x86, perf: Clean up perf_event cpu code
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12
13 #include <asm/hardirq.h>
14 #include <asm/apic.h>
15
16 #include "perf_event.h"
17
18 /*
19  * Intel PerfMon, used on Core and later.
20  */
21 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
22 {
23   [PERF_COUNT_HW_CPU_CYCLES]            = 0x003c,
24   [PERF_COUNT_HW_INSTRUCTIONS]          = 0x00c0,
25   [PERF_COUNT_HW_CACHE_REFERENCES]      = 0x4f2e,
26   [PERF_COUNT_HW_CACHE_MISSES]          = 0x412e,
27   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]   = 0x00c4,
28   [PERF_COUNT_HW_BRANCH_MISSES]         = 0x00c5,
29   [PERF_COUNT_HW_BUS_CYCLES]            = 0x013c,
30 };
31
32 static struct event_constraint intel_core_event_constraints[] __read_mostly =
33 {
34         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
35         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
36         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
37         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
38         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
39         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
40         EVENT_CONSTRAINT_END
41 };
42
43 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
44 {
45         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
46         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
47         /*
48          * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
49          * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
50          * ratio between these counters.
51          */
52         /* FIXED_EVENT_CONSTRAINT(0x013c, 2),  CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
85         EVENT_EXTRA_END
86 };
87
88 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
89 {
90         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
91         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
92         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
93         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
94         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
95         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
96         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
97         EVENT_CONSTRAINT_END
98 };
99
100 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
101 {
102         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
103         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
104         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
105         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
106         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
107         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
108         EVENT_CONSTRAINT_END
109 };
110
111 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
112 {
113         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
114         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
115         EVENT_EXTRA_END
116 };
117
118 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
119 {
120         EVENT_CONSTRAINT_END
121 };
122
123 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
124 {
125         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
126         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
127         /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
132         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
133         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
134         EVENT_EXTRA_END
135 };
136
137 static u64 intel_pmu_event_map(int hw_event)
138 {
139         return intel_perfmon_event_map[hw_event];
140 }
141
142 static __initconst const u64 snb_hw_cache_event_ids
143                                 [PERF_COUNT_HW_CACHE_MAX]
144                                 [PERF_COUNT_HW_CACHE_OP_MAX]
145                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
146 {
147  [ C(L1D) ] = {
148         [ C(OP_READ) ] = {
149                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
150                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
151         },
152         [ C(OP_WRITE) ] = {
153                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
154                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
155         },
156         [ C(OP_PREFETCH) ] = {
157                 [ C(RESULT_ACCESS) ] = 0x0,
158                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
159         },
160  },
161  [ C(L1I ) ] = {
162         [ C(OP_READ) ] = {
163                 [ C(RESULT_ACCESS) ] = 0x0,
164                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
165         },
166         [ C(OP_WRITE) ] = {
167                 [ C(RESULT_ACCESS) ] = -1,
168                 [ C(RESULT_MISS)   ] = -1,
169         },
170         [ C(OP_PREFETCH) ] = {
171                 [ C(RESULT_ACCESS) ] = 0x0,
172                 [ C(RESULT_MISS)   ] = 0x0,
173         },
174  },
175  [ C(LL  ) ] = {
176         [ C(OP_READ) ] = {
177                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
178                 [ C(RESULT_ACCESS) ] = 0x01b7,
179                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
180                 [ C(RESULT_MISS)   ] = 0x01b7,
181         },
182         [ C(OP_WRITE) ] = {
183                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
184                 [ C(RESULT_ACCESS) ] = 0x01b7,
185                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
186                 [ C(RESULT_MISS)   ] = 0x01b7,
187         },
188         [ C(OP_PREFETCH) ] = {
189                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
190                 [ C(RESULT_ACCESS) ] = 0x01b7,
191                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
192                 [ C(RESULT_MISS)   ] = 0x01b7,
193         },
194  },
195  [ C(DTLB) ] = {
196         [ C(OP_READ) ] = {
197                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
198                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
199         },
200         [ C(OP_WRITE) ] = {
201                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
202                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
203         },
204         [ C(OP_PREFETCH) ] = {
205                 [ C(RESULT_ACCESS) ] = 0x0,
206                 [ C(RESULT_MISS)   ] = 0x0,
207         },
208  },
209  [ C(ITLB) ] = {
210         [ C(OP_READ) ] = {
211                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
212                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
213         },
214         [ C(OP_WRITE) ] = {
215                 [ C(RESULT_ACCESS) ] = -1,
216                 [ C(RESULT_MISS)   ] = -1,
217         },
218         [ C(OP_PREFETCH) ] = {
219                 [ C(RESULT_ACCESS) ] = -1,
220                 [ C(RESULT_MISS)   ] = -1,
221         },
222  },
223  [ C(BPU ) ] = {
224         [ C(OP_READ) ] = {
225                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
226                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
227         },
228         [ C(OP_WRITE) ] = {
229                 [ C(RESULT_ACCESS) ] = -1,
230                 [ C(RESULT_MISS)   ] = -1,
231         },
232         [ C(OP_PREFETCH) ] = {
233                 [ C(RESULT_ACCESS) ] = -1,
234                 [ C(RESULT_MISS)   ] = -1,
235         },
236  },
237  [ C(NODE) ] = {
238         [ C(OP_READ) ] = {
239                 [ C(RESULT_ACCESS) ] = -1,
240                 [ C(RESULT_MISS)   ] = -1,
241         },
242         [ C(OP_WRITE) ] = {
243                 [ C(RESULT_ACCESS) ] = -1,
244                 [ C(RESULT_MISS)   ] = -1,
245         },
246         [ C(OP_PREFETCH) ] = {
247                 [ C(RESULT_ACCESS) ] = -1,
248                 [ C(RESULT_MISS)   ] = -1,
249         },
250  },
251
252 };
253
254 static __initconst const u64 westmere_hw_cache_event_ids
255                                 [PERF_COUNT_HW_CACHE_MAX]
256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
258 {
259  [ C(L1D) ] = {
260         [ C(OP_READ) ] = {
261                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
262                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
263         },
264         [ C(OP_WRITE) ] = {
265                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
266                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
267         },
268         [ C(OP_PREFETCH) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
270                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
271         },
272  },
273  [ C(L1I ) ] = {
274         [ C(OP_READ) ] = {
275                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
276                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
277         },
278         [ C(OP_WRITE) ] = {
279                 [ C(RESULT_ACCESS) ] = -1,
280                 [ C(RESULT_MISS)   ] = -1,
281         },
282         [ C(OP_PREFETCH) ] = {
283                 [ C(RESULT_ACCESS) ] = 0x0,
284                 [ C(RESULT_MISS)   ] = 0x0,
285         },
286  },
287  [ C(LL  ) ] = {
288         [ C(OP_READ) ] = {
289                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
290                 [ C(RESULT_ACCESS) ] = 0x01b7,
291                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
292                 [ C(RESULT_MISS)   ] = 0x01b7,
293         },
294         /*
295          * Use RFO, not WRITEBACK, because a write miss would typically occur
296          * on RFO.
