Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[pandora-kernel.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <arch/abi.h>
29 #include <arch/opcode.h>
30
31 #define signExtend17(val) sign_extend((val), 17)
32 #define TILE_X1_MASK (0xffffffffULL << 31)
33
34 int unaligned_printk;
35
36 static int __init setup_unaligned_printk(char *str)
37 {
38         long val;
39         if (strict_strtol(str, 0, &val) != 0)
40                 return 0;
41         unaligned_printk = val;
42         pr_info("Printk for each unaligned data accesses is %s\n",
43                 unaligned_printk ? "enabled" : "disabled");
44         return 1;
45 }
46 __setup("unaligned_printk=", setup_unaligned_printk);
47
48 unsigned int unaligned_fixup_count;
49
50 enum mem_op {
51         MEMOP_NONE,
52         MEMOP_LOAD,
53         MEMOP_STORE,
54         MEMOP_LOAD_POSTINCR,
55         MEMOP_STORE_POSTINCR
56 };
57
58 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
59 {
60         tile_bundle_bits result;
61
62         /* mask out the old offset */
63         tile_bundle_bits mask = create_BrOff_X1(-1);
64         result = n & (~mask);
65
66         /* or in the new offset */
67         result |= create_BrOff_X1(offset);
68
69         return result;
70 }
71
72 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
73 {
74         tile_bundle_bits result;
75         tile_bundle_bits op;
76
77         result = n & (~TILE_X1_MASK);
78
79         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
80                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
81                 create_Dest_X1(dest) |
82                 create_SrcB_X1(TREG_ZERO) |
83                 create_SrcA_X1(src) ;
84
85         result |= op;
86         return result;
87 }
88
89 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
90 {
91         return move_X1(n, TREG_ZERO, TREG_ZERO);
92 }
93
94 static inline tile_bundle_bits addi_X1(
95         tile_bundle_bits n, int dest, int src, int imm)
96 {
97         n &= ~TILE_X1_MASK;
98
99         n |=  (create_SrcA_X1(src) |
100                create_Dest_X1(dest) |
101                create_Imm8_X1(imm) |
102                create_S_X1(0) |
103                create_Opcode_X1(IMM_0_OPCODE_X1) |
104                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
105
106         return n;
107 }
108
109 static tile_bundle_bits rewrite_load_store_unaligned(
110         struct single_step_state *state,
111         tile_bundle_bits bundle,
112         struct pt_regs *regs,
113         enum mem_op mem_op,
114         int size, int sign_ext)
115 {
116         unsigned char __user *addr;
117         int val_reg, addr_reg, err, val;
118
119         /* Get address and value registers */
120         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
121                 addr_reg = get_SrcA_Y2(bundle);
122                 val_reg = get_SrcBDest_Y2(bundle);
123         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
124                 addr_reg = get_SrcA_X1(bundle);
125                 val_reg  = get_Dest_X1(bundle);
126         } else {
127                 addr_reg = get_SrcA_X1(bundle);
128                 val_reg  = get_SrcB_X1(bundle);
129         }
130
131         /*
132          * If registers are not GPRs, don't try to handle it.
133          *
134          * FIXME: we could handle non-GPR loads by getting the real value
135          * from memory, writing it to the single step buffer, using a
136          * temp_reg to hold a pointer to that memory, then executing that
137          * instruction and resetting temp_reg.  For non-GPR stores, it's a
138          * little trickier; we could use the single step buffer for that
139          * too, but we'd have to add some more state bits so that we could
140          * call back in here to copy that value to the real target.  For
141          * now, we just handle the simple case.
