perf: Fix LLC-* events on Intel Nehalem/Westmere
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         unsigned long size, len = 0;
53         struct page *page;
54         void *map;
55         int ret;
56
57         do {
58                 ret = __get_user_pages_fast(addr, 1, 0, &page);
59                 if (!ret)
60                         break;
61
62                 offset = addr & (PAGE_SIZE - 1);
63                 size = min(PAGE_SIZE - offset, n - len);
64
65                 map = kmap_atomic(page);
66                 memcpy(to, map+offset, size);
67                 kunmap_atomic(map);
68                 put_page(page);
69
70                 len  += size;
71                 to   += size;
72                 addr += size;
73
74         } while (len < n);
75
76         return len;
77 }
78
79 struct event_constraint {
80         union {
81                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82                 u64             idxmsk64;
83         };
84         u64     code;
85         u64     cmask;
86         int     weight;
87 };
88
89 struct amd_nb {
90         int nb_id;  /* NorthBridge id */
91         int refcnt; /* reference count */
92         struct perf_event *owners[X86_PMC_IDX_MAX];
93         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
94 };
95
96 struct intel_percore;
97
98 #define MAX_LBR_ENTRIES         16
99
100 struct cpu_hw_events {
101         /*
102          * Generic x86 PMC bits
103          */
104         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
105         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
106         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
107         int                     enabled;
108
109         int                     n_events;
110         int                     n_added;
111         int                     n_txn;
112         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
113         u64                     tags[X86_PMC_IDX_MAX];
114         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
115
116         unsigned int            group_flag;
117
118         /*
119          * Intel DebugStore bits
120          */
121         struct debug_store      *ds;
122         u64                     pebs_enabled;
123
124         /*
125          * Intel LBR bits
126          */
127         int                             lbr_users;
128         void                            *lbr_context;
129         struct perf_branch_stack        lbr_stack;
130         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
131
132         /*
133          * Intel percore register state.
134          * Coordinate shared resources between HT threads.
135          */
136         int                             percore_used; /* Used by this CPU? */
137         struct intel_percore            *per_core;
138
139         /*
140          * AMD specific bits
141          */
142         struct amd_nb           *amd_nb;
143 };
144
145 #define __EVENT_CONSTRAINT(c, n, m, w) {\
146         { .idxmsk64 = (n) },            \
147         .code = (c),                    \
148         .cmask = (m),                   \
149         .weight = (w),                  \
150 }
151
152 #define EVENT_CONSTRAINT(c, n, m)       \
153         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
154
155 /*
156  * Constraint on the Event code.
157  */
158 #define INTEL_EVENT_CONSTRAINT(c, n)    \
159         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
160
161 /*
162  * Constraint on the Event code + UMask + fixed-mask
163  *
164  * filter mask to validate fixed counter events.
165  * the following filters disqualify for fixed counters:
166  *  - inv
167  *  - edge
168  *  - cnt-mask
169  *  The other filters are supported by fixed counters.
170  *  The any-thread option is supported starting with v3.
171  */
172 #define FIXED_EVENT_CONSTRAINT(c, n)    \
173         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
174
175 /*
176  * Constraint on the Event code + UMask
177  */
178 #define INTEL_UEVENT_CONSTRAINT(c, n)   \
179         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
180 #define PEBS_EVENT_CONSTRAINT(c, n)     \
181         INTEL_UEVENT_CONSTRAINT(c, n)
182
183 #define EVENT_CONSTRAINT_END            \
184         EVENT_CONSTRAINT(0, 0, 0)
185
186 #define for_each_event_constraint(e, c) \
187         for ((e) = (c); (e)->weight; (e)++)
188
189 /*
190  * Extra registers for specific events.
191  * Some events need large masks and require external MSRs.
192  * Define a mapping to these extra registers.
193  */
194 struct extra_reg {
195         unsigned int            event;
196         unsigned int            msr;
197         u64                     config_mask;
198         u64                     valid_mask;
199 };
200
201 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
202         .event = (e),           \
203         .msr = (ms),            \
204         .config_mask = (m),     \
205         .valid_mask = (vm),     \
206         }
207 #define INTEL_EVENT_EXTRA_REG(event, msr, vm)   \
208         EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
209 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
210
211 union perf_capabilities {
212         struct {
213                 u64     lbr_format    : 6;
214                 u64     pebs_trap     : 1;
215                 u64     pebs_arch_reg : 1;
216                 u64     pebs_format   : 4;
217                 u64     smm_freeze    : 1;
218         };
219         u64     capabilities;
220 };
221
222 /*
223  * struct x86_pmu - generic x86 pmu
224  */
225 struct x86_pmu {
226         /*
227          * Generic x86 PMC bits
228          */
229         const char      *name;
230         int             version;
231         int             (*handle_irq)(struct pt_regs *);
232         void            (*disable_all)(void);
233         void            (*enable_all)(int added);
234         void            (*enable)(struct perf_event *);
235         void            (*disable)(struct perf_event *);
236         int             (*hw_config)(struct perf_event *event);
237         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
238         unsigned        eventsel;
239         unsigned        perfctr;
240         u64             (*event_map)(int);
241         int             max_events;
242         int             num_counters;
243         int             num_counters_fixed;
244         int             cntval_bits;
245         u64             cntval_mask;
246         int             apic;
247         u64             max_period;
248         struct event_constraint *
249                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
250                                                  struct perf_event *event);
251
252         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
253                                                  struct perf_event *event);
254         struct event_constraint *event_constraints;
255         struct event_constraint *percore_constraints;
256         void            (*quirks)(void);
257         int             perfctr_second_write;
258
259         int             (*cpu_prepare)(int cpu);
260         void            (*cpu_starting)(int cpu);
261         void            (*cpu_dying)(int cpu);
262         void            (*cpu_dead)(int cpu);
263
264         /*
265          * Intel Arch Perfmon v2+
266          */
267         u64                     intel_ctrl;
268         union perf_capabilities intel_cap;
269
270         /*
271          * Intel DebugStore bits
272          */
273         int             bts, pebs;
274         int             bts_active, pebs_active;
275         int             pebs_record_size;
276         void            (*drain_pebs)(struct pt_regs *regs);
277         struct event_constraint *pebs_constraints;
278
279         /*
280          * Intel LBR
281          */
282         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
283         int             lbr_nr;                    /* hardware stack size */
284
285         /*
286          * Extra registers for events
287          */
288         struct extra_reg *extra_regs;
289 };
290
291 static struct x86_pmu x86_pmu __read_mostly;
292
293 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
294         .enabled = 1,
295 };
296
297 static int x86_perf_event_set_period(struct perf_event *event);
298
299 /*
300  * Generalized hw caching related hw_event table, filled
301  * in on a per model basis. A value of 0 means
302  * 'not supported', -1 means 'hw_event makes no sense on
303  * this CPU', any other value means the raw hw_event
304  * ID.
