ARM: Kirkwood: Fix clk problems modular ethernet driver
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 #if 0
39 #undef wrmsrl
40 #define wrmsrl(msr, val)                                        \
41 do {                                                            \
42         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
43                         (unsigned long)(val));                  \
44         native_write_msr((msr), (u32)((u64)(val)),              \
45                         (u32)((u64)(val) >> 32));               \
46 } while (0)
47 #endif
48
49 struct x86_pmu x86_pmu __read_mostly;
50
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52         .enabled = 1,
53 };
54
55 u64 __read_mostly hw_cache_event_ids
56                                 [PERF_COUNT_HW_CACHE_MAX]
57                                 [PERF_COUNT_HW_CACHE_OP_MAX]
58                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60                                 [PERF_COUNT_HW_CACHE_MAX]
61                                 [PERF_COUNT_HW_CACHE_OP_MAX]
62                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71         struct hw_perf_event *hwc = &event->hw;
72         int shift = 64 - x86_pmu.cntval_bits;
73         u64 prev_raw_count, new_raw_count;
74         int idx = hwc->idx;
75         s64 delta;
76
77         if (idx == X86_PMC_IDX_FIXED_BTS)
78                 return 0;
79
80         /*
81          * Careful: an NMI might modify the previous event value.
82          *
83          * Our tactic to handle this is to first atomically read and
84          * exchange a new raw count - then add that new-prev delta
85          * count to the generic event atomically:
86          */
87 again:
88         prev_raw_count = local64_read(&hwc->prev_count);
89         rdmsrl(hwc->event_base, new_raw_count);
90
91         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92                                         new_raw_count) != prev_raw_count)
93                 goto again;
94
95         /*
96          * Now we have the new raw value and have updated the prev
97          * timestamp already. We can now calculate the elapsed delta
98          * (event-)time and add that to the generic event.
99          *
100          * Careful, not all hw sign-extends above the physical width
101          * of the count.
102          */
103         delta = (new_raw_count << shift) - (prev_raw_count << shift);
104         delta >>= shift;
105
106         local64_add(delta, &event->count);
107         local64_sub(delta, &hwc->period_left);
108
109         return new_raw_count;
110 }
111
112 /*
113  * Find and validate any extra registers to set up.
114  */
115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 {
117         struct hw_perf_event_extra *reg;
118         struct extra_reg *er;
119
120         reg = &event->hw.extra_reg;
121
122         if (!x86_pmu.extra_regs)
123                 return 0;
124
125         for (er = x86_pmu.extra_regs; er->msr; er++) {
126                 if (er->event != (config & er->config_mask))
127                         continue;
128                 if (event->attr.config1 & ~er->valid_mask)
129                         return -EINVAL;
130
131                 reg->idx = er->idx;
132                 reg->config = event->attr.config1;
133                 reg->reg = er->msr;
134                 break;
135         }
136         return 0;
137 }
138
139 static atomic_t active_events;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141
142 #ifdef CONFIG_X86_LOCAL_APIC
143
144 static bool reserve_pmc_hardware(void)
145 {
146         int i;
147
148         for (i = 0; i < x86_pmu.num_counters; i++) {
149                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150                         goto perfctr_fail;
151         }
152
153         for (i = 0; i < x86_pmu.num_counters; i++) {
154                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155                         goto eventsel_fail;
156         }
157
158         return true;
159
160 eventsel_fail:
161         for (i--; i >= 0; i--)
162                 release_evntsel_nmi(x86_pmu_config_addr(i));
163
164         i = x86_pmu.num_counters;
165
166 perfctr_fail:
167         for (i--; i >= 0; i--)
168                 release_perfctr_nmi(x86_pmu_event_addr(i));
169
170         return false;
171 }
172
173 static void release_pmc_hardware(void)
174 {
175         int i;
176
177         for (i = 0; i < x86_pmu.num_counters; i++) {
178                 release_perfctr_nmi(x86_pmu_event_addr(i));
179                 release_evntsel_nmi(x86_pmu_config_addr(i));
180         }
181 }
182
183 #else
184
185 static bool reserve_pmc_hardware(void) { return true; }
186 static void release_pmc_hardware(void) {}
187
188 #endif
189
190 static bool check_hw_exists(void)
191 {
192         u64 val, val_new = 0;
193         int i, reg, ret = 0;
194
195         /*
196          * Check to see if the BIOS enabled any of the counters, if so
197          * complain and bail.
198          */
199         for (i = 0; i < x86_pmu.num_counters; i++) {
200                 reg = x86_pmu_config_addr(i);
201                 ret = rdmsrl_safe(reg, &val);
202                 if (ret)
203                         goto msr_fail;
204                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
205                         goto bios_fail;
206         }
207
208         if (x86_pmu.num_counters_fixed) {
209                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210                 ret = rdmsrl_safe(reg, &val);
211                 if (ret)
212                         goto msr_fail;
213                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214                         if (val & (0x03 << i*4))
215                                 goto bios_fail;
216                 }
217         }
218
219         /*
220          * Now write a value and read it back to see if it matches,
221          * this is needed to detect certain hardware emulators (qemu/kvm)
222          * that don't trap on the MSR access and always return 0s.
