sparc: prepare mm/ for unification
[pandora-kernel.git] / arch / sparc64 / mm / init.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static int pavail_ents __initdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78         const struct linux_prom64_registers *x = a, *y = b;
79
80         if (x->phys_addr > y->phys_addr)
81                 return 1;
82         if (x->phys_addr < y->phys_addr)
83                 return -1;
84         return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88                                    struct linux_prom64_registers *regs,
89                                    int *num_ents)
90 {
91         int node = prom_finddevice("/memory");
92         int prop_size = prom_getproplen(node, property);
93         int ents, ret, i;
94
95         ents = prop_size / sizeof(struct linux_prom64_registers);
96         if (ents > MAX_BANKS) {
97                 prom_printf("The machine has more %s property entries than "
98                             "this kernel can support (%d).\n",
99                             property, MAX_BANKS);
100                 prom_halt();
101         }
102
103         ret = prom_getproperty(node, property, (char *) regs, prop_size);
104         if (ret == -1) {
105                 prom_printf("Couldn't get %s property from /memory.\n");
106                 prom_halt();
107         }
108
109         /* Sanitize what we got from the firmware, by page aligning
110          * everything.
111          */
112         for (i = 0; i < ents; i++) {
113                 unsigned long base, size;
114
115                 base = regs[i].phys_addr;
116                 size = regs[i].reg_size;
117
118                 size &= PAGE_MASK;
119                 if (base & ~PAGE_MASK) {
120                         unsigned long new_base = PAGE_ALIGN(base);
121
122                         size -= new_base - base;
123                         if ((long) size < 0L)
124                                 size = 0UL;
125                         base = new_base;
126                 }
127                 if (size == 0UL) {
128                         /* If it is empty, simply get rid of it.
129                          * This simplifies the logic of the other
130                          * functions that process these arrays.
131                          */
132                         memmove(&regs[i], &regs[i + 1],
133                                 (ents - i - 1) * sizeof(regs[0]));
134                         i--;
135                         ents--;
136                         continue;
137                 }
138                 regs[i].phys_addr = base;
139                 regs[i].reg_size = size;
140         }
141
142         *num_ents = ents;
143
144         sort(regs, ents, sizeof(struct linux_prom64_registers),
145              cmp_p64, NULL);
146 }
147
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149
150 /* Kernel physical address base and size in bytes.  */
151 unsigned long kern_base __read_mostly;
152 unsigned long kern_size __read_mostly;
153
154 /* Initial ramdisk setup */
155 extern unsigned long sparc_ramdisk_image64;
156 extern unsigned int sparc_ramdisk_image;
157 extern unsigned int sparc_ramdisk_size;
158
159 struct page *mem_map_zero __read_mostly;
160 EXPORT_SYMBOL(mem_map_zero);
161
162 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
163
164 unsigned long sparc64_kern_pri_context __read_mostly;
165 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
166 unsigned long sparc64_kern_sec_context __read_mostly;
167
168 int num_kernel_image_mappings;
169
170 #ifdef CONFIG_DEBUG_DCFLUSH
171 atomic_t dcpage_flushes = ATOMIC_INIT(0);
172 #ifdef CONFIG_SMP
173 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
174 #endif
175 #endif
176
177 inline void flush_dcache_page_impl(struct page *page)
178 {
179         BUG_ON(tlb_type == hypervisor);
180 #ifdef CONFIG_DEBUG_DCFLUSH
181         atomic_inc(&dcpage_flushes);
182 #endif
183
184 #ifdef DCACHE_ALIASING_POSSIBLE
185         __flush_dcache_page(page_address(page),
186                             ((tlb_type == spitfire) &&
187                              page_mapping(page) != NULL));
188 #else
189         if (page_mapping(page) != NULL &&
190             tlb_type == spitfire)
191                 __flush_icache_page(__pa(page_address(page)));
192 #endif
193 }
194
195 #define PG_dcache_dirty         PG_arch_1
196 #define PG_dcache_cpu_shift     32UL
197 #define PG_dcache_cpu_mask      \
198         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
199
200 #define dcache_dirty_cpu(page) \
201         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
202
203 static inline void set_dcache_dirty(struct page *page, int this_cpu)
204 {
205         unsigned long mask = this_cpu;
206         unsigned long non_cpu_bits;
207
208         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
209         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
210
211         __asm__ __volatile__("1:\n\t"
212                              "ldx       [%2], %%g7\n\t"
213                              "and       %%g7, %1, %%g1\n\t"
214                              "or        %%g1, %0, %%g1\n\t"
215                              "casx      [%2], %%g7, %%g1\n\t"
216                              "cmp       %%g7, %%g1\n\t"
217                              "bne,pn    %%xcc, 1b\n\t"
218                              " nop"
219                              : /* no outputs */
220                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
221                              : "g1", "g7");
222 }
223
224 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
225 {
226         unsigned long mask = (1UL << PG_dcache_dirty);
227
228         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
229                              "1:\n\t"
230                              "ldx       [%2], %%g7\n\t"
231                              "srlx      %%g7, %4, %%g1\n\t"
232                              "and       %%g1, %3, %%g1\n\t"
233                              "cmp       %%g1, %0\n\t"
234                              "bne,pn    %%icc, 2f\n\t"
235                              " andn     %%g7, %1, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop\n"
240                              "2:"
241                              : /* no outputs */
242                              : "r" (cpu), "r" (mask), "r" (&page->flags),
243                                "i" (PG_dcache_cpu_mask),
244                                "i" (PG_dcache_cpu_shift)
245                              : "g1", "g7");
246 }
247
248 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
249 {
250         unsigned long tsb_addr = (unsigned long) ent;
251
252         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
253                 tsb_addr = __pa(tsb_addr);
254
255         __tsb_insert(tsb_addr, tag, pte);
256 }
257
258 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
259 unsigned long _PAGE_SZBITS __read_mostly;
260
261 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
262 {
263         struct mm_struct *mm;
264         struct tsb *tsb;
265         unsigned long tag, flags;
266         unsigned long tsb_index, tsb_hash_shift;
267
268         if (tlb_type != hypervisor) {
269                 unsigned long pfn = pte_pfn(pte);
270                 unsigned long pg_flags;
271                 struct page *page;
272
273                 if (pfn_valid(pfn) &&
274                     (page = pfn_to_page(pfn), page_mapping(page)) &&
275                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
276                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
277                                    PG_dcache_cpu_mask);
278                         int this_cpu = get_cpu();
279
280                         /* This is just to optimize away some function calls
281                          * in the SMP case.
282                          */
283                         if (cpu == this_cpu)
284                                 flush_dcache_page_impl(page);
285                         else
286                                 smp_flush_dcache_page_impl(page, cpu);
287
288                         clear_dcache_dirty_cpu(page, cpu);
289
290                         put_cpu();
291                 }
292         }
293
294         mm = vma->vm_mm;
295
296         tsb_index = MM_TSB_BASE;
297         tsb_hash_shift = PAGE_SHIFT;
298
299         spin_lock_irqsave(&mm->context.lock, flags);
300
301 #ifdef CONFIG_HUGETLB_PAGE
302         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
303                 if ((tlb_type == hypervisor &&
304                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
305                     (tlb_type != hypervisor &&
306                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
307                         tsb_index = MM_TSB_HUGE;
308                         tsb_hash_shift = HPAGE_SHIFT;
309                 }
310         }
311 #endif
312
313         tsb = mm->context.tsb_block[tsb_index].tsb;
314         tsb += ((address >> tsb_hash_shift) &
315                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
316         tag = (address >> 22UL);
317         tsb_insert(tsb, tag, pte_val(pte));
318
319         spin_unlock_irqrestore(&mm->context.lock, flags);
320 }
321
322 void flush_dcache_page(struct page *page)
323 {
324         struct address_space *mapping;
325         int this_cpu;
326
327         if (tlb_type == hypervisor)
328                 return;
329
330         /* Do not bother with the expensive D-cache flush if it
331          * is merely the zero page.  The 'bigcore' testcase in GDB
332          * causes this case to run millions of times.