305  */
306
307 #define C(x) PERF_COUNT_HW_CACHE_##x
308
309 static u64 __read_mostly hw_cache_event_ids
310                                 [PERF_COUNT_HW_CACHE_MAX]
311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
313 static u64 __read_mostly hw_cache_extra_regs
314                                 [PERF_COUNT_HW_CACHE_MAX]
315                                 [PERF_COUNT_HW_CACHE_OP_MAX]
316                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
317
318 /*
319  * Propagate event elapsed time into the generic event.
320  * Can only be executed on the CPU where the event is active.
321  * Returns the delta events processed.
322  */
323 static u64
324 x86_perf_event_update(struct perf_event *event)
325 {
326         struct hw_perf_event *hwc = &event->hw;
327         int shift = 64 - x86_pmu.cntval_bits;
328         u64 prev_raw_count, new_raw_count;
329         int idx = hwc->idx;
330         s64 delta;
331
332         if (idx == X86_PMC_IDX_FIXED_BTS)
333                 return 0;
334
335         /*
336          * Careful: an NMI might modify the previous event value.
337          *
338          * Our tactic to handle this is to first atomically read and
339          * exchange a new raw count - then add that new-prev delta
340          * count to the generic event atomically:
341          */
342 again:
343         prev_raw_count = local64_read(&hwc->prev_count);
344         rdmsrl(hwc->event_base, new_raw_count);
345
346         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
347                                         new_raw_count) != prev_raw_count)
348                 goto again;
349
350         /*
351          * Now we have the new raw value and have updated the prev
352          * timestamp already. We can now calculate the elapsed delta
353          * (event-)time and add that to the generic event.
354          *
355          * Careful, not all hw sign-extends above the physical width
356          * of the count.
357          */
358         delta = (new_raw_count << shift) - (prev_raw_count << shift);
359         delta >>= shift;
360
361         local64_add(delta, &event->count);
362         local64_sub(delta, &hwc->period_left);
363
364         return new_raw_count;
365 }
366
367 /* using X86_FEATURE_PERFCTR_CORE to later implement ALTERNATIVE() here */
368 static inline int x86_pmu_addr_offset(int index)
369 {
370         if (boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
371                 return index << 1;
372         return index;
373 }
374
375 static inline unsigned int x86_pmu_config_addr(int index)
376 {
377         return x86_pmu.eventsel + x86_pmu_addr_offset(index);
378 }
379
380 static inline unsigned int x86_pmu_event_addr(int index)
381 {
382         return x86_pmu.perfctr + x86_pmu_addr_offset(index);
383 }
384
385 /*
386  * Find and validate any extra registers to set up.
387  */
388 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
389 {
390         struct extra_reg *er;
391
392         event->hw.extra_reg = 0;
393         event->hw.extra_config = 0;
394
395         if (!x86_pmu.extra_regs)
396                 return 0;
397
398         for (er = x86_pmu.extra_regs; er->msr; er++) {
399                 if (er->event != (config & er->config_mask))
400                         continue;
401                 if (event->attr.config1 & ~er->valid_mask)
402                         return -EINVAL;
403                 event->hw.extra_reg = er->msr;
404                 event->hw.extra_config = event->attr.config1;
405                 break;
406         }
407         return 0;
408 }
409
410 static atomic_t active_events;
411 static DEFINE_MUTEX(pmc_reserve_mutex);
412
413 #ifdef CONFIG_X86_LOCAL_APIC
414
415 static bool reserve_pmc_hardware(void)
416 {
417         int i;
418
419         for (i = 0; i < x86_pmu.num_counters; i++) {
420                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
421                         goto perfctr_fail;
422         }
423
424         for (i = 0; i < x86_pmu.num_counters; i++) {
425                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
426                         goto eventsel_fail;
427         }
428
429         return true;
430
431 eventsel_fail:
432         for (i--; i >= 0; i--)
433                 release_evntsel_nmi(x86_pmu_config_addr(i));
434
435         i = x86_pmu.num_counters;
436
437 perfctr_fail:
438         for (i--; i >= 0; i--)
439                 release_perfctr_nmi(x86_pmu_event_addr(i));
440
441         return false;
442 }
443
444 static void release_pmc_hardware(void)
445 {
446         int i;
447
448         for (i = 0; i < x86_pmu.num_counters; i++) {
449                 release_perfctr_nmi(x86_pmu_event_addr(i));
450                 release_evntsel_nmi(x86_pmu_config_addr(i));
451         }
452 }
453
454 #else
455
456 static bool reserve_pmc_hardware(void) { return true; }
457 static void release_pmc_hardware(void) {}
458
459 #endif
460
461 static bool check_hw_exists(void)
462 {
463         u64 val, val_new = 0;
464         int i, reg, ret = 0;
465
466         /*
467          * Check to see if the BIOS enabled any of the counters, if so
468          * complain and bail.
469          */
470         for (i = 0; i < x86_pmu.num_counters; i++) {
471                 reg = x86_pmu_config_addr(i);
472                 ret = rdmsrl_safe(reg, &val);
473                 if (ret)
474                         goto msr_fail;
475                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
476                         goto bios_fail;
477         }
478
479         if (x86_pmu.num_counters_fixed) {
480                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
481                 ret = rdmsrl_safe(reg, &val);
482                 if (ret)
483                         goto msr_fail;
484                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
485                         if (val & (0x03 << i*4))
486                                 goto bios_fail;
487                 }
488         }
489
490         /*
491          * Now write a value and read it back to see if it matches,
492          * this is needed to detect certain hardware emulators (qemu/kvm)
493          * that don't trap on the MSR access and always return 0s.