223          */
224         val = 0xabcdUL;
225         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
226         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
227         if (ret || val != val_new)
228                 goto msr_fail;
229
230         return true;
231
232 bios_fail:
233         /*
234          * We still allow the PMU driver to operate:
235          */
236         printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
237         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238
239         return true;
240
241 msr_fail:
242         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243
244         return false;
245 }
246
247 static void hw_perf_event_destroy(struct perf_event *event)
248 {
249         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
250                 release_pmc_hardware();
251                 release_ds_buffers();
252                 mutex_unlock(&pmc_reserve_mutex);
253         }
254 }
255
256 static inline int x86_pmu_initialized(void)
257 {
258         return x86_pmu.handle_irq != NULL;
259 }
260
261 static inline int
262 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 {
264         struct perf_event_attr *attr = &event->attr;
265         unsigned int cache_type, cache_op, cache_result;
266         u64 config, val;
267
268         config = attr->config;
269
270         cache_type = (config >>  0) & 0xff;
271         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
272                 return -EINVAL;
273
274         cache_op = (config >>  8) & 0xff;
275         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
276                 return -EINVAL;
277
278         cache_result = (config >> 16) & 0xff;
279         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
280                 return -EINVAL;
281
282         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283
284         if (val == 0)
285                 return -ENOENT;
286
287         if (val == -1)
288                 return -EINVAL;
289
290         hwc->config |= val;
291         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
292         return x86_pmu_extra_regs(val, event);
293 }
294
295 int x86_setup_perfctr(struct perf_event *event)
296 {
297         struct perf_event_attr *attr = &event->attr;
298         struct hw_perf_event *hwc = &event->hw;
299         u64 config;
300
301         if (!is_sampling_event(event)) {
302                 hwc->sample_period = x86_pmu.max_period;
303                 hwc->last_period = hwc->sample_period;
304                 local64_set(&hwc->period_left, hwc->sample_period);
305         } else {
306                 /*
307                  * If we have a PMU initialized but no APIC
308                  * interrupts, we cannot sample hardware
309                  * events (user-space has to fall back and
310                  * sample via a hrtimer based software event):
311                  */
312                 if (!x86_pmu.apic)
313                         return -EOPNOTSUPP;
314         }
315
316         if (attr->type == PERF_TYPE_RAW)
317                 return x86_pmu_extra_regs(event->attr.config, event);
318
319         if (attr->type == PERF_TYPE_HW_CACHE)
320                 return set_ext_hw_attr(hwc, event);
321
322         if (attr->config >= x86_pmu.max_events)
323                 return -EINVAL;
324
325         /*
326          * The generic map:
327          */
328         config = x86_pmu.event_map(attr->config);
329
330         if (config == 0)
331                 return -ENOENT;
332
333         if (config == -1LL)
334                 return -EINVAL;
335
336         /*
337          * Branch tracing:
338          */
339         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
340             !attr->freq && hwc->sample_period == 1) {
341                 /* BTS is not supported by this architecture. */
342                 if (!x86_pmu.bts_active)
343                         return -EOPNOTSUPP;
344
345                 /* BTS is currently only allowed for user-mode. */
346                 if (!attr->exclude_kernel)
347                         return -EOPNOTSUPP;
348         }
349
350         hwc->config |= config;
351
352         return 0;
353 }
354
355 /*
356  * check that branch_sample_type is compatible with
357  * settings needed for precise_ip > 1 which implies
358  * using the LBR to capture ALL taken branches at the
359  * priv levels of the measurement
360  */
361 static inline int precise_br_compat(struct perf_event *event)
362 {
363         u64 m = event->attr.branch_sample_type;
364         u64 b = 0;
365
366         /* must capture all branches */
367         if (!(m & PERF_SAMPLE_BRANCH_ANY))
368                 return 0;
369
370         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
371
372         if (!event->attr.exclude_user)
373                 b |= PERF_SAMPLE_BRANCH_USER;
374
375         if (!event->attr.exclude_kernel)
376                 b |= PERF_SAMPLE_BRANCH_KERNEL;
377
378         /*
379          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
380          */
381
382         return m == b;
383 }
384
385 int x86_pmu_hw_config(struct perf_event *event)
386 {
387         if (event->attr.precise_ip) {
388                 int precise = 0;
389
390                 /* Support for constant skid */
391                 if (x86_pmu.pebs_active) {
392                         precise++;
393
394                         /* Support for IP fixup */
395                         if (x86_pmu.lbr_nr)
396                                 precise++;
397                 }
398
399                 if (event->attr.precise_ip > precise)
400                         return -EOPNOTSUPP;
401                 /*
402                  * check that PEBS LBR correction does not conflict with
403                  * whatever the user is asking with attr->branch_sample_type
404                  */
405                 if (event->attr.precise_ip > 1) {
406                         u64 *br_type = &event->attr.branch_sample_type;
407
408                         if (has_branch_stack(event)) {
409                                 if (!precise_br_compat(event))
410                                         return -EOPNOTSUPP;
411
412                                 /* branch_sample_type is compatible */
413
414                         } else {
415                                 /*
416                                  * user did not specify  branch_sample_type
417                                  *
418                                  * For PEBS fixups, we capture all
419                                  * the branches at the priv level of the
420                                  * event.
421                                  */
422                                 *br_type = PERF_SAMPLE_BRANCH_ANY;
423
424                                 if (!event->attr.exclude_user)
425                                         *br_type |= PERF_SAMPLE_BRANCH_USER;
426
427                                 if (!event->attr.exclude_kernel)
428                                         *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
429                         }
430                 }
431         }
432
433         /*
434          * Generate PMC IRQs:
435          * (keep 'enabled' bit clear for now)
436          */
437         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438
439         /*
440          * Count user and OS events unless requested not to
441          */
442         if (!event->attr.exclude_user)
443                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444         if (!event->attr.exclude_kernel)
445                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446
447         if (event->attr.type == PERF_TYPE_RAW)
448                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449
450         return x86_setup_perfctr(event);
451 }
452
453 /*
454  * Setup the hardware configuration for a given attr_type
455  */
456 static int __x86_pmu_event_init(struct perf_event *event)
457 {
458         int err;
459
460         if (!x86_pmu_initialized())
461                 return -ENODEV;
462
463         err = 0;
464         if (!atomic_inc_not_zero(&active_events)) {
465                 mutex_lock(&pmc_reserve_mutex);
466                 if (atomic_read(&active_events) == 0) {
467                         if (!reserve_pmc_hardware())
468                                 err = -EBUSY;
469                         else
470                                 reserve_ds_buffers();
471                 }
472                 if (!err)
473                         atomic_inc(&active_events);
474                 mutex_unlock(&pmc_reserve_mutex);
475         }
476         if (err)
477                 return err;
478
479         event->destroy = hw_perf_event_destroy;
480
481         event->hw.idx = -1;
482         event->hw.last_cpu = -1;
483         event->hw.last_tag = ~0ULL;
484
485         /* mark unused */
486         event->hw.extra_reg.idx = EXTRA_REG_NONE;
487         event->hw.branch_reg.idx = EXTRA_REG_NONE;
488
489         return x86_pmu.hw_config(event);
490 }
491
492 void x86_pmu_disable_all(void)
493 {
494         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
495         int idx;
496
497         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
498                 u64 val;
499
500                 if (!test_bit(idx, cpuc->active_mask))
501                         continue;
502                 rdmsrl(x86_pmu_config_addr(idx), val);
503                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
504                         continue;
505                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
506                 wrmsrl(x86_pmu_config_addr(idx), val);
507         }
508 }
509
510 static void x86_pmu_disable(struct pmu *pmu)
511 {
512         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
513
514         if (!x86_pmu_initialized())
515                 return;
516
517         if (!cpuc->enabled)
518                 return;
519
520         cpuc->n_added = 0;
521         cpuc->enabled = 0;
522         barrier();
523
524         x86_pmu.disable_all();
525 }
526
527 void x86_pmu_enable_all(int added)
528 {
529         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
530         int idx;
531
532         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
533                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
534
535                 if (!test_bit(idx, cpuc->active_mask))
536                         continue;
537
538                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
539         }
540 }
541
542 static struct pmu pmu;
543
544 static inline int is_x86_event(struct perf_event *event)
545 {
546         return event->pmu == &pmu;
547 }
548
549 /*
550  * Event scheduler state:
551  *
552  * Assign events iterating over all events and counters, beginning
553  * with events with least weights first. Keep the current iterator
554  * state in struct sched_state.