297          */
298         [ C(OP_WRITE) ] = {
299                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
300                 [ C(RESULT_ACCESS) ] = 0x01b7,
301                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
302                 [ C(RESULT_MISS)   ] = 0x01b7,
303         },
304         [ C(OP_PREFETCH) ] = {
305                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
306                 [ C(RESULT_ACCESS) ] = 0x01b7,
307                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
308                 [ C(RESULT_MISS)   ] = 0x01b7,
309         },
310  },
311  [ C(DTLB) ] = {
312         [ C(OP_READ) ] = {
313                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
314                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
315         },
316         [ C(OP_WRITE) ] = {
317                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
318                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
319         },
320         [ C(OP_PREFETCH) ] = {
321                 [ C(RESULT_ACCESS) ] = 0x0,
322                 [ C(RESULT_MISS)   ] = 0x0,
323         },
324  },
325  [ C(ITLB) ] = {
326         [ C(OP_READ) ] = {
327                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
328                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
329         },
330         [ C(OP_WRITE) ] = {
331                 [ C(RESULT_ACCESS) ] = -1,
332                 [ C(RESULT_MISS)   ] = -1,
333         },
334         [ C(OP_PREFETCH) ] = {
335                 [ C(RESULT_ACCESS) ] = -1,
336                 [ C(RESULT_MISS)   ] = -1,
337         },
338  },
339  [ C(BPU ) ] = {
340         [ C(OP_READ) ] = {
341                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
342                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
343         },
344         [ C(OP_WRITE) ] = {
345                 [ C(RESULT_ACCESS) ] = -1,
346                 [ C(RESULT_MISS)   ] = -1,
347         },
348         [ C(OP_PREFETCH) ] = {
349                 [ C(RESULT_ACCESS) ] = -1,
350                 [ C(RESULT_MISS)   ] = -1,
351         },
352  },
353  [ C(NODE) ] = {
354         [ C(OP_READ) ] = {
355                 [ C(RESULT_ACCESS) ] = 0x01b7,
356                 [ C(RESULT_MISS)   ] = 0x01b7,
357         },
358         [ C(OP_WRITE) ] = {
359                 [ C(RESULT_ACCESS) ] = 0x01b7,
360                 [ C(RESULT_MISS)   ] = 0x01b7,
361         },
362         [ C(OP_PREFETCH) ] = {
363                 [ C(RESULT_ACCESS) ] = 0x01b7,
364                 [ C(RESULT_MISS)   ] = 0x01b7,
365         },
366  },
367 };
368
369 /*
370  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
371  * See IA32 SDM Vol 3B 30.6.1.3
372  */
373
374 #define NHM_DMND_DATA_RD        (1 << 0)
375 #define NHM_DMND_RFO            (1 << 1)
376 #define NHM_DMND_IFETCH         (1 << 2)
377 #define NHM_DMND_WB             (1 << 3)
378 #define NHM_PF_DATA_RD          (1 << 4)
379 #define NHM_PF_DATA_RFO         (1 << 5)
380 #define NHM_PF_IFETCH           (1 << 6)
381 #define NHM_OFFCORE_OTHER       (1 << 7)
382 #define NHM_UNCORE_HIT          (1 << 8)
383 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
384 #define NHM_OTHER_CORE_HITM     (1 << 10)
385                                 /* reserved */
386 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
387 #define NHM_REMOTE_DRAM         (1 << 13)
388 #define NHM_LOCAL_DRAM          (1 << 14)
389 #define NHM_NON_DRAM            (1 << 15)
390
391 #define NHM_ALL_DRAM            (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
392
393 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
396
397 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
400
401 static __initconst const u64 nehalem_hw_cache_extra_regs
402                                 [PERF_COUNT_HW_CACHE_MAX]
403                                 [PERF_COUNT_HW_CACHE_OP_MAX]
404                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
405 {
406  [ C(LL  ) ] = {
407         [ C(OP_READ) ] = {
408                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
409                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
413                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
417                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
418         },
419  },
420  [ C(NODE) ] = {
421         [ C(OP_READ) ] = {
422                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
423                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
424         },
425         [ C(OP_WRITE) ] = {
426                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
427                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
428         },
429         [ C(OP_PREFETCH) ] = {
430                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
431                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
432         },
433  },
434 };
435
436 static __initconst const u64 nehalem_hw_cache_event_ids
437                                 [PERF_COUNT_HW_CACHE_MAX]
438                                 [PERF_COUNT_HW_CACHE_OP_MAX]
439                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
440 {
441  [ C(L1D) ] = {
442         [ C(OP_READ) ] = {
443                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
444                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
445         },
446         [ C(OP_WRITE) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
448                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
449         },
450         [ C(OP_PREFETCH) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
452                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
453         },
454  },
455  [ C(L1I ) ] = {
456         [ C(OP_READ) ] = {
457                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
458                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
459         },
460         [ C(OP_WRITE) ] = {
461                 [ C(RESULT_ACCESS) ] = -1,
462                 [ C(RESULT_MISS)   ] = -1,
463         },
464         [ C(OP_PREFETCH) ] = {
465                 [ C(RESULT_ACCESS) ] = 0x0,
466                 [ C(RESULT_MISS)   ] = 0x0,
467         },
468  },
469  [ C(LL  ) ] = {
470         [ C(OP_READ) ] = {
471                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472                 [ C(RESULT_ACCESS) ] = 0x01b7,
473                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474                 [ C(RESULT_MISS)   ] = 0x01b7,
475         },
476         /*
477          * Use RFO, not WRITEBACK, because a write miss would typically occur
478          * on RFO.
