Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[pandora-kernel.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45 #include <asm/prom.h>
46
47 extern void device_scan(void);
48
49 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES       \
52         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
57  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59  */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
64 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
65 #endif
66
67 #define MAX_BANKS       32
68
69 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
70 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
71 static int pavail_ents __initdata;
72 static int pavail_rescan_ents __initdata;
73
74 static int cmp_p64(const void *a, const void *b)
75 {
76         const struct linux_prom64_registers *x = a, *y = b;
77
78         if (x->phys_addr > y->phys_addr)
79                 return 1;
80         if (x->phys_addr < y->phys_addr)
81                 return -1;
82         return 0;
83 }
84
85 static void __init read_obp_memory(const char *property,
86                                    struct linux_prom64_registers *regs,
87                                    int *num_ents)
88 {
89         int node = prom_finddevice("/memory");
90         int prop_size = prom_getproplen(node, property);
91         int ents, ret, i;
92
93         ents = prop_size / sizeof(struct linux_prom64_registers);
94         if (ents > MAX_BANKS) {
95                 prom_printf("The machine has more %s property entries than "
96                             "this kernel can support (%d).\n",
97                             property, MAX_BANKS);
98                 prom_halt();
99         }
100
101         ret = prom_getproperty(node, property, (char *) regs, prop_size);
102         if (ret == -1) {
103                 prom_printf("Couldn't get %s property from /memory.\n");
104                 prom_halt();
105         }
106
107         /* Sanitize what we got from the firmware, by page aligning
108          * everything.
109          */
110         for (i = 0; i < ents; i++) {
111                 unsigned long base, size;
112
113                 base = regs[i].phys_addr;
114                 size = regs[i].reg_size;
115
116                 size &= PAGE_MASK;
117                 if (base & ~PAGE_MASK) {
118                         unsigned long new_base = PAGE_ALIGN(base);
119
120                         size -= new_base - base;
121                         if ((long) size < 0L)
122                                 size = 0UL;
123                         base = new_base;
124                 }
125                 if (size == 0UL) {
126                         /* If it is empty, simply get rid of it.
127                          * This simplifies the logic of the other
128                          * functions that process these arrays.
129                          */
130                         memmove(&regs[i], &regs[i + 1],
131                                 (ents - i - 1) * sizeof(regs[0]));
132                         i--;
133                         ents--;
134                         continue;
135                 }
136                 regs[i].phys_addr = base;
137                 regs[i].reg_size = size;
138         }
139
140         *num_ents = ents;
141
142         sort(regs, ents, sizeof(struct linux_prom64_registers),
143              cmp_p64, NULL);
144 }
145
146 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
147
148 /* Kernel physical address base and size in bytes.  */
149 unsigned long kern_base __read_mostly;
150 unsigned long kern_size __read_mostly;
151
152 /* Initial ramdisk setup */
153 extern unsigned long sparc_ramdisk_image64;
154 extern unsigned int sparc_ramdisk_image;
155 extern unsigned int sparc_ramdisk_size;
156
157 struct page *mem_map_zero __read_mostly;
158
159 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
160
161 unsigned long sparc64_kern_pri_context __read_mostly;
162 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
163 unsigned long sparc64_kern_sec_context __read_mostly;
164
165 int bigkernel = 0;
166
167 struct kmem_cache *pgtable_cache __read_mostly;
168
169 static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
170 {
171         clear_page(addr);
172 }
173
174 extern void tsb_cache_init(void);
175
176 void pgtable_cache_init(void)
177 {
178         pgtable_cache = kmem_cache_create("pgtable_cache",
179                                           PAGE_SIZE, PAGE_SIZE,
180                                           SLAB_HWCACHE_ALIGN |
181                                           SLAB_MUST_HWCACHE_ALIGN,
182                                           zero_ctor,
183                                           NULL);
184         if (!pgtable_cache) {
185                 prom_printf("Could not create pgtable_cache\n");
186                 prom_halt();
187         }
188         tsb_cache_init();
189 }
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     24UL
218 #define PG_dcache_cpu_mask      (256UL - 1UL)
219
220 #if NR_CPUS > 256
221 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
222 #endif
223
224 #define dcache_dirty_cpu(page) \
225         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
226
227 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
228 {
229         unsigned long mask = this_cpu;
230         unsigned long non_cpu_bits;
231
232         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
233         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
234
235         __asm__ __volatile__("1:\n\t"
236                              "ldx       [%2], %%g7\n\t"
237                              "and       %%g7, %1, %%g1\n\t"
238                              "or        %%g1, %0, %%g1\n\t"
239                              "casx      [%2], %%g7, %%g1\n\t"
240                              "cmp       %%g7, %%g1\n\t"
241                              "membar    #StoreLoad | #StoreStore\n\t"
242                              "bne,pn    %%xcc, 1b\n\t"
243                              " nop"
244                              : /* no outputs */
245                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
246                              : "g1", "g7");
247 }
248
249 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
250 {
251         unsigned long mask = (1UL << PG_dcache_dirty);
252
253         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
254                              "1:\n\t"
255                              "ldx       [%2], %%g7\n\t"
256                              "srlx      %%g7, %4, %%g1\n\t"
257                              "and       %%g1, %3, %%g1\n\t"
258                              "cmp       %%g1, %0\n\t"
259                              "bne,pn    %%icc, 2f\n\t"
260                              " andn     %%g7, %1, %%g1\n\t"
261                              "casx      [%2], %%g7, %%g1\n\t"
262                              "cmp       %%g7, %%g1\n\t"
263                              "membar    #StoreLoad | #StoreStore\n\t"
264                              "bne,pn    %%xcc, 1b\n\t"
265                              " nop\n"
266                              "2:"
267                              : /* no outputs */
268                              : "r" (cpu), "r" (mask), "r" (&page->flags),
269                                "i" (PG_dcache_cpu_mask),
270                                "i" (PG_dcache_cpu_shift)
271                              : "g1", "g7");
272 }
273
274 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275 {
276         unsigned long tsb_addr = (unsigned long) ent;
277
278         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279                 tsb_addr = __pa(tsb_addr);
280
281         __tsb_insert(tsb_addr, tag, pte);
282 }
283
284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285 unsigned long _PAGE_SZBITS __read_mostly;
286
287 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
288 {
289         struct mm_struct *mm;
290         struct tsb *tsb;
291         unsigned long tag, flags;
292         unsigned long tsb_index, tsb_hash_shift;
293
294         if (tlb_type != hypervisor) {
295                 unsigned long pfn = pte_pfn(pte);
296                 unsigned long pg_flags;
297                 struct page *page;
298
299                 if (pfn_valid(pfn) &&
300                     (page = pfn_to_page(pfn), page_mapping(page)) &&
301                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
302                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
303                                    PG_dcache_cpu_mask);
304                         int this_cpu = get_cpu();
305
306                         /* This is just to optimize away some function calls
307                          * in the SMP case.
