->flags |= HPET_DEV_FSB_CAP;
636 hdev->flags |= HPET_DEV_VALID;
638 if (num_timers_used == num_possible_cpus())
642 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
643 num_timers, num_timers_used);
647 static void hpet_reserve_msi_timers(struct hpet_data *hd)
654 for (i = 0; i < hpet_num_timers; i++) {
655 struct hpet_dev *hdev = &hpet_devs[i];
657 if (!(hdev->flags & HPET_DEV_VALID))
660 hd->hd_irq[hdev->num] = hdev->irq;
661 hpet_reserve_timer(hd, hdev->num);
666 static struct hpet_dev *hpet_get_unused_timer(void)
673 for (i = 0; i < hpet_num_timers; i++) {
674 struct hpet_dev *hdev = &hpet_devs[i];
676 if (!(hdev->flags & HPET_DEV_VALID))
678 if (test_and_set_bit(HPET_DEV_USED_BIT,
679 (unsigned long *)&hdev->flags))
686 struct hpet_work_struct {
687 struct delayed_work work;
688 struct completion complete;
691 static void hpet_work(struct work_struct *w)
693 struct hpet_dev *hdev;
694 int cpu = smp_processor_id();
695 struct hpet_work_struct *hpet_work;
697 hpet_work = container_of(w, struct hpet_work_struct, work.work);
699 hdev = hpet_get_unused_timer();
701 init_one_hpet_msi_clockevent(hdev, cpu);
703 complete(&hpet_work->complete);
706 static int hpet_cpuhp_notify(struct notifier_block *n,
707 unsigned long action, void *hcpu)
709 unsigned long cpu = (unsigned long)hcpu;
710 struct hpet_work_struct work;
711 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
713 switch (action & 0xf) {
715 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
716 init_completion(&work.complete);
717 /* FIXME: add schedule_work_on() */
718 schedule_delayed_work_on(cpu, &work.work, 0);
719 wait_for_completion(&work.complete);
720 destroy_timer_on_stack(&work.work.timer);
724 free_irq(hdev->irq, hdev);
725 hdev->flags &= ~HPET_DEV_USED;
726 per_cpu(cpu_hpet_dev, cpu) = NULL;
734 static int hpet_setup_msi_irq(unsigned int irq)
738 static void hpet_msi_capability_lookup(unsigned int start_timer)
744 static void hpet_reserve_msi_timers(struct hpet_data *hd)
750 static int hpet_cpuhp_notify(struct notifier_block *n,
751 unsigned long action, void *hcpu)
759 * Clock source related code
761 static cycle_t read_hpet(struct clocksource *cs)
763 return (cycle_t)hpet_readl(HPET_COUNTER);
767 static cycle_t __vsyscall_fn vread_hpet(void)
769 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
773 static struct clocksource clocksource_hpet = {
779 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
780 .resume = hpet_resume_counter,
786 static int hpet_clocksource_register(void)
791 /* Start the counter */
792 hpet_restart_counter();
794 /* Verify whether hpet counter works */
795 t1 = hpet_readl(HPET_COUNTER);
799 * We don't know the TSC frequency yet, but waiting for
800 * 200000 TSC cycles is safe:
807 } while ((now - start) < 200000UL);
809 if (t1 == hpet_readl(HPET_COUNTER)) {
811 "HPET counter not counting. HPET disabled\n");
816 * The definition of mult is (include/linux/clocksource.h)
817 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
818 * so we first need to convert hpet_period to ns/cyc units:
819 * mult/2^shift = ns/cyc = hpet_period/10^6
820 * mult = (hpet_period * 2^shift)/10^6
821 * mult = (hpet_period << shift)/FSEC_PER_NSEC
823 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
825 clocksource_register(&clocksource_hpet);
831 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
833 int __init hpet_enable(void)
838 if (!is_hpet_capable())
844 * Read the period and check for a sane value:
846 hpet_period = hpet_readl(HPET_PERIOD);
849 * AMD SB700 based systems with spread spectrum enabled use a
850 * SMM based HPET emulation to provide proper frequency
851 * setting. The SMM code is initialized with the first HPET
852 * register access and takes some time to complete. During
853 * this time the config register reads 0xffffffff. We check
854 * for max. 1000 loops whether the config register reads a non
855 * 0xffffffff value to make sure that HPET is up and running
856 * before we go further. A counting loop is safe, as the HPET
857 * access takes thousands of CPU cycles. On non SB700 based
858 * machines this check is only done once and has no side
861 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
864 "HPET config register value = 0xFFFFFFFF. "
870 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
874 * Read the HPET ID register to retrieve the IRQ routing
875 * information and the number of channels
877 id = hpet_readl(HPET_ID);
880 #ifdef CONFIG_HPET_EMULATE_RTC
882 * The legacy routing mode needs at least two channels, tick timer
883 * and the rtc emulation channel.