494          */
495         val = 0xabcdUL;
496         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
497         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
498         if (ret || val != val_new)
499                 goto msr_fail;
500
501         return true;
502
503 bios_fail:
504         printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
505         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
506         return false;
507
508 msr_fail:
509         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
510         return false;
511 }
512
513 static void reserve_ds_buffers(void);
514 static void release_ds_buffers(void);
515
516 static void hw_perf_event_destroy(struct perf_event *event)
517 {
518         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
519                 release_pmc_hardware();
520                 release_ds_buffers();
521                 mutex_unlock(&pmc_reserve_mutex);
522         }
523 }
524
525 static inline int x86_pmu_initialized(void)
526 {
527         return x86_pmu.handle_irq != NULL;
528 }
529
530 static inline int
531 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
532 {
533         struct perf_event_attr *attr = &event->attr;
534         unsigned int cache_type, cache_op, cache_result;
535         u64 config, val;
536
537         config = attr->config;
538
539         cache_type = (config >>  0) & 0xff;
540         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
541                 return -EINVAL;
542
543         cache_op = (config >>  8) & 0xff;
544         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
545                 return -EINVAL;
546
547         cache_result = (config >> 16) & 0xff;
548         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
549                 return -EINVAL;
550
551         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
552
553         if (val == 0)
554                 return -ENOENT;
555
556         if (val == -1)
557                 return -EINVAL;
558
559         hwc->config |= val;
560         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
561         return x86_pmu_extra_regs(val, event);
562 }
563
564 static int x86_setup_perfctr(struct perf_event *event)
565 {
566         struct perf_event_attr *attr = &event->attr;
567         struct hw_perf_event *hwc = &event->hw;
568         u64 config;
569
570         if (!is_sampling_event(event)) {
571                 hwc->sample_period = x86_pmu.max_period;
572                 hwc->last_period = hwc->sample_period;
573                 local64_set(&hwc->period_left, hwc->sample_period);
574         } else {
575                 /*
576                  * If we have a PMU initialized but no APIC
577                  * interrupts, we cannot sample hardware
578                  * events (user-space has to fall back and
579                  * sample via a hrtimer based software event):
580                  */
581                 if (!x86_pmu.apic)
582                         return -EOPNOTSUPP;
583         }
584
585         if (attr->type == PERF_TYPE_RAW)
586                 return x86_pmu_extra_regs(event->attr.config, event);
587
588         if (attr->type == PERF_TYPE_HW_CACHE)
589                 return set_ext_hw_attr(hwc, event);
590
591         if (attr->config >= x86_pmu.max_events)
592                 return -EINVAL;
593
594         /*
595          * The generic map:
596          */
597         config = x86_pmu.event_map(attr->config);
598
599         if (config == 0)
600                 return -ENOENT;
601
602         if (config == -1LL)
603                 return -EINVAL;
604
605         /*
606          * Branch tracing:
607          */
608         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
609             (hwc->sample_period == 1)) {
610                 /* BTS is not supported by this architecture. */
611                 if (!x86_pmu.bts_active)
612                         return -EOPNOTSUPP;
613
614                 /* BTS is currently only allowed for user-mode. */
615                 if (!attr->exclude_kernel)
616                         return -EOPNOTSUPP;
617         }
618
619         hwc->config |= config;
620
621         return 0;
622 }
623
624 static int x86_pmu_hw_config(struct perf_event *event)
625 {
626         if (event->attr.precise_ip) {
627                 int precise = 0;
628
629                 /* Support for constant skid */
630                 if (x86_pmu.pebs_active) {
631                         precise++;
632
633                         /* Support for IP fixup */
634                         if (x86_pmu.lbr_nr)
635                                 precise++;
636                 }
637
638                 if (event->attr.precise_ip > precise)
639                         return -EOPNOTSUPP;
640         }
641
642         /*
643          * Generate PMC IRQs:
644          * (keep 'enabled' bit clear for now)
645          */
646         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
647
648         /*
649          * Count user and OS events unless requested not to
650          */
651         if (!event->attr.exclude_user)
652                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
653         if (!event->attr.exclude_kernel)
654                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
655
656         if (event->attr.type == PERF_TYPE_RAW)
657                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
658
659         return x86_setup_perfctr(event);
660 }
661
662 /*
663  * Setup the hardware configuration for a given attr_type
664  */
665 static int __x86_pmu_event_init(struct perf_event *event)
666 {
667         int err;
668
669         if (!x86_pmu_initialized())
670                 return -ENODEV;
671
672         err = 0;
673         if (!atomic_inc_not_zero(&active_events)) {
674                 mutex_lock(&pmc_reserve_mutex);
675                 if (atomic_read(&active_events) == 0) {
676                         if (!reserve_pmc_hardware())
677                                 err = -EBUSY;
678                         else
679                                 reserve_ds_buffers();
680                 }
681                 if (!err)
682                         atomic_inc(&active_events);
683                 mutex_unlock(&pmc_reserve_mutex);
684         }
685         if (err)
686                 return err;
687
688         event->destroy = hw_perf_event_destroy;
689
690         event->hw.idx = -1;
691         event->hw.last_cpu = -1;
692         event->hw.last_tag = ~0ULL;
693
694         return x86_pmu.hw_config(event);
695 }
696
697 static void x86_pmu_disable_all(void)
698 {
699         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
700         int idx;
701
702         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
703                 u64 val;
704
705                 if (!test_bit(idx, cpuc->active_mask))
706                         continue;
707                 rdmsrl(x86_pmu_config_addr(idx), val);
708                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
709                         continue;
710                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
711                 wrmsrl(x86_pmu_config_addr(idx), val);
712         }
713 }
714
715 static void x86_pmu_disable(struct pmu *pmu)
716 {
717         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718
719         if (!x86_pmu_initialized())
720                 return;
721
722         if (!cpuc->enabled)
723                 return;
724
725         cpuc->n_added = 0;
726         cpuc->enabled = 0;
727         barrier();
728
729         x86_pmu.disable_all();
730 }
731
732 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
733                                           u64 enable_mask)
734 {
735         if (hwc->extra_reg)
736                 wrmsrl(hwc->extra_reg, hwc->extra_config);
737         wrmsrl(hwc->config_base, hwc->config | enable_mask);
738 }
739
740 static void x86_pmu_enable_all(int added)
741 {
742         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743         int idx;
744
745         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
746                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
747
748                 if (!test_bit(idx, cpuc->active_mask))
749                         continue;
750
751                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
752         }
753 }
754
755 static struct pmu pmu;
756
757 static inline int is_x86_event(struct perf_event *event)
758 {
759         return event->pmu == &pmu;
760 }
761
762 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
763 {
764         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
765         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
766         int i, j, w, wmax, num = 0;
767         struct hw_perf_event *hwc;
768
769         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
770
771         for (i = 0; i < n; i++) {
772                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
773                 constraints[i] = c;
774         }
775
776         /*
777          * fastpath, try to reuse previous register
778          */
779         for (i = 0; i < n; i++) {
780                 hwc = &cpuc->event_list[i]->hw;
781                 c = constraints[i];
782
783                 /* never assigned */
784                 if (hwc->idx == -1)
785                         break;
786
787                 /* constraint still honored */
788                 if (!test_bit(hwc->idx, c->idxmsk))
789                         break;
790
791                 /* not already used */
792                 if (test_bit(hwc->idx, used_mask))
793                         break;
794
795                 __set_bit(hwc->idx, used_mask);
796                 if (assign)
797                         assign[i] = hwc->idx;
798         }
799         if (i == n)
800                 goto done;
801
802         /*
803          * begin slow path
804          */
805
806         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
807
808         /*
809          * weight = number of possible counters
810          *
811          * 1    = most constrained, only works on one counter
812          * wmax = least constrained, works on any counter
813          *
814          * assign events to counters starting with most
815          * constrained events.