308                          */
309                         if (cpu == this_cpu)
310                                 flush_dcache_page_impl(page);
311                         else
312                                 smp_flush_dcache_page_impl(page, cpu);
313
314                         clear_dcache_dirty_cpu(page, cpu);
315
316                         put_cpu();
317                 }
318         }
319
320         mm = vma->vm_mm;
321
322         tsb_index = MM_TSB_BASE;
323         tsb_hash_shift = PAGE_SHIFT;
324
325         spin_lock_irqsave(&mm->context.lock, flags);
326
327 #ifdef CONFIG_HUGETLB_PAGE
328         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
329                 if ((tlb_type == hypervisor &&
330                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331                     (tlb_type != hypervisor &&
332                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
333                         tsb_index = MM_TSB_HUGE;
334                         tsb_hash_shift = HPAGE_SHIFT;
335                 }
336         }
337 #endif
338
339         tsb = mm->context.tsb_block[tsb_index].tsb;
340         tsb += ((address >> tsb_hash_shift) &
341                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
342         tag = (address >> 22UL);
343         tsb_insert(tsb, tag, pte_val(pte));
344
345         spin_unlock_irqrestore(&mm->context.lock, flags);
346 }
347
348 void flush_dcache_page(struct page *page)
349 {
350         struct address_space *mapping;
351         int this_cpu;
352
353         if (tlb_type == hypervisor)
354                 return;
355
356         /* Do not bother with the expensive D-cache flush if it
357          * is merely the zero page.  The 'bigcore' testcase in GDB
358          * causes this case to run millions of times.
359          */
360         if (page == ZERO_PAGE(0))
361                 return;
362
363         this_cpu = get_cpu();
364
365         mapping = page_mapping(page);
366         if (mapping && !mapping_mapped(mapping)) {
367                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
368                 if (dirty) {
369                         int dirty_cpu = dcache_dirty_cpu(page);
370
371                         if (dirty_cpu == this_cpu)
372                                 goto out;
373                         smp_flush_dcache_page_impl(page, dirty_cpu);
374                 }
375                 set_dcache_dirty(page, this_cpu);
376         } else {
377                 /* We could delay the flush for the !page_mapping
378                  * case too.  But that case is for exec env/arg
379                  * pages and those are %99 certainly going to get
380                  * faulted into the tlb (and thus flushed) anyways.
381                  */
382                 flush_dcache_page_impl(page);
383         }
384
385 out:
386         put_cpu();
387 }
388
389 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
390 {
391         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
392         if (tlb_type == spitfire) {
393                 unsigned long kaddr;
394
395                 /* This code only runs on Spitfire cpus so this is
396                  * why we can assume _PAGE_PADDR_4U.
397                  */
398                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
399                         unsigned long paddr, mask = _PAGE_PADDR_4U;
400
401                         if (kaddr >= PAGE_OFFSET)
402                                 paddr = kaddr & mask;
403                         else {
404                                 pgd_t *pgdp = pgd_offset_k(kaddr);
405                                 pud_t *pudp = pud_offset(pgdp, kaddr);
406                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
407                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
408
409                                 paddr = pte_val(*ptep) & mask;
410                         }
411                         __flush_icache_page(paddr);
412                 }
413         }
414 }
415
416 void show_mem(void)
417 {
418         unsigned long total = 0, reserved = 0;
419         unsigned long shared = 0, cached = 0;
420         pg_data_t *pgdat;
421
422         printk(KERN_INFO "Mem-info:\n");
423         show_free_areas();
424         printk(KERN_INFO "Free swap:       %6ldkB\n",
425                nr_swap_pages << (PAGE_SHIFT-10));
426         for_each_online_pgdat(pgdat) {
427                 unsigned long i, flags;
428
429                 pgdat_resize_lock(pgdat, &flags);
430                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
431                         struct page *page = pgdat_page_nr(pgdat, i);
432                         total++;
433                         if (PageReserved(page))
434                                 reserved++;
435                         else if (PageSwapCache(page))
436                                 cached++;
437                         else if (page_count(page))
438                                 shared += page_count(page) - 1;
439                 }
440                 pgdat_resize_unlock(pgdat, &flags);
441         }
442
443         printk(KERN_INFO "%lu pages of RAM\n", total);
444         printk(KERN_INFO "%lu reserved pages\n", reserved);
445         printk(KERN_INFO "%lu pages shared\n", shared);
446         printk(KERN_INFO "%lu pages swap cached\n", cached);
447
448         printk(KERN_INFO "%lu pages dirty\n",
449                global_page_state(NR_FILE_DIRTY));
450         printk(KERN_INFO "%lu pages writeback\n",
451                global_page_state(NR_WRITEBACK));
452         printk(KERN_INFO "%lu pages mapped\n",
453                global_page_state(NR_FILE_MAPPED));
454         printk(KERN_INFO "%lu pages slab\n",
455                 global_page_state(NR_SLAB_RECLAIMABLE) +
456                 global_page_state(NR_SLAB_UNRECLAIMABLE));
457         printk(KERN_INFO "%lu pages pagetables\n",
458                global_page_state(NR_PAGETABLE));
459 }
460
461 void mmu_info(struct seq_file *m)
462 {
463         if (tlb_type == cheetah)
464                 seq_printf(m, "MMU Type\t: Cheetah\n");
465         else if (tlb_type == cheetah_plus)
466                 seq_printf(m, "MMU Type\t: Cheetah+\n");
467         else if (tlb_type == spitfire)
468                 seq_printf(m, "MMU Type\t: Spitfire\n");
469         else if (tlb_type == hypervisor)
470                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
471         else
472                 seq_printf(m, "MMU Type\t: ???\n");
473
474 #ifdef CONFIG_DEBUG_DCFLUSH
475         seq_printf(m, "DCPageFlushes\t: %d\n",
476                    atomic_read(&dcpage_flushes));
477 #ifdef CONFIG_SMP
478         seq_printf(m, "DCPageFlushesXC\t: %d\n",
479                    atomic_read(&dcpage_flushes_xcall));
480 #endif /* CONFIG_SMP */
481 #endif /* CONFIG_DEBUG_DCFLUSH */
482 }
483
484 struct linux_prom_translation {
485         unsigned long virt;
486         unsigned long size;
487         unsigned long data;
488 };
489
490 /* Exported for kernel TLB miss handling in ktlb.S */
491 struct linux_prom_translation prom_trans[512] __read_mostly;
492 unsigned int prom_trans_ents __read_mostly;
493
494 /* Exported for SMP bootup purposes. */
495 unsigned long kern_locked_tte_data;
496
497 /* The obp translations are saved based on 8k pagesize, since obp can
498  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
499  * HI_OBP_ADDRESS range are handled in ktlb.S.