142          */
143         if ((val_reg >= PTREGS_NR_GPRS &&
144              (val_reg != TREG_ZERO ||
145               mem_op == MEMOP_LOAD ||
146               mem_op == MEMOP_LOAD_POSTINCR)) ||
147             addr_reg >= PTREGS_NR_GPRS)
148                 return bundle;
149
150         /* If it's aligned, don't handle it specially */
151         addr = (void __user *)regs->regs[addr_reg];
152         if (((unsigned long)addr % size) == 0)
153                 return bundle;
154
155 #ifndef __LITTLE_ENDIAN
156 # error We assume little-endian representation with copy_xx_user size 2 here
157 #endif
158         /* Handle unaligned load/store */
159         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
160                 unsigned short val_16;
161                 switch (size) {
162                 case 2:
163                         err = copy_from_user(&val_16, addr, sizeof(val_16));
164                         val = sign_ext ? ((short)val_16) : val_16;
165                         break;
166                 case 4:
167                         err = copy_from_user(&val, addr, sizeof(val));
168                         break;
169                 default:
170                         BUG();
171                 }
172                 if (err == 0) {
173                         state->update_reg = val_reg;
174                         state->update_value = val;
175                         state->update = 1;
176                 }
177         } else {
178                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
179                 err = copy_to_user(addr, &val, size);
180         }
181
182         if (err) {
183                 siginfo_t info = {
184                         .si_signo = SIGSEGV,
185                         .si_code = SEGV_MAPERR,
186                         .si_addr = addr
187                 };
188                 trace_unhandled_signal("segfault", regs,
189                                        (unsigned long)addr, SIGSEGV);
190                 force_sig_info(info.si_signo, &info, current);
191                 return (tile_bundle_bits) 0;
192         }
193
194         if (unaligned_fixup == 0) {
195                 siginfo_t info = {
196                         .si_signo = SIGBUS,
197                         .si_code = BUS_ADRALN,
198                         .si_addr = addr
199                 };
200                 trace_unhandled_signal("unaligned trap", regs,
201                                        (unsigned long)addr, SIGBUS);
202                 force_sig_info(info.si_signo, &info, current);
203                 return (tile_bundle_bits) 0;
204         }
205
206         if (unaligned_printk || unaligned_fixup_count == 0) {
207                 pr_info("Process %d/%s: PC %#lx: Fixup of"
208                         " unaligned %s at %#lx.\n",
209                         current->pid, current->comm, regs->pc,
210                         (mem_op == MEMOP_LOAD ||
211                          mem_op == MEMOP_LOAD_POSTINCR) ?
212                         "load" : "store",
213                         (unsigned long)addr);
214                 if (!unaligned_printk) {
215 #define P pr_info
216 P("\n");
217 P("Unaligned fixups in the kernel will slow your application considerably.\n");
218 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
219 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
220 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
221 P("access will become a SIGBUS you can debug. No further warnings will be\n");
222 P("shown so as to avoid additional slowdown, but you can track the number\n");
223 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
224 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
225 P("\n");
226 #undef P
227                 }
228         }
229         ++unaligned_fixup_count;
230
231         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
232                 /* Convert the Y2 instruction to a prefetch. */
233                 bundle &= ~(create_SrcBDest_Y2(-1) |
234                             create_Opcode_Y2(-1));
235                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
236                            create_Opcode_Y2(LW_OPCODE_Y2));
237         /* Replace the load postincr with an addi */
238         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
239                 bundle = addi_X1(bundle, addr_reg, addr_reg,
240                                  get_Imm8_X1(bundle));
241         /* Replace the store postincr with an addi */
242         } else if (mem_op == MEMOP_STORE_POSTINCR) {
243                 bundle = addi_X1(bundle, addr_reg, addr_reg,
244                                  get_Dest_Imm8_X1(bundle));
245         } else {
246                 /* Convert the X1 instruction to a nop. */
247                 bundle &= ~(create_Opcode_X1(-1) |
248                             create_UnShOpcodeExtension_X1(-1) |
249                             create_UnOpcodeExtension_X1(-1));
250                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
251                            create_UnShOpcodeExtension_X1(
252                                    UN_0_SHUN_0_OPCODE_X1) |
253                            create_UnOpcodeExtension_X1(
254                                    NOP_UN_0_SHUN_0_OPCODE_X1));
255         }
256
257         return bundle;
258 }
259
260 /*
261  * Called after execve() has started the new image.  This allows us
262  * to reset the info state.  Note that the the mmap'ed memory, if there
263  * was any, has already been unmapped by the exec.