816          */
817         wmax = x86_pmu.num_counters;
818
819         /*
820          * when fixed event counters are present,
821          * wmax is incremented by 1 to account
822          * for one more choice
823          */
824         if (x86_pmu.num_counters_fixed)
825                 wmax++;
826
827         for (w = 1, num = n; num && w <= wmax; w++) {
828                 /* for each event */
829                 for (i = 0; num && i < n; i++) {
830                         c = constraints[i];
831                         hwc = &cpuc->event_list[i]->hw;
832
833                         if (c->weight != w)
834                                 continue;
835
836                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
837                                 if (!test_bit(j, used_mask))
838                                         break;
839                         }
840
841                         if (j == X86_PMC_IDX_MAX)
842                                 break;
843
844                         __set_bit(j, used_mask);
845
846                         if (assign)
847                                 assign[i] = j;
848                         num--;
849                 }
850         }
851 done:
852         /*
853          * scheduling failed or is just a simulation,
854          * free resources if necessary
855          */
856         if (!assign || num) {
857                 for (i = 0; i < n; i++) {
858                         if (x86_pmu.put_event_constraints)
859                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
860                 }
861         }
862         return num ? -ENOSPC : 0;
863 }
864
865 /*
866  * dogrp: true if must collect siblings events (group)
867  * returns total number of events and error code
868  */
869 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
870 {
871         struct perf_event *event;
872         int n, max_count;
873
874         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
875
876         /* current number of events already accepted */
877         n = cpuc->n_events;
878
879         if (is_x86_event(leader)) {
880                 if (n >= max_count)
881                         return -ENOSPC;
882                 cpuc->event_list[n] = leader;
883                 n++;
884         }
885         if (!dogrp)
886                 return n;
887
888         list_for_each_entry(event, &leader->sibling_list, group_entry) {
889                 if (!is_x86_event(event) ||
890                     event->state <= PERF_EVENT_STATE_OFF)
891                         continue;
892
893                 if (n >= max_count)
894                         return -ENOSPC;
895
896                 cpuc->event_list[n] = event;
897                 n++;
898         }
899         return n;
900 }
901
902 static inline void x86_assign_hw_event(struct perf_event *event,
903                                 struct cpu_hw_events *cpuc, int i)
904 {
905         struct hw_perf_event *hwc = &event->hw;
906
907         hwc->idx = cpuc->assign[i];
908         hwc->last_cpu = smp_processor_id();
909         hwc->last_tag = ++cpuc->tags[i];
910
911         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
912                 hwc->config_base = 0;
913                 hwc->event_base = 0;
914         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
915                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
916                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0;
917         } else {
918                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
919                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
920         }
921 }
922
923 static inline int match_prev_assignment(struct hw_perf_event *hwc,
924                                         struct cpu_hw_events *cpuc,
925                                         int i)
926 {
927         return hwc->idx == cpuc->assign[i] &&
928                 hwc->last_cpu == smp_processor_id() &&
929                 hwc->last_tag == cpuc->tags[i];
930 }
931
932 static void x86_pmu_start(struct perf_event *event, int flags);
933 static void x86_pmu_stop(struct perf_event *event, int flags);
934
935 static void x86_pmu_enable(struct pmu *pmu)
936 {
937         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
938         struct perf_event *event;
939         struct hw_perf_event *hwc;
940         int i, added = cpuc->n_added;
941
942         if (!x86_pmu_initialized())
943                 return;
944
945         if (cpuc->enabled)
946                 return;
947
948         if (cpuc->n_added) {
949                 int n_running = cpuc->n_events - cpuc->n_added;
950                 /*
951                  * apply assignment obtained either from
952                  * hw_perf_group_sched_in() or x86_pmu_enable()
953                  *
954                  * step1: save events moving to new counters
955                  * step2: reprogram moved events into new counters
956                  */
957                 for (i = 0; i < n_running; i++) {
958                         event = cpuc->event_list[i];
959                         hwc = &event->hw;
960
961                         /*
962                          * we can avoid reprogramming counter if:
963                          * - assigned same counter as last time
964                          * - running on same CPU as last time
965                          * - no other event has used the counter since
966                          */
967                         if (hwc->idx == -1 ||
968                             match_prev_assignment(hwc, cpuc, i))
969                                 continue;
970
971                         /*
972                          * Ensure we don't accidentally enable a stopped
973                          * counter simply because we rescheduled.