479          */
480         [ C(OP_WRITE) ] = {
481                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482                 [ C(RESULT_ACCESS) ] = 0x01b7,
483                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484                 [ C(RESULT_MISS)   ] = 0x01b7,
485         },
486         [ C(OP_PREFETCH) ] = {
487                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488                 [ C(RESULT_ACCESS) ] = 0x01b7,
489                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490                 [ C(RESULT_MISS)   ] = 0x01b7,
491         },
492  },
493  [ C(DTLB) ] = {
494         [ C(OP_READ) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
496                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
497         },
498         [ C(OP_WRITE) ] = {
499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
500                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
501         },
502         [ C(OP_PREFETCH) ] = {
503                 [ C(RESULT_ACCESS) ] = 0x0,
504                 [ C(RESULT_MISS)   ] = 0x0,
505         },
506  },
507  [ C(ITLB) ] = {
508         [ C(OP_READ) ] = {
509                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
510                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
511         },
512         [ C(OP_WRITE) ] = {
513                 [ C(RESULT_ACCESS) ] = -1,
514                 [ C(RESULT_MISS)   ] = -1,
515         },
516         [ C(OP_PREFETCH) ] = {
517                 [ C(RESULT_ACCESS) ] = -1,
518                 [ C(RESULT_MISS)   ] = -1,
519         },
520  },
521  [ C(BPU ) ] = {
522         [ C(OP_READ) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
525         },
526         [ C(OP_WRITE) ] = {
527                 [ C(RESULT_ACCESS) ] = -1,
528                 [ C(RESULT_MISS)   ] = -1,
529         },
530         [ C(OP_PREFETCH) ] = {
531                 [ C(RESULT_ACCESS) ] = -1,
532                 [ C(RESULT_MISS)   ] = -1,
533         },
534  },
535  [ C(NODE) ] = {
536         [ C(OP_READ) ] = {
537                 [ C(RESULT_ACCESS) ] = 0x01b7,
538                 [ C(RESULT_MISS)   ] = 0x01b7,
539         },
540         [ C(OP_WRITE) ] = {
541                 [ C(RESULT_ACCESS) ] = 0x01b7,
542                 [ C(RESULT_MISS)   ] = 0x01b7,
543         },
544         [ C(OP_PREFETCH) ] = {
545                 [ C(RESULT_ACCESS) ] = 0x01b7,
546                 [ C(RESULT_MISS)   ] = 0x01b7,
547         },
548  },
549 };
550
551 static __initconst const u64 core2_hw_cache_event_ids
552                                 [PERF_COUNT_HW_CACHE_MAX]
553                                 [PERF_COUNT_HW_CACHE_OP_MAX]
554                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556  [ C(L1D) ] = {
557         [ C(OP_READ) ] = {
558                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
559                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
560         },
561         [ C(OP_WRITE) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
563                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
564         },
565         [ C(OP_PREFETCH) ] = {
566                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
567                 [ C(RESULT_MISS)   ] = 0,
568         },
569  },
570  [ C(L1I ) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
573                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
574         },
575         [ C(OP_WRITE) ] = {
576                 [ C(RESULT_ACCESS) ] = -1,
577                 [ C(RESULT_MISS)   ] = -1,
578         },
579         [ C(OP_PREFETCH) ] = {
580                 [ C(RESULT_ACCESS) ] = 0,
581                 [ C(RESULT_MISS)   ] = 0,
582         },
583  },
584  [ C(LL  ) ] = {
585         [ C(OP_READ) ] = {
586                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
587                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
588         },
589         [ C(OP_WRITE) ] = {
590                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
591                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
592         },
593         [ C(OP_PREFETCH) ] = {
594                 [ C(RESULT_ACCESS) ] = 0,
595                 [ C(RESULT_MISS)   ] = 0,
596         },
597  },
598  [ C(DTLB) ] = {
599         [ C(OP_READ) ] = {
600                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
601                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
602         },
603         [ C(OP_WRITE) ] = {
604                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
605                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
606         },
607         [ C(OP_PREFETCH) ] = {
608                 [ C(RESULT_ACCESS) ] = 0,
609                 [ C(RESULT_MISS)   ] = 0,
610         },
611  },
612  [ C(ITLB) ] = {
613         [ C(OP_READ) ] = {
614                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
615                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
616         },
617         [ C(OP_WRITE) ] = {
618                 [ C(RESULT_ACCESS) ] = -1,
619                 [ C(RESULT_MISS)   ] = -1,
620         },
621         [ C(OP_PREFETCH) ] = {
622                 [ C(RESULT_ACCESS) ] = -1,
623                 [ C(RESULT_MISS)   ] = -1,
624         },
625  },
626  [ C(BPU ) ] = {
627         [ C(OP_READ) ] = {
628                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
629                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
630         },
631         [ C(OP_WRITE) ] = {
632                 [ C(RESULT_ACCESS) ] = -1,
633                 [ C(RESULT_MISS)   ] = -1,
634         },
635         [ C(OP_PREFETCH) ] = {
636                 [ C(RESULT_ACCESS) ] = -1,
637                 [ C(RESULT_MISS)   ] = -1,
638         },
639  },
640 };
641
642 static __initconst const u64 atom_hw_cache_event_ids
643                                 [PERF_COUNT_HW_CACHE_MAX]