333          */
334         if (page == ZERO_PAGE(0))
335                 return;
336
337         this_cpu = get_cpu();
338
339         mapping = page_mapping(page);
340         if (mapping && !mapping_mapped(mapping)) {
341                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
342                 if (dirty) {
343                         int dirty_cpu = dcache_dirty_cpu(page);
344
345                         if (dirty_cpu == this_cpu)
346                                 goto out;
347                         smp_flush_dcache_page_impl(page, dirty_cpu);
348                 }
349                 set_dcache_dirty(page, this_cpu);
350         } else {
351                 /* We could delay the flush for the !page_mapping
352                  * case too.  But that case is for exec env/arg
353                  * pages and those are %99 certainly going to get
354                  * faulted into the tlb (and thus flushed) anyways.
355                  */
356                 flush_dcache_page_impl(page);
357         }
358
359 out:
360         put_cpu();
361 }
362
363 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
364 {
365         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
366         if (tlb_type == spitfire) {
367                 unsigned long kaddr;
368
369                 /* This code only runs on Spitfire cpus so this is
370                  * why we can assume _PAGE_PADDR_4U.
371                  */
372                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
373                         unsigned long paddr, mask = _PAGE_PADDR_4U;
374
375                         if (kaddr >= PAGE_OFFSET)
376                                 paddr = kaddr & mask;
377                         else {
378                                 pgd_t *pgdp = pgd_offset_k(kaddr);
379                                 pud_t *pudp = pud_offset(pgdp, kaddr);
380                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
381                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
382
383                                 paddr = pte_val(*ptep) & mask;
384                         }
385                         __flush_icache_page(paddr);
386                 }
387         }
388 }
389
390 void mmu_info(struct seq_file *m)
391 {
392         if (tlb_type == cheetah)
393                 seq_printf(m, "MMU Type\t: Cheetah\n");
394         else if (tlb_type == cheetah_plus)
395                 seq_printf(m, "MMU Type\t: Cheetah+\n");
396         else if (tlb_type == spitfire)
397                 seq_printf(m, "MMU Type\t: Spitfire\n");
398         else if (tlb_type == hypervisor)
399                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
400         else
401                 seq_printf(m, "MMU Type\t: ???\n");
402
403 #ifdef CONFIG_DEBUG_DCFLUSH
404         seq_printf(m, "DCPageFlushes\t: %d\n",
405                    atomic_read(&dcpage_flushes));
406 #ifdef CONFIG_SMP
407         seq_printf(m, "DCPageFlushesXC\t: %d\n",
408                    atomic_read(&dcpage_flushes_xcall));
409 #endif /* CONFIG_SMP */
410 #endif /* CONFIG_DEBUG_DCFLUSH */
411 }
412
413 struct linux_prom_translation prom_trans[512] __read_mostly;
414 unsigned int prom_trans_ents __read_mostly;
415
416 unsigned long kern_locked_tte_data;
417
418 /* The obp translations are saved based on 8k pagesize, since obp can
419  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
420  * HI_OBP_ADDRESS range are handled in ktlb.S.
421  */
422 static inline int in_obp_range(unsigned long vaddr)
423 {
424         return (vaddr >= LOW_OBP_ADDRESS &&
425                 vaddr < HI_OBP_ADDRESS);
426 }
427
428 static int cmp_ptrans(const void *a, const void *b)
429 {
430         const struct linux_prom_translation *x = a, *y = b;
431
432         if (x->virt > y->virt)
433                 return 1;
434         if (x->virt < y->virt)
435                 return -1;
436         return 0;
437 }
438
439 /* Read OBP translations property into 'prom_trans[]'.  */
440 static void __init read_obp_translations(void)
441 {
442         int n, node, ents, first, last, i;
443
444         node = prom_finddevice("/virtual-memory");
445         n = prom_getproplen(node, "translations");
446         if (unlikely(n == 0 || n == -1)) {
447                 prom_printf("prom_mappings: Couldn't get size.\n");
448                 prom_halt();
449         }
450         if (unlikely(n > sizeof(prom_trans))) {
451                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
452                 prom_halt();
453         }
454
455         if ((n = prom_getproperty(node, "translations",
456                                   (char *)&prom_trans[0],
457                                   sizeof(prom_trans))) == -1) {
458                 prom_printf("prom_mappings: Couldn't get property.\n");
459                 prom_halt();
460         }
461
462         n = n / sizeof(struct linux_prom_translation);
463
464         ents = n;
465
466         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
467              cmp_ptrans, NULL);
468
469         /* Now kick out all the non-OBP entries.  */
470         for (i = 0; i < ents; i++) {
471                 if (in_obp_range(prom_trans[i].virt))
472                         break;
473         }
474         first = i;
475         for (; i < ents; i++) {
476                 if (!in_obp_range(prom_trans[i].virt))
477                         break;
478         }
479         last = i;
480
481         for (i = 0; i < (last - first); i++) {
482                 struct linux_prom_translation *src = &prom_trans[i + first];
483                 struct linux_prom_translation *dest = &prom_trans[i];
484
485                 *dest = *src;
486         }
487         for (; i < ents; i++) {
488                 struct linux_prom_translation *dest = &prom_trans[i];
489                 dest->virt = dest->size = dest->data = 0x0UL;
490         }
491
492         prom_trans_ents = last - first;
493
494         if (tlb_type == spitfire) {
495                 /* Clear diag TTE bits. */
496                 for (i = 0; i < prom_trans_ents; i++)
497                         prom_trans[i].data &= ~0x0003fe0000000000UL;
498         }
499 }
500
501 static void __init hypervisor_tlb_lock(unsigned long vaddr,
502                                        unsigned long pte,
503                                        unsigned long mmu)
504 {
505         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
506
507         if (ret != 0) {
508                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
509                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
510                 prom_halt();
511         }
512 }
513
514 static unsigned long kern_large_tte(unsigned long paddr);
515
516 static void __init remap_kernel(void)
517 {
518         unsigned long phys_page, tte_vaddr, tte_data;
519         int i, tlb_ent = sparc64_highest_locked_tlbent();
520
521         tte_vaddr = (unsigned long) KERNBASE;
522         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
523         tte_data = kern_large_tte(phys_page);
524
525         kern_locked_tte_data = tte_data;
526
527         /* Now lock us into the TLBs via Hypervisor or OBP. */
528         if (tlb_type == hypervisor) {
529                 for (i = 0; i < num_kernel_image_mappings; i++) {
530                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
531                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
532                         tte_vaddr += 0x400000;
533                         tte_data += 0x400000;
534                 }
535         } else {
536                 for (i = 0; i < num_kernel_image_mappings; i++) {
537                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
538                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
539                         tte_vaddr += 0x400000;
540                         tte_data += 0x400000;
541                 }
542                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
543         }
544         if (tlb_type == cheetah_plus) {
545                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
546                                             CTX_CHEETAH_PLUS_NUC);
547                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
548                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
549         }
550 }
551
552
553 static void __init inherit_prom_mappings(void)
554 {
555         /* Now fixup OBP's idea about where we really are mapped. */
556         printk("Remapping the kernel... ");
557         remap_kernel();
558         printk("done.\n");
559 }
560
561 void prom_world(int enter)
562 {
563         if (!enter)
564                 set_fs((mm_segment_t) { get_thread_current_ds() });
565
566         __asm__ __volatile__("flushw");
567 }
568
569 void __flush_dcache_range(unsigned long start, unsigned long end)
570 {
571         unsigned long va;
572
573         if (tlb_type == spitfire) {
574                 int n = 0;
575
576                 for (va = start; va < end; va += 32) {
577                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
578                         if (++n >= 512)
579                                 break;
580                 }
581         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
582                 start = __pa(start);
583                 end = __pa(end);
584                 for (va = start; va < end; va += 32)
585                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
586                                              "membar #Sync"
587                                              : /* no outputs */
588                                              : "r" (va),
589                                                "i" (ASI_DCACHE_INVALIDATE));
590         }
591 }
592
593 /* get_new_mmu_context() uses "cache + 1".  */
594 DEFINE_SPINLOCK(ctx_alloc_lock);
595 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
596 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
597 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
598 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
599
600 /* Caller does TLB context flushing on local CPU if necessary.
601  * The caller also ensures that CTX_VALID(mm->context) is false.
602  *
603  * We must be careful about boundary cases so that we never
604  * let the user have CTX 0 (nucleus) or we ever use a CTX
605  * version of zero (and thus NO_CONTEXT would not be caught
606  * by version mis-match tests in mmu_context.h).
607  *
608  * Always invoked with interrupts disabled.