264  */
265 void single_step_execve(void)
266 {
267         struct thread_info *ti = current_thread_info();
268         kfree(ti->step_state);
269         ti->step_state = NULL;
270 }
271
272 /**
273  * single_step_once() - entry point when single stepping has been triggered.
274  * @regs: The machine register state
275  *
276  *  When we arrive at this routine via a trampoline, the single step
277  *  engine copies the executing bundle to the single step buffer.
278  *  If the instruction is a condition branch, then the target is
279  *  reset to one past the next instruction. If the instruction
280  *  sets the lr, then that is noted. If the instruction is a jump
281  *  or call, then the new target pc is preserved and the current
282  *  bundle instruction set to null.
283  *
284  *  The necessary post-single-step rewriting information is stored in
285  *  single_step_state->  We use data segment values because the
286  *  stack will be rewound when we run the rewritten single-stepped
287  *  instruction.
288  */
289 void single_step_once(struct pt_regs *regs)
290 {
291         extern tile_bundle_bits __single_step_ill_insn;
292         extern tile_bundle_bits __single_step_j_insn;
293         extern tile_bundle_bits __single_step_addli_insn;
294         extern tile_bundle_bits __single_step_auli_insn;
295         struct thread_info *info = (void *)current_thread_info();
296         struct single_step_state *state = info->step_state;
297         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
298         tile_bundle_bits __user *buffer, *pc;
299         tile_bundle_bits bundle;
300         int temp_reg;
301         int target_reg = TREG_LR;
302         int err;
303         enum mem_op mem_op = MEMOP_NONE;
304         int size = 0, sign_ext = 0;  /* happy compiler */
305
306         asm(
307 "    .pushsection .rodata.single_step\n"
308 "    .align 8\n"
309 "    .globl    __single_step_ill_insn\n"
310 "__single_step_ill_insn:\n"
311 "    ill\n"
312 "    .globl    __single_step_addli_insn\n"
313 "__single_step_addli_insn:\n"
314 "    { nop; addli r0, zero, 0 }\n"
315 "    .globl    __single_step_auli_insn\n"
316 "__single_step_auli_insn:\n"
317 "    { nop; auli r0, r0, 0 }\n"
318 "    .globl    __single_step_j_insn\n"
319 "__single_step_j_insn:\n"
320 "    j .\n"
321 "    .popsection\n"
322         );
323
324         /*
325          * Enable interrupts here to allow touching userspace and the like.
326          * The callers expect this: do_trap() already has interrupts
327          * enabled, and do_work_pending() handles functions that enable
328          * interrupts internally.
329          */
330         local_irq_enable();
331
332         if (state == NULL) {
333                 /* allocate a page of writable, executable memory */
334                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
335                 if (state == NULL) {
336                         pr_err("Out of kernel memory trying to single-step\n");
337                         return;
338                 }
339
340                 /* allocate a cache line of writable, executable memory */
341                 down_write(&current->mm->mmap_sem);
342                 buffer = (void __user *) do_mmap(NULL, 0, 64,
343                                           PROT_EXEC | PROT_READ | PROT_WRITE,
344                                           MAP_PRIVATE | MAP_ANONYMOUS,
345                                           0);
346                 up_write(&current->mm->mmap_sem);
347
348                 if (IS_ERR((void __force *)buffer)) {
349                         kfree(state);
350                         pr_err("Out of kernel pages trying to single-step\n");
351                         return;
352                 }
353
354                 state->buffer = buffer;
355                 state->is_enabled = 0;
356
357                 info->step_state = state;
358
359                 /* Validate our stored instruction patterns */
360                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
361                        ADDLI_OPCODE_X1);
362                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
363                        AULI_OPCODE_X1);
364                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
365                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
366                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
367         }
368
369         /*
370          * If we are returning from a syscall, we still haven't hit the
371          * "ill" for the swint1 instruction.  So back the PC up to be
372          * pointing at the swint1, but we'll actually return directly
373          * back to the "ill" so we come back in via SIGILL as if we
374          * had "executed" the swint1 without ever being in kernel space.