500  */
501 static inline int in_obp_range(unsigned long vaddr)
502 {
503         return (vaddr >= LOW_OBP_ADDRESS &&
504                 vaddr < HI_OBP_ADDRESS);
505 }
506
507 static int cmp_ptrans(const void *a, const void *b)
508 {
509         const struct linux_prom_translation *x = a, *y = b;
510
511         if (x->virt > y->virt)
512                 return 1;
513         if (x->virt < y->virt)
514                 return -1;
515         return 0;
516 }
517
518 /* Read OBP translations property into 'prom_trans[]'.  */
519 static void __init read_obp_translations(void)
520 {
521         int n, node, ents, first, last, i;
522
523         node = prom_finddevice("/virtual-memory");
524         n = prom_getproplen(node, "translations");
525         if (unlikely(n == 0 || n == -1)) {
526                 prom_printf("prom_mappings: Couldn't get size.\n");
527                 prom_halt();
528         }
529         if (unlikely(n > sizeof(prom_trans))) {
530                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
531                 prom_halt();
532         }
533
534         if ((n = prom_getproperty(node, "translations",
535                                   (char *)&prom_trans[0],
536                                   sizeof(prom_trans))) == -1) {
537                 prom_printf("prom_mappings: Couldn't get property.\n");
538                 prom_halt();
539         }
540
541         n = n / sizeof(struct linux_prom_translation);
542
543         ents = n;
544
545         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
546              cmp_ptrans, NULL);
547
548         /* Now kick out all the non-OBP entries.  */
549         for (i = 0; i < ents; i++) {
550                 if (in_obp_range(prom_trans[i].virt))
551                         break;
552         }
553         first = i;
554         for (; i < ents; i++) {
555                 if (!in_obp_range(prom_trans[i].virt))
556                         break;
557         }
558         last = i;
559
560         for (i = 0; i < (last - first); i++) {
561                 struct linux_prom_translation *src = &prom_trans[i + first];
562                 struct linux_prom_translation *dest = &prom_trans[i];
563
564                 *dest = *src;
565         }
566         for (; i < ents; i++) {
567                 struct linux_prom_translation *dest = &prom_trans[i];
568                 dest->virt = dest->size = dest->data = 0x0UL;
569         }
570
571         prom_trans_ents = last - first;
572
573         if (tlb_type == spitfire) {
574                 /* Clear diag TTE bits. */
575                 for (i = 0; i < prom_trans_ents; i++)
576                         prom_trans[i].data &= ~0x0003fe0000000000UL;
577         }
578 }
579
580 static void __init hypervisor_tlb_lock(unsigned long vaddr,
581                                        unsigned long pte,
582                                        unsigned long mmu)
583 {
584         register unsigned long func asm("%o5");
585         register unsigned long arg0 asm("%o0");
586         register unsigned long arg1 asm("%o1");
587         register unsigned long arg2 asm("%o2");
588         register unsigned long arg3 asm("%o3");
589
590         func = HV_FAST_MMU_MAP_PERM_ADDR;
591         arg0 = vaddr;
592         arg1 = 0;
593         arg2 = pte;
594         arg3 = mmu;
595         __asm__ __volatile__("ta        0x80"
596                              : "=&r" (func), "=&r" (arg0),
597                                "=&r" (arg1), "=&r" (arg2),
598                                "=&r" (arg3)
599                              : "0" (func), "1" (arg0), "2" (arg1),
600                                "3" (arg2), "4" (arg3));
601         if (arg0 != 0) {
602                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
603                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
604                 prom_halt();
605         }
606 }
607
608 static unsigned long kern_large_tte(unsigned long paddr);
609
610 static void __init remap_kernel(void)
611 {
612         unsigned long phys_page, tte_vaddr, tte_data;
613         int tlb_ent = sparc64_highest_locked_tlbent();
614
615         tte_vaddr = (unsigned long) KERNBASE;
616         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
617         tte_data = kern_large_tte(phys_page);
618
619         kern_locked_tte_data = tte_data;
620
621         /* Now lock us into the TLBs via Hypervisor or OBP. */
622         if (tlb_type == hypervisor) {
623                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
624                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
625                 if (bigkernel) {
626                         tte_vaddr += 0x400000;
627                         tte_data += 0x400000;
628                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
629                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
630                 }
631         } else {
632                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
633                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
634                 if (bigkernel) {
635                         tlb_ent -= 1;
636                         prom_dtlb_load(tlb_ent,
637                                        tte_data + 0x400000, 
638                                        tte_vaddr + 0x400000);
639                         prom_itlb_load(tlb_ent,
640                                        tte_data + 0x400000, 
641                                        tte_vaddr + 0x400000);
642                 }
643                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
644         }
645         if (tlb_type == cheetah_plus) {
646                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
647                                             CTX_CHEETAH_PLUS_NUC);
648                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
649                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
650         }
651 }
652
653
654 static void __init inherit_prom_mappings(void)
655 {
656         read_obp_translations();
657
658         /* Now fixup OBP's idea about where we really are mapped. */
659         prom_printf("Remapping the kernel... ");
660         remap_kernel();
661         prom_printf("done.\n");
662 }
663
664 void prom_world(int enter)
665 {
666         if (!enter)
667                 set_fs((mm_segment_t) { get_thread_current_ds() });
668
669         __asm__ __volatile__("flushw");
670 }
671
672 #ifdef DCACHE_ALIASING_POSSIBLE
673 void __flush_dcache_range(unsigned long start, unsigned long end)
674 {
675         unsigned long va;
676
677         if (tlb_type == spitfire) {
678                 int n = 0;
679
680                 for (va = start; va < end; va += 32) {
681                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
682                         if (++n >= 512)
683                                 break;
684                 }
685         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
686                 start = __pa(start);
687                 end = __pa(end);
688                 for (va = start; va < end; va += 32)
689                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
690                                              "membar #Sync"
691                                              : /* no outputs */
692                                              : "r" (va),
693                                                "i" (ASI_DCACHE_INVALIDATE));
694         }
695 }
696 #endif /* DCACHE_ALIASING_POSSIBLE */
697
698 /* get_new_mmu_context() uses "cache + 1".  */
699 DEFINE_SPINLOCK(ctx_alloc_lock);
700 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
701 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
702 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
703 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
704
705 /* Caller does TLB context flushing on local CPU if necessary.
706  * The caller also ensures that CTX_VALID(mm->context) is false.
707  *
708  * We must be careful about boundary cases so that we never
709  * let the user have CTX 0 (nucleus) or we ever use a CTX
710  * version of zero (and thus NO_CONTEXT would not be caught
711  * by version mis-match tests in mmu_context.h).
712  *
713  * Always invoked with interrupts disabled.
714  */
715 void get_new_mmu_context(struct mm_struct *mm)
716 {
717         unsigned long ctx, new_ctx;
718         unsigned long orig_pgsz_bits;
719         unsigned long flags;
720         int new_version;
721
722         spin_lock_irqsave(&ctx_alloc_lock, flags);
723         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
724         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
725         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
726         new_version = 0;
727         if (new_ctx >= (1 << CTX_NR_BITS)) {
728                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
729                 if (new_ctx >= ctx) {
730                         int i;
731                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
732                                 CTX_FIRST_VERSION;
733                         if (new_ctx == 1)
734                                 new_ctx = CTX_FIRST_VERSION;
735
736                         /* Don't call memset, for 16 entries that's just
737                          * plain silly...
738                          */
739                         mmu_context_bmap[0] = 3;
740                         mmu_context_bmap[1] = 0;
741                         mmu_context_bmap[2] = 0;
742                         mmu_context_bmap[3] = 0;
743                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
744                                 mmu_context_bmap[i + 0] = 0;
745                                 mmu_context_bmap[i + 1] = 0;
746                                 mmu_context_bmap[i + 2] = 0;
747                                 mmu_context_bmap[i + 3] = 0;
748                         }
749                         new_version = 1;
750                         goto out;
751                 }
752         }
753         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
754         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
755 out:
756         tlb_context_cache = new_ctx;
757         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
758         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
759
760         if (unlikely(new_version))
761                 smp_new_mmu_context_version();
762 }
763
764 /* Find a free area for the bootmem map, avoiding the kernel image
765  * and the initial ramdisk.