609  */
610 void get_new_mmu_context(struct mm_struct *mm)
611 {
612         unsigned long ctx, new_ctx;
613         unsigned long orig_pgsz_bits;
614         unsigned long flags;
615         int new_version;
616
617         spin_lock_irqsave(&ctx_alloc_lock, flags);
618         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
619         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
620         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
621         new_version = 0;
622         if (new_ctx >= (1 << CTX_NR_BITS)) {
623                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
624                 if (new_ctx >= ctx) {
625                         int i;
626                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
627                                 CTX_FIRST_VERSION;
628                         if (new_ctx == 1)
629                                 new_ctx = CTX_FIRST_VERSION;
630
631                         /* Don't call memset, for 16 entries that's just
632                          * plain silly...
633                          */
634                         mmu_context_bmap[0] = 3;
635                         mmu_context_bmap[1] = 0;
636                         mmu_context_bmap[2] = 0;
637                         mmu_context_bmap[3] = 0;
638                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
639                                 mmu_context_bmap[i + 0] = 0;
640                                 mmu_context_bmap[i + 1] = 0;
641                                 mmu_context_bmap[i + 2] = 0;
642                                 mmu_context_bmap[i + 3] = 0;
643                         }
644                         new_version = 1;
645                         goto out;
646                 }
647         }
648         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
649         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
650 out:
651         tlb_context_cache = new_ctx;
652         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
653         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
654
655         if (unlikely(new_version))
656                 smp_new_mmu_context_version();
657 }
658
659 static int numa_enabled = 1;
660 static int numa_debug;
661
662 static int __init early_numa(char *p)
663 {
664         if (!p)
665                 return 0;
666
667         if (strstr(p, "off"))
668                 numa_enabled = 0;
669
670         if (strstr(p, "debug"))
671                 numa_debug = 1;
672
673         return 0;
674 }
675 early_param("numa", early_numa);
676
677 #define numadbg(f, a...) \
678 do {    if (numa_debug) \
679                 printk(KERN_INFO f, ## a); \
680 } while (0)
681
682 static void __init find_ramdisk(unsigned long phys_base)
683 {
684 #ifdef CONFIG_BLK_DEV_INITRD
685         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
686                 unsigned long ramdisk_image;
687
688                 /* Older versions of the bootloader only supported a
689                  * 32-bit physical address for the ramdisk image
690                  * location, stored at sparc_ramdisk_image.  Newer
691                  * SILO versions set sparc_ramdisk_image to zero and
692                  * provide a full 64-bit physical address at
693                  * sparc_ramdisk_image64.
694                  */
695                 ramdisk_image = sparc_ramdisk_image;
696                 if (!ramdisk_image)
697                         ramdisk_image = sparc_ramdisk_image64;
698
699                 /* Another bootloader quirk.  The bootloader normalizes
700                  * the physical address to KERNBASE, so we have to
701                  * factor that back out and add in the lowest valid
702                  * physical page address to get the true physical address.
703                  */
704                 ramdisk_image -= KERNBASE;
705                 ramdisk_image += phys_base;
706
707                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
708                         ramdisk_image, sparc_ramdisk_size);
709
710                 initrd_start = ramdisk_image;
711                 initrd_end = ramdisk_image + sparc_ramdisk_size;
712
713                 lmb_reserve(initrd_start, sparc_ramdisk_size);
714
715                 initrd_start += PAGE_OFFSET;
716                 initrd_end += PAGE_OFFSET;
717         }
718 #endif
719 }
720
721 struct node_mem_mask {
722         unsigned long mask;
723         unsigned long val;
724         unsigned long bootmem_paddr;
725 };
726 static struct node_mem_mask node_masks[MAX_NUMNODES];
727 static int num_node_masks;
728
729 int numa_cpu_lookup_table[NR_CPUS];
730 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
731
732 #ifdef CONFIG_NEED_MULTIPLE_NODES
733
734 struct mdesc_mblock {
735         u64     base;
736         u64     size;
737         u64     offset; /* RA-to-PA */
738 };
739 static struct mdesc_mblock *mblocks;
740 static int num_mblocks;
741
742 static unsigned long ra_to_pa(unsigned long addr)
743 {
744         int i;
745
746         for (i = 0; i < num_mblocks; i++) {
747                 struct mdesc_mblock *m = &mblocks[i];
748
749                 if (addr >= m->base &&
750                     addr < (m->base + m->size)) {
751                         addr += m->offset;
752                         break;
753                 }
754         }
755         return addr;
756 }
757
758 static int find_node(unsigned long addr)
759 {
760         int i;
761
762         addr = ra_to_pa(addr);
763         for (i = 0; i < num_node_masks; i++) {
764                 struct node_mem_mask *p = &node_masks[i];
765
766                 if ((addr & p->mask) == p->val)
767                         return i;
768         }
769         return -1;
770 }
771
772 static unsigned long nid_range(unsigned long start, unsigned long end,
773                                int *nid)
774 {
775         *nid = find_node(start);
776         start += PAGE_SIZE;
777         while (start < end) {
778                 int n = find_node(start);
779
780                 if (n != *nid)
781                         break;
782                 start += PAGE_SIZE;
783         }
784
785         if (start > end)
786                 start = end;
787
788         return start;
789 }
790 #else
791 static unsigned long nid_range(unsigned long start, unsigned long end,
792                                int *nid)
793 {
794         *nid = 0;
795         return end;
796 }
797 #endif
798
799 /* This must be invoked after performing all of the necessary
800  * add_active_range() calls for 'nid'.  We need to be able to get
801  * correct data from get_pfn_range_for_nid().
802  */
803 static void __init allocate_node_data(int nid)
804 {
805         unsigned long paddr, num_pages, start_pfn, end_pfn;
806         struct pglist_data *p;
807
808 #ifdef CONFIG_NEED_MULTIPLE_NODES
809         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
810                               SMP_CACHE_BYTES, nid, nid_range);
811         if (!paddr) {
812                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
813                 prom_halt();
814         }
815         NODE_DATA(nid) = __va(paddr);
816         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
817
818         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
819 #endif
820
821         p = NODE_DATA(nid);
822
823         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
824         p->node_start_pfn = start_pfn;
825         p->node_spanned_pages = end_pfn - start_pfn;
826
827         if (p->node_spanned_pages) {
828                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
829
830                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
831                                       nid_range);
832                 if (!paddr) {
833                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
834                                   nid);
835                         prom_halt();
836                 }
837                 node_masks[nid].bootmem_paddr = paddr;
838         }
839 }
840
841 static void init_node_masks_nonnuma(void)
842 {
843         int i;
844
845         numadbg("Initializing tables for non-numa.\n");
846
847         node_masks[0].mask = node_masks[0].val = 0;
848         num_node_masks = 1;
849
850         for (i = 0; i < NR_CPUS; i++)
851                 numa_cpu_lookup_table[i] = 0;
852
853         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
854 }
855
856 #ifdef CONFIG_NEED_MULTIPLE_NODES
857 struct pglist_data *node_data[MAX_NUMNODES];
858
859 EXPORT_SYMBOL(numa_cpu_lookup_table);
860 EXPORT_SYMBOL(numa_cpumask_lookup_table);
861 EXPORT_SYMBOL(node_data);
862
863 struct mdesc_mlgroup {
864         u64     node;
865         u64     latency;
866         u64     match;
867         u64     mask;
868 };
869 static struct mdesc_mlgroup *mlgroups;
870 static int num_mlgroups;
871
872 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
873                                    u32 cfg_handle)
874 {
875         u64 arc;
876
877         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
878                 u64 target = mdesc_arc_target(md, arc);
879                 const u64 *val;
880
881                 val = mdesc_get_property(md, target,
882                                          "cfg-handle", NULL);
883                 if (val && *val == cfg_handle)
884                         return 0;
885         }
886         return -ENODEV;
887 }
888
889 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
890                                     u32 cfg_handle)
891 {
892         u64 arc, candidate, best_latency = ~(u64)0;
893
894         candidate = MDESC_NODE_NULL;
895         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
896                 u64 target = mdesc_arc_target(md, arc);
897                 const char *name = mdesc_node_name(md, target);
898                 const u64 *val;
899
900                 if (strcmp(name, "pio-latency-group"))
901                         continue;
902
903                 val = mdesc_get_property(md, target, "latency", NULL);
904                 if (!val)
905                         continue;
906
907                 if (*val < best_latency) {
908                         candidate = target;
909                         best_latency = *val;
910                 }
911         }
912
913         if (candidate == MDESC_NODE_NULL)
914                 return -ENODEV;
915
916         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
917 }
918
919 int of_node_to_nid(struct device_node *dp)
920 {
921         const struct linux_prom64_registers *regs;
922         struct mdesc_handle *md;
923         u32 cfg_handle;
924         int count, nid;
925         u64 grp;
926
927         /* This is the right thing to do on currently supported
928          * SUN4U NUMA platforms as well, as the PCI controller does
929          * not sit behind any particular memory controller.