644                                 [PERF_COUNT_HW_CACHE_OP_MAX]
645                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
646 {
647  [ C(L1D) ] = {
648         [ C(OP_READ) ] = {
649                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
650                 [ C(RESULT_MISS)   ] = 0,
651         },
652         [ C(OP_WRITE) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
654                 [ C(RESULT_MISS)   ] = 0,
655         },
656         [ C(OP_PREFETCH) ] = {
657                 [ C(RESULT_ACCESS) ] = 0x0,
658                 [ C(RESULT_MISS)   ] = 0,
659         },
660  },
661  [ C(L1I ) ] = {
662         [ C(OP_READ) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
664                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
665         },
666         [ C(OP_WRITE) ] = {
667                 [ C(RESULT_ACCESS) ] = -1,
668                 [ C(RESULT_MISS)   ] = -1,
669         },
670         [ C(OP_PREFETCH) ] = {
671                 [ C(RESULT_ACCESS) ] = 0,
672                 [ C(RESULT_MISS)   ] = 0,
673         },
674  },
675  [ C(LL  ) ] = {
676         [ C(OP_READ) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
678                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
679         },
680         [ C(OP_WRITE) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
682                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
683         },
684         [ C(OP_PREFETCH) ] = {
685                 [ C(RESULT_ACCESS) ] = 0,
686                 [ C(RESULT_MISS)   ] = 0,
687         },
688  },
689  [ C(DTLB) ] = {
690         [ C(OP_READ) ] = {
691                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
692                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
693         },
694         [ C(OP_WRITE) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
696                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
697         },
698         [ C(OP_PREFETCH) ] = {
699                 [ C(RESULT_ACCESS) ] = 0,
700                 [ C(RESULT_MISS)   ] = 0,
701         },
702  },
703  [ C(ITLB) ] = {
704         [ C(OP_READ) ] = {
705                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
706                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
707         },
708         [ C(OP_WRITE) ] = {
709                 [ C(RESULT_ACCESS) ] = -1,
710                 [ C(RESULT_MISS)   ] = -1,
711         },
712         [ C(OP_PREFETCH) ] = {
713                 [ C(RESULT_ACCESS) ] = -1,
714                 [ C(RESULT_MISS)   ] = -1,
715         },
716  },
717  [ C(BPU ) ] = {
718         [ C(OP_READ) ] = {
719                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
720                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
721         },
722         [ C(OP_WRITE) ] = {
723                 [ C(RESULT_ACCESS) ] = -1,
724                 [ C(RESULT_MISS)   ] = -1,
725         },
726         [ C(OP_PREFETCH) ] = {
727                 [ C(RESULT_ACCESS) ] = -1,
728                 [ C(RESULT_MISS)   ] = -1,
729         },
730  },
731 };
732
733 static void intel_pmu_disable_all(void)
734 {
735         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
736
737         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
738
739         if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
740                 intel_pmu_disable_bts();
741
742         intel_pmu_pebs_disable_all();
743         intel_pmu_lbr_disable_all();
744 }
745
746 static void intel_pmu_enable_all(int added)
747 {
748         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
749
750         intel_pmu_pebs_enable_all();
751         intel_pmu_lbr_enable_all();
752         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
753
754         if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
755                 struct perf_event *event =
756                         cpuc->events[X86_PMC_IDX_FIXED_BTS];
757
758                 if (WARN_ON_ONCE(!event))
759                         return;
760
761                 intel_pmu_enable_bts(event->hw.config);
762         }
763 }
764
765 /*
766  * Workaround for:
767  *   Intel Errata AAK100 (model 26)
768  *   Intel Errata AAP53  (model 30)
769  *   Intel Errata BD53   (model 44)
770  *
771  * The official story:
772  *   These chips need to be 'reset' when adding counters by programming the
773  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
774  *   in sequence on the same PMC or on different PMCs.
775  *
776  * In practise it appears some of these events do in fact count, and
777  * we need to programm all 4 events.
778  */
779 static void intel_pmu_nhm_workaround(void)
780 {
781         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
782         static const unsigned long nhm_magic[4] = {
783                 0x4300B5,
784                 0x4300D2,
785                 0x4300B1,
786                 0x4300B1
787         };
788         struct perf_event *event;
789         int i;
790
791         /*
792          * The Errata requires below steps:
793          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
794          * 2) Configure 4 PERFEVTSELx with the magic events and clear
795          *    the corresponding PMCx;
796          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
797          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
798          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
799          */
800
801         /*
802          * The real steps we choose are a little different from above.
803          * A) To reduce MSR operations, we don't run step 1) as they
804          *    are already cleared before this function is called;
805          * B) Call x86_perf_event_update to save PMCx before configuring
806          *    PERFEVTSELx with magic number;
807          * C) With step 5), we do clear only when the PERFEVTSELx is
808          *    not used currently.