766  */
767 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
768                                                unsigned long end_pfn)
769 {
770         unsigned long avoid_start, avoid_end, bootmap_size;
771         int i;
772
773         bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
774         bootmap_size <<= PAGE_SHIFT;
775
776         avoid_start = avoid_end = 0;
777 #ifdef CONFIG_BLK_DEV_INITRD
778         avoid_start = initrd_start;
779         avoid_end = PAGE_ALIGN(initrd_end);
780 #endif
781
782 #ifdef CONFIG_DEBUG_BOOTMEM
783         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
784                     kern_base, PAGE_ALIGN(kern_base + kern_size),
785                     avoid_start, avoid_end);
786 #endif
787         for (i = 0; i < pavail_ents; i++) {
788                 unsigned long start, end;
789
790                 start = pavail[i].phys_addr;
791                 end = start + pavail[i].reg_size;
792
793                 while (start < end) {
794                         if (start >= kern_base &&
795                             start < PAGE_ALIGN(kern_base + kern_size)) {
796                                 start = PAGE_ALIGN(kern_base + kern_size);
797                                 continue;
798                         }
799                         if (start >= avoid_start && start < avoid_end) {
800                                 start = avoid_end;
801                                 continue;
802                         }
803
804                         if ((end - start) < bootmap_size)
805                                 break;
806
807                         if (start < kern_base &&
808                             (start + bootmap_size) > kern_base) {
809                                 start = PAGE_ALIGN(kern_base + kern_size);
810                                 continue;
811                         }
812
813                         if (start < avoid_start &&
814                             (start + bootmap_size) > avoid_start) {
815                                 start = avoid_end;
816                                 continue;
817                         }
818
819                         /* OK, it doesn't overlap anything, use it.  */
820 #ifdef CONFIG_DEBUG_BOOTMEM
821                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
822                                     start >> PAGE_SHIFT, start);
823 #endif
824                         return start >> PAGE_SHIFT;
825                 }
826         }
827
828         prom_printf("Cannot find free area for bootmap, aborting.\n");
829         prom_halt();
830 }
831
832 static void __init trim_pavail(unsigned long *cur_size_p,
833                                unsigned long *end_of_phys_p)
834 {
835         unsigned long to_trim = *cur_size_p - cmdline_memory_size;
836         unsigned long avoid_start, avoid_end;
837         int i;
838
839         to_trim = PAGE_ALIGN(to_trim);
840
841         avoid_start = avoid_end = 0;
842 #ifdef CONFIG_BLK_DEV_INITRD
843         avoid_start = initrd_start;
844         avoid_end = PAGE_ALIGN(initrd_end);
845 #endif
846
847         /* Trim some pavail[] entries in order to satisfy the
848          * requested "mem=xxx" kernel command line specification.
849          *
850          * We must not trim off the kernel image area nor the
851          * initial ramdisk range (if any).  Also, we must not trim
852          * any pavail[] entry down to zero in order to preserve
853          * the invariant that all pavail[] entries have a non-zero
854          * size which is assumed by all of the code in here.
855          */
856         for (i = 0; i < pavail_ents; i++) {
857                 unsigned long start, end, kern_end;
858                 unsigned long trim_low, trim_high, n;
859
860                 kern_end = PAGE_ALIGN(kern_base + kern_size);
861
862                 trim_low = start = pavail[i].phys_addr;
863                 trim_high = end = start + pavail[i].reg_size;
864
865                 if (kern_base >= start &&
866                     kern_base < end) {
867                         trim_low = kern_base;
868                         if (kern_end >= end)
869                                 continue;
870                 }
871                 if (kern_end >= start &&
872                     kern_end < end) {
873                         trim_high = kern_end;
874                 }
875                 if (avoid_start &&
876                     avoid_start >= start &&
877                     avoid_start < end) {
878                         if (trim_low > avoid_start)
879                                 trim_low = avoid_start;
880                         if (avoid_end >= end)
881                                 continue;
882                 }
883                 if (avoid_end &&
884                     avoid_end >= start &&
885                     avoid_end < end) {
886                         if (trim_high < avoid_end)
887                                 trim_high = avoid_end;
888                 }
889
890                 if (trim_high <= trim_low)
891                         continue;
892
893                 if (trim_low == start && trim_high == end) {
894                         /* Whole chunk is available for trimming.
895                          * Trim all except one page, in order to keep
896                          * entry non-empty.
897                          */
898                         n = (end - start) - PAGE_SIZE;
899                         if (n > to_trim)
900                                 n = to_trim;
901
902                         if (n) {
903                                 pavail[i].phys_addr += n;
904                                 pavail[i].reg_size -= n;
905                                 to_trim -= n;
906                         }
907                 } else {
908                         n = (trim_low - start);
909                         if (n > to_trim)
910                                 n = to_trim;
911
912                         if (n) {
913                                 pavail[i].phys_addr += n;
914                                 pavail[i].reg_size -= n;
915                                 to_trim -= n;
916                         }
917                         if (to_trim) {
918                                 n = end - trim_high;
919                                 if (n > to_trim)
920                                         n = to_trim;
921                                 if (n) {
922                                         pavail[i].reg_size -= n;
923                                         to_trim -= n;
924                                 }
925                         }
926                 }
927
928                 if (!to_trim)
929                         break;
930         }
931
932         /* Recalculate.  */
933         *cur_size_p = 0UL;
934         for (i = 0; i < pavail_ents; i++) {
935                 *end_of_phys_p = pavail[i].phys_addr +
936                         pavail[i].reg_size;
937                 *cur_size_p += pavail[i].reg_size;
938         }
939 }
940
941 /* About pages_avail, this is the value we will use to calculate
942  * the zholes_size[] argument given to free_area_init_node().  The
943  * page allocator uses this to calculate nr_kernel_pages,
944  * nr_all_pages and zone->present_pages.  On NUMA it is used
945  * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
946  *
947  * So this number should really be set to what the page allocator
948  * actually ends up with.  This means:
949  * 1) It should include bootmem map pages, we'll release those.
950  * 2) It should not include the kernel image, except for the
951  *    __init sections which we will also release.
952  * 3) It should include the initrd image, since we'll release
953  *    that too.
954  */
955 static unsigned long __init bootmem_init(unsigned long *pages_avail,
956                                          unsigned long phys_base)
957 {
958         unsigned long bootmap_size, end_pfn;
959         unsigned long end_of_phys_memory = 0UL;
960         unsigned long bootmap_pfn, bytes_avail, size;
961         int i;
962
963 #ifdef CONFIG_DEBUG_BOOTMEM
964         prom_printf("bootmem_init: Scan pavail, ");
965 #endif
966
967         bytes_avail = 0UL;
968         for (i = 0; i < pavail_ents; i++) {
969                 end_of_phys_memory = pavail[i].phys_addr +
970                         pavail[i].reg_size;
971                 bytes_avail += pavail[i].reg_size;
972         }
973
974         /* Determine the location of the initial ramdisk before trying
975          * to honor the "mem=xxx" command line argument.  We must know
976          * where the kernel image and the ramdisk image are so that we
977          * do not trim those two areas from the physical memory map.