974                          */
975                         if (hwc->state & PERF_HES_STOPPED)
976                                 hwc->state |= PERF_HES_ARCH;
977
978                         x86_pmu_stop(event, PERF_EF_UPDATE);
979                 }
980
981                 for (i = 0; i < cpuc->n_events; i++) {
982                         event = cpuc->event_list[i];
983                         hwc = &event->hw;
984
985                         if (!match_prev_assignment(hwc, cpuc, i))
986                                 x86_assign_hw_event(event, cpuc, i);
987                         else if (i < n_running)
988                                 continue;
989
990                         if (hwc->state & PERF_HES_ARCH)
991                                 continue;
992
993                         x86_pmu_start(event, PERF_EF_RELOAD);
994                 }
995                 cpuc->n_added = 0;
996                 perf_events_lapic_init();
997         }
998
999         cpuc->enabled = 1;
1000         barrier();
1001
1002         x86_pmu.enable_all(added);
1003 }
1004
1005 static inline void x86_pmu_disable_event(struct perf_event *event)
1006 {
1007         struct hw_perf_event *hwc = &event->hw;
1008
1009         wrmsrl(hwc->config_base, hwc->config);
1010 }
1011
1012 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1013
1014 /*
1015  * Set the next IRQ period, based on the hwc->period_left value.
1016  * To be called with the event disabled in hw:
1017  */
1018 static int
1019 x86_perf_event_set_period(struct perf_event *event)
1020 {
1021         struct hw_perf_event *hwc = &event->hw;
1022         s64 left = local64_read(&hwc->period_left);
1023         s64 period = hwc->sample_period;
1024         int ret = 0, idx = hwc->idx;
1025
1026         if (idx == X86_PMC_IDX_FIXED_BTS)
1027                 return 0;
1028
1029         /*
1030          * If we are way outside a reasonable range then just skip forward:
1031          */
1032         if (unlikely(left <= -period)) {
1033                 left = period;
1034                 local64_set(&hwc->period_left, left);
1035                 hwc->last_period = period;
1036                 ret = 1;
1037         }
1038
1039         if (unlikely(left <= 0)) {
1040                 left += period;
1041                 local64_set(&hwc->period_left, left);
1042                 hwc->last_period = period;
1043                 ret = 1;
1044         }
1045         /*
1046          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1047          */
1048         if (unlikely(left < 2))
1049                 left = 2;
1050
1051         if (left > x86_pmu.max_period)
1052                 left = x86_pmu.max_period;
1053
1054         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1055
1056         /*
1057          * The hw event starts counting from this event offset,
1058          * mark it to be able to extra future deltas:
1059          */
1060         local64_set(&hwc->prev_count, (u64)-left);
1061
1062         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1063
1064         /*
1065          * Due to erratum on certan cpu we need
1066          * a second write to be sure the register
1067          * is updated properly
1068          */
1069         if (x86_pmu.perfctr_second_write) {
1070                 wrmsrl(hwc->event_base,
1071                         (u64)(-left) & x86_pmu.cntval_mask);
1072         }
1073
1074         perf_event_update_userpage(event);
1075
1076         return ret;
1077 }
1078
1079 static void x86_pmu_enable_event(struct perf_event *event)
1080 {
1081         if (__this_cpu_read(cpu_hw_events.enabled))
1082                 __x86_pmu_enable_event(&event->hw,
1083                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1084 }
1085
1086 /*
1087  * Add a single event to the PMU.
1088  *
1089  * The event is added to the group of enabled events
1090  * but only if it can be scehduled with existing events.
1091  */
1092 static int x86_pmu_add(struct perf_event *event, int flags)
1093 {
1094         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1095         struct hw_perf_event *hwc;
1096         int assign[X86_PMC_IDX_MAX];
1097         int n, n0, ret;
1098
1099         hwc = &event->hw;
1100
1101         perf_pmu_disable(event->pmu);
1102         n0 = cpuc->n_events;
1103         ret = n = collect_events(cpuc, event, false);
1104         if (ret < 0)
1105                 goto out;
1106
1107         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1108         if (!(flags & PERF_EF_START))
1109                 hwc->state |= PERF_HES_ARCH;
1110
1111         /*
1112          * If group events scheduling transaction was started,
1113          * skip the schedulability test here, it will be peformed
1114          * at commit time (->commit_txn) as a whole
1115          */
1116         if (cpuc->group_flag & PERF_EVENT_TXN)
1117                 goto done_collect;
1118
1119         ret = x86_pmu.schedule_events(cpuc, n, assign);
1120         if (ret)
1121                 goto out;
1122         /*
1123          * copy new assignment, now we know it is possible
1124          * will be used by hw_perf_enable()
1125          */
1126         memcpy(cpuc->assign, assign, n*sizeof(int));
1127
1128 done_collect:
1129         cpuc->n_events = n;
1130         cpuc->n_added += n - n0;
1131         cpuc->n_txn += n - n0;
1132
1133         ret = 0;
1134 out:
1135         perf_pmu_enable(event->pmu);
1136         return ret;
1137 }
1138
1139 static void x86_pmu_start(struct perf_event *event, int flags)
1140 {
1141         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1142         int idx = event->hw.idx;
1143
1144         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1145                 return;
1146
1147         if (WARN_ON_ONCE(idx == -1))
1148                 return;
1149
1150         if (flags & PERF_EF_RELOAD) {
1151                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1152                 x86_perf_event_set_period(event);
1153         }
1154
1155         event->hw.state = 0;
1156
1157         cpuc->events[idx] = event;
1158         __set_bit(idx, cpuc->active_mask);
1159         __set_bit(idx, cpuc->running);
1160         x86_pmu.enable(event);
1161         perf_event_update_userpage(event);
1162 }
1163
1164 void perf_event_print_debug(void)
1165 {
1166         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1167         u64 pebs;
1168         struct cpu_hw_events *cpuc;
1169         unsigned long flags;
1170         int cpu, idx;
1171
1172         if (!x86_pmu.num_counters)
1173                 return;
1174
1175         local_irq_save(flags);
1176
1177         cpu = smp_processor_id();
1178         cpuc = &per_cpu(cpu_hw_events, cpu);
1179
1180         if (x86_pmu.version >= 2) {
1181                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1182                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1183                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1184                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1185                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1186
1187                 pr_info("\n");
1188                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1189                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1190                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1191                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1192                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1193         }
1194         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1195
1196         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1197                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1198                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1199
1200                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1201
1202                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1203                         cpu, idx, pmc_ctrl);
1204                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1205                         cpu, idx, pmc_count);
1206                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1207                         cpu, idx, prev_left);
1208         }
1209         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1210                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1211
1212                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1213                         cpu, idx, pmc_count);
1214         }
1215         local_irq_restore(flags);
1216 }
1217
1218 static void x86_pmu_stop(struct perf_event *event, int flags)
1219 {
1220         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1221         struct hw_perf_event *hwc = &event->hw;
1222
1223         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1224                 x86_pmu.disable(event);
1225                 cpuc->events[hwc->idx] = NULL;
1226                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1227                 hwc->state |= PERF_HES_STOPPED;
1228         }
1229
1230         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1231                 /*
1232                  * Drain the remaining delta count out of a event
1233                  * that we are disabling:
1234                  */
1235                 x86_perf_event_update(event);
1236                 hwc->state |= PERF_HES_UPTODATE;
1237         }
1238 }
1239
1240 static void x86_pmu_del(struct perf_event *event, int flags)
1241 {
1242         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1243         int i;
1244
1245         /*
1246          * If we're called during a txn, we don't need to do anything.