555  */
556 struct sched_state {
557         int     weight;
558         int     event;          /* event index */
559         int     counter;        /* counter index */
560         int     unassigned;     /* number of events to be assigned left */
561         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
562 };
563
564 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
565 #define SCHED_STATES_MAX        2
566
567 struct perf_sched {
568         int                     max_weight;
569         int                     max_events;
570         struct event_constraint **constraints;
571         struct sched_state      state;
572         int                     saved_states;
573         struct sched_state      saved[SCHED_STATES_MAX];
574 };
575
576 /*
577  * Initialize interator that runs through all events and counters.
578  */
579 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
580                             int num, int wmin, int wmax)
581 {
582         int idx;
583
584         memset(sched, 0, sizeof(*sched));
585         sched->max_events       = num;
586         sched->max_weight       = wmax;
587         sched->constraints      = c;
588
589         for (idx = 0; idx < num; idx++) {
590                 if (c[idx]->weight == wmin)
591                         break;
592         }
593
594         sched->state.event      = idx;          /* start with min weight */
595         sched->state.weight     = wmin;
596         sched->state.unassigned = num;
597 }
598
599 static void perf_sched_save_state(struct perf_sched *sched)
600 {
601         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
602                 return;
603
604         sched->saved[sched->saved_states] = sched->state;
605         sched->saved_states++;
606 }
607
608 static bool perf_sched_restore_state(struct perf_sched *sched)
609 {
610         if (!sched->saved_states)
611                 return false;
612
613         sched->saved_states--;
614         sched->state = sched->saved[sched->saved_states];
615
616         /* continue with next counter: */
617         clear_bit(sched->state.counter++, sched->state.used);
618
619         return true;
620 }
621
622 /*
623  * Select a counter for the current event to schedule. Return true on
624  * success.
625  */
626 static bool __perf_sched_find_counter(struct perf_sched *sched)
627 {
628         struct event_constraint *c;
629         int idx;
630
631         if (!sched->state.unassigned)
632                 return false;
633
634         if (sched->state.event >= sched->max_events)
635                 return false;
636
637         c = sched->constraints[sched->state.event];
638
639         /* Prefer fixed purpose counters */
640         if (x86_pmu.num_counters_fixed) {
641                 idx = X86_PMC_IDX_FIXED;
642                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
643                         if (!__test_and_set_bit(idx, sched->state.used))
644                                 goto done;
645                 }
646         }
647         /* Grab the first unused counter starting with idx */
648         idx = sched->state.counter;
649         for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
650                 if (!__test_and_set_bit(idx, sched->state.used))
651                         goto done;
652         }
653
654         return false;
655
656 done:
657         sched->state.counter = idx;
658
659         if (c->overlap)
660                 perf_sched_save_state(sched);
661
662         return true;
663 }
664
665 static bool perf_sched_find_counter(struct perf_sched *sched)
666 {
667         while (!__perf_sched_find_counter(sched)) {
668                 if (!perf_sched_restore_state(sched))
669                         return false;
670         }
671
672         return true;
673 }
674
675 /*
676  * Go through all unassigned events and find the next one to schedule.
677  * Take events with the least weight first. Return true on success.
678  */
679 static bool perf_sched_next_event(struct perf_sched *sched)
680 {
681         struct event_constraint *c;
682
683         if (!sched->state.unassigned || !--sched->state.unassigned)
684                 return false;
685
686         do {
687                 /* next event */
688                 sched->state.event++;
689                 if (sched->state.event >= sched->max_events) {
690                         /* next weight */
691                         sched->state.event = 0;
692                         sched->state.weight++;
693                         if (sched->state.weight > sched->max_weight)
694                                 return false;
695                 }
696                 c = sched->constraints[sched->state.event];
697         } while (c->weight != sched->state.weight);
698
699         sched->state.counter = 0;       /* start with first counter */
700
701         return true;
702 }
703
704 /*
705  * Assign a counter for each event.