809          * D) Call x86_perf_event_set_period to restore PMCx;
810          */
811
812         /* We always operate 4 pairs of PERF Counters */
813         for (i = 0; i < 4; i++) {
814                 event = cpuc->events[i];
815                 if (event)
816                         x86_perf_event_update(event);
817         }
818
819         for (i = 0; i < 4; i++) {
820                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
821                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
822         }
823
824         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
825         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
826
827         for (i = 0; i < 4; i++) {
828                 event = cpuc->events[i];
829
830                 if (event) {
831                         x86_perf_event_set_period(event);
832                         __x86_pmu_enable_event(&event->hw,
833                                         ARCH_PERFMON_EVENTSEL_ENABLE);
834                 } else
835                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
836         }
837 }
838
839 static void intel_pmu_nhm_enable_all(int added)
840 {
841         if (added)
842                 intel_pmu_nhm_workaround();
843         intel_pmu_enable_all(added);
844 }
845
846 static inline u64 intel_pmu_get_status(void)
847 {
848         u64 status;
849
850         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
851
852         return status;
853 }
854
855 static inline void intel_pmu_ack_status(u64 ack)
856 {
857         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
858 }
859
860 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
861 {
862         int idx = hwc->idx - X86_PMC_IDX_FIXED;
863         u64 ctrl_val, mask;
864
865         mask = 0xfULL << (idx * 4);
866
867         rdmsrl(hwc->config_base, ctrl_val);
868         ctrl_val &= ~mask;
869         wrmsrl(hwc->config_base, ctrl_val);
870 }
871
872 static void intel_pmu_disable_event(struct perf_event *event)
873 {
874         struct hw_perf_event *hwc = &event->hw;
875
876         if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
877                 intel_pmu_disable_bts();
878                 intel_pmu_drain_bts_buffer();
879                 return;
880         }
881
882         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
883                 intel_pmu_disable_fixed(hwc);
884                 return;
885         }
886
887         x86_pmu_disable_event(event);
888
889         if (unlikely(event->attr.precise_ip))
890                 intel_pmu_pebs_disable(event);
891 }
892
893 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
894 {
895         int idx = hwc->idx - X86_PMC_IDX_FIXED;
896         u64 ctrl_val, bits, mask;
897
898         /*
899          * Enable IRQ generation (0x8),
900          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
901          * if requested:
902          */
903         bits = 0x8ULL;
904         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
905                 bits |= 0x2;
906         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
907                 bits |= 0x1;
908
909         /*
910          * ANY bit is supported in v3 and up
911          */
912         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
913                 bits |= 0x4;
914
915         bits <<= (idx * 4);
916         mask = 0xfULL << (idx * 4);
917
918         rdmsrl(hwc->config_base, ctrl_val);
919         ctrl_val &= ~mask;
920         ctrl_val |= bits;
921         wrmsrl(hwc->config_base, ctrl_val);
922 }
923
924 static void intel_pmu_enable_event(struct perf_event *event)
925 {
926         struct hw_perf_event *hwc = &event->hw;
927
928         if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
929                 if (!__this_cpu_read(cpu_hw_events.enabled))
930                         return;
931
932                 intel_pmu_enable_bts(hwc->config);
933                 return;
934         }
935
936         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
937                 intel_pmu_enable_fixed(hwc);
938                 return;
939         }
940
941         if (unlikely(event->attr.precise_ip))
942                 intel_pmu_pebs_enable(event);
943
944         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
945 }
946
947 /*
948  * Save and restart an expired event. Called by NMI contexts,
949  * so it has to be careful about preempting normal event ops:
950  */
951 int intel_pmu_save_and_restart(struct perf_event *event)
952 {
953         x86_perf_event_update(event);
954         return x86_perf_event_set_period(event);
955 }
956
957 static void intel_pmu_reset(void)
958 {
959         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
960         unsigned long flags;
961         int idx;
962
963         if (!x86_pmu.num_counters)
964                 return;
965
966         local_irq_save(flags);
967
968         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
969
970         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
971                 checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
972                 checking_wrmsrl(x86_pmu_event_addr(idx),  0ull);
973         }
974         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
975                 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
976
977         if (ds)
978                 ds->bts_index = ds->bts_buffer_base;
979
980         local_irq_restore(flags);
981 }
982
983 /*
984  * This handler is triggered by the local APIC, so the APIC IRQ handling
985  * rules apply:
986  */
987 static int intel_pmu_handle_irq(struct pt_regs *regs)
988 {
989         struct perf_sample_data data;
990         struct cpu_hw_events *cpuc;
991         int bit, loops;
992         u64 status;
993         int handled;
994
995         perf_sample_data_init(&data, 0);
996
997         cpuc = &__get_cpu_var(cpu_hw_events);
998
999         /*
1000          * Some chipsets need to unmask the LVTPC in a particular spot
1001          * inside the nmi handler.  As a result, the unmasking was pushed
1002          * into all the nmi handlers.
1003          *
1004          * This handler doesn't seem to have any issues with the unmasking
1005          * so it was left at the top.