375          */
376         if (regs->faultnum == INT_SWINT_1)
377                 regs->pc -= 8;
378
379         pc = (tile_bundle_bits __user *)(regs->pc);
380         if (get_user(bundle, pc) != 0) {
381                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
382                 return;
383         }
384
385         /* We'll follow the instruction with 2 ill op bundles */
386         state->orig_pc = (unsigned long)pc;
387         state->next_pc = (unsigned long)(pc + 1);
388         state->branch_next_pc = 0;
389         state->update = 0;
390
391         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
392                 /* two wide, check for control flow */
393                 int opcode = get_Opcode_X1(bundle);
394
395                 switch (opcode) {
396                 /* branches */
397                 case BRANCH_OPCODE_X1:
398                 {
399                         s32 offset = signExtend17(get_BrOff_X1(bundle));
400
401                         /*
402                          * For branches, we use a rewriting trick to let the
403                          * hardware evaluate whether the branch is taken or
404                          * untaken.  We record the target offset and then
405                          * rewrite the branch instruction to target 1 insn
406                          * ahead if the branch is taken.  We then follow the
407                          * rewritten branch with two bundles, each containing
408                          * an "ill" instruction. The supervisor examines the
409                          * pc after the single step code is executed, and if
410                          * the pc is the first ill instruction, then the
411                          * branch (if any) was not taken.  If the pc is the
412                          * second ill instruction, then the branch was
413                          * taken. The new pc is computed for these cases, and
414                          * inserted into the registers for the thread.  If
415                          * the pc is the start of the single step code, then
416                          * an exception or interrupt was taken before the
417                          * code started processing, and the same "original"
418                          * pc is restored.  This change, different from the
419                          * original implementation, has the advantage of
420                          * executing a single user instruction.
421                          */
422                         state->branch_next_pc = (unsigned long)(pc + offset);
423
424                         /* rewrite branch offset to go forward one bundle */
425                         bundle = set_BrOff_X1(bundle, 2);
426                 }
427                 break;
428
429                 /* jumps */
430                 case JALB_OPCODE_X1:
431                 case JALF_OPCODE_X1:
432                         state->update = 1;
433                         state->next_pc =
434                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
435                         break;
436
437                 case JB_OPCODE_X1:
438                 case JF_OPCODE_X1:
439                         state->next_pc =
440                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
441                         bundle = nop_X1(bundle);
442                         break;
443
444                 case SPECIAL_0_OPCODE_X1:
445                         switch (get_RRROpcodeExtension_X1(bundle)) {
446                         /* jump-register */
447                         case JALRP_SPECIAL_0_OPCODE_X1:
448                         case JALR_SPECIAL_0_OPCODE_X1:
449                                 state->update = 1;
450                                 state->next_pc =
451                                         regs->regs[get_SrcA_X1(bundle)];
452                                 break;
453
454                         case JRP_SPECIAL_0_OPCODE_X1:
455                         case JR_SPECIAL_0_OPCODE_X1:
456                                 state->next_pc =
457                                         regs->regs[get_SrcA_X1(bundle)];
458                                 bundle = nop_X1(bundle);
459                                 break;
460
461                         case LNK_SPECIAL_0_OPCODE_X1:
462                                 state->update = 1;
463                                 target_reg = get_Dest_X1(bundle);
464                                 break;
465
466                         /* stores */
467                         case SH_SPECIAL_0_OPCODE_X1:
468                                 mem_op = MEMOP_STORE;
469                                 size = 2;
470                                 break;
471
472                         case SW_SPECIAL_0_OPCODE_X1:
473                                 mem_op = MEMOP_STORE;
474                                 size = 4;
475                                 break;
476                         }
477                         break;
478
479                 /* loads and iret */
480                 case SHUN_0_OPCODE_X1:
481                         if (get_UnShOpcodeExtension_X1(bundle) ==
482                             UN_0_SHUN_0_OPCODE_X1) {
483                                 switch (get_UnOpcodeExtension_X1(bundle)) {
484                                 case LH_UN_0_SHUN_0_OPCODE_X1:
485                                         mem_op = MEMOP_LOAD;
486                                         size = 2;
487                                         sign_ext = 1;
488                                         break;
489
490                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
491                                         mem_op = MEMOP_LOAD;
492                                         size = 2;
493                                         sign_ext = 0;
494                                         break;
495
496                                 case LW_UN_0_SHUN_0_OPCODE_X1:
497                                         mem_op = MEMOP_LOAD;
498                                         size = 4;
499                                         break;
500
501                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
502                                 {
503                                         unsigned long ex0_0 = __insn_mfspr(
504                                                 SPR_EX_CONTEXT_0_0);
505                                         unsigned long ex0_1 = __insn_mfspr(
506                                                 SPR_EX_CONTEXT_0_1);
507                                         /*
508                                          * Special-case it if we're iret'ing
509                                          * to PL0 again.  Otherwise just let
510                                          * it run and it will generate SIGILL.