706  */
707 static int perf_assign_events(struct event_constraint **constraints, int n,
708                               int wmin, int wmax, int *assign)
709 {
710         struct perf_sched sched;
711
712         perf_sched_init(&sched, constraints, n, wmin, wmax);
713
714         do {
715                 if (!perf_sched_find_counter(&sched))
716                         break;  /* failed */
717                 if (assign)
718                         assign[sched.state.event] = sched.state.counter;
719         } while (perf_sched_next_event(&sched));
720
721         return sched.state.unassigned;
722 }
723
724 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
725 {
726         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
727         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
728         int i, wmin, wmax, num = 0;
729         struct hw_perf_event *hwc;
730
731         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
732
733         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
734                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
735                 constraints[i] = c;
736                 wmin = min(wmin, c->weight);
737                 wmax = max(wmax, c->weight);
738         }
739
740         /*
741          * fastpath, try to reuse previous register
742          */
743         for (i = 0; i < n; i++) {
744                 hwc = &cpuc->event_list[i]->hw;
745                 c = constraints[i];
746
747                 /* never assigned */
748                 if (hwc->idx == -1)
749                         break;
750
751                 /* constraint still honored */
752                 if (!test_bit(hwc->idx, c->idxmsk))
753                         break;
754
755                 /* not already used */
756                 if (test_bit(hwc->idx, used_mask))
757                         break;
758
759                 __set_bit(hwc->idx, used_mask);
760                 if (assign)
761                         assign[i] = hwc->idx;
762         }
763
764         /* slow path */
765         if (i != n)
766                 num = perf_assign_events(constraints, n, wmin, wmax, assign);
767
768         /*
769          * scheduling failed or is just a simulation,
770          * free resources if necessary
771          */
772         if (!assign || num) {
773                 for (i = 0; i < n; i++) {
774                         if (x86_pmu.put_event_constraints)
775                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
776                 }
777         }
778         return num ? -EINVAL : 0;
779 }
780
781 /*
782  * dogrp: true if must collect siblings events (group)
783  * returns total number of events and error code
784  */
785 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
786 {
787         struct perf_event *event;
788         int n, max_count;
789
790         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
791
792         /* current number of events already accepted */
793         n = cpuc->n_events;
794
795         if (is_x86_event(leader)) {
796                 if (n >= max_count)
797                         return -EINVAL;
798                 cpuc->event_list[n] = leader;
799                 n++;
800         }
801         if (!dogrp)
802                 return n;
803
804         list_for_each_entry(event, &leader->sibling_list, group_entry) {
805                 if (!is_x86_event(event) ||
806                     event->state <= PERF_EVENT_STATE_OFF)
807                         continue;
808
809                 if (n >= max_count)
810                         return -EINVAL;
811
812                 cpuc->event_list[n] = event;
813                 n++;
814         }
815         return n;
816 }
817
818 static inline void x86_assign_hw_event(struct perf_event *event,
819                                 struct cpu_hw_events *cpuc, int i)
820 {
821         struct hw_perf_event *hwc = &event->hw;
822
823         hwc->idx = cpuc->assign[i];
824         hwc->last_cpu = smp_processor_id();
825         hwc->last_tag = ++cpuc->tags[i];
826
827         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
828                 hwc->config_base = 0;
829                 hwc->event_base = 0;
830         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
831                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
832                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
833         } else {
834                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
835                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
836         }
837 }
838
839 static inline int match_prev_assignment(struct hw_perf_event *hwc,
840                                         struct cpu_hw_events *cpuc,
841                                         int i)
842 {
843         return hwc->idx == cpuc->assign[i] &&
844                 hwc->last_cpu == smp_processor_id() &&
845                 hwc->last_tag == cpuc->tags[i];
846 }
847
848 static void x86_pmu_start(struct perf_event *event, int flags);
849
850 static void x86_pmu_enable(struct pmu *pmu)
851 {
852         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
853         struct perf_event *event;
854         struct hw_perf_event *hwc;
855         int i, added = cpuc->n_added;
856
857         if (!x86_pmu_initialized())
858                 return;
859
860         if (cpuc->enabled)
861                 return;
862
863         if (cpuc->n_added) {
864                 int n_running = cpuc->n_events - cpuc->n_added;
865                 /*
866                  * apply assignment obtained either from
867                  * hw_perf_group_sched_in() or x86_pmu_enable()
868                  *
869                  * step1: save events moving to new counters
870                  * step2: reprogram moved events into new counters
871                  */
872                 for (i = 0; i < n_running; i++) {
873                         event = cpuc->event_list[i];
874                         hwc = &event->hw;
875
876                         /*
877                          * we can avoid reprogramming counter if:
878                          * - assigned same counter as last time
879                          * - running on same CPU as last time
880                          * - no other event has used the counter since
881                          */
882                         if (hwc->idx == -1 ||
883                             match_prev_assignment(hwc, cpuc, i))
884                                 continue;
885
886                         /*
887                          * Ensure we don't accidentally enable a stopped
888                          * counter simply because we rescheduled.
889                          */
890                         if (hwc->state & PERF_HES_STOPPED)
891                                 hwc->state |= PERF_HES_ARCH;
892
893                         x86_pmu_stop(event, PERF_EF_UPDATE);
894                 }
895
896                 for (i = 0; i < cpuc->n_events; i++) {
897                         event = cpuc->event_list[i];
898                         hwc = &event->hw;
899
900                         if (!match_prev_assignment(hwc, cpuc, i))
901                                 x86_assign_hw_event(event, cpuc, i);
902                         else if (i < n_running)
903                                 continue;
904
905                         if (hwc->state & PERF_HES_ARCH)
906                                 continue;
907
908                         x86_pmu_start(event, PERF_EF_RELOAD);
909                 }
910                 cpuc->n_added = 0;
911                 perf_events_lapic_init();
912         }
913
914         cpuc->enabled = 1;
915         barrier();
916
917         x86_pmu.enable_all(added);
918 }
919
920 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
921
922 /*
923  * Set the next IRQ period, based on the hwc->period_left value.
924  * To be called with the event disabled in hw:
925  */
926 int x86_perf_event_set_period(struct perf_event *event)
927 {
928         struct hw_perf_event *hwc = &event->hw;
929         s64 left = local64_read(&hwc->period_left);
930         s64 period = hwc->sample_period;
931         int ret = 0, idx = hwc->idx;
932
933         if (idx == X86_PMC_IDX_FIXED_BTS)
934                 return 0;
935
936         /*
937          * If we are way outside a reasonable range then just skip forward:
938          */
939         if (unlikely(left <= -period)) {
940                 left = period;
941                 local64_set(&hwc->period_left, left);
942                 hwc->last_period = period;
943                 ret = 1;
944         }
945
946         if (unlikely(left <= 0)) {
947                 left += period;
948                 local64_set(&hwc->period_left, left);
949                 hwc->last_period = period;
950                 ret = 1;
951         }
952         /*
953          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
954          */
955         if (unlikely(left < 2))
956                 left = 2;
957
958         if (left > x86_pmu.max_period)
959                 left = x86_pmu.max_period;
960
961         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
962
963         /*
964          * The hw event starts counting from this event offset,
965          * mark it to be able to extra future deltas:
966          */
967         local64_set(&hwc->prev_count, (u64)-left);
968
969         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
970
971         /*
972          * Due to erratum on certan cpu we need
973          * a second write to be sure the register
974          * is updated properly
975          */
976         if (x86_pmu.perfctr_second_write) {
977                 wrmsrl(hwc->event_base,
978                         (u64)(-left) & x86_pmu.cntval_mask);
979         }
980
981         perf_event_update_userpage(event);
982
983         return ret;
984 }
985
986 void x86_pmu_enable_event(struct perf_event *event)
987 {
988         if (__this_cpu_read(cpu_hw_events.enabled))
989                 __x86_pmu_enable_event(&event->hw,
990                                        ARCH_PERFMON_EVENTSEL_ENABLE);
991 }
992
993 /*
994  * Add a single event to the PMU.