978          */
979
980 #ifdef CONFIG_BLK_DEV_INITRD
981         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
982         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
983                 unsigned long ramdisk_image = sparc_ramdisk_image ?
984                         sparc_ramdisk_image : sparc_ramdisk_image64;
985                 ramdisk_image -= KERNBASE;
986                 initrd_start = ramdisk_image + phys_base;
987                 initrd_end = initrd_start + sparc_ramdisk_size;
988                 if (initrd_end > end_of_phys_memory) {
989                         printk(KERN_CRIT "initrd extends beyond end of memory "
990                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
991                                initrd_end, end_of_phys_memory);
992                         initrd_start = 0;
993                         initrd_end = 0;
994                 }
995         }
996 #endif  
997
998         if (cmdline_memory_size &&
999             bytes_avail > cmdline_memory_size)
1000                 trim_pavail(&bytes_avail,
1001                             &end_of_phys_memory);
1002
1003         *pages_avail = bytes_avail >> PAGE_SHIFT;
1004
1005         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1006
1007         /* Initialize the boot-time allocator. */
1008         max_pfn = max_low_pfn = end_pfn;
1009         min_low_pfn = (phys_base >> PAGE_SHIFT);
1010
1011         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
1012
1013 #ifdef CONFIG_DEBUG_BOOTMEM
1014         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1015                     min_low_pfn, bootmap_pfn, max_low_pfn);
1016 #endif
1017         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
1018                                          min_low_pfn, end_pfn);
1019
1020         /* Now register the available physical memory with the
1021          * allocator.
1022          */
1023         for (i = 0; i < pavail_ents; i++) {
1024 #ifdef CONFIG_DEBUG_BOOTMEM
1025                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1026                             i, pavail[i].phys_addr, pavail[i].reg_size);
1027 #endif
1028                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
1029         }
1030
1031 #ifdef CONFIG_BLK_DEV_INITRD
1032         if (initrd_start) {
1033                 size = initrd_end - initrd_start;
1034
1035                 /* Resert the initrd image area. */
1036 #ifdef CONFIG_DEBUG_BOOTMEM
1037                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1038                         initrd_start, initrd_end);
1039 #endif
1040                 reserve_bootmem(initrd_start, size);
1041
1042                 initrd_start += PAGE_OFFSET;
1043                 initrd_end += PAGE_OFFSET;
1044         }
1045 #endif
1046         /* Reserve the kernel text/data/bss. */
1047 #ifdef CONFIG_DEBUG_BOOTMEM
1048         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1049 #endif
1050         reserve_bootmem(kern_base, kern_size);
1051         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1052
1053         /* Add back in the initmem pages. */
1054         size = ((unsigned long)(__init_end) & PAGE_MASK) -
1055                 PAGE_ALIGN((unsigned long)__init_begin);
1056         *pages_avail += size >> PAGE_SHIFT;
1057
1058         /* Reserve the bootmem map.   We do not account for it
1059          * in pages_avail because we will release that memory
1060          * in free_all_bootmem.
1061          */
1062         size = bootmap_size;
1063 #ifdef CONFIG_DEBUG_BOOTMEM
1064         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1065                     (bootmap_pfn << PAGE_SHIFT), size);
1066 #endif
1067         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1068
1069         for (i = 0; i < pavail_ents; i++) {
1070                 unsigned long start_pfn, end_pfn;
1071
1072                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1073                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1074 #ifdef CONFIG_DEBUG_BOOTMEM
1075                 prom_printf("memory_present(0, %lx, %lx)\n",
1076                             start_pfn, end_pfn);
1077 #endif
1078                 memory_present(0, start_pfn, end_pfn);
1079         }
1080
1081         sparse_init();
1082
1083         return end_pfn;
1084 }
1085
1086 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1087 static int pall_ents __initdata;
1088
1089 #ifdef CONFIG_DEBUG_PAGEALLOC
1090 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1091 {
1092         unsigned long vstart = PAGE_OFFSET + pstart;
1093         unsigned long vend = PAGE_OFFSET + pend;
1094         unsigned long alloc_bytes = 0UL;
1095
1096         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1097                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1098                             vstart, vend);
1099                 prom_halt();
1100         }
1101
1102         while (vstart < vend) {
1103                 unsigned long this_end, paddr = __pa(vstart);
1104                 pgd_t *pgd = pgd_offset_k(vstart);
1105                 pud_t *pud;
1106                 pmd_t *pmd;
1107                 pte_t *pte;
1108
1109                 pud = pud_offset(pgd, vstart);
1110                 if (pud_none(*pud)) {
1111                         pmd_t *new;
1112
1113                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1114                         alloc_bytes += PAGE_SIZE;
1115                         pud_populate(&init_mm, pud, new);
1116                 }
1117
1118                 pmd = pmd_offset(pud, vstart);
1119                 if (!pmd_present(*pmd)) {
1120                         pte_t *new;
1121
1122                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1123                         alloc_bytes += PAGE_SIZE;
1124                         pmd_populate_kernel(&init_mm, pmd, new);
1125                 }
1126
1127                 pte = pte_offset_kernel(pmd, vstart);
1128                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1129                 if (this_end > vend)
1130                         this_end = vend;
1131
1132                 while (vstart < this_end) {
1133                         pte_val(*pte) = (paddr | pgprot_val(prot));
1134
1135                         vstart += PAGE_SIZE;
1136                         paddr += PAGE_SIZE;
1137                         pte++;
1138                 }
1139         }
1140
1141         return alloc_bytes;
1142 }
1143
1144 extern unsigned int kvmap_linear_patch[1];
1145 #endif /* CONFIG_DEBUG_PAGEALLOC */
1146
1147 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1148 {
1149         const unsigned long shift_256MB = 28;
1150         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1151         const unsigned long size_256MB = (1UL << shift_256MB);
1152
1153         while (start < end) {
1154                 long remains;
1155
1156                 remains = end - start;
1157                 if (remains < size_256MB)
1158                         break;
1159
1160                 if (start & mask_256MB) {
1161                         start = (start + size_256MB) & ~mask_256MB;
1162                         continue;
1163                 }
1164
1165                 while (remains >= size_256MB) {
1166                         unsigned long index = start >> shift_256MB;
1167
1168                         __set_bit(index, kpte_linear_bitmap);
1169
1170                         start += size_256MB;
1171                         remains -= size_256MB;
1172                 }
1173         }
1174 }
1175
1176 static void __init kernel_physical_mapping_init(void)
1177 {
1178         unsigned long i;
1179 #ifdef CONFIG_DEBUG_PAGEALLOC
1180         unsigned long mem_alloced = 0UL;
1181 #endif
1182
1183         read_obp_memory("reg", &pall[0], &pall_ents);
1184
1185         for (i = 0; i < pall_ents; i++) {
1186                 unsigned long phys_start, phys_end;
1187
1188                 phys_start = pall[i].phys_addr;
1189                 phys_end = phys_start + pall[i].reg_size;
1190
1191                 mark_kpte_bitmap(phys_start, phys_end);
1192
1193 #ifdef CONFIG_DEBUG_PAGEALLOC
1194                 mem_alloced += kernel_map_range(phys_start, phys_end,
1195                                                 PAGE_KERNEL);
1196 #endif
1197         }
1198
1199 #ifdef CONFIG_DEBUG_PAGEALLOC
1200         printk("Allocated %ld bytes for kernel page tables.\n",
1201                mem_alloced);
1202
1203         kvmap_linear_patch[0] = 0x01000000; /* nop */
1204         flushi(&kvmap_linear_patch[0]);
1205
1206         __flush_tlb_all();
1207 #endif
1208 }
1209
1210 #ifdef CONFIG_DEBUG_PAGEALLOC
1211 void kernel_map_pages(struct page *page, int numpages, int enable)
1212 {
1213         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1214         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1215
1216         kernel_map_range(phys_start, phys_end,
1217                          (enable ? PAGE_KERNEL : __pgprot(0)));
1218
1219         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1220                                PAGE_OFFSET + phys_end);
1221
1222         /* we should perform an IPI and flush all tlbs,
1223          * but that can deadlock->flush only current cpu.