1247          * The events never got scheduled and ->cancel_txn will truncate
1248          * the event_list.
1249          */
1250         if (cpuc->group_flag & PERF_EVENT_TXN)
1251                 return;
1252
1253         x86_pmu_stop(event, PERF_EF_UPDATE);
1254
1255         for (i = 0; i < cpuc->n_events; i++) {
1256                 if (event == cpuc->event_list[i]) {
1257
1258                         if (x86_pmu.put_event_constraints)
1259                                 x86_pmu.put_event_constraints(cpuc, event);
1260
1261                         while (++i < cpuc->n_events)
1262                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1263
1264                         --cpuc->n_events;
1265                         break;
1266                 }
1267         }
1268         perf_event_update_userpage(event);
1269 }
1270
1271 static int x86_pmu_handle_irq(struct pt_regs *regs)
1272 {
1273         struct perf_sample_data data;
1274         struct cpu_hw_events *cpuc;
1275         struct perf_event *event;
1276         int idx, handled = 0;
1277         u64 val;
1278
1279         perf_sample_data_init(&data, 0);
1280
1281         cpuc = &__get_cpu_var(cpu_hw_events);
1282
1283         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1284                 if (!test_bit(idx, cpuc->active_mask)) {
1285                         /*
1286                          * Though we deactivated the counter some cpus
1287                          * might still deliver spurious interrupts still
1288                          * in flight. Catch them:
1289                          */
1290                         if (__test_and_clear_bit(idx, cpuc->running))
1291                                 handled++;
1292                         continue;
1293                 }
1294
1295                 event = cpuc->events[idx];
1296
1297                 val = x86_perf_event_update(event);
1298                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1299                         continue;
1300
1301                 /*
1302                  * event overflow
1303                  */
1304                 handled++;
1305                 data.period     = event->hw.last_period;
1306
1307                 if (!x86_perf_event_set_period(event))
1308                         continue;
1309
1310                 if (perf_event_overflow(event, 1, &data, regs))
1311                         x86_pmu_stop(event, 0);
1312         }
1313
1314         if (handled)
1315                 inc_irq_stat(apic_perf_irqs);
1316
1317         return handled;
1318 }
1319
1320 void perf_events_lapic_init(void)
1321 {
1322         if (!x86_pmu.apic || !x86_pmu_initialized())
1323                 return;
1324
1325         /*
1326          * Always use NMI for PMU
1327          */
1328         apic_write(APIC_LVTPC, APIC_DM_NMI);
1329 }
1330
1331 struct pmu_nmi_state {
1332         unsigned int    marked;
1333         int             handled;
1334 };
1335
1336 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1337
1338 static int __kprobes
1339 perf_event_nmi_handler(struct notifier_block *self,
1340                          unsigned long cmd, void *__args)
1341 {
1342         struct die_args *args = __args;
1343         unsigned int this_nmi;
1344         int handled;
1345
1346         if (!atomic_read(&active_events))
1347                 return NOTIFY_DONE;
1348
1349         switch (cmd) {
1350         case DIE_NMI:
1351                 break;
1352         case DIE_NMIUNKNOWN:
1353                 this_nmi = percpu_read(irq_stat.__nmi_count);
1354                 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1355                         /* let the kernel handle the unknown nmi */
1356                         return NOTIFY_DONE;
1357                 /*
1358                  * This one is a PMU back-to-back nmi. Two events
1359                  * trigger 'simultaneously' raising two back-to-back
1360                  * NMIs. If the first NMI handles both, the latter
1361                  * will be empty and daze the CPU. So, we drop it to
1362                  * avoid false-positive 'unknown nmi' messages.
1363                  */
1364                 return NOTIFY_STOP;
1365         default:
1366                 return NOTIFY_DONE;
1367         }
1368
1369         apic_write(APIC_LVTPC, APIC_DM_NMI);
1370
1371         handled = x86_pmu.handle_irq(args->regs);
1372         if (!handled)
1373                 return NOTIFY_DONE;
1374
1375         this_nmi = percpu_read(irq_stat.__nmi_count);
1376         if ((handled > 1) ||
1377                 /* the next nmi could be a back-to-back nmi */
1378             ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1379              (__this_cpu_read(pmu_nmi.handled) > 1))) {
1380                 /*
1381                  * We could have two subsequent back-to-back nmis: The
1382                  * first handles more than one counter, the 2nd
1383                  * handles only one counter and the 3rd handles no
1384                  * counter.
1385                  *
1386                  * This is the 2nd nmi because the previous was
1387                  * handling more than one counter. We will mark the
1388                  * next (3rd) and then drop it if unhandled.