930          */
931         if (!mlgroups)
932                 return -1;
933
934         regs = of_get_property(dp, "reg", NULL);
935         if (!regs)
936                 return -1;
937
938         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
939
940         md = mdesc_grab();
941
942         count = 0;
943         nid = -1;
944         mdesc_for_each_node_by_name(md, grp, "group") {
945                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
946                         nid = count;
947                         break;
948                 }
949                 count++;
950         }
951
952         mdesc_release(md);
953
954         return nid;
955 }
956
957 static void __init add_node_ranges(void)
958 {
959         int i;
960
961         for (i = 0; i < lmb.memory.cnt; i++) {
962                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
963                 unsigned long start, end;
964
965                 start = lmb.memory.region[i].base;
966                 end = start + size;
967                 while (start < end) {
968                         unsigned long this_end;
969                         int nid;
970
971                         this_end = nid_range(start, end, &nid);
972
973                         numadbg("Adding active range nid[%d] "
974                                 "start[%lx] end[%lx]\n",
975                                 nid, start, this_end);
976
977                         add_active_range(nid,
978                                          start >> PAGE_SHIFT,
979                                          this_end >> PAGE_SHIFT);
980
981                         start = this_end;
982                 }
983         }
984 }
985
986 static int __init grab_mlgroups(struct mdesc_handle *md)
987 {
988         unsigned long paddr;
989         int count = 0;
990         u64 node;
991
992         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
993                 count++;
994         if (!count)
995                 return -ENOENT;
996
997         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
998                           SMP_CACHE_BYTES);
999         if (!paddr)
1000                 return -ENOMEM;
1001
1002         mlgroups = __va(paddr);
1003         num_mlgroups = count;
1004
1005         count = 0;
1006         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1007                 struct mdesc_mlgroup *m = &mlgroups[count++];
1008                 const u64 *val;
1009
1010                 m->node = node;
1011
1012                 val = mdesc_get_property(md, node, "latency", NULL);
1013                 m->latency = *val;
1014                 val = mdesc_get_property(md, node, "address-match", NULL);
1015                 m->match = *val;
1016                 val = mdesc_get_property(md, node, "address-mask", NULL);
1017                 m->mask = *val;
1018
1019                 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1020                         "match[%lx] mask[%lx]\n",
1021                         count - 1, m->node, m->latency, m->match, m->mask);
1022         }
1023
1024         return 0;
1025 }
1026
1027 static int __init grab_mblocks(struct mdesc_handle *md)
1028 {
1029         unsigned long paddr;
1030         int count = 0;
1031         u64 node;
1032
1033         mdesc_for_each_node_by_name(md, node, "mblock")
1034                 count++;
1035         if (!count)
1036                 return -ENOENT;
1037
1038         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1039                           SMP_CACHE_BYTES);
1040         if (!paddr)
1041                 return -ENOMEM;
1042
1043         mblocks = __va(paddr);
1044         num_mblocks = count;
1045
1046         count = 0;
1047         mdesc_for_each_node_by_name(md, node, "mblock") {
1048                 struct mdesc_mblock *m = &mblocks[count++];
1049                 const u64 *val;
1050
1051                 val = mdesc_get_property(md, node, "base", NULL);
1052                 m->base = *val;
1053                 val = mdesc_get_property(md, node, "size", NULL);
1054                 m->size = *val;
1055                 val = mdesc_get_property(md, node,
1056                                          "address-congruence-offset", NULL);
1057                 m->offset = *val;
1058
1059                 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1060                         count - 1, m->base, m->size, m->offset);
1061         }
1062
1063         return 0;
1064 }
1065
1066 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1067                                                u64 grp, cpumask_t *mask)
1068 {
1069         u64 arc;
1070
1071         cpus_clear(*mask);
1072
1073         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1074                 u64 target = mdesc_arc_target(md, arc);
1075                 const char *name = mdesc_node_name(md, target);
1076                 const u64 *id;
1077
1078                 if (strcmp(name, "cpu"))
1079                         continue;
1080                 id = mdesc_get_property(md, target, "id", NULL);
1081                 if (*id < NR_CPUS)
1082                         cpu_set(*id, *mask);
1083         }
1084 }
1085
1086 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1087 {
1088         int i;
1089
1090         for (i = 0; i < num_mlgroups; i++) {
1091                 struct mdesc_mlgroup *m = &mlgroups[i];
1092                 if (m->node == node)
1093                         return m;
1094         }
1095         return NULL;
1096 }
1097
1098 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1099                                       int index)
1100 {
1101         struct mdesc_mlgroup *candidate = NULL;
1102         u64 arc, best_latency = ~(u64)0;
1103         struct node_mem_mask *n;
1104
1105         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1106                 u64 target = mdesc_arc_target(md, arc);
1107                 struct mdesc_mlgroup *m = find_mlgroup(target);
1108                 if (!m)
1109                         continue;
1110                 if (m->latency < best_latency) {
1111                         candidate = m;
1112                         best_latency = m->latency;
1113                 }
1114         }
1115         if (!candidate)
1116                 return -ENOENT;
1117
1118         if (num_node_masks != index) {
1119                 printk(KERN_ERR "Inconsistent NUMA state, "
1120                        "index[%d] != num_node_masks[%d]\n",
1121                        index, num_node_masks);
1122                 return -EINVAL;
1123         }
1124
1125         n = &node_masks[num_node_masks++];
1126
1127         n->mask = candidate->mask;
1128         n->val = candidate->match;
1129
1130         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1131                 index, n->mask, n->val, candidate->latency);
1132
1133         return 0;
1134 }
1135
1136 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1137                                          int index)
1138 {
1139         cpumask_t mask;
1140         int cpu;
1141
1142         numa_parse_mdesc_group_cpus(md, grp, &mask);
1143
1144         for_each_cpu_mask(cpu, mask)
1145                 numa_cpu_lookup_table[cpu] = index;
1146         numa_cpumask_lookup_table[index] = mask;
1147
1148         if (numa_debug) {
1149                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1150                 for_each_cpu_mask(cpu, mask)
1151                         printk("%d ", cpu);
1152                 printk("]\n");
1153         }
1154
1155         return numa_attach_mlgroup(md, grp, index);
1156 }
1157
1158 static int __init numa_parse_mdesc(void)
1159 {
1160         struct mdesc_handle *md = mdesc_grab();
1161         int i, err, count;
1162         u64 node;
1163
1164         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1165         if (node == MDESC_NODE_NULL) {
1166                 mdesc_release(md);
1167                 return -ENOENT;
1168         }
1169
1170         err = grab_mblocks(md);
1171         if (err < 0)
1172                 goto out;
1173
1174         err = grab_mlgroups(md);
1175         if (err < 0)
1176                 goto out;
1177
1178         count = 0;
1179         mdesc_for_each_node_by_name(md, node, "group") {
1180                 err = numa_parse_mdesc_group(md, node, count);
1181                 if (err < 0)
1182                         break;
1183                 count++;
1184         }
1185
1186         add_node_ranges();
1187
1188         for (i = 0; i < num_node_masks; i++) {
1189                 allocate_node_data(i);
1190                 node_set_online(i);
1191         }
1192
1193         err = 0;
1194 out:
1195         mdesc_release(md);
1196         return err;
1197 }
1198
1199 static int __init numa_parse_jbus(void)
1200 {
1201         unsigned long cpu, index;
1202
1203         /* NUMA node id is encoded in bits 36 and higher, and there is
1204          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1205          */
1206         index = 0;
1207         for_each_present_cpu(cpu) {
1208                 numa_cpu_lookup_table[cpu] = index;
1209                 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1210                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1211                 node_masks[index].val = cpu << 36UL;
1212
1213                 index++;
1214         }
1215         num_node_masks = index;
1216
1217         add_node_ranges();
1218
1219         for (index = 0; index < num_node_masks; index++) {
1220                 allocate_node_data(index);
1221                 node_set_online(index);
1222         }
1223
1224         return 0;
1225 }
1226
1227 static int __init numa_parse_sun4u(void)
1228 {
1229         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1230                 unsigned long ver;
1231
1232                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1233                 if ((ver >> 32UL) == __JALAPENO_ID ||
1234                     (ver >> 32UL) == __SERRANO_ID)
1235                         return numa_parse_jbus();
1236         }
1237         return -1;