1006          */
1007         apic_write(APIC_LVTPC, APIC_DM_NMI);
1008
1009         intel_pmu_disable_all();
1010         handled = intel_pmu_drain_bts_buffer();
1011         status = intel_pmu_get_status();
1012         if (!status) {
1013                 intel_pmu_enable_all(0);
1014                 return handled;
1015         }
1016
1017         loops = 0;
1018 again:
1019         intel_pmu_ack_status(status);
1020         if (++loops > 100) {
1021                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1022                 perf_event_print_debug();
1023                 intel_pmu_reset();
1024                 goto done;
1025         }
1026
1027         inc_irq_stat(apic_perf_irqs);
1028
1029         intel_pmu_lbr_read();
1030
1031         /*
1032          * PEBS overflow sets bit 62 in the global status register
1033          */
1034         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1035                 handled++;
1036                 x86_pmu.drain_pebs(regs);
1037         }
1038
1039         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1040                 struct perf_event *event = cpuc->events[bit];
1041
1042                 handled++;
1043
1044                 if (!test_bit(bit, cpuc->active_mask))
1045                         continue;
1046
1047                 if (!intel_pmu_save_and_restart(event))
1048                         continue;
1049
1050                 data.period = event->hw.last_period;
1051
1052                 if (perf_event_overflow(event, &data, regs))
1053                         x86_pmu_stop(event, 0);
1054         }
1055
1056         /*
1057          * Repeat if there is more work to be done:
1058          */
1059         status = intel_pmu_get_status();
1060         if (status)
1061                 goto again;
1062
1063 done:
1064         intel_pmu_enable_all(0);
1065         return handled;
1066 }
1067
1068 static struct event_constraint *
1069 intel_bts_constraints(struct perf_event *event)
1070 {
1071         struct hw_perf_event *hwc = &event->hw;
1072         unsigned int hw_event, bts_event;
1073
1074         if (event->attr.freq)
1075                 return NULL;
1076
1077         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1078         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1079
1080         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1081                 return &bts_constraint;
1082
1083         return NULL;
1084 }
1085
1086 static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
1087 {
1088         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1089                 return false;
1090
1091         if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
1092                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1093                 event->hw.config |= 0x01bb;
1094                 event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
1095                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1096         } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
1097                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1098                 event->hw.config |= 0x01b7;
1099                 event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
1100                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1101         }
1102
1103         if (event->hw.extra_reg.idx == orig_idx)
1104                 return false;
1105
1106         return true;
1107 }
1108
1109 /*
1110  * manage allocation of shared extra msr for certain events
1111  *
1112  * sharing can be:
1113  * per-cpu: to be shared between the various events on a single PMU
1114  * per-core: per-cpu + shared by HT threads
1115  */
1116 static struct event_constraint *
1117 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1118                                    struct perf_event *event)
1119 {
1120         struct event_constraint *c = &emptyconstraint;
1121         struct hw_perf_event_extra *reg = &event->hw.extra_reg;
1122         struct er_account *era;
1123         unsigned long flags;
1124         int orig_idx = reg->idx;
1125
1126         /* already allocated shared msr */
1127         if (reg->alloc)
1128                 return &unconstrained;
1129
1130 again:
1131         era = &cpuc->shared_regs->regs[reg->idx];
1132         /*
1133          * we use spin_lock_irqsave() to avoid lockdep issues when
1134          * passing a fake cpuc
1135          */
1136         raw_spin_lock_irqsave(&era->lock, flags);
1137
1138         if (!atomic_read(&era->ref) || era->config == reg->config) {
1139
1140                 /* lock in msr value */
1141                 era->config = reg->config;
1142                 era->reg = reg->reg;
1143
1144                 /* one more user */
1145                 atomic_inc(&era->ref);
1146
1147                 /* no need to reallocate during incremental event scheduling */
1148                 reg->alloc = 1;
1149
1150                 /*
1151                  * All events using extra_reg are unconstrained.
1152                  * Avoids calling x86_get_event_constraints()
1153                  *
1154                  * Must revisit if extra_reg controlling events
1155                  * ever have constraints. Worst case we go through
1156                  * the regular event constraint table.
1157                  */
1158                 c = &unconstrained;
1159         } else if (intel_try_alt_er(event, orig_idx)) {
1160                 raw_spin_unlock(&era->lock);
1161                 goto again;
1162         }
1163         raw_spin_unlock_irqrestore(&era->lock, flags);
1164
1165         return c;
1166 }
1167
1168 static void
1169 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1170                                    struct hw_perf_event_extra *reg)
1171 {
1172         struct er_account *era;
1173
1174         /*
1175          * only put constraint if extra reg was actually
1176          * allocated. Also takes care of event which do
1177          * not use an extra shared reg
1178          */
1179         if (!reg->alloc)
1180                 return;
1181
1182         era = &cpuc->shared_regs->regs[reg->idx];
1183
1184         /* one fewer user */
1185         atomic_dec(&era->ref);
1186
1187         /* allocate again next time */
1188         reg->alloc = 0;
1189 }
1190
1191 static struct event_constraint *
1192 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1193                               struct perf_event *event)
1194 {
1195         struct event_constraint *c = NULL;
1196
1197         if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
1198                 c = __intel_shared_reg_get_constraints(cpuc, event);
1199
1200         return c;
1201 }
1202
1203 struct event_constraint *
1204 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1205 {
1206         struct event_constraint *c;
1207
1208         if (x86_pmu.event_constraints) {
1209                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1210                         if ((event->hw.config & c->cmask) == c->code)
1211                                 return c;
1212                 }
1213         }
1214
1215         return &unconstrained;
1216 }
1217
1218 static struct event_constraint *
1219 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1220 {
1221         struct event_constraint *c;
1222
1223         c = intel_bts_constraints(event);
1224         if (c)
1225                 return c;
1226
1227         c = intel_pebs_constraints(event);
1228         if (c)
1229                 return c;
1230
1231         c = intel_shared_regs_constraints(cpuc, event);
1232         if (c)
1233                 return c;
1234
1235         return x86_get_event_constraints(cpuc, event);
1236 }
1237
1238 static void
1239 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1240                                         struct perf_event *event)
1241 {
1242         struct hw_perf_event_extra *reg;
1243
1244         reg = &event->hw.extra_reg;
1245         if (reg->idx != EXTRA_REG_NONE)
1246                 __intel_shared_reg_put_constraints(cpuc, reg);
1247 }
1248
1249 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1250                                         struct perf_event *event)
1251 {
1252         intel_put_shared_regs_event_constraints(cpuc, event);
1253 }
1254
1255 static int intel_pmu_hw_config(struct perf_event *event)
1256 {
1257         int ret = x86_pmu_hw_config(event);
1258
1259         if (ret)
1260                 return ret;
1261
1262         if (event->attr.precise_ip &&
1263             (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1264                 /*
1265                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1266                  * (0x003c) so that we can use it with PEBS.
1267                  *
1268                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1269                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1270                  * (0x00c0), which is a PEBS capable event, to get the same
1271                  * count.
1272                  *
1273                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1274                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1275                  * larger than the maximum number of instructions that can be
1276                  * retired per cycle (4) and then inverting the condition, we
1277                  * count all cycles that retire 16 or less instructions, which
1278                  * is every cycle.