1224          */
1225         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1226                                  PAGE_OFFSET + phys_end);
1227 }
1228 #endif
1229
1230 unsigned long __init find_ecache_flush_span(unsigned long size)
1231 {
1232         int i;
1233
1234         for (i = 0; i < pavail_ents; i++) {
1235                 if (pavail[i].reg_size >= size)
1236                         return pavail[i].phys_addr;
1237         }
1238
1239         return ~0UL;
1240 }
1241
1242 static void __init tsb_phys_patch(void)
1243 {
1244         struct tsb_ldquad_phys_patch_entry *pquad;
1245         struct tsb_phys_patch_entry *p;
1246
1247         pquad = &__tsb_ldquad_phys_patch;
1248         while (pquad < &__tsb_ldquad_phys_patch_end) {
1249                 unsigned long addr = pquad->addr;
1250
1251                 if (tlb_type == hypervisor)
1252                         *(unsigned int *) addr = pquad->sun4v_insn;
1253                 else
1254                         *(unsigned int *) addr = pquad->sun4u_insn;
1255                 wmb();
1256                 __asm__ __volatile__("flush     %0"
1257                                      : /* no outputs */
1258                                      : "r" (addr));
1259
1260                 pquad++;
1261         }
1262
1263         p = &__tsb_phys_patch;
1264         while (p < &__tsb_phys_patch_end) {
1265                 unsigned long addr = p->addr;
1266
1267                 *(unsigned int *) addr = p->insn;
1268                 wmb();
1269                 __asm__ __volatile__("flush     %0"
1270                                      : /* no outputs */
1271                                      : "r" (addr));
1272
1273                 p++;
1274         }
1275 }
1276
1277 /* Don't mark as init, we give this to the Hypervisor.  */
1278 #ifndef CONFIG_DEBUG_PAGEALLOC
1279 #define NUM_KTSB_DESCR  2
1280 #else
1281 #define NUM_KTSB_DESCR  1
1282 #endif
1283 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1284 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1285
1286 static void __init sun4v_ktsb_init(void)
1287 {
1288         unsigned long ktsb_pa;
1289
1290         /* First KTSB for PAGE_SIZE mappings.  */
1291         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1292
1293         switch (PAGE_SIZE) {
1294         case 8 * 1024:
1295         default:
1296                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1297                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1298                 break;
1299
1300         case 64 * 1024:
1301                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1302                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1303                 break;
1304
1305         case 512 * 1024:
1306                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1307                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1308                 break;
1309
1310         case 4 * 1024 * 1024:
1311                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1312                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1313                 break;
1314         };
1315
1316         ktsb_descr[0].assoc = 1;
1317         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1318         ktsb_descr[0].ctx_idx = 0;
1319         ktsb_descr[0].tsb_base = ktsb_pa;
1320         ktsb_descr[0].resv = 0;
1321
1322 #ifndef CONFIG_DEBUG_PAGEALLOC
1323         /* Second KTSB for 4MB/256MB mappings.  */
1324         ktsb_pa = (kern_base +
1325                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1326
1327         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1328         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1329                                    HV_PGSZ_MASK_256MB);
1330         ktsb_descr[1].assoc = 1;
1331         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1332         ktsb_descr[1].ctx_idx = 0;
1333         ktsb_descr[1].tsb_base = ktsb_pa;
1334         ktsb_descr[1].resv = 0;
1335 #endif
1336 }
1337
1338 void __cpuinit sun4v_ktsb_register(void)
1339 {
1340         register unsigned long func asm("%o5");
1341         register unsigned long arg0 asm("%o0");
1342         register unsigned long arg1 asm("%o1");
1343         unsigned long pa;
1344
1345         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1346
1347         func = HV_FAST_MMU_TSB_CTX0;
1348         arg0 = NUM_KTSB_DESCR;
1349         arg1 = pa;
1350         __asm__ __volatile__("ta        %6"
1351                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1352                              : "0" (func), "1" (arg0), "2" (arg1),
1353                                "i" (HV_FAST_TRAP));
1354 }
1355
1356 /* paging_init() sets up the page tables */
1357
1358 extern void cheetah_ecache_flush_init(void);
1359 extern void sun4v_patch_tlb_handlers(void);
1360
1361 static unsigned long last_valid_pfn;
1362 pgd_t swapper_pg_dir[2048];
1363
1364 static void sun4u_pgprot_init(void);
1365 static void sun4v_pgprot_init(void);
1366
1367 void __init paging_init(void)
1368 {
1369         unsigned long end_pfn, pages_avail, shift, phys_base;
1370         unsigned long real_end, i;
1371
1372         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1373         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1374
1375         /* Invalidate both kernel TSBs.  */
1376         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1377 #ifndef CONFIG_DEBUG_PAGEALLOC
1378         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1379 #endif
1380
1381         if (tlb_type == hypervisor)
1382                 sun4v_pgprot_init();
1383         else
1384                 sun4u_pgprot_init();
1385
1386         if (tlb_type == cheetah_plus ||
1387             tlb_type == hypervisor)
1388                 tsb_phys_patch();
1389
1390         if (tlb_type == hypervisor) {
1391                 sun4v_patch_tlb_handlers();
1392                 sun4v_ktsb_init();
1393         }
1394
1395         /* Find available physical memory... */
1396         read_obp_memory("available", &pavail[0], &pavail_ents);
1397
1398         phys_base = 0xffffffffffffffffUL;
1399         for (i = 0; i < pavail_ents; i++)
1400                 phys_base = min(phys_base, pavail[i].phys_addr);
1401
1402         set_bit(0, mmu_context_bmap);
1403
1404         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1405
1406         real_end = (unsigned long)_end;
1407         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1408                 bigkernel = 1;
1409         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1410                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1411                 prom_halt();
1412         }
1413
1414         /* Set kernel pgd to upper alias so physical page computations
1415          * work.