511                                          */
512                                         if (EX1_PL(ex0_1) == USER_PL) {
513                                                 state->next_pc = ex0_0;
514                                                 regs->ex1 = ex0_1;
515                                                 bundle = nop_X1(bundle);
516                                         }
517                                 }
518                                 }
519                         }
520                         break;
521
522 #if CHIP_HAS_WH64()
523                 /* postincrement operations */
524                 case IMM_0_OPCODE_X1:
525                         switch (get_ImmOpcodeExtension_X1(bundle)) {
526                         case LWADD_IMM_0_OPCODE_X1:
527                                 mem_op = MEMOP_LOAD_POSTINCR;
528                                 size = 4;
529                                 break;
530
531                         case LHADD_IMM_0_OPCODE_X1:
532                                 mem_op = MEMOP_LOAD_POSTINCR;
533                                 size = 2;
534                                 sign_ext = 1;
535                                 break;
536
537                         case LHADD_U_IMM_0_OPCODE_X1:
538                                 mem_op = MEMOP_LOAD_POSTINCR;
539                                 size = 2;
540                                 sign_ext = 0;
541                                 break;
542
543                         case SWADD_IMM_0_OPCODE_X1:
544                                 mem_op = MEMOP_STORE_POSTINCR;
545                                 size = 4;
546                                 break;
547
548                         case SHADD_IMM_0_OPCODE_X1:
549                                 mem_op = MEMOP_STORE_POSTINCR;
550                                 size = 2;
551                                 break;
552
553                         default:
554                                 break;
555                         }
556                         break;
557 #endif /* CHIP_HAS_WH64() */
558                 }
559
560                 if (state->update) {
561                         /*
562                          * Get an available register.  We start with a
563                          * bitmask with 1's for available registers.
564                          * We truncate to the low 32 registers since
565                          * we are guaranteed to have set bits in the
566                          * low 32 bits, then use ctz to pick the first.
567                          */
568                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
569                                            (1ULL << get_SrcA_X0(bundle)) |
570                                            (1ULL << get_SrcB_X0(bundle)) |
571                                            (1ULL << target_reg));
572                         temp_reg = __builtin_ctz(mask);
573                         state->update_reg = temp_reg;
574                         state->update_value = regs->regs[temp_reg];
575                         regs->regs[temp_reg] = (unsigned long) (pc+1);
576                         regs->flags |= PT_FLAGS_RESTORE_REGS;
577                         bundle = move_X1(bundle, target_reg, temp_reg);
578                 }
579         } else {
580                 int opcode = get_Opcode_Y2(bundle);
581
582                 switch (opcode) {
583                 /* loads */
584                 case LH_OPCODE_Y2:
585                         mem_op = MEMOP_LOAD;
586                         size = 2;
587                         sign_ext = 1;
588                         break;
589
590                 case LH_U_OPCODE_Y2:
591                         mem_op = MEMOP_LOAD;
592                         size = 2;
593                         sign_ext = 0;
594                         break;
595
596                 case LW_OPCODE_Y2:
597                         mem_op = MEMOP_LOAD;
598                         size = 4;
599                         break;
600
601                 /* stores */
602                 case SH_OPCODE_Y2:
603                         mem_op = MEMOP_STORE;
604                         size = 2;
605                         break;
606
607                 case SW_OPCODE_Y2:
608                         mem_op = MEMOP_STORE;
609                         size = 4;
610                         break;
611                 }
612         }
613
614         /*
615          * Check if we need to rewrite an unaligned load/store.