1279                  *
1280                  * Thereby we gain a PEBS capable cycle counter.
1281                  */
1282                 u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1283
1284                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1285                 event->hw.config = alt_config;
1286         }
1287
1288         if (event->attr.type != PERF_TYPE_RAW)
1289                 return 0;
1290
1291         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1292                 return 0;
1293
1294         if (x86_pmu.version < 3)
1295                 return -EINVAL;
1296
1297         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1298                 return -EACCES;
1299
1300         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1301
1302         return 0;
1303 }
1304
1305 static __initconst const struct x86_pmu core_pmu = {
1306         .name                   = "core",
1307         .handle_irq             = x86_pmu_handle_irq,
1308         .disable_all            = x86_pmu_disable_all,
1309         .enable_all             = x86_pmu_enable_all,
1310         .enable                 = x86_pmu_enable_event,
1311         .disable                = x86_pmu_disable_event,
1312         .hw_config              = x86_pmu_hw_config,
1313         .schedule_events        = x86_schedule_events,
1314         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1315         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1316         .event_map              = intel_pmu_event_map,
1317         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1318         .apic                   = 1,
1319         /*
1320          * Intel PMCs cannot be accessed sanely above 32 bit width,
1321          * so we install an artificial 1<<31 period regardless of
1322          * the generic event period:
1323          */
1324         .max_period             = (1ULL << 31) - 1,
1325         .get_event_constraints  = intel_get_event_constraints,
1326         .put_event_constraints  = intel_put_event_constraints,
1327         .event_constraints      = intel_core_event_constraints,
1328 };
1329
1330 struct intel_shared_regs *allocate_shared_regs(int cpu)
1331 {
1332         struct intel_shared_regs *regs;
1333         int i;
1334
1335         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1336                             GFP_KERNEL, cpu_to_node(cpu));
1337         if (regs) {
1338                 /*
1339                  * initialize the locks to keep lockdep happy
1340                  */
1341                 for (i = 0; i < EXTRA_REG_MAX; i++)
1342                         raw_spin_lock_init(&regs->regs[i].lock);
1343
1344                 regs->core_id = -1;
1345         }
1346         return regs;
1347 }
1348
1349 static int intel_pmu_cpu_prepare(int cpu)
1350 {
1351         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1352
1353         if (!x86_pmu.extra_regs)
1354                 return NOTIFY_OK;
1355
1356         cpuc->shared_regs = allocate_shared_regs(cpu);
1357         if (!cpuc->shared_regs)
1358                 return NOTIFY_BAD;
1359
1360         return NOTIFY_OK;
1361 }
1362
1363 static void intel_pmu_cpu_starting(int cpu)
1364 {
1365         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1366         int core_id = topology_core_id(cpu);
1367         int i;
1368
1369         init_debug_store_on_cpu(cpu);
1370         /*
1371          * Deal with CPUs that don't clear their LBRs on power-up.
1372          */
1373         intel_pmu_lbr_reset();
1374
1375         if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
1376                 return;
1377
1378         for_each_cpu(i, topology_thread_cpumask(cpu)) {
1379                 struct intel_shared_regs *pc;
1380
1381                 pc = per_cpu(cpu_hw_events, i).shared_regs;
1382                 if (pc && pc->core_id == core_id) {
1383                         cpuc->kfree_on_online = cpuc->shared_regs;
1384                         cpuc->shared_regs = pc;
1385                         break;
1386                 }
1387         }
1388
1389         cpuc->shared_regs->core_id = core_id;
1390         cpuc->shared_regs->refcnt++;
1391 }
1392
1393 static void intel_pmu_cpu_dying(int cpu)
1394 {
1395         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1396         struct intel_shared_regs *pc;
1397
1398         pc = cpuc->shared_regs;
1399         if (pc) {
1400                 if (pc->core_id == -1 || --pc->refcnt == 0)
1401                         kfree(pc);
1402                 cpuc->shared_regs = NULL;
1403         }
1404
1405         fini_debug_store_on_cpu(cpu);
1406 }
1407
1408 static __initconst const struct x86_pmu intel_pmu = {
1409         .name                   = "Intel",
1410         .handle_irq             = intel_pmu_handle_irq,
1411         .disable_all            = intel_pmu_disable_all,
1412         .enable_all             = intel_pmu_enable_all,
1413         .enable                 = intel_pmu_enable_event,
1414         .disable                = intel_pmu_disable_event,
1415         .hw_config              = intel_pmu_hw_config,
1416         .schedule_events        = x86_schedule_events,
1417         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1418         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1419         .event_map              = intel_pmu_event_map,
1420         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1421         .apic                   = 1,
1422         /*
1423          * Intel PMCs cannot be accessed sanely above 32 bit width,
1424          * so we install an artificial 1<<31 period regardless of
1425          * the generic event period:
1426          */
1427         .max_period             = (1ULL << 31) - 1,
1428         .get_event_constraints  = intel_get_event_constraints,
1429         .put_event_constraints  = intel_put_event_constraints,
1430
1431         .cpu_prepare            = intel_pmu_cpu_prepare,
1432         .cpu_starting           = intel_pmu_cpu_starting,
1433         .cpu_dying              = intel_pmu_cpu_dying,
1434 };
1435
1436 static void intel_clovertown_quirks(void)
1437 {
1438         /*
1439          * PEBS is unreliable due to:
1440          *
1441          *   AJ67  - PEBS may experience CPL leaks
1442          *   AJ68  - PEBS PMI may be delayed by one event
1443          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1444          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1445          *
1446          * AJ67 could be worked around by restricting the OS/USR flags.
1447          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1448          *
1449          * AJ106 could possibly be worked around by not allowing LBR
1450          *       usage from PEBS, including the fixup.
1451          * AJ68  could possibly be worked around by always programming
1452          *       a pebs_event_reset[0] value and coping with the lost events.