995  *
996  * The event is added to the group of enabled events
997  * but only if it can be scehduled with existing events.
998  */
999 static int x86_pmu_add(struct perf_event *event, int flags)
1000 {
1001         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1002         struct hw_perf_event *hwc;
1003         int assign[X86_PMC_IDX_MAX];
1004         int n, n0, ret;
1005
1006         hwc = &event->hw;
1007
1008         perf_pmu_disable(event->pmu);
1009         n0 = cpuc->n_events;
1010         ret = n = collect_events(cpuc, event, false);
1011         if (ret < 0)
1012                 goto out;
1013
1014         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1015         if (!(flags & PERF_EF_START))
1016                 hwc->state |= PERF_HES_ARCH;
1017
1018         /*
1019          * If group events scheduling transaction was started,
1020          * skip the schedulability test here, it will be performed
1021          * at commit time (->commit_txn) as a whole
1022          */
1023         if (cpuc->group_flag & PERF_EVENT_TXN)
1024                 goto done_collect;
1025
1026         ret = x86_pmu.schedule_events(cpuc, n, assign);
1027         if (ret)
1028                 goto out;
1029         /*
1030          * copy new assignment, now we know it is possible
1031          * will be used by hw_perf_enable()
1032          */
1033         memcpy(cpuc->assign, assign, n*sizeof(int));
1034
1035 done_collect:
1036         cpuc->n_events = n;
1037         cpuc->n_added += n - n0;
1038         cpuc->n_txn += n - n0;
1039
1040         ret = 0;
1041 out:
1042         perf_pmu_enable(event->pmu);
1043         return ret;
1044 }
1045
1046 static void x86_pmu_start(struct perf_event *event, int flags)
1047 {
1048         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1049         int idx = event->hw.idx;
1050
1051         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1052                 return;
1053
1054         if (WARN_ON_ONCE(idx == -1))
1055                 return;
1056
1057         if (flags & PERF_EF_RELOAD) {
1058                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1059                 x86_perf_event_set_period(event);
1060         }
1061
1062         event->hw.state = 0;
1063
1064         cpuc->events[idx] = event;
1065         __set_bit(idx, cpuc->active_mask);
1066         __set_bit(idx, cpuc->running);
1067         x86_pmu.enable(event);
1068         perf_event_update_userpage(event);
1069 }
1070
1071 void perf_event_print_debug(void)
1072 {
1073         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1074         u64 pebs;
1075         struct cpu_hw_events *cpuc;
1076         unsigned long flags;
1077         int cpu, idx;
1078
1079         if (!x86_pmu.num_counters)
1080                 return;
1081
1082         local_irq_save(flags);
1083
1084         cpu = smp_processor_id();
1085         cpuc = &per_cpu(cpu_hw_events, cpu);
1086
1087         if (x86_pmu.version >= 2) {
1088                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1089                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1090                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1091                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1092                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1093
1094                 pr_info("\n");
1095                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1096                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1097                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1098                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1099                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1100         }
1101         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1102
1103         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1104                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1105                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1106
1107                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1108
1109                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1110                         cpu, idx, pmc_ctrl);
1111                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1112                         cpu, idx, pmc_count);
1113                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1114                         cpu, idx, prev_left);
1115         }
1116         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1117                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1118
1119                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1120                         cpu, idx, pmc_count);
1121         }
1122         local_irq_restore(flags);
1123 }
1124
1125 void x86_pmu_stop(struct perf_event *event, int flags)
1126 {
1127         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1128         struct hw_perf_event *hwc = &event->hw;
1129
1130         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1131                 x86_pmu.disable(event);
1132                 cpuc->events[hwc->idx] = NULL;
1133                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1134                 hwc->state |= PERF_HES_STOPPED;
1135         }
1136
1137         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1138                 /*
1139                  * Drain the remaining delta count out of a event
1140                  * that we are disabling:
1141                  */
1142                 x86_perf_event_update(event);
1143                 hwc->state |= PERF_HES_UPTODATE;
1144         }
1145 }
1146
1147 static void x86_pmu_del(struct perf_event *event, int flags)
1148 {
1149         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1150         int i;
1151
1152         /*
1153          * If we're called during a txn, we don't need to do anything.
1154          * The events never got scheduled and ->cancel_txn will truncate
1155          * the event_list.
1156          */
1157         if (cpuc->group_flag & PERF_EVENT_TXN)
1158                 return;
1159
1160         x86_pmu_stop(event, PERF_EF_UPDATE);
1161
1162         for (i = 0; i < cpuc->n_events; i++) {
1163                 if (event == cpuc->event_list[i]) {
1164
1165                         if (x86_pmu.put_event_constraints)
1166                                 x86_pmu.put_event_constraints(cpuc, event);
1167
1168                         while (++i < cpuc->n_events)
1169                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1170
1171                         --cpuc->n_events;
1172                         break;
1173                 }
1174         }
1175         perf_event_update_userpage(event);
1176 }
1177
1178 int x86_pmu_handle_irq(struct pt_regs *regs)
1179 {
1180         struct perf_sample_data data;
1181         struct cpu_hw_events *cpuc;
1182         struct perf_event *event;
1183         int idx, handled = 0;
1184         u64 val;
1185
1186         cpuc = &__get_cpu_var(cpu_hw_events);
1187
1188         /*
1189          * Some chipsets need to unmask the LVTPC in a particular spot
1190          * inside the nmi handler.  As a result, the unmasking was pushed
1191          * into all the nmi handlers.
1192          *
1193          * This generic handler doesn't seem to have any issues where the
1194          * unmasking occurs so it was left at the top.