1416          */
1417         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1418         
1419         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1420
1421         /* Now can init the kernel/bad page tables. */
1422         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1423                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1424         
1425         inherit_prom_mappings();
1426         
1427         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1428         setup_tba();
1429
1430         __flush_tlb_all();
1431
1432         if (tlb_type == hypervisor)
1433                 sun4v_ktsb_register();
1434
1435         /* Setup bootmem... */
1436         pages_avail = 0;
1437         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1438
1439         max_mapnr = last_valid_pfn;
1440
1441         kernel_physical_mapping_init();
1442
1443         prom_build_devicetree();
1444
1445         {
1446                 unsigned long zones_size[MAX_NR_ZONES];
1447                 unsigned long zholes_size[MAX_NR_ZONES];
1448                 int znum;
1449
1450                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1451                         zones_size[znum] = zholes_size[znum] = 0;
1452
1453                 zones_size[ZONE_NORMAL] = end_pfn;
1454                 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1455
1456                 free_area_init_node(0, &contig_page_data, zones_size,
1457                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1458                                     zholes_size);
1459         }
1460
1461         device_scan();
1462 }
1463
1464 static void __init taint_real_pages(void)
1465 {
1466         int i;
1467
1468         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1469
1470         /* Find changes discovered in the physmem available rescan and
1471          * reserve the lost portions in the bootmem maps.
1472          */
1473         for (i = 0; i < pavail_ents; i++) {
1474                 unsigned long old_start, old_end;
1475
1476                 old_start = pavail[i].phys_addr;
1477                 old_end = old_start +
1478                         pavail[i].reg_size;
1479                 while (old_start < old_end) {
1480                         int n;
1481
1482                         for (n = 0; n < pavail_rescan_ents; n++) {
1483                                 unsigned long new_start, new_end;
1484
1485                                 new_start = pavail_rescan[n].phys_addr;
1486                                 new_end = new_start +
1487                                         pavail_rescan[n].reg_size;
1488
1489                                 if (new_start <= old_start &&
1490                                     new_end >= (old_start + PAGE_SIZE)) {
1491                                         set_bit(old_start >> 22,
1492                                                 sparc64_valid_addr_bitmap);
1493                                         goto do_next_page;
1494                                 }
1495                         }
1496                         reserve_bootmem(old_start, PAGE_SIZE);
1497
1498                 do_next_page:
1499                         old_start += PAGE_SIZE;
1500                 }
1501         }
1502 }
1503
1504 int __init page_in_phys_avail(unsigned long paddr)
1505 {
1506         int i;
1507
1508         paddr &= PAGE_MASK;
1509
1510         for (i = 0; i < pavail_rescan_ents; i++) {
1511                 unsigned long start, end;
1512
1513                 start = pavail_rescan[i].phys_addr;
1514                 end = start + pavail_rescan[i].reg_size;
1515
1516                 if (paddr >= start && paddr < end)
1517                         return 1;
1518         }
1519         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1520                 return 1;
1521 #ifdef CONFIG_BLK_DEV_INITRD
1522         if (paddr >= __pa(initrd_start) &&
1523             paddr < __pa(PAGE_ALIGN(initrd_end)))
1524                 return 1;
1525 #endif
1526
1527         return 0;
1528 }
1529
1530 void __init mem_init(void)
1531 {
1532         unsigned long codepages, datapages, initpages;
1533         unsigned long addr, last;
1534         int i;
1535
1536         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1537         i += 1;
1538         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1539         if (sparc64_valid_addr_bitmap == NULL) {
1540                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1541                 prom_halt();
1542         }
1543         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1544
1545         addr = PAGE_OFFSET + kern_base;
1546         last = PAGE_ALIGN(kern_size) + addr;
1547         while (addr < last) {
1548                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1549                 addr += PAGE_SIZE;
1550         }
1551
1552         taint_real_pages();
1553
1554         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1555
1556 #ifdef CONFIG_DEBUG_BOOTMEM
1557         prom_printf("mem_init: Calling free_all_bootmem().\n");
1558 #endif
1559
1560         /* We subtract one to account for the mem_map_zero page
1561          * allocated below.
1562          */
1563         totalram_pages = num_physpages = free_all_bootmem() - 1;
1564
1565         /*
1566          * Set up the zero page, mark it reserved, so that page count
1567          * is not manipulated when freeing the page from user ptes.
1568          */
1569         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1570         if (mem_map_zero == NULL) {
1571                 prom_printf("paging_init: Cannot alloc zero page.\n");
1572                 prom_halt();
1573         }
1574         SetPageReserved(mem_map_zero);
1575
1576         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1577         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1578         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1579         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1580         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1581         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1582
1583         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1584                nr_free_pages() << (PAGE_SHIFT-10),
1585                codepages << (PAGE_SHIFT-10),
1586                datapages << (PAGE_SHIFT-10), 
1587                initpages << (PAGE_SHIFT-10), 
1588                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1589
1590         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1591                 cheetah_ecache_flush_init();
1592 }
1593
1594 void free_initmem(void)
1595 {
1596         unsigned long addr, initend;
1597
1598         /*
1599          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1600          */
1601         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1602         initend = (unsigned long)(__init_end) & PAGE_MASK;
1603         for (; addr < initend; addr += PAGE_SIZE) {
1604                 unsigned long page;
1605                 struct page *p;
1606
1607                 page = (addr +
1608                         ((unsigned long) __va(kern_base)) -
1609                         ((unsigned long) KERNBASE));
1610                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1611                 p = virt_to_page(page);
1612
1613                 ClearPageReserved(p);
1614                 init_page_count(p);
1615                 __free_page(p);
1616                 num_physpages++;
1617                 totalram_pages++;
1618         }
1619 }
1620
1621 #ifdef CONFIG_BLK_DEV_INITRD
1622 void free_initrd_mem(unsigned long start, unsigned long end)
1623 {
1624         if (start < end)
1625                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1626         for (; start < end; start += PAGE_SIZE) {
1627                 struct page *p = virt_to_page(start);
1628
1629                 ClearPageReserved(p);
1630                 init_page_count(p);
1631                 __free_page(p);
1632                 num_physpages++;
1633                 totalram_pages++;
1634         }
1635 }
1636 #endif
1637
1638 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1639 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1640 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1641 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1642 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1643 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1644
1645 pgprot_t PAGE_KERNEL __read_mostly;
1646 EXPORT_SYMBOL(PAGE_KERNEL);
1647
1648 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1649 pgprot_t PAGE_COPY __read_mostly;
1650
1651 pgprot_t PAGE_SHARED __read_mostly;
1652 EXPORT_SYMBOL(PAGE_SHARED);
1653
1654 pgprot_t PAGE_EXEC __read_mostly;
1655 unsigned long pg_iobits __read_mostly;
1656
1657 unsigned long _PAGE_IE __read_mostly;
1658 EXPORT_SYMBOL(_PAGE_IE);
1659
1660 unsigned long _PAGE_E __read_mostly;
1661 EXPORT_SYMBOL(_PAGE_E);
1662
1663 unsigned long _PAGE_CACHE __read_mostly;
1664 EXPORT_SYMBOL(_PAGE_CACHE);
1665
1666 static void prot_init_common(unsigned long page_none,
1667                              unsigned long page_shared,
1668                              unsigned long page_copy,
1669                              unsigned long page_readonly,
1670                              unsigned long page_exec_bit)
1671 {
1672         PAGE_COPY = __pgprot(page_copy);
1673         PAGE_SHARED = __pgprot(page_shared);
1674
1675         protection_map[0x0] = __pgprot(page_none);
1676         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1677         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1678         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1679         protection_map[0x4] = __pgprot(page_readonly);
1680         protection_map[0x5] = __pgprot(page_readonly);
1681         protection_map[0x6] = __pgprot(page_copy);
1682         protection_map[0x7] = __pgprot(page_copy);
1683         protection_map[0x8] = __pgprot(page_none);
1684         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1685         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1686         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1687         protection_map[0xc] = __pgprot(page_readonly);
1688         protection_map[0xd] = __pgprot(page_readonly);
1689         protection_map[0xe] = __pgprot(page_shared);
1690         protection_map[0xf] = __pgprot(page_shared);