1389                  */
1390                 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1391                 __this_cpu_write(pmu_nmi.handled, handled);
1392         }
1393
1394         return NOTIFY_STOP;
1395 }
1396
1397 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1398         .notifier_call          = perf_event_nmi_handler,
1399         .next                   = NULL,
1400         .priority               = NMI_LOCAL_LOW_PRIOR,
1401 };
1402
1403 static struct event_constraint unconstrained;
1404 static struct event_constraint emptyconstraint;
1405
1406 static struct event_constraint *
1407 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1408 {
1409         struct event_constraint *c;
1410
1411         if (x86_pmu.event_constraints) {
1412                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1413                         if ((event->hw.config & c->cmask) == c->code)
1414                                 return c;
1415                 }
1416         }
1417
1418         return &unconstrained;
1419 }
1420
1421 #include "perf_event_amd.c"
1422 #include "perf_event_p6.c"
1423 #include "perf_event_p4.c"
1424 #include "perf_event_intel_lbr.c"
1425 #include "perf_event_intel_ds.c"
1426 #include "perf_event_intel.c"
1427
1428 static int __cpuinit
1429 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1430 {
1431         unsigned int cpu = (long)hcpu;
1432         int ret = NOTIFY_OK;
1433
1434         switch (action & ~CPU_TASKS_FROZEN) {
1435         case CPU_UP_PREPARE:
1436                 if (x86_pmu.cpu_prepare)
1437                         ret = x86_pmu.cpu_prepare(cpu);
1438                 break;
1439
1440         case CPU_STARTING:
1441                 if (x86_pmu.cpu_starting)
1442                         x86_pmu.cpu_starting(cpu);
1443                 break;
1444
1445         case CPU_DYING:
1446                 if (x86_pmu.cpu_dying)
1447                         x86_pmu.cpu_dying(cpu);
1448                 break;
1449
1450         case CPU_UP_CANCELED:
1451         case CPU_DEAD:
1452                 if (x86_pmu.cpu_dead)
1453                         x86_pmu.cpu_dead(cpu);
1454                 break;
1455
1456         default:
1457                 break;
1458         }
1459
1460         return ret;
1461 }
1462
1463 static void __init pmu_check_apic(void)
1464 {
1465         if (cpu_has_apic)
1466                 return;
1467
1468         x86_pmu.apic = 0;
1469         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1470         pr_info("no hardware sampling interrupt available.\n");
1471 }
1472
1473 static int __init init_hw_perf_events(void)
1474 {
1475         struct event_constraint *c;
1476         int err;
1477
1478         pr_info("Performance Events: ");
1479
1480         switch (boot_cpu_data.x86_vendor) {
1481         case X86_VENDOR_INTEL:
1482                 err = intel_pmu_init();
1483                 break;
1484         case X86_VENDOR_AMD:
1485                 err = amd_pmu_init();
1486                 break;
1487         default:
1488                 return 0;
1489         }
1490         if (err != 0) {
1491                 pr_cont("no PMU driver, software events only.\n");
1492                 return 0;
1493         }
1494
1495         pmu_check_apic();
1496
1497         /* sanity check that the hardware exists or is emulated */
1498         if (!check_hw_exists())
1499                 return 0;
1500
1501         pr_cont("%s PMU driver.\n", x86_pmu.name);
1502
1503         if (x86_pmu.quirks)
1504                 x86_pmu.quirks();
1505
1506         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1507                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1508                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1509                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1510         }
1511         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1512
1513         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1514                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1515                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1516                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1517         }
1518
1519         x86_pmu.intel_ctrl |=
1520                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1521
1522         perf_events_lapic_init();
1523         register_die_notifier(&perf_event_nmi_notifier);
1524
1525         unconstrained = (struct event_constraint)
1526                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1527                                    0, x86_pmu.num_counters);
1528
1529         if (x86_pmu.event_constraints) {
1530                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1531                         if (c->cmask != X86_RAW_EVENT_MASK)
1532                                 continue;
1533
1534                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1535                         c->weight += x86_pmu.num_counters;
1536                 }
1537         }
1538
1539         pr_info("... version:                %d\n",     x86_pmu.version);
1540         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1541         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1542         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1543         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1544         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1545         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1546
1547         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1548         perf_cpu_notifier(x86_pmu_notifier);
1549
1550         return 0;
1551 }
1552 early_initcall(init_hw_perf_events);
1553
1554 static inline void x86_pmu_read(struct perf_event *event)
1555 {
1556         x86_perf_event_update(event);
1557 }
1558
1559 /*
1560  * Start group events scheduling transaction
1561  * Set the flag to make pmu::enable() not perform the
1562  * schedulability test, it will be performed at commit time
1563  */
1564 static void x86_pmu_start_txn(struct pmu *pmu)
1565 {
1566         perf_pmu_disable(pmu);
1567         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1568         __this_cpu_write(cpu_hw_events.n_txn, 0);
1569 }
1570
1571 /*
1572  * Stop group events scheduling transaction
1573  * Clear the flag and pmu::enable() will perform the
1574  * schedulability test.
1575  */
1576 static void x86_pmu_cancel_txn(struct pmu *pmu)
1577 {
1578         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1579         /*
1580          * Truncate the collected events.
1581          */
1582         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1583         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1584         perf_pmu_enable(pmu);
1585 }
1586
1587 /*
1588  * Commit group events scheduling transaction
1589  * Perform the group schedulability test as a whole
1590  * Return 0 if success
1591  */
1592 static int x86_pmu_commit_txn(struct pmu *pmu)
1593 {
1594         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1595         int assign[X86_PMC_IDX_MAX];
1596         int n, ret;
1597
1598         n = cpuc->n_events;
1599
1600         if (!x86_pmu_initialized())
1601                 return -EAGAIN;
1602
1603         ret = x86_pmu.schedule_events(cpuc, n, assign);
1604         if (ret)
1605                 return ret;
1606
1607         /*
1608          * copy new assignment, now we know it is possible
1609          * will be used by hw_perf_enable()
1610          */
1611         memcpy(cpuc->assign, assign, n*sizeof(int));
1612
1613         cpuc->group_flag &= ~PERF_EVENT_TXN;
1614         perf_pmu_enable(pmu);
1615         return 0;
1616 }
1617
1618 /*
1619  * validate that we can schedule this event
1620  */
1621 static int validate_event(struct perf_event *event)
1622 {
1623         struct cpu_hw_events *fake_cpuc;
1624         struct event_constraint *c;
1625         int ret = 0;
1626
1627         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1628         if (!fake_cpuc)
1629                 return -ENOMEM;
1630
1631         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1632
1633         if (!c || !c->weight)
1634                 ret = -ENOSPC;
1635
1636         if (x86_pmu.put_event_constraints)
1637                 x86_pmu.put_event_constraints(fake_cpuc, event);
1638
1639         kfree(fake_cpuc);
1640
1641         return ret;
1642 }
1643
1644 /*
1645  * validate a single event group
1646  *
1647  * validation include:
1648  *      - check events are compatible which each other
1649  *      - events do not compete for the same counter
1650  *      - number of events <= number of counters
1651  *
1652  * validation ensures the group can be loaded onto the
1653  * PMU if it was the only group available.