1195          */
1196         apic_write(APIC_LVTPC, APIC_DM_NMI);
1197
1198         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1199                 if (!test_bit(idx, cpuc->active_mask)) {
1200                         /*
1201                          * Though we deactivated the counter some cpus
1202                          * might still deliver spurious interrupts still
1203                          * in flight. Catch them:
1204                          */
1205                         if (__test_and_clear_bit(idx, cpuc->running))
1206                                 handled++;
1207                         continue;
1208                 }
1209
1210                 event = cpuc->events[idx];
1211
1212                 val = x86_perf_event_update(event);
1213                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1214                         continue;
1215
1216                 /*
1217                  * event overflow
1218                  */
1219                 handled++;
1220                 perf_sample_data_init(&data, 0, event->hw.last_period);
1221
1222                 if (!x86_perf_event_set_period(event))
1223                         continue;
1224
1225                 if (perf_event_overflow(event, &data, regs))
1226                         x86_pmu_stop(event, 0);
1227         }
1228
1229         if (handled)
1230                 inc_irq_stat(apic_perf_irqs);
1231
1232         return handled;
1233 }
1234
1235 void perf_events_lapic_init(void)
1236 {
1237         if (!x86_pmu.apic || !x86_pmu_initialized())
1238                 return;
1239
1240         /*
1241          * Always use NMI for PMU
1242          */
1243         apic_write(APIC_LVTPC, APIC_DM_NMI);
1244 }
1245
1246 static int __kprobes
1247 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1248 {
1249         if (!atomic_read(&active_events))
1250                 return NMI_DONE;
1251
1252         return x86_pmu.handle_irq(regs);
1253 }
1254
1255 struct event_constraint emptyconstraint;
1256 struct event_constraint unconstrained;
1257
1258 static int __cpuinit
1259 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1260 {
1261         unsigned int cpu = (long)hcpu;
1262         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1263         int ret = NOTIFY_OK;
1264
1265         switch (action & ~CPU_TASKS_FROZEN) {
1266         case CPU_UP_PREPARE:
1267                 cpuc->kfree_on_online = NULL;
1268                 if (x86_pmu.cpu_prepare)
1269                         ret = x86_pmu.cpu_prepare(cpu);
1270                 break;
1271
1272         case CPU_STARTING:
1273                 if (x86_pmu.attr_rdpmc)
1274                         set_in_cr4(X86_CR4_PCE);
1275                 if (x86_pmu.cpu_starting)
1276                         x86_pmu.cpu_starting(cpu);
1277                 break;
1278
1279         case CPU_ONLINE:
1280                 kfree(cpuc->kfree_on_online);
1281                 break;
1282
1283         case CPU_DYING:
1284                 if (x86_pmu.cpu_dying)
1285                         x86_pmu.cpu_dying(cpu);
1286                 break;
1287
1288         case CPU_UP_CANCELED:
1289         case CPU_DEAD:
1290                 if (x86_pmu.cpu_dead)
1291                         x86_pmu.cpu_dead(cpu);
1292                 break;
1293
1294         default:
1295                 break;
1296         }
1297
1298         return ret;
1299 }
1300
1301 static void __init pmu_check_apic(void)
1302 {
1303         if (cpu_has_apic)
1304                 return;
1305
1306         x86_pmu.apic = 0;
1307         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1308         pr_info("no hardware sampling interrupt available.\n");
1309 }
1310
1311 static struct attribute_group x86_pmu_format_group = {
1312         .name = "format",
1313         .attrs = NULL,
1314 };
1315
1316 static int __init init_hw_perf_events(void)
1317 {
1318         struct x86_pmu_quirk *quirk;
1319         struct event_constraint *c;
1320         int err;
1321
1322         pr_info("Performance Events: ");
1323
1324         switch (boot_cpu_data.x86_vendor) {
1325         case X86_VENDOR_INTEL:
1326                 err = intel_pmu_init();
1327                 break;
1328         case X86_VENDOR_AMD:
1329                 err = amd_pmu_init();
1330                 break;
1331         default:
1332                 return 0;
1333         }
1334         if (err != 0) {
1335                 pr_cont("no PMU driver, software events only.\n");
1336                 return 0;
1337         }
1338
1339         pmu_check_apic();
1340
1341         /* sanity check that the hardware exists or is emulated */
1342         if (!check_hw_exists())
1343                 return 0;
1344
1345         pr_cont("%s PMU driver.\n", x86_pmu.name);
1346
1347         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1348                 quirk->func();
1349
1350         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1351                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1352                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1353                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1354         }
1355         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1356
1357         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1358                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1359                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1360                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1361         }
1362
1363         x86_pmu.intel_ctrl |=
1364                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1365
1366         perf_events_lapic_init();
1367         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1368
1369         unconstrained = (struct event_constraint)
1370                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1371                                    0, x86_pmu.num_counters, 0);
1372
1373         if (x86_pmu.event_constraints) {
1374                 /*
1375                  * event on fixed counter2 (REF_CYCLES) only works on this
1376                  * counter, so do not extend mask to generic counters
1377                  */
1378                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1379                         if (c->cmask != X86_RAW_EVENT_MASK
1380                             || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1381                                 continue;
1382                         }
1383
1384                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1385                         c->weight += x86_pmu.num_counters;
1386                 }
1387         }
1388
1389         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1390         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1391
1392         pr_info("... version:                %d\n",     x86_pmu.version);
1393         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1394         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1395         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1396         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1397         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1398         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1399
1400         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1401         perf_cpu_notifier(x86_pmu_notifier);
1402
1403         return 0;
1404 }
1405 early_initcall(init_hw_perf_events);
1406
1407 static inline void x86_pmu_read(struct perf_event *event)
1408 {
1409         x86_perf_event_update(event);
1410 }
1411
1412 /*
1413  * Start group events scheduling transaction
1414  * Set the flag to make pmu::enable() not perform the
1415  * schedulability test, it will be performed at commit time
1416  */
1417 static void x86_pmu_start_txn(struct pmu *pmu)
1418 {
1419         perf_pmu_disable(pmu);
1420         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1421         __this_cpu_write(cpu_hw_events.n_txn, 0);
1422 }
1423
1424 /*
1425  * Stop group events scheduling transaction
1426  * Clear the flag and pmu::enable() will perform the
1427  * schedulability test.
1428  */
1429 static void x86_pmu_cancel_txn(struct pmu *pmu)
1430 {
1431         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1432         /*
1433          * Truncate the collected events.