1691 }
1692
1693 static void __init sun4u_pgprot_init(void)
1694 {
1695         unsigned long page_none, page_shared, page_copy, page_readonly;
1696         unsigned long page_exec_bit;
1697
1698         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1699                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1700                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1701                                 _PAGE_EXEC_4U);
1702         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1703                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1704                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1705                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1706         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1707
1708         _PAGE_IE = _PAGE_IE_4U;
1709         _PAGE_E = _PAGE_E_4U;
1710         _PAGE_CACHE = _PAGE_CACHE_4U;
1711
1712         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1713                      __ACCESS_BITS_4U | _PAGE_E_4U);
1714
1715 #ifdef CONFIG_DEBUG_PAGEALLOC
1716         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1717                 0xfffff80000000000;
1718 #else
1719         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1720                 0xfffff80000000000;
1721 #endif
1722         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1723                                    _PAGE_P_4U | _PAGE_W_4U);
1724
1725         /* XXX Should use 256MB on Panther. XXX */
1726         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1727
1728         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1729         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1730                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1731                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1732
1733
1734         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1735         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1736                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1737         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1738                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1739         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1740                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1741
1742         page_exec_bit = _PAGE_EXEC_4U;
1743
1744         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1745                          page_exec_bit);
1746 }
1747
1748 static void __init sun4v_pgprot_init(void)
1749 {
1750         unsigned long page_none, page_shared, page_copy, page_readonly;
1751         unsigned long page_exec_bit;
1752
1753         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1754                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1755                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1756                                 _PAGE_EXEC_4V);
1757         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1758         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1759
1760         _PAGE_IE = _PAGE_IE_4V;
1761         _PAGE_E = _PAGE_E_4V;
1762         _PAGE_CACHE = _PAGE_CACHE_4V;
1763
1764 #ifdef CONFIG_DEBUG_PAGEALLOC
1765         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1766                 0xfffff80000000000;
1767 #else
1768         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1769                 0xfffff80000000000;
1770 #endif
1771         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1772                                    _PAGE_P_4V | _PAGE_W_4V);
1773
1774 #ifdef CONFIG_DEBUG_PAGEALLOC
1775         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1776                 0xfffff80000000000;
1777 #else
1778         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1779                 0xfffff80000000000;
1780 #endif
1781         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1782                                    _PAGE_P_4V | _PAGE_W_4V);
1783
1784         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1785                      __ACCESS_BITS_4V | _PAGE_E_4V);
1786
1787         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1788         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1789                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1790                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1791                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1792
1793         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1794         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1795                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1796         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1797                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1798         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1799                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1800
1801         page_exec_bit = _PAGE_EXEC_4V;
1802
1803         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1804                          page_exec_bit);
1805 }
1806
1807 unsigned long pte_sz_bits(unsigned long sz)
1808 {
1809         if (tlb_type == hypervisor) {
1810                 switch (sz) {
1811                 case 8 * 1024:
1812                 default:
1813                         return _PAGE_SZ8K_4V;
1814                 case 64 * 1024:
1815                         return _PAGE_SZ64K_4V;
1816                 case 512 * 1024:
1817                         return _PAGE_SZ512K_4V;
1818                 case 4 * 1024 * 1024:
1819                         return _PAGE_SZ4MB_4V;
1820                 };
1821         } else {
1822                 switch (sz) {
1823                 case 8 * 1024:
1824                 default:
1825                         return _PAGE_SZ8K_4U;
1826                 case 64 * 1024:
1827                         return _PAGE_SZ64K_4U;
1828                 case 512 * 1024:
1829                         return _PAGE_SZ512K_4U;
1830                 case 4 * 1024 * 1024:
1831                         return _PAGE_SZ4MB_4U;
1832                 };
1833         }
1834 }
1835
1836 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1837 {
1838         pte_t pte;
1839
1840         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1841         pte_val(pte) |= (((unsigned long)space) << 32);
1842         pte_val(pte) |= pte_sz_bits(page_size);
1843
1844         return pte;
1845 }
1846
1847 static unsigned long kern_large_tte(unsigned long paddr)
1848 {
1849         unsigned long val;
1850
1851         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1852                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1853                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1854         if (tlb_type == hypervisor)
1855                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1856                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1857                        _PAGE_EXEC_4V | _PAGE_W_4V);
1858
1859         return val | paddr;
1860 }
1861
1862 /* If not locked, zap it. */
1863 void __flush_tlb_all(void)
1864 {
1865         unsigned long pstate;
1866         int i;
1867
1868         __asm__ __volatile__("flushw\n\t"
1869                              "rdpr      %%pstate, %0\n\t"
1870                              "wrpr      %0, %1, %%pstate"
1871                              : "=r" (pstate)
1872                              : "i" (PSTATE_IE));
1873         if (tlb_type == spitfire) {
1874                 for (i = 0; i < 64; i++) {
1875                         /* Spitfire Errata #32 workaround */
1876                         /* NOTE: Always runs on spitfire, so no
1877                          *       cheetah+ page size encodings.
1878                          */
1879                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1880                                              "flush     %%g6"
1881                                              : /* No outputs */
1882                                              : "r" (0),
1883                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1884
1885                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1886                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1887                                                      "membar #Sync"
1888                                                      : /* no outputs */
1889                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1890                                 spitfire_put_dtlb_data(i, 0x0UL);
1891                         }
1892
1893                         /* Spitfire Errata #32 workaround */
1894                         /* NOTE: Always runs on spitfire, so no
1895                          *       cheetah+ page size encodings.
1896                          */
1897                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1898                                              "flush     %%g6"
1899                                              : /* No outputs */
1900                                              : "r" (0),
1901                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1902
1903                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1904                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1905                                                      "membar #Sync"
1906                                                      : /* no outputs */
1907                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1908                                 spitfire_put_itlb_data(i, 0x0UL);
1909                         }
1910                 }
1911         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1912                 cheetah_flush_dtlb_all();
1913                 cheetah_flush_itlb_all();
1914         }
1915         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1916                              : : "r" (pstate));
1917 }
1918
1919 #ifdef CONFIG_MEMORY_HOTPLUG
1920
1921 void online_page(struct page *page)
1922 {
1923         ClearPageReserved(page);
1924         init_page_count(page);
1925         __free_page(page);
1926         totalram_pages++;
1927         num_physpages++;
1928 }
1929
1930 int remove_memory(u64 start, u64 size)
1931 {
1932         return -EINVAL;
1933 }
1934
1935 #endif /* CONFIG_MEMORY_HOTPLUG */