1238 }
1239
1240 static int __init bootmem_init_numa(void)
1241 {
1242         int err = -1;
1243
1244         numadbg("bootmem_init_numa()\n");
1245
1246         if (numa_enabled) {
1247                 if (tlb_type == hypervisor)
1248                         err = numa_parse_mdesc();
1249                 else
1250                         err = numa_parse_sun4u();
1251         }
1252         return err;
1253 }
1254
1255 #else
1256
1257 static int bootmem_init_numa(void)
1258 {
1259         return -1;
1260 }
1261
1262 #endif
1263
1264 static void __init bootmem_init_nonnuma(void)
1265 {
1266         unsigned long top_of_ram = lmb_end_of_DRAM();
1267         unsigned long total_ram = lmb_phys_mem_size();
1268         unsigned int i;
1269
1270         numadbg("bootmem_init_nonnuma()\n");
1271
1272         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1273                top_of_ram, total_ram);
1274         printk(KERN_INFO "Memory hole size: %ldMB\n",
1275                (top_of_ram - total_ram) >> 20);
1276
1277         init_node_masks_nonnuma();
1278
1279         for (i = 0; i < lmb.memory.cnt; i++) {
1280                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1281                 unsigned long start_pfn, end_pfn;
1282
1283                 if (!size)
1284                         continue;
1285
1286                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1287                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1288                 add_active_range(0, start_pfn, end_pfn);
1289         }
1290
1291         allocate_node_data(0);
1292
1293         node_set_online(0);
1294 }
1295
1296 static void __init reserve_range_in_node(int nid, unsigned long start,
1297                                          unsigned long end)
1298 {
1299         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1300                 nid, start, end);
1301         while (start < end) {
1302                 unsigned long this_end;
1303                 int n;
1304
1305                 this_end = nid_range(start, end, &n);
1306                 if (n == nid) {
1307                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1308                                 start, this_end);
1309                         reserve_bootmem_node(NODE_DATA(nid), start,
1310                                              (this_end - start), BOOTMEM_DEFAULT);
1311                 } else
1312                         numadbg("      NO MATCH, advancing start to %lx\n",
1313                                 this_end);
1314
1315                 start = this_end;
1316         }
1317 }
1318
1319 static void __init trim_reserved_in_node(int nid)
1320 {
1321         int i;
1322
1323         numadbg("  trim_reserved_in_node(%d)\n", nid);
1324
1325         for (i = 0; i < lmb.reserved.cnt; i++) {
1326                 unsigned long start = lmb.reserved.region[i].base;
1327                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1328                 unsigned long end = start + size;
1329
1330                 reserve_range_in_node(nid, start, end);
1331         }
1332 }
1333
1334 static void __init bootmem_init_one_node(int nid)
1335 {
1336         struct pglist_data *p;
1337
1338         numadbg("bootmem_init_one_node(%d)\n", nid);
1339
1340         p = NODE_DATA(nid);
1341
1342         if (p->node_spanned_pages) {
1343                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1344                 unsigned long end_pfn;
1345
1346                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1347
1348                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1349                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1350
1351                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1352                                   p->node_start_pfn, end_pfn);
1353
1354                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1355                         nid, end_pfn);
1356                 free_bootmem_with_active_regions(nid, end_pfn);
1357
1358                 trim_reserved_in_node(nid);
1359
1360                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1361                         nid);
1362                 sparse_memory_present_with_active_regions(nid);
1363         }
1364 }
1365
1366 static unsigned long __init bootmem_init(unsigned long phys_base)
1367 {
1368         unsigned long end_pfn;
1369         int nid;
1370
1371         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1372         max_pfn = max_low_pfn = end_pfn;
1373         min_low_pfn = (phys_base >> PAGE_SHIFT);
1374
1375         if (bootmem_init_numa() < 0)
1376                 bootmem_init_nonnuma();
1377
1378         /* XXX cpu notifier XXX */
1379
1380         for_each_online_node(nid)
1381                 bootmem_init_one_node(nid);
1382
1383         sparse_init();
1384
1385         return end_pfn;
1386 }
1387
1388 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1389 static int pall_ents __initdata;
1390
1391 #ifdef CONFIG_DEBUG_PAGEALLOC
1392 static unsigned long __ref kernel_map_range(unsigned long pstart,
1393                                             unsigned long pend, pgprot_t prot)
1394 {
1395         unsigned long vstart = PAGE_OFFSET + pstart;
1396         unsigned long vend = PAGE_OFFSET + pend;
1397         unsigned long alloc_bytes = 0UL;
1398
1399         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1400                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1401                             vstart, vend);
1402                 prom_halt();
1403         }
1404
1405         while (vstart < vend) {
1406                 unsigned long this_end, paddr = __pa(vstart);
1407                 pgd_t *pgd = pgd_offset_k(vstart);
1408                 pud_t *pud;
1409                 pmd_t *pmd;
1410                 pte_t *pte;
1411
1412                 pud = pud_offset(pgd, vstart);
1413                 if (pud_none(*pud)) {
1414                         pmd_t *new;
1415
1416                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1417                         alloc_bytes += PAGE_SIZE;
1418                         pud_populate(&init_mm, pud, new);
1419                 }
1420
1421                 pmd = pmd_offset(pud, vstart);
1422                 if (!pmd_present(*pmd)) {
1423                         pte_t *new;
1424
1425                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1426                         alloc_bytes += PAGE_SIZE;
1427                         pmd_populate_kernel(&init_mm, pmd, new);
1428                 }
1429
1430                 pte = pte_offset_kernel(pmd, vstart);
1431                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1432                 if (this_end > vend)
1433                         this_end = vend;
1434
1435                 while (vstart < this_end) {
1436                         pte_val(*pte) = (paddr | pgprot_val(prot));
1437
1438                         vstart += PAGE_SIZE;
1439                         paddr += PAGE_SIZE;
1440                         pte++;
1441                 }
1442         }
1443
1444         return alloc_bytes;
1445 }
1446
1447 extern unsigned int kvmap_linear_patch[1];
1448 #endif /* CONFIG_DEBUG_PAGEALLOC */
1449
1450 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1451 {
1452         const unsigned long shift_256MB = 28;
1453         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1454         const unsigned long size_256MB = (1UL << shift_256MB);
1455
1456         while (start < end) {
1457                 long remains;
1458
1459                 remains = end - start;
1460                 if (remains < size_256MB)
1461                         break;
1462
1463                 if (start & mask_256MB) {
1464                         start = (start + size_256MB) & ~mask_256MB;
1465                         continue;
1466                 }
1467
1468                 while (remains >= size_256MB) {
1469                         unsigned long index = start >> shift_256MB;
1470
1471                         __set_bit(index, kpte_linear_bitmap);
1472
1473                         start += size_256MB;
1474                         remains -= size_256MB;
1475                 }
1476         }
1477 }
1478
1479 static void __init init_kpte_bitmap(void)
1480 {
1481         unsigned long i;
1482
1483         for (i = 0; i < pall_ents; i++) {
1484                 unsigned long phys_start, phys_end;
1485
1486                 phys_start = pall[i].phys_addr;
1487                 phys_end = phys_start + pall[i].reg_size;
1488
1489                 mark_kpte_bitmap(phys_start, phys_end);
1490         }
1491 }
1492
1493 static void __init kernel_physical_mapping_init(void)
1494 {
1495 #ifdef CONFIG_DEBUG_PAGEALLOC
1496         unsigned long i, mem_alloced = 0UL;
1497
1498         for (i = 0; i < pall_ents; i++) {
1499                 unsigned long phys_start, phys_end;
1500
1501                 phys_start = pall[i].phys_addr;
1502                 phys_end = phys_start + pall[i].reg_size;
1503
1504                 mem_alloced += kernel_map_range(phys_start, phys_end,
1505                                                 PAGE_KERNEL);
1506         }
1507
1508         printk("Allocated %ld bytes for kernel page tables.\n",
1509                mem_alloced);
1510
1511         kvmap_linear_patch[0] = 0x01000000; /* nop */
1512         flushi(&kvmap_linear_patch[0]);
1513
1514         __flush_tlb_all();
1515 #endif
1516 }
1517
1518 #ifdef CONFIG_DEBUG_PAGEALLOC
1519 void kernel_map_pages(struct page *page, int numpages, int enable)
1520 {
1521         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1522         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1523
1524         kernel_map_range(phys_start, phys_end,
1525                          (enable ? PAGE_KERNEL : __pgprot(0)));
1526
1527         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1528                                PAGE_OFFSET + phys_end);
1529
1530         /* we should perform an IPI and flush all tlbs,
1531          * but that can deadlock->flush only current cpu.