1434          */
1435         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1436         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1437         perf_pmu_enable(pmu);
1438 }
1439
1440 /*
1441  * Commit group events scheduling transaction
1442  * Perform the group schedulability test as a whole
1443  * Return 0 if success
1444  */
1445 static int x86_pmu_commit_txn(struct pmu *pmu)
1446 {
1447         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1448         int assign[X86_PMC_IDX_MAX];
1449         int n, ret;
1450
1451         n = cpuc->n_events;
1452
1453         if (!x86_pmu_initialized())
1454                 return -EAGAIN;
1455
1456         ret = x86_pmu.schedule_events(cpuc, n, assign);
1457         if (ret)
1458                 return ret;
1459
1460         /*
1461          * copy new assignment, now we know it is possible
1462          * will be used by hw_perf_enable()
1463          */
1464         memcpy(cpuc->assign, assign, n*sizeof(int));
1465
1466         cpuc->group_flag &= ~PERF_EVENT_TXN;
1467         perf_pmu_enable(pmu);
1468         return 0;
1469 }
1470 /*
1471  * a fake_cpuc is used to validate event groups. Due to
1472  * the extra reg logic, we need to also allocate a fake
1473  * per_core and per_cpu structure. Otherwise, group events
1474  * using extra reg may conflict without the kernel being
1475  * able to catch this when the last event gets added to
1476  * the group.
1477  */
1478 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1479 {
1480         kfree(cpuc->shared_regs);
1481         kfree(cpuc);
1482 }
1483
1484 static struct cpu_hw_events *allocate_fake_cpuc(void)
1485 {
1486         struct cpu_hw_events *cpuc;
1487         int cpu = raw_smp_processor_id();
1488
1489         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1490         if (!cpuc)
1491                 return ERR_PTR(-ENOMEM);
1492
1493         /* only needed, if we have extra_regs */
1494         if (x86_pmu.extra_regs) {
1495                 cpuc->shared_regs = allocate_shared_regs(cpu);
1496                 if (!cpuc->shared_regs)
1497                         goto error;
1498         }
1499         return cpuc;
1500 error:
1501         free_fake_cpuc(cpuc);
1502         return ERR_PTR(-ENOMEM);
1503 }
1504
1505 /*
1506  * validate that we can schedule this event
1507  */
1508 static int validate_event(struct perf_event *event)
1509 {
1510         struct cpu_hw_events *fake_cpuc;
1511         struct event_constraint *c;
1512         int ret = 0;
1513
1514         fake_cpuc = allocate_fake_cpuc();
1515         if (IS_ERR(fake_cpuc))
1516                 return PTR_ERR(fake_cpuc);
1517
1518         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1519
1520         if (!c || !c->weight)
1521                 ret = -EINVAL;
1522
1523         if (x86_pmu.put_event_constraints)
1524                 x86_pmu.put_event_constraints(fake_cpuc, event);
1525
1526         free_fake_cpuc(fake_cpuc);
1527
1528         return ret;
1529 }
1530
1531 /*
1532  * validate a single event group
1533  *
1534  * validation include:
1535  *      - check events are compatible which each other
1536  *      - events do not compete for the same counter
1537  *      - number of events <= number of counters
1538  *
1539  * validation ensures the group can be loaded onto the
1540  * PMU if it was the only group available.
1541  */
1542 static int validate_group(struct perf_event *event)
1543 {
1544         struct perf_event *leader = event->group_leader;
1545         struct cpu_hw_events *fake_cpuc;
1546         int ret = -EINVAL, n;
1547
1548         fake_cpuc = allocate_fake_cpuc();
1549         if (IS_ERR(fake_cpuc))
1550                 return PTR_ERR(fake_cpuc);
1551         /*
1552          * the event is not yet connected with its
1553          * siblings therefore we must first collect
1554          * existing siblings, then add the new event
1555          * before we can simulate the scheduling
1556          */
1557         n = collect_events(fake_cpuc, leader, true);
1558         if (n < 0)
1559                 goto out;
1560
1561         fake_cpuc->n_events = n;
1562         n = collect_events(fake_cpuc, event, false);
1563         if (n < 0)
1564                 goto out;
1565
1566         fake_cpuc->n_events = n;
1567
1568         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1569
1570 out:
1571         free_fake_cpuc(fake_cpuc);
1572         return ret;
1573 }
1574
1575 static int x86_pmu_event_init(struct perf_event *event)
1576 {
1577         struct pmu *tmp;
1578         int err;
1579
1580         switch (event->attr.type) {
1581         case PERF_TYPE_RAW:
1582         case PERF_TYPE_HARDWARE:
1583         case PERF_TYPE_HW_CACHE:
1584                 break;
1585
1586         default:
1587                 return -ENOENT;
1588         }
1589
1590         err = __x86_pmu_event_init(event);
1591         if (!err) {
1592                 /*
1593                  * we temporarily connect event to its pmu
1594                  * such that validate_group() can classify
1595                  * it as an x86 event using is_x86_event()
1596                  */
1597                 tmp = event->pmu;
1598                 event->pmu = &pmu;
1599
1600                 if (event->group_leader != event)
1601                         err = validate_group(event);
1602                 else
1603                         err = validate_event(event);
1604
1605                 event->pmu = tmp;
1606         }
1607         if (err) {
1608                 if (event->destroy)
1609                         event->destroy(event);
1610         }
1611
1612         return err;
1613 }
1614
1615 static int x86_pmu_event_idx(struct perf_event *event)
1616 {
1617         int idx = event->hw.idx;
1618
1619         if (!x86_pmu.attr_rdpmc)
1620                 return 0;
1621
1622         if (x86_pmu.num_counters_fixed && idx >= X86_PMC_IDX_FIXED) {
1623                 idx -= X86_PMC_IDX_FIXED;
1624                 idx |= 1 << 30;
1625         }
1626
1627         return idx + 1;
1628 }
1629
1630 static ssize_t get_attr_rdpmc(struct device *cdev,
1631                               struct device_attribute *attr,
1632                               char *buf)
1633 {
1634         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1635 }
1636
1637 static void change_rdpmc(void *info)
1638 {
1639         bool enable = !!(unsigned long)info;
1640
1641         if (enable)
1642                 set_in_cr4(X86_CR4_PCE);
1643         else
1644                 clear_in_cr4(X86_CR4_PCE);
1645 }
1646
1647 static ssize_t set_attr_rdpmc(struct device *cdev,
1648                               struct device_attribute *attr,
1649                               const char *buf, size_t count)
1650 {
1651         unsigned long val = simple_strtoul(buf, NULL, 0);
1652
1653         if (!!val != !!x86_pmu.attr_rdpmc) {
1654                 x86_pmu.attr_rdpmc = !!val;
1655                 smp_call_function(change_rdpmc, (void *)val, 1);
1656         }
1657
1658         return count;
1659 }
1660
1661 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1662
