Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[pandora-kernel.git] / arch / sparc / net / bpf_jit_comp.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
7
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
10
11 #include "bpf_jit.h"
12
13 int bpf_jit_enable __read_mostly;
14
15 static inline bool is_simm13(unsigned int value)
16 {
17         return value + 0x1000 < 0x2000;
18 }
19
20 static void bpf_flush_icache(void *start_, void *end_)
21 {
22 #ifdef CONFIG_SPARC64
23         /* Cheetah's I-cache is fully coherent.  */
24         if (tlb_type == spitfire) {
25                 unsigned long start = (unsigned long) start_;
26                 unsigned long end = (unsigned long) end_;
27
28                 start &= ~7UL;
29                 end = (end + 7UL) & ~7UL;
30                 while (start < end) {
31                         flushi(start);
32                         start += 32;
33                 }
34         }
35 #endif
36 }
37
38 #define SEEN_DATAREF 1 /* might call external helpers */
39 #define SEEN_XREG    2 /* ebx is used */
40 #define SEEN_MEM     4 /* use mem[] for temporary storage */
41
42 #define S13(X)          ((X) & 0x1fff)
43 #define IMMED           0x00002000
44 #define RD(X)           ((X) << 25)
45 #define RS1(X)          ((X) << 14)
46 #define RS2(X)          ((X))
47 #define OP(X)           ((X) << 30)
48 #define OP2(X)          ((X) << 22)
49 #define OP3(X)          ((X) << 19)
50 #define COND(X)         ((X) << 25)
51 #define F1(X)           OP(X)
52 #define F2(X, Y)        (OP(X) | OP2(Y))
53 #define F3(X, Y)        (OP(X) | OP3(Y))
54
55 #define CONDN           COND(0x0)
56 #define CONDE           COND(0x1)
57 #define CONDLE          COND(0x2)
58 #define CONDL           COND(0x3)
59 #define CONDLEU         COND(0x4)
60 #define CONDCS          COND(0x5)
61 #define CONDNEG         COND(0x6)
62 #define CONDVC          COND(0x7)
63 #define CONDA           COND(0x8)
64 #define CONDNE          COND(0x9)
65 #define CONDG           COND(0xa)
66 #define CONDGE          COND(0xb)
67 #define CONDGU          COND(0xc)
68 #define CONDCC          COND(0xd)
69 #define CONDPOS         COND(0xe)
70 #define CONDVS          COND(0xf)
71
72 #define CONDGEU         CONDCC
73 #define CONDLU          CONDCS
74
75 #define WDISP22(X)      (((X) >> 2) & 0x3fffff)
76
77 #define BA              (F2(0, 2) | CONDA)
78 #define BGU             (F2(0, 2) | CONDGU)
79 #define BLEU            (F2(0, 2) | CONDLEU)
80 #define BGEU            (F2(0, 2) | CONDGEU)
81 #define BLU             (F2(0, 2) | CONDLU)
82 #define BE              (F2(0, 2) | CONDE)
83 #define BNE             (F2(0, 2) | CONDNE)
84
85 #ifdef CONFIG_SPARC64
86 #define BE_PTR          (F2(0, 1) | CONDE | (2 << 20))
87 #else
88 #define BE_PTR          BE
89 #endif
90
91 #define SETHI(K, REG)   \
92         (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
93 #define OR_LO(K, REG)   \
94         (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
95
96 #define ADD             F3(2, 0x00)
97 #define AND             F3(2, 0x01)
98 #define ANDCC           F3(2, 0x11)
99 #define OR              F3(2, 0x02)
100 #define XOR             F3(2, 0x03)
101 #define SUB             F3(2, 0x04)
102 #define SUBCC           F3(2, 0x14)
103 #define MUL             F3(2, 0x0a)     /* umul */
104 #define DIV             F3(2, 0x0e)     /* udiv */
105 #define SLL             F3(2, 0x25)
106 #define SRL             F3(2, 0x26)
107 #define JMPL            F3(2, 0x38)
108 #define CALL            F1(1)
109 #define BR              F2(0, 0x01)
110 #define RD_Y            F3(2, 0x28)
111 #define WR_Y            F3(2, 0x30)
112
113 #define LD32            F3(3, 0x00)
114 #define LD8             F3(3, 0x01)
115 #define LD16            F3(3, 0x02)
116 #define LD64            F3(3, 0x0b)
117 #define ST32            F3(3, 0x04)
118
119 #ifdef CONFIG_SPARC64
120 #define LDPTR           LD64
121 #define BASE_STACKFRAME 176
122 #else
123 #define LDPTR           LD32
124 #define BASE_STACKFRAME 96
125 #endif
126
127 #define LD32I           (LD32 | IMMED)
128 #define LD8I            (LD8 | IMMED)
129 #define LD16I           (LD16 | IMMED)
130 #define LD64I           (LD64 | IMMED)
131 #define LDPTRI          (LDPTR | IMMED)
132 #define ST32I           (ST32 | IMMED)
133
134 #define emit_nop()              \
135 do {                            \
136         *prog++ = SETHI(0, G0); \
137 } while (0)
138
139 #define emit_neg()                                      \
140 do {    /* sub %g0, r_A, r_A */                         \
141         *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
142 } while (0)
143
144 #define emit_reg_move(FROM, TO)                         \
145 do {    /* or %g0, FROM, TO */                          \
146         *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
147 } while (0)
148
149 #define emit_clear(REG)                                 \
150 do {    /* or %g0, %g0, REG */                          \
151         *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
152 } while (0)
153
154 #define emit_set_const(K, REG)                                  \
155 do {    /* sethi %hi(K), REG */                                 \
156         *prog++ = SETHI(K, REG);                                \
157         /* or REG, %lo(K), REG */                               \
158         *prog++ = OR_LO(K, REG);                                \
159 } while (0)
160
161         /* Emit
162          *
163          *      OP      r_A, r_X, r_A
164          */
165 #define emit_alu_X(OPCODE)                                      \
166 do {                                                            \
167         seen |= SEEN_XREG;                                      \
168         *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
169 } while (0)
170
171         /* Emit either:
172          *
173          *      OP      r_A, K, r_A
174          *
175          * or
176          *
177          *      sethi   %hi(K), r_TMP
178          *      or      r_TMP, %lo(K), r_TMP
179          *      OP      r_A, r_TMP, r_A
180          *
181          * depending upon whether K fits in a signed 13-bit
182          * immediate instruction field.  Emit nothing if K
183          * is zero.
184          */
185 #define emit_alu_K(OPCODE, K)                                   \
186 do {                                                            \
187         if (K) {                                                \
188                 unsigned int _insn = OPCODE;                    \
189                 _insn |= RS1(r_A) | RD(r_A);                    \
190                 if (is_simm13(K)) {                             \
191                         *prog++ = _insn | IMMED | S13(K);