4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for last branch recording (LBR) and
6 * precise-event based sampling (PEBS).
8 * Different architectures use a different DS layout/pointer size.
9 * The below functions therefore work on a void*.
12 * Since there is no user for PEBS, yet, only LBR (or branch
13 * trace store, BTS) is supported.
16 * Copyright (C) 2007 Intel Corporation.
17 * Markus Metzger <markus.t.metzger@intel.com>, Dec 2007
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
28 * Debug Store (DS) save area configuration (see Intel64 and IA32
29 * Architectures Software Developer's Manual, section 18.5)
31 * The DS configuration consists of the following fields; different
32 * architetures vary in the size of those fields.
33 * - double-word aligned base linear address of the BTS buffer
34 * - write pointer into the BTS buffer
35 * - end linear address of the BTS buffer (one byte beyond the end of
37 * - interrupt pointer into BTS buffer
38 * (interrupt occurs when write pointer passes interrupt pointer)
39 * - double-word aligned base linear address of the PEBS buffer
40 * - write pointer into the PEBS buffer
41 * - end linear address of the PEBS buffer (one byte beyond the end of
43 * - interrupt pointer into PEBS buffer
44 * (interrupt occurs when write pointer passes interrupt pointer)
45 * - value to which counter is reset following counter overflow
47 * On later architectures, the last branch recording hardware uses
48 * 64bit pointers even in 32bit mode.
51 * Branch Trace Store (BTS) records store information about control
52 * flow changes. They at least provide the following information:
53 * - source linear address
54 * - destination linear address
56 * Netburst supported a predicated bit that had been dropped in later
57 * architectures. We do not suppor it.
60 * In order to abstract from the actual DS and BTS layout, we describe
61 * the access to the relevant fields.
62 * Thanks to Andi Kleen for proposing this design.
64 * The implementation, however, is not as general as it might seem. In
65 * order to stay somewhat simple and efficient, we assume an
66 * underlying unsigned type (mostly a pointer type) and we expect the
67 * field to be at least as big as that type.
71 * A special from_ip address to indicate that the BTS record is an
72 * info record that needs to be interpreted or skipped.
74 #define BTS_ESCAPE_ADDRESS (-1)
77 * A field access descriptor
85 * The configuration for a particular DS/BTS hardware implementation.
87 struct ds_configuration {
88 /* the DS configuration */
89 unsigned char sizeof_ds;
90 struct access_desc bts_buffer_base;
91 struct access_desc bts_index;
92 struct access_desc bts_absolute_maximum;
93 struct access_desc bts_interrupt_threshold;
94 /* the BTS configuration */
95 unsigned char sizeof_bts;
96 struct access_desc from_ip;
97 struct access_desc to_ip;
98 /* BTS variants used to store additional information like
100 struct access_desc info_type;
101 struct access_desc info_data;
102 unsigned long debugctl_mask;
106 * The global configuration used by the below accessor functions
108 static struct ds_configuration ds_cfg;
111 * Accessor functions for some DS and BTS fields using the above
112 * global ptrace_bts_cfg.
114 static inline unsigned long get_bts_buffer_base(char *base)
116 return *(unsigned long *)(base + ds_cfg.bts_buffer_base.offset);
118 static inline void set_bts_buffer_base(char *base, unsigned long value)
120 (*(unsigned long *)(base + ds_cfg.bts_buffer_base.offset)) = value;
122 static inline unsigned long get_bts_index(char *base)
124 return *(unsigned long *)(base + ds_cfg.bts_index.offset);
126 static inline void set_bts_index(char *base, unsigned long value)
128 (*(unsigned long *)(base + ds_cfg.bts_index.offset)) = value;
130 static inline unsigned long get_bts_absolute_maximum(char *base)
132 return *(unsigned long *)(base + ds_cfg.bts_absolute_maximum.offset);
134 static inline void set_bts_absolute_maximum(char *base, unsigned long value)
136 (*(unsigned long *)(base + ds_cfg.bts_absolute_maximum.offset)) = value;
138 static inline unsigned long get_bts_interrupt_threshold(char *base)
140 return *(unsigned long *)(base + ds_cfg.bts_interrupt_threshold.offset);
142 static inline void set_bts_interrupt_threshold(char *base, unsigned long value)
144 (*(unsigned long *)(base + ds_cfg.bts_interrupt_threshold.offset)) = value;
146 static inline unsigned long get_from_ip(char *base)
148 return *(unsigned long *)(base + ds_cfg.from_ip.offset);
150 static inline void set_from_ip(char *base, unsigned long value)
152 (*(unsigned long *)(base + ds_cfg.from_ip.offset)) = value;
154 static inline unsigned long get_to_ip(char *base)
156 return *(unsigned long *)(base + ds_cfg.to_ip.offset);
158 static inline void set_to_ip(char *base, unsigned long value)
160 (*(unsigned long *)(base + ds_cfg.to_ip.offset)) = value;