1663 static struct attribute *x86_pmu_attrs[] = {
1664         &dev_attr_rdpmc.attr,
1665         NULL,
1666 };
1667
1668 static struct attribute_group x86_pmu_attr_group = {
1669         .attrs = x86_pmu_attrs,
1670 };
1671
1672 static const struct attribute_group *x86_pmu_attr_groups[] = {
1673         &x86_pmu_attr_group,
1674         &x86_pmu_format_group,
1675         NULL,
1676 };
1677
1678 static void x86_pmu_flush_branch_stack(void)
1679 {
1680         if (x86_pmu.flush_branch_stack)
1681                 x86_pmu.flush_branch_stack();
1682 }
1683
1684 static struct pmu pmu = {
1685         .pmu_enable             = x86_pmu_enable,
1686         .pmu_disable            = x86_pmu_disable,
1687
1688         .attr_groups    = x86_pmu_attr_groups,
1689
1690         .event_init     = x86_pmu_event_init,
1691
1692         .add                    = x86_pmu_add,
1693         .del                    = x86_pmu_del,
1694         .start                  = x86_pmu_start,
1695         .stop                   = x86_pmu_stop,
1696         .read                   = x86_pmu_read,
1697
1698         .start_txn      = x86_pmu_start_txn,
1699         .cancel_txn     = x86_pmu_cancel_txn,
1700         .commit_txn     = x86_pmu_commit_txn,
1701
1702         .event_idx      = x86_pmu_event_idx,
1703         .flush_branch_stack     = x86_pmu_flush_branch_stack,
1704 };
1705
1706 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1707 {
1708         userpg->cap_usr_time = 0;
1709         userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1710         userpg->pmc_width = x86_pmu.cntval_bits;
1711
1712         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1713                 return;
1714
1715         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1716                 return;
1717
1718         userpg->cap_usr_time = 1;
1719         userpg->time_mult = this_cpu_read(cyc2ns);
1720         userpg->time_shift = CYC2NS_SCALE_FACTOR;
1721         userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1722 }
1723
1724 /*
1725  * callchain support
1726  */
1727
1728 static int backtrace_stack(void *data, char *name)
1729 {
1730         return 0;
1731 }
1732
1733 static void backtrace_address(void *data, unsigned long addr, int reliable)
1734 {
1735         struct perf_callchain_entry *entry = data;
1736
1737         perf_callchain_store(entry, addr);
1738 }
1739
1740 static const struct stacktrace_ops backtrace_ops = {
1741         .stack                  = backtrace_stack,
1742         .address                = backtrace_address,
1743         .walk_stack             = print_context_stack_bp,
1744 };
1745
1746 void
1747 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1748 {
1749         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1750                 /* TODO: We don't support guest os callchain now */
1751                 return;
1752         }
1753
1754         perf_callchain_store(entry, regs->ip);
1755
1756         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1757 }
1758
1759 #ifdef CONFIG_COMPAT
1760
1761 #include <asm/compat.h>
1762
1763 static inline int
1764 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1765 {
1766         /* 32-bit process in 64-bit kernel. */
1767         struct stack_frame_ia32 frame;
1768         const void __user *fp;
1769
1770         if (!test_thread_flag(TIF_IA32))
1771                 return 0;
1772
1773         fp = compat_ptr(regs->bp);
1774         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1775                 unsigned long bytes;
1776                 frame.next_frame     = 0;
1777                 frame.return_address = 0;
1778
1779                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1780                 if (bytes != sizeof(frame))
1781                         break;
1782
1783                 if (fp < compat_ptr(regs->sp))
1784                         break;
1785
1786                 perf_callchain_store(entry, frame.return_address);
1787                 fp = compat_ptr(frame.next_frame);
1788         }
1789         return 1;
1790 }
1791 #else
1792 static inline int
1793 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1794 {
1795     return 0;
1796 }
1797 #endif
1798
1799 void
1800 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1801 {
1802         struct stack_frame frame;
1803         const void __user *fp;
1804
1805         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1806                 /* TODO: We don't support guest os callchain now */
1807                 return;
1808         }
1809
1810         fp = (void __user *)regs->bp;
1811
1812         perf_callchain_store(entry, regs->ip);
1813
1814         if (!current->mm)
1815                 return;
1816
1817         if (perf_callchain_user32(regs, entry))
1818                 return;
1819
1820         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1821                 unsigned long bytes;
1822                 frame.next_frame             = NULL;
1823                 frame.return_address = 0;
1824
1825                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1826                 if (bytes != sizeof(frame))
1827                         break;
1828
1829                 if ((unsigned long)fp < regs->sp)
1830                         break;
1831
1832                 perf_callchain_store(entry, frame.return_address);
1833                 fp = frame.next_frame;
1834         }
1835 }
1836
1837 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1838 {
1839         unsigned long ip;
1840
1841         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1842                 ip = perf_guest_cbs->get_guest_ip();
1843         else
1844                 ip = instruction_pointer(regs);
1845
1846         return ip;
1847 }
1848
1849 unsigned long perf_misc_flags(struct pt_regs *regs)
1850 {
1851         int misc = 0;
1852
1853         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1854                 if (perf_guest_cbs->is_user_mode())
1855                         misc |= PERF_RECORD_MISC_GUEST_USER;
1856                 else
1857                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1858         } else {
1859                 if (user_mode(regs))
1860                         misc |= PERF_RECORD_MISC_USER;
1861                 else
1862                         misc |= PERF_RECORD_MISC_KERNEL;
1863         }
1864
1865         if (regs->flags & PERF_EFLAGS_EXACT)
1866                 misc |= PERF_RECORD_MISC_EXACT_IP;
1867
1868         return misc;
1869 }
1870
1871 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1872 {
1873         cap->version            = x86_pmu.version;
1874         cap->num_counters_gp    = x86_pmu.num_counters;
1875         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1876         cap->bit_width_gp       = x86_pmu.cntval_bits;
1877         cap->bit_width_fixed    = x86_pmu.cntval_bits;
1878         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
1879         cap->events_mask_len    = x86_pmu.events_mask_len;
1880 }
1881 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);