1532          */
1533         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1534                                  PAGE_OFFSET + phys_end);
1535 }
1536 #endif
1537
1538 unsigned long __init find_ecache_flush_span(unsigned long size)
1539 {
1540         int i;
1541
1542         for (i = 0; i < pavail_ents; i++) {
1543                 if (pavail[i].reg_size >= size)
1544                         return pavail[i].phys_addr;
1545         }
1546
1547         return ~0UL;
1548 }
1549
1550 static void __init tsb_phys_patch(void)
1551 {
1552         struct tsb_ldquad_phys_patch_entry *pquad;
1553         struct tsb_phys_patch_entry *p;
1554
1555         pquad = &__tsb_ldquad_phys_patch;
1556         while (pquad < &__tsb_ldquad_phys_patch_end) {
1557                 unsigned long addr = pquad->addr;
1558
1559                 if (tlb_type == hypervisor)
1560                         *(unsigned int *) addr = pquad->sun4v_insn;
1561                 else
1562                         *(unsigned int *) addr = pquad->sun4u_insn;
1563                 wmb();
1564                 __asm__ __volatile__("flush     %0"
1565                                      : /* no outputs */
1566                                      : "r" (addr));
1567
1568                 pquad++;
1569         }
1570
1571         p = &__tsb_phys_patch;
1572         while (p < &__tsb_phys_patch_end) {
1573                 unsigned long addr = p->addr;
1574
1575                 *(unsigned int *) addr = p->insn;
1576                 wmb();
1577                 __asm__ __volatile__("flush     %0"
1578                                      : /* no outputs */
1579                                      : "r" (addr));
1580
1581                 p++;
1582         }
1583 }
1584
1585 /* Don't mark as init, we give this to the Hypervisor.  */
1586 #ifndef CONFIG_DEBUG_PAGEALLOC
1587 #define NUM_KTSB_DESCR  2
1588 #else
1589 #define NUM_KTSB_DESCR  1
1590 #endif
1591 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1592 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1593
1594 static void __init sun4v_ktsb_init(void)
1595 {
1596         unsigned long ktsb_pa;
1597
1598         /* First KTSB for PAGE_SIZE mappings.  */
1599         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1600
1601         switch (PAGE_SIZE) {
1602         case 8 * 1024:
1603         default:
1604                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1605                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1606                 break;
1607
1608         case 64 * 1024:
1609                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1610                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1611                 break;
1612
1613         case 512 * 1024:
1614                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1615                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1616                 break;
1617
1618         case 4 * 1024 * 1024:
1619                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1620                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1621                 break;
1622         };
1623
1624         ktsb_descr[0].assoc = 1;
1625         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1626         ktsb_descr[0].ctx_idx = 0;
1627         ktsb_descr[0].tsb_base = ktsb_pa;
1628         ktsb_descr[0].resv = 0;
1629
1630 #ifndef CONFIG_DEBUG_PAGEALLOC
1631         /* Second KTSB for 4MB/256MB mappings.  */
1632         ktsb_pa = (kern_base +
1633                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1634
1635         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1636         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1637                                    HV_PGSZ_MASK_256MB);
1638         ktsb_descr[1].assoc = 1;
1639         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1640         ktsb_descr[1].ctx_idx = 0;
1641         ktsb_descr[1].tsb_base = ktsb_pa;
1642         ktsb_descr[1].resv = 0;
1643 #endif
1644 }
1645
1646 void __cpuinit sun4v_ktsb_register(void)
1647 {
1648         unsigned long pa, ret;
1649
1650         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1651
1652         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1653         if (ret != 0) {
1654                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1655                             "errors with %lx\n", pa, ret);
1656                 prom_halt();
1657         }
1658 }
1659
1660 /* paging_init() sets up the page tables */
1661
1662 static unsigned long last_valid_pfn;
1663 pgd_t swapper_pg_dir[2048];
1664
1665 static void sun4u_pgprot_init(void);
1666 static void sun4v_pgprot_init(void);
1667
1668 /* Dummy function */
1669 void __init setup_per_cpu_areas(void)
1670 {
1671 }
1672
1673 void __init paging_init(void)
1674 {
1675         unsigned long end_pfn, shift, phys_base;
1676         unsigned long real_end, i;
1677
1678         /* These build time checkes make sure that the dcache_dirty_cpu()
1679          * page->flags usage will work.
1680          *
1681          * When a page gets marked as dcache-dirty, we store the
1682          * cpu number starting at bit 32 in the page->flags.  Also,
1683          * functions like clear_dcache_dirty_cpu use the cpu mask
1684          * in 13-bit signed-immediate instruction fields.
1685          */
1686
1687         /*
1688          * Page flags must not reach into upper 32 bits that are used
1689          * for the cpu number
1690          */
1691         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1692
1693         /*
1694          * The bit fields placed in the high range must not reach below
1695          * the 32 bit boundary. Otherwise we cannot place the cpu field
1696          * at the 32 bit boundary.
1697          */
1698         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1699                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1700
1701         BUILD_BUG_ON(NR_CPUS > 4096);
1702
1703         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1704         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1705
1706         /* Invalidate both kernel TSBs.  */
1707         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1708 #ifndef CONFIG_DEBUG_PAGEALLOC
1709         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1710 #endif
1711
1712         if (tlb_type == hypervisor)
1713                 sun4v_pgprot_init();
1714         else
1715                 sun4u_pgprot_init();
1716
1717         if (tlb_type == cheetah_plus ||
1718             tlb_type == hypervisor)
1719                 tsb_phys_patch();
1720
1721         if (tlb_type == hypervisor) {
1722                 sun4v_patch_tlb_handlers();
1723                 sun4v_ktsb_init();
1724         }
1725
1726         lmb_init();
1727
1728         /* Find available physical memory...
1729          *
1730          * Read it twice in order to work around a bug in openfirmware.
1731          * The call to grab this table itself can cause openfirmware to
1732          * allocate memory, which in turn can take away some space from
1733          * the list of available memory.  Reading it twice makes sure
1734          * we really do get the final value.
1735          */
1736         read_obp_translations();
1737         read_obp_memory("reg", &pall[0], &pall_ents);
1738         read_obp_memory("available", &pavail[0], &pavail_ents);
1739         read_obp_memory("available", &pavail[0], &pavail_ents);
1740
1741         phys_base = 0xffffffffffffffffUL;
1742         for (i = 0; i < pavail_ents; i++) {
1743                 phys_base = min(phys_base, pavail[i].phys_addr);
1744                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1745         }
1746
1747         lmb_reserve(kern_base, kern_size);
1748
1749         find_ramdisk(phys_base);
1750
1751         lmb_enforce_memory_limit(cmdline_memory_size);
1752
1753         lmb_analyze();
1754         lmb_dump_all();
1755
1756         set_bit(0, mmu_context_bmap);
1757
1758         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1759
1760         real_end = (unsigned long)_end;
1761         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1762         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1763                num_kernel_image_mappings);
1764
1765         /* Set kernel pgd to upper alias so physical page computations
1766          * work.
1767          */
1768         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1769         
1770         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1771
1772         /* Now can init the kernel/bad page tables. */
1773         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1774                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1775         
1776         inherit_prom_mappings();
1777         
1778         init_kpte_bitmap();
1779
1780         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1781         setup_tba();
1782
1783         __flush_tlb_all();
1784
1785         if (tlb_type == hypervisor)
1786                 sun4v_ktsb_register();
1787
1788         /* We must setup the per-cpu areas before we pull in the
1789          * PROM and the MDESC.  The code there fills in cpu and
1790          * other information into per-cpu data structures.