162 static inline unsigned char get_info_type(char *base)
164 return *(unsigned char *)(base + ds_cfg.info_type.offset);
166 static inline void set_info_type(char *base, unsigned char value)
168 (*(unsigned char *)(base + ds_cfg.info_type.offset)) = value;
170 static inline unsigned long get_info_data(char *base)
172 return *(unsigned long *)(base + ds_cfg.info_data.offset);
174 static inline void set_info_data(char *base, unsigned long value)
176 (*(unsigned long *)(base + ds_cfg.info_data.offset)) = value;
180 int ds_allocate(void **dsp, size_t bts_size_in_bytes)
182 size_t bts_size_in_records;
186 if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
189 if (bts_size_in_bytes < 0)
192 bts_size_in_records =
193 bts_size_in_bytes / ds_cfg.sizeof_bts;
195 bts_size_in_records * ds_cfg.sizeof_bts;
197 if (bts_size_in_bytes <= 0)
200 bts = (unsigned long)kzalloc(bts_size_in_bytes, GFP_KERNEL);
205 ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL);
212 set_bts_buffer_base(ds, bts);
213 set_bts_index(ds, bts);
214 set_bts_absolute_maximum(ds, bts + bts_size_in_bytes);
215 set_bts_interrupt_threshold(ds, bts + bts_size_in_bytes + 1);
221 int ds_free(void **dsp)
224 kfree((void *)get_bts_buffer_base(*dsp));
231 int ds_get_bts_size(void *ds)
235 if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
242 get_bts_absolute_maximum(ds) -
243 get_bts_buffer_base(ds);
244 return size_in_bytes;
247 int ds_get_bts_end(void *ds)
249 int size_in_bytes = ds_get_bts_size(ds);
251 if (size_in_bytes <= 0)
252 return size_in_bytes;
254 return size_in_bytes / ds_cfg.sizeof_bts;
257 int ds_get_bts_index(void *ds)
259 int index_offset_in_bytes;
261 if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
264 index_offset_in_bytes =
266 get_bts_buffer_base(ds);
268 return index_offset_in_bytes / ds_cfg.sizeof_bts;
271 int ds_set_overflow(void *ds, int method)
283 int ds_get_overflow(void *ds)
288 int ds_clear(void *ds)
290 int bts_size = ds_get_bts_size(ds);
291 unsigned long bts_base;
296 bts_base = get_bts_buffer_base(ds);
297 memset((void *)bts_base, 0, bts_size);
299 set_bts_index(ds, bts_base);
303 int ds_read_bts(void *ds, int index, struct bts_struct *out)
307 if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
313 if (index >= ds_get_bts_size(ds))
316 bts = (void *)(get_bts_buffer_base(ds) + (index * ds_cfg.sizeof_bts));
318 memset(out, 0, sizeof(*out));
319 if (get_from_ip(bts) == BTS_ESCAPE_ADDRESS) {
320 out->qualifier = get_info_type(bts);
321 out->variant.jiffies = get_info_data(bts);
323 out->qualifier = BTS_BRANCH;
324 out->variant.lbr.from_ip = get_from_ip(bts);
325 out->variant.lbr.to_ip = get_to_ip(bts);
328 return sizeof(*out);;
331 int ds_write_bts(void *ds, const struct bts_struct *in)
335 if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
338 if (ds_get_bts_size(ds) <= 0)
341 bts = get_bts_index(ds);
343 memset((void *)bts, 0, ds_cfg.sizeof_bts);
344 switch (in->qualifier) {
349 set_from_ip((void *)bts, in->variant.lbr.from_ip);
350 set_to_ip((void *)bts, in->variant.lbr.to_ip);
353 case BTS_TASK_ARRIVES:
354 case BTS_TASK_DEPARTS:
355 set_from_ip((void *)bts, BTS_ESCAPE_ADDRESS);
356 set_info_type((void *)bts, in->qualifier);
357 set_info_data((void *)bts, in->variant.jiffies);
364 bts = bts + ds_cfg.sizeof_bts;
365 if (bts >= get_bts_absolute_maximum(ds))
366 bts = get_bts_buffer_base(ds);
367 set_bts_index(ds, bts);
369 return ds_cfg.sizeof_bts;
372 unsigned long ds_debugctl_mask(void)
374 return ds_cfg.debugctl_mask;
378 static const struct ds_configuration ds_cfg_netburst = {
380 .bts_buffer_base = { 0, 4 },
381 .bts_index = { 4, 4 },
382 .bts_absolute_maximum = { 8, 4 },
383 .bts_interrupt_threshold = { 12, 4 },
387 .info_type = { 4, 1 },
388 .info_data = { 8, 4 },
389 .debugctl_mask = (1<<2)|(1<<3)
392 static const struct ds_configuration ds_cfg_pentium_m = {
394 .bts_buffer_base = { 0, 4 },
395 .bts_index = { 4, 4 },
396 .bts_absolute_maximum = { 8, 4 },
397 .bts_interrupt_threshold = { 12, 4 },
401 .info_type = { 4, 1 },
402 .info_data = { 8, 4 },
403 .debugctl_mask = (1<<6)|(1<<7)
407 static const struct ds_configuration ds_cfg_core2 = {
409 .bts_buffer_base = { 0, 8 },
410 .bts_index = { 8, 8 },
411 .bts_absolute_maximum = { 16, 8 },
412 .bts_interrupt_threshold = { 24, 8 },
416 .info_type = { 8, 1 },
417 .info_data = { 16, 8 },
418 .debugctl_mask = (1<<6)|(1<<7)|(1<<9)
422 ds_configure(const struct ds_configuration *cfg)
427 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
431 switch (c->x86_model) {
434 case 0xE: /* Pentium M */
435 ds_configure(&ds_cfg_pentium_m);
438 case 0xF: /* Core2 */
439 ds_configure(&ds_cfg_core2);
442 /* sorry, don't know about them */
447 switch (c->x86_model) {
451 case 0x2: /* Netburst */
452 ds_configure(&ds_cfg_netburst);
456 /* sorry, don't know about them */
461 /* sorry, don't know about them */