885 if (!(id & HPET_ID_NUMBER))
889 if (hpet_clocksource_register())
892 if (id & HPET_ID_LEGSUP) {
893 hpet_legacy_clockevent_register();
899 hpet_clear_mapping();
905 * Needs to be late, as the reserve_timer code calls kalloc !
907 * Not a problem on i386 as hpet_enable is called from late_time_init,
908 * but on x86_64 it is necessary !
910 static __init int hpet_late_init(void)
914 if (boot_hpet_disable)
918 if (!force_hpet_address)
921 hpet_address = force_hpet_address;
925 if (!hpet_virt_address)
928 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
929 hpet_msi_capability_lookup(2);
931 hpet_msi_capability_lookup(0);
933 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
936 if (hpet_msi_disable)
939 if (boot_cpu_has(X86_FEATURE_ARAT))
942 for_each_online_cpu(cpu) {
943 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
946 /* This notifier should be called after workqueue is ready */
947 hotcpu_notifier(hpet_cpuhp_notify, -20);
951 fs_initcall(hpet_late_init);
953 void hpet_disable(void)
955 if (is_hpet_capable()) {
956 unsigned int cfg = hpet_readl(HPET_CFG);
958 if (hpet_legacy_int_enabled) {
959 cfg &= ~HPET_CFG_LEGACY;
960 hpet_legacy_int_enabled = 0;
962 cfg &= ~HPET_CFG_ENABLE;
963 hpet_writel(cfg, HPET_CFG);
967 #ifdef CONFIG_HPET_EMULATE_RTC
969 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
970 * is enabled, we support RTC interrupt functionality in software.
971 * RTC has 3 kinds of interrupts:
972 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
974 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
975 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
976 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
977 * (1) and (2) above are implemented using polling at a frequency of
978 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
979 * overhead. (DEFAULT_RTC_INT_FREQ)
980 * For (3), we use interrupts at 64Hz or user specified periodic
981 * frequency, whichever is higher.
983 #include <linux/mc146818rtc.h>
984 #include <linux/rtc.h>
987 #define DEFAULT_RTC_INT_FREQ 64
988 #define DEFAULT_RTC_SHIFT 6
989 #define RTC_NUM_INTS 1
991 static unsigned long hpet_rtc_flags;
992 static int hpet_prev_update_sec;
993 static struct rtc_time hpet_alarm_time;
994 static unsigned long hpet_pie_count;
995 static u32 hpet_t1_cmp;
996 static u32 hpet_default_delta;
997 static u32 hpet_pie_delta;
998 static unsigned long hpet_pie_limit;
1000 static rtc_irq_handler irq_handler;
1003 * Check that the hpet counter c1 is ahead of the c2
1005 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1007 return (s32)(c2 - c1) < 0;
1011 * Registers a IRQ handler.
1013 int hpet_register_irq_handler(rtc_irq_handler handler)
1015 if (!is_hpet_enabled())
1020 irq_handler = handler;
1024 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1027 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1030 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1032 if (!is_hpet_enabled())
1038 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1041 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1042 * is not supported by all HPET implementations for timer 1.