1791          */
1792         real_setup_per_cpu_areas();
1793
1794         prom_build_devicetree();
1795
1796         if (tlb_type == hypervisor)
1797                 sun4v_mdesc_init();
1798
1799         /* Once the OF device tree and MDESC have been setup, we know
1800          * the list of possible cpus.  Therefore we can allocate the
1801          * IRQ stacks.
1802          */
1803         for_each_possible_cpu(i) {
1804                 /* XXX Use node local allocations... XXX */
1805                 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1806                 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1807         }
1808
1809         /* Setup bootmem... */
1810         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1811
1812 #ifndef CONFIG_NEED_MULTIPLE_NODES
1813         max_mapnr = last_valid_pfn;
1814 #endif
1815         kernel_physical_mapping_init();
1816
1817         {
1818                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1819
1820                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1821
1822                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1823
1824                 free_area_init_nodes(max_zone_pfns);
1825         }
1826
1827         printk("Booting Linux...\n");
1828 }
1829
1830 int __init page_in_phys_avail(unsigned long paddr)
1831 {
1832         int i;
1833
1834         paddr &= PAGE_MASK;
1835
1836         for (i = 0; i < pavail_ents; i++) {
1837                 unsigned long start, end;
1838
1839                 start = pavail[i].phys_addr;
1840                 end = start + pavail[i].reg_size;
1841
1842                 if (paddr >= start && paddr < end)
1843                         return 1;
1844         }
1845         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1846                 return 1;
1847 #ifdef CONFIG_BLK_DEV_INITRD
1848         if (paddr >= __pa(initrd_start) &&
1849             paddr < __pa(PAGE_ALIGN(initrd_end)))
1850                 return 1;
1851 #endif
1852
1853         return 0;
1854 }
1855
1856 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1857 static int pavail_rescan_ents __initdata;
1858
1859 /* Certain OBP calls, such as fetching "available" properties, can
1860  * claim physical memory.  So, along with initializing the valid
1861  * address bitmap, what we do here is refetch the physical available
1862  * memory list again, and make sure it provides at least as much
1863  * memory as 'pavail' does.
1864  */
1865 static void __init setup_valid_addr_bitmap_from_pavail(void)
1866 {
1867         int i;
1868
1869         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1870
1871         for (i = 0; i < pavail_ents; i++) {
1872                 unsigned long old_start, old_end;
1873
1874                 old_start = pavail[i].phys_addr;
1875                 old_end = old_start + pavail[i].reg_size;
1876                 while (old_start < old_end) {
1877                         int n;
1878
1879                         for (n = 0; n < pavail_rescan_ents; n++) {
1880                                 unsigned long new_start, new_end;
1881
1882                                 new_start = pavail_rescan[n].phys_addr;
1883                                 new_end = new_start +
1884                                         pavail_rescan[n].reg_size;
1885
1886                                 if (new_start <= old_start &&
1887                                     new_end >= (old_start + PAGE_SIZE)) {
1888                                         set_bit(old_start >> 22,
1889                                                 sparc64_valid_addr_bitmap);
1890                                         goto do_next_page;
1891                                 }
1892                         }
1893
1894                         prom_printf("mem_init: Lost memory in pavail\n");
1895                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1896                                     pavail[i].phys_addr,
1897                                     pavail[i].reg_size);
1898                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1899                                     pavail_rescan[i].phys_addr,
1900                                     pavail_rescan[i].reg_size);
1901                         prom_printf("mem_init: Cannot continue, aborting.\n");
1902                         prom_halt();
1903
1904                 do_next_page:
1905                         old_start += PAGE_SIZE;
1906                 }
1907         }
1908 }
1909
1910 void __init mem_init(void)
1911 {
1912         unsigned long codepages, datapages, initpages;
1913         unsigned long addr, last;
1914         int i;
1915
1916         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1917         i += 1;
1918         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1919         if (sparc64_valid_addr_bitmap == NULL) {
1920                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1921                 prom_halt();
1922         }
1923         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1924
1925         addr = PAGE_OFFSET + kern_base;
1926         last = PAGE_ALIGN(kern_size) + addr;
1927         while (addr < last) {
1928                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1929                 addr += PAGE_SIZE;
1930         }
1931
1932         setup_valid_addr_bitmap_from_pavail();
1933
1934         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1935
1936 #ifdef CONFIG_NEED_MULTIPLE_NODES
1937         for_each_online_node(i) {
1938                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1939                         totalram_pages +=
1940                                 free_all_bootmem_node(NODE_DATA(i));
1941                 }
1942         }
1943 #else
1944         totalram_pages = free_all_bootmem();
1945 #endif
1946
1947         /* We subtract one to account for the mem_map_zero page
1948          * allocated below.
1949          */
1950         totalram_pages -= 1;
1951         num_physpages = totalram_pages;
1952
1953         /*
1954          * Set up the zero page, mark it reserved, so that page count
1955          * is not manipulated when freeing the page from user ptes.
1956          */
1957         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1958         if (mem_map_zero == NULL) {
1959                 prom_printf("paging_init: Cannot alloc zero page.\n");
1960                 prom_halt();
1961         }
1962         SetPageReserved(mem_map_zero);
1963
1964         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1965         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1966         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1967         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1968         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1969         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1970
1971         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1972                nr_free_pages() << (PAGE_SHIFT-10),
1973                codepages << (PAGE_SHIFT-10),
1974                datapages << (PAGE_SHIFT-10), 
1975                initpages << (PAGE_SHIFT-10), 
1976                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1977
1978         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1979                 cheetah_ecache_flush_init();
1980 }
1981
1982 void free_initmem(void)
1983 {
1984         unsigned long addr, initend;
1985         int do_free = 1;
1986
1987         /* If the physical memory maps were trimmed by kernel command
1988          * line options, don't even try freeing this initmem stuff up.
1989          * The kernel image could have been in the trimmed out region
1990          * and if so the freeing below will free invalid page structs.