616          * Returning zero is a special value meaning we need to SIGSEGV.
617          */
618         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
619                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
620                                                       mem_op, size, sign_ext);
621                 if (bundle == 0)
622                         return;
623         }
624
625         /* write the bundle to our execution area */
626         buffer = state->buffer;
627         err = __put_user(bundle, buffer++);
628
629         /*
630          * If we're really single-stepping, we take an INT_ILL after.
631          * If we're just handling an unaligned access, we can just
632          * jump directly back to where we were in user code.
633          */
634         if (is_single_step) {
635                 err |= __put_user(__single_step_ill_insn, buffer++);
636                 err |= __put_user(__single_step_ill_insn, buffer++);
637         } else {
638                 long delta;
639
640                 if (state->update) {
641                         /* We have some state to update; do it inline */
642                         int ha16;
643                         bundle = __single_step_addli_insn;
644                         bundle |= create_Dest_X1(state->update_reg);
645                         bundle |= create_Imm16_X1(state->update_value);
646                         err |= __put_user(bundle, buffer++);
647                         bundle = __single_step_auli_insn;
648                         bundle |= create_Dest_X1(state->update_reg);
649                         bundle |= create_SrcA_X1(state->update_reg);
650                         ha16 = (state->update_value + 0x8000) >> 16;
651                         bundle |= create_Imm16_X1(ha16);
652                         err |= __put_user(bundle, buffer++);
653                         state->update = 0;
654                 }
655
656                 /* End with a jump back to the next instruction */
657                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
658                         (unsigned long)buffer) >>
659                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
660                 bundle = __single_step_j_insn;
661                 bundle |= create_JOffLong_X1(delta);
662                 err |= __put_user(bundle, buffer++);
663         }
664
665         if (err) {
666                 pr_err("Fault when writing to single-step buffer\n");
667                 return;
668         }
669
670         /*
671          * Flush the buffer.
672          * We do a local flush only, since this is a thread-specific buffer.
673          */
674         __flush_icache_range((unsigned long)state->buffer,
675                              (unsigned long)buffer);
676
677         /* Indicate enabled */
678         state->is_enabled = is_single_step;
679         regs->pc = (unsigned long)state->buffer;
680
681         /* Fault immediately if we are coming back from a syscall. */
682         if (regs->faultnum == INT_SWINT_1)
683                 regs->pc += 8;
684 }
685
686 #else
687 #include <linux/smp.h>
688 #include <linux/ptrace.h>
689 #include <arch/spr_def.h>
690
691 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
692
693
694 /*
695  * Called directly on the occasion of an interrupt.
696  *
697  * If the process doesn't have single step set, then we use this as an
698  * opportunity to turn single step off.
699  *
700  * It has been mentioned that we could conditionally turn off single stepping
701  * on each entry into the kernel and rely on single_step_once to turn it
702  * on for the processes that matter (as we already do), but this
703  * implementation is somewhat more efficient in that we muck with registers
704  * once on a bum interrupt rather than on every entry into the kernel.
705  *
706  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
707  * so we have to run through this process again before we can say that an
708  * instruction has executed.
709  *
710  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
711  * it changes the PC.  If it hasn't changed, then we know that the interrupt
712  * wasn't generated by swint and we'll need to run this process again before
713  * we can say an instruction has executed.
714  *
715  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
716  * on with our lives.
717  */
718
719 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
720 {
721         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
722         struct thread_info *info = (void *)current_thread_info();
723         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
724         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
725
726         if (is_single_step == 0) {
727                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
728
729         } else if ((*ss_pc != regs->pc) ||
730                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
731
732                 ptrace_notify(SIGTRAP);
733                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
734                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
735                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
736         }
737 }
738
739
740 /*
741  * Called from need_singlestep.  Set up the control registers and the enable
742  * register, then return back.
743  */
744
745 void single_step_once(struct pt_regs *regs)
746 {
747         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
748         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
749
750         *ss_pc = regs->pc;
751         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
752         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
753         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
754         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
755 }
756
757 void single_step_execve(void)
758 {
759         /* Nothing */
760 }
761
762 #endif /* !__tilegx__ */