1044 * hpet_rtc_timer_init() is called when the rtc is initialized.
1046 int hpet_rtc_timer_init(void)
1048 unsigned int cfg, cnt, delta;
1049 unsigned long flags;
1051 if (!is_hpet_enabled())
1054 if (!hpet_default_delta) {
1057 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1058 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1059 hpet_default_delta = clc;
1062 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1063 delta = hpet_default_delta;
1065 delta = hpet_pie_delta;
1067 local_irq_save(flags);
1069 cnt = delta + hpet_readl(HPET_COUNTER);
1070 hpet_writel(cnt, HPET_T1_CMP);
1073 cfg = hpet_readl(HPET_T1_CFG);
1074 cfg &= ~HPET_TN_PERIODIC;
1075 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1076 hpet_writel(cfg, HPET_T1_CFG);
1078 local_irq_restore(flags);
1082 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1085 * The functions below are called from rtc driver.
1086 * Return 0 if HPET is not being used.
1087 * Otherwise do the necessary changes and return 1.
1089 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1091 if (!is_hpet_enabled())
1094 hpet_rtc_flags &= ~bit_mask;
1097 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1099 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1101 unsigned long oldbits = hpet_rtc_flags;
1103 if (!is_hpet_enabled())
1106 hpet_rtc_flags |= bit_mask;
1108 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1109 hpet_prev_update_sec = -1;
1112 hpet_rtc_timer_init();
1116 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1118 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1121 if (!is_hpet_enabled())
1124 hpet_alarm_time.tm_hour = hrs;
1125 hpet_alarm_time.tm_min = min;
1126 hpet_alarm_time.tm_sec = sec;
1130 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1132 int hpet_set_periodic_freq(unsigned long freq)
1136 if (!is_hpet_enabled())
1139 if (freq <= DEFAULT_RTC_INT_FREQ)
1140 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1142 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1144 clc >>= hpet_clockevent.shift;
1145 hpet_pie_delta = clc;
1149 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1151 int hpet_rtc_dropped_irq(void)
1153 return is_hpet_enabled();
1155 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1157 static void hpet_rtc_timer_reinit(void)
1159 unsigned int cfg, delta;
1162 if (unlikely(!hpet_rtc_flags)) {
1163 cfg = hpet_readl(HPET_T1_CFG);
1164 cfg &= ~HPET_TN_ENABLE;
1165 hpet_writel(cfg, HPET_T1_CFG);
1169 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1170 delta = hpet_default_delta;
1172 delta = hpet_pie_delta;
1175 * Increment the comparator value until we are ahead of the
1179 hpet_t1_cmp += delta;
1180 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1182 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1185 if (hpet_rtc_flags & RTC_PIE)
1186 hpet_pie_count += lost_ints;
1187 if (printk_ratelimit())
1188 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1193 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1195 struct rtc_time curr_time;
1196 unsigned long rtc_int_flag = 0;
1198 hpet_rtc_timer_reinit();
1199 memset(&curr_time, 0, sizeof(struct rtc_time));
1201 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1202 get_rtc_time(&curr_time);
1204 if (hpet_rtc_flags & RTC_UIE &&
1205 curr_time.tm_sec != hpet_prev_update_sec) {
1206 if (hpet_prev_update_sec >= 0)
1207 rtc_int_flag = RTC_UF;
1208 hpet_prev_update_sec = curr_time.tm_sec;
1211 if (hpet_rtc_flags & RTC_PIE &&
1212 ++hpet_pie_count >= hpet_pie_limit) {
1213 rtc_int_flag |= RTC_PF;
1217 if (hpet_rtc_flags & RTC_AIE &&
1218 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1219 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1220 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1221 rtc_int_flag |= RTC_AF;
1224 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1226 irq_handler(rtc_int_flag, dev_id);
1230 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);