1991          */
1992         if (cmdline_memory_size)
1993                 do_free = 0;
1994
1995         /*
1996          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1997          */
1998         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1999         initend = (unsigned long)(__init_end) & PAGE_MASK;
2000         for (; addr < initend; addr += PAGE_SIZE) {
2001                 unsigned long page;
2002                 struct page *p;
2003
2004                 page = (addr +
2005                         ((unsigned long) __va(kern_base)) -
2006                         ((unsigned long) KERNBASE));
2007                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2008
2009                 if (do_free) {
2010                         p = virt_to_page(page);
2011
2012                         ClearPageReserved(p);
2013                         init_page_count(p);
2014                         __free_page(p);
2015                         num_physpages++;
2016                         totalram_pages++;
2017                 }
2018         }
2019 }
2020
2021 #ifdef CONFIG_BLK_DEV_INITRD
2022 void free_initrd_mem(unsigned long start, unsigned long end)
2023 {
2024         if (start < end)
2025                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2026         for (; start < end; start += PAGE_SIZE) {
2027                 struct page *p = virt_to_page(start);
2028
2029                 ClearPageReserved(p);
2030                 init_page_count(p);
2031                 __free_page(p);
2032                 num_physpages++;
2033                 totalram_pages++;
2034         }
2035 }
2036 #endif
2037
2038 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2039 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2040 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2041 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2042 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2043 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2044
2045 pgprot_t PAGE_KERNEL __read_mostly;
2046 EXPORT_SYMBOL(PAGE_KERNEL);
2047
2048 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2049 pgprot_t PAGE_COPY __read_mostly;
2050
2051 pgprot_t PAGE_SHARED __read_mostly;
2052 EXPORT_SYMBOL(PAGE_SHARED);
2053
2054 unsigned long pg_iobits __read_mostly;
2055
2056 unsigned long _PAGE_IE __read_mostly;
2057 EXPORT_SYMBOL(_PAGE_IE);
2058
2059 unsigned long _PAGE_E __read_mostly;
2060 EXPORT_SYMBOL(_PAGE_E);
2061
2062 unsigned long _PAGE_CACHE __read_mostly;
2063 EXPORT_SYMBOL(_PAGE_CACHE);
2064
2065 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2066 unsigned long vmemmap_table[VMEMMAP_SIZE];
2067
2068 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2069 {
2070         unsigned long vstart = (unsigned long) start;
2071         unsigned long vend = (unsigned long) (start + nr);
2072         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2073         unsigned long phys_end = (vend - VMEMMAP_BASE);
2074         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2075         unsigned long end = VMEMMAP_ALIGN(phys_end);
2076         unsigned long pte_base;
2077
2078         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2079                     _PAGE_CP_4U | _PAGE_CV_4U |
2080                     _PAGE_P_4U | _PAGE_W_4U);
2081         if (tlb_type == hypervisor)
2082                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2083                             _PAGE_CP_4V | _PAGE_CV_4V |
2084                             _PAGE_P_4V | _PAGE_W_4V);
2085
2086         for (; addr < end; addr += VMEMMAP_CHUNK) {
2087                 unsigned long *vmem_pp =
2088                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2089                 void *block;
2090
2091                 if (!(*vmem_pp & _PAGE_VALID)) {
2092                         block = vmemmap_alloc_block(1UL << 22, node);
2093                         if (!block)
2094                                 return -ENOMEM;
2095
2096                         *vmem_pp = pte_base | __pa(block);
2097
2098                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2099                                "node=%d entry=%lu/%lu\n", start, block, nr,
2100                                node,
2101                                addr >> VMEMMAP_CHUNK_SHIFT,
2102                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2103                 }
2104         }
2105         return 0;
2106 }
2107 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2108
2109 static void prot_init_common(unsigned long page_none,
2110                              unsigned long page_shared,
2111                              unsigned long page_copy,
2112                              unsigned long page_readonly,
2113                              unsigned long page_exec_bit)
2114 {
2115         PAGE_COPY = __pgprot(page_copy);
2116         PAGE_SHARED = __pgprot(page_shared);
2117
2118         protection_map[0x0] = __pgprot(page_none);
2119         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2120         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2121         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2122         protection_map[0x4] = __pgprot(page_readonly);
2123         protection_map[0x5] = __pgprot(page_readonly);
2124         protection_map[0x6] = __pgprot(page_copy);
2125         protection_map[0x7] = __pgprot(page_copy);
2126         protection_map[0x8] = __pgprot(page_none);
2127         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2128         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2129         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2130         protection_map[0xc] = __pgprot(page_readonly);
2131         protection_map[0xd] = __pgprot(page_readonly);
2132         protection_map[0xe] = __pgprot(page_shared);
2133         protection_map[0xf] = __pgprot(page_shared);
2134 }
2135
2136 static void __init sun4u_pgprot_init(void)
2137 {
2138         unsigned long page_none, page_shared, page_copy, page_readonly;
2139         unsigned long page_exec_bit;
2140
2141         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2142                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2143                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2144                                 _PAGE_EXEC_4U);
2145         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2146                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2147                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2148                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2149
2150         _PAGE_IE = _PAGE_IE_4U;
2151         _PAGE_E = _PAGE_E_4U;
2152         _PAGE_CACHE = _PAGE_CACHE_4U;
2153
2154         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2155                      __ACCESS_BITS_4U | _PAGE_E_4U);
2156
2157 #ifdef CONFIG_DEBUG_PAGEALLOC
2158         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2159                 0xfffff80000000000UL;
2160 #else
2161         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2162                 0xfffff80000000000UL;
2163 #endif
2164         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2165                                    _PAGE_P_4U | _PAGE_W_4U);
2166
2167         /* XXX Should use 256MB on Panther. XXX */
2168         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2169
2170         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2171         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2172                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2173                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2174
2175
2176         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2177         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2178                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2179         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2180                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2181         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2182                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2183
2184         page_exec_bit = _PAGE_EXEC_4U;
2185
2186         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2187                          page_exec_bit);
2188 }
2189
2190 static void __init sun4v_pgprot_init(void)
2191 {
2192         unsigned long page_none, page_shared, page_copy, page_readonly;
2193         unsigned long page_exec_bit;
2194
2195         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2196                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2197                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2198                                 _PAGE_EXEC_4V);
2199         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2200
2201         _PAGE_IE = _PAGE_IE_4V;
2202         _PAGE_E = _PAGE_E_4V;
2203         _PAGE_CACHE = _PAGE_CACHE_4V;
2204
2205 #ifdef CONFIG_DEBUG_PAGEALLOC
2206         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2207                 0xfffff80000000000UL;
2208 #else
2209         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2210                 0xfffff80000000000UL;
2211 #endif
2212         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2213                                    _PAGE_P_4V | _PAGE_W_4V);
2214
2215 #ifdef CONFIG_DEBUG_PAGEALLOC
2216         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2217                 0xfffff80000000000UL;
2218 #else
2219         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2220                 0xfffff80000000000UL;
2221 #endif
2222         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2223                                    _PAGE_P_4V | _PAGE_W_4V);
2224
2225         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2226                      __ACCESS_BITS_4V | _PAGE_E_4V);
2227
2228         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2229         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2230                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2231                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2232                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2233
2234         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2235         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2236                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2237         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2238                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2239         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2240                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2241
2242         page_exec_bit = _PAGE_EXEC_4V;
2243
2244         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2245                          page_exec_bit);
2246 }
2247
2248 unsigned long pte_sz_bits(unsigned long sz)
2249 {
2250         if (tlb_type == hypervisor) {
2251                 switch (sz) {
2252                 case 8 * 1024:
2253                 default:
2254                         return _PAGE_SZ8K_4V;
2255                 case 64 * 1024:
2256                         return _PAGE_SZ64K_4V;
2257                 case 512 * 1024:
2258                         return _PAGE_SZ512K_4V;
2259                 case 4 * 1024 * 1024:
2260                         return _PAGE_SZ4MB_4V;
2261                 };
2262         } else {
2263                 switch (sz) {
2264                 case 8 * 1024:
2265                 default:
2266                         return _PAGE_SZ8K_4U;
2267                 case 64 * 1024:
2268                         return _PAGE_SZ64K_4U;
2269                 case 512 * 1024:
2270                         return _PAGE_SZ512K_4U;
2271                 case 4 * 1024 * 1024:
2272                         return _PAGE_SZ4MB_4U;
2273                 };
2274         }
2275 }
2276
2277 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2278 {
2279         pte_t pte;
2280
2281         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2282         pte_val(pte) |= (((unsigned long)space) << 32);
2283         pte_val(pte) |= pte_sz_bits(page_size);
2284
2285         return pte;
2286 }
2287
2288 static unsigned long kern_large_tte(unsigned long paddr)
2289 {
2290         unsigned long val;
2291
2292         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2293                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2294                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2295         if (tlb_type == hypervisor)
2296                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2297                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2298                        _PAGE_EXEC_4V | _PAGE_W_4V);
2299
2300         return val | paddr;
2301 }
2302
2303 /* If not locked, zap it. */
2304 void __flush_tlb_all(void)
2305 {
2306         unsigned long pstate;
2307         int i;
2308
2309         __asm__ __volatile__("flushw\n\t"
2310                              "rdpr      %%pstate, %0\n\t"
2311                              "wrpr      %0, %1, %%pstate"
2312                              : "=r" (pstate)
2313                              : "i" (PSTATE_IE));
2314         if (tlb_type == hypervisor) {
2315                 sun4v_mmu_demap_all();
2316         } else if (tlb_type == spitfire) {
2317                 for (i = 0; i < 64; i++) {
2318                         /* Spitfire Errata #32 workaround */
2319                         /* NOTE: Always runs on spitfire, so no
2320                          *       cheetah+ page size encodings.
2321                          */
2322                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2323                                              "flush     %%g6"
2324                                              : /* No outputs */
2325                                              : "r" (0),
2326                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2327
2328                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2329                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2330                                                      "membar #Sync"
2331                                                      : /* no outputs */
2332                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2333                                 spitfire_put_dtlb_data(i, 0x0UL);
2334                         }
2335
2336                         /* Spitfire Errata #32 workaround */
2337                         /* NOTE: Always runs on spitfire, so no
2338                          *       cheetah+ page size encodings.
2339                          */
2340                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2341                                              "flush     %%g6"
2342                                              : /* No outputs */
2343                                              : "r" (0),
2344                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2345
2346                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2347                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2348                                                      "membar #Sync"
2349                                                      : /* no outputs */
2350                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2351                                 spitfire_put_itlb_data(i, 0x0UL);
2352                         }
2353                 }
2354         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2355                 cheetah_flush_dtlb_all();
2356                 cheetah_flush_itlb_all();
2357         }
2358         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2359                              : : "r" (pstate));
2360 }