1654  */
1655 static int validate_group(struct perf_event *event)
1656 {
1657         struct perf_event *leader = event->group_leader;
1658         struct cpu_hw_events *fake_cpuc;
1659         int ret, n;
1660
1661         ret = -ENOMEM;
1662         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1663         if (!fake_cpuc)
1664                 goto out;
1665
1666         /*
1667          * the event is not yet connected with its
1668          * siblings therefore we must first collect
1669          * existing siblings, then add the new event
1670          * before we can simulate the scheduling
1671          */
1672         ret = -ENOSPC;
1673         n = collect_events(fake_cpuc, leader, true);
1674         if (n < 0)
1675                 goto out_free;
1676
1677         fake_cpuc->n_events = n;
1678         n = collect_events(fake_cpuc, event, false);
1679         if (n < 0)
1680                 goto out_free;
1681
1682         fake_cpuc->n_events = n;
1683
1684         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1685
1686 out_free:
1687         kfree(fake_cpuc);
1688 out:
1689         return ret;
1690 }
1691
1692 static int x86_pmu_event_init(struct perf_event *event)
1693 {
1694         struct pmu *tmp;
1695         int err;
1696
1697         switch (event->attr.type) {
1698         case PERF_TYPE_RAW:
1699         case PERF_TYPE_HARDWARE:
1700         case PERF_TYPE_HW_CACHE:
1701                 break;
1702
1703         default:
1704                 return -ENOENT;
1705         }
1706
1707         err = __x86_pmu_event_init(event);
1708         if (!err) {
1709                 /*
1710                  * we temporarily connect event to its pmu
1711                  * such that validate_group() can classify
1712                  * it as an x86 event using is_x86_event()
1713                  */
1714                 tmp = event->pmu;
1715                 event->pmu = &pmu;
1716
1717                 if (event->group_leader != event)
1718                         err = validate_group(event);
1719                 else
1720                         err = validate_event(event);
1721
1722                 event->pmu = tmp;
1723         }
1724         if (err) {
1725                 if (event->destroy)
1726                         event->destroy(event);
1727         }
1728
1729         return err;
1730 }
1731
1732 static struct pmu pmu = {
1733         .pmu_enable     = x86_pmu_enable,
1734         .pmu_disable    = x86_pmu_disable,
1735
1736         .event_init     = x86_pmu_event_init,
1737
1738         .add            = x86_pmu_add,
1739         .del            = x86_pmu_del,
1740         .start          = x86_pmu_start,
1741         .stop           = x86_pmu_stop,
1742         .read           = x86_pmu_read,
1743
1744         .start_txn      = x86_pmu_start_txn,
1745         .cancel_txn     = x86_pmu_cancel_txn,
1746         .commit_txn     = x86_pmu_commit_txn,
1747 };
1748
1749 /*
1750  * callchain support
1751  */
1752
1753 static void
1754 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1755 {
1756         /* Ignore warnings */
1757 }
1758
1759 static void backtrace_warning(void *data, char *msg)
1760 {
1761         /* Ignore warnings */
1762 }
1763
1764 static int backtrace_stack(void *data, char *name)
1765 {
1766         return 0;
1767 }
1768
1769 static void backtrace_address(void *data, unsigned long addr, int reliable)
1770 {
1771         struct perf_callchain_entry *entry = data;
1772
1773         perf_callchain_store(entry, addr);
1774 }
1775
1776 static const struct stacktrace_ops backtrace_ops = {
1777         .warning                = backtrace_warning,
1778         .warning_symbol         = backtrace_warning_symbol,
1779         .stack                  = backtrace_stack,
1780         .address                = backtrace_address,
1781         .walk_stack             = print_context_stack_bp,
1782 };
1783
1784 void
1785 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1786 {
1787         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1788                 /* TODO: We don't support guest os callchain now */
1789                 return;
1790         }
1791
1792         perf_callchain_store(entry, regs->ip);
1793
1794         dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 static inline int
1799 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1800 {
1801         /* 32-bit process in 64-bit kernel. */
1802         struct stack_frame_ia32 frame;
1803         const void __user *fp;
1804
1805         if (!test_thread_flag(TIF_IA32))
1806                 return 0;
1807
1808         fp = compat_ptr(regs->bp);
1809         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1810                 unsigned long bytes;
1811                 frame.next_frame     = 0;
1812                 frame.return_address = 0;
1813
1814                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1815                 if (bytes != sizeof(frame))
1816                         break;
1817
1818                 if (fp < compat_ptr(regs->sp))
1819                         break;
1820
1821                 perf_callchain_store(entry, frame.return_address);
1822                 fp = compat_ptr(frame.next_frame);
1823         }
1824         return 1;
1825 }
1826 #else
1827 static inline int
1828 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1829 {
1830     return 0;
1831 }
1832 #endif
1833
1834 void
1835 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1836 {
1837         struct stack_frame frame;
1838         const void __user *fp;
1839
1840         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1841                 /* TODO: We don't support guest os callchain now */
1842                 return;
1843         }
1844
1845         fp = (void __user *)regs->bp;
1846
1847         perf_callchain_store(entry, regs->ip);
1848
1849         if (perf_callchain_user32(regs, entry))
1850                 return;
1851
1852         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1853                 unsigned long bytes;
1854                 frame.next_frame             = NULL;
1855                 frame.return_address = 0;
1856
1857                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1858                 if (bytes != sizeof(frame))
1859                         break;
1860
1861                 if ((unsigned long)fp < regs->sp)
1862                         break;
1863
1864                 perf_callchain_store(entry, frame.return_address);
1865                 fp = frame.next_frame;
1866         }
1867 }
1868
1869 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1870 {
1871         unsigned long ip;
1872
1873         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1874                 ip = perf_guest_cbs->get_guest_ip();
1875         else
1876                 ip = instruction_pointer(regs);
1877
1878         return ip;
1879 }
1880
1881 unsigned long perf_misc_flags(struct pt_regs *regs)
1882 {
1883         int misc = 0;
1884
1885         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1886                 if (perf_guest_cbs->is_user_mode())
1887                         misc |= PERF_RECORD_MISC_GUEST_USER;
1888                 else
1889                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1890         } else {
1891                 if (user_mode(regs))
1892                         misc |= PERF_RECORD_MISC_USER;
1893                 else
1894                         misc |= PERF_RECORD_MISC_KERNEL;
1895         }
1896
1897         if (regs->flags & PERF_EFLAGS_EXACT)
1898                 misc |= PERF_RECORD_MISC_EXACT_IP;
1899
1900         return misc;
1901 }