1453          *
1454          * But taken together it might just make sense to not enable PEBS on
1455          * these chips.
1456          */
1457         printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1458         x86_pmu.pebs = 0;
1459         x86_pmu.pebs_constraints = NULL;
1460 }
1461
1462 __init int intel_pmu_init(void)
1463 {
1464         union cpuid10_edx edx;
1465         union cpuid10_eax eax;
1466         unsigned int unused;
1467         unsigned int ebx;
1468         int version;
1469
1470         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1471                 switch (boot_cpu_data.x86) {
1472                 case 0x6:
1473                         return p6_pmu_init();
1474                 case 0xf:
1475                         return p4_pmu_init();
1476                 }
1477                 return -ENODEV;
1478         }
1479
1480         /*
1481          * Check whether the Architectural PerfMon supports
1482          * Branch Misses Retired hw_event or not.
1483          */
1484         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1485         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1486                 return -ENODEV;
1487
1488         version = eax.split.version_id;
1489         if (version < 2)
1490                 x86_pmu = core_pmu;
1491         else
1492                 x86_pmu = intel_pmu;
1493
1494         x86_pmu.version                 = version;
1495         x86_pmu.num_counters            = eax.split.num_counters;
1496         x86_pmu.cntval_bits             = eax.split.bit_width;
1497         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1498
1499         /*
1500          * Quirk: v2 perfmon does not report fixed-purpose events, so
1501          * assume at least 3 events:
1502          */
1503         if (version > 1)
1504                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1505
1506         /*
1507          * v2 and above have a perf capabilities MSR
1508          */
1509         if (version > 1) {
1510                 u64 capabilities;
1511
1512                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1513                 x86_pmu.intel_cap.capabilities = capabilities;
1514         }
1515
1516         intel_ds_init();
1517
1518         /*
1519          * Install the hw-cache-events table:
1520          */
1521         switch (boot_cpu_data.x86_model) {
1522         case 14: /* 65 nm core solo/duo, "Yonah" */
1523                 pr_cont("Core events, ");
1524                 break;
1525
1526         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1527                 x86_pmu.quirks = intel_clovertown_quirks;
1528         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1529         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1530         case 29: /* six-core 45 nm xeon "Dunnington" */
1531                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1532                        sizeof(hw_cache_event_ids));
1533
1534                 intel_pmu_lbr_init_core();
1535
1536                 x86_pmu.event_constraints = intel_core2_event_constraints;
1537                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1538                 pr_cont("Core2 events, ");
1539                 break;
1540
1541         case 26: /* 45 nm nehalem, "Bloomfield" */
1542         case 30: /* 45 nm nehalem, "Lynnfield" */
1543         case 46: /* 45 nm nehalem-ex, "Beckton" */
1544                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1545                        sizeof(hw_cache_event_ids));
1546                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1547                        sizeof(hw_cache_extra_regs));
1548
1549                 intel_pmu_lbr_init_nhm();
1550
1551                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1552                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1553                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1554                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1555
1556                 /* UOPS_ISSUED.STALLED_CYCLES */
1557                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1558                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1559                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1560
1561                 if (ebx & 0x40) {
1562                         /*
1563                          * Erratum AAJ80 detected, we work it around by using
1564                          * the BR_MISP_EXEC.ANY event. This will over-count
1565                          * branch-misses, but it's still much better than the
1566                          * architectural event which is often completely bogus:
1567                          */
1568                         intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1569
1570                         pr_cont("erratum AAJ80 worked around, ");
1571                 }
1572                 pr_cont("Nehalem events, ");
1573                 break;
1574
1575         case 28: /* Atom */
1576                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1577                        sizeof(hw_cache_event_ids));
1578
1579                 intel_pmu_lbr_init_atom();
1580
1581                 x86_pmu.event_constraints = intel_gen_event_constraints;
1582                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1583                 pr_cont("Atom events, ");
1584                 break;
1585
1586         case 37: /* 32 nm nehalem, "Clarkdale" */
1587         case 44: /* 32 nm nehalem, "Gulftown" */
1588         case 47: /* 32 nm Xeon E7 */
1589                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1590                        sizeof(hw_cache_event_ids));
1591                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1592                        sizeof(hw_cache_extra_regs));
1593
1594                 intel_pmu_lbr_init_nhm();
1595
1596                 x86_pmu.event_constraints = intel_westmere_event_constraints;
1597                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1598                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1599                 x86_pmu.extra_regs = intel_westmere_extra_regs;
1600                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1601
1602                 /* UOPS_ISSUED.STALLED_CYCLES */
1603                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1604                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1605                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
1606
1607                 pr_cont("Westmere events, ");
1608                 break;
1609
1610         case 42: /* SandyBridge */
1611         case 45: /* SandyBridge, "Romely-EP" */
1612                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1613                        sizeof(hw_cache_event_ids));
1614
1615                 intel_pmu_lbr_init_nhm();
1616
1617                 x86_pmu.event_constraints = intel_snb_event_constraints;
1618                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1619                 x86_pmu.extra_regs = intel_snb_extra_regs;
1620                 /* all extra regs are per-cpu when HT is on */
1621                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1622                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1623
1624                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1625                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
1626                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1627                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
1628
1629                 pr_cont("SandyBridge events, ");
1630                 break;
1631
1632         default:
1633                 switch (x86_pmu.version) {
1634                 case 1:
1635                         x86_pmu.event_constraints = intel_v1_event_constraints;
1636                         pr_cont("generic architected perfmon v1, ");
1637                         break;
1638                 default:
1639                         /*
1640                          * default constraints for v2 and up
1641                          */
1642                         x86_pmu.event_constraints = intel_gen_event_constraints;
1643                         pr_cont("generic architected perfmon, ");
1644                         break;
1645                 }
1646         }
1647         return 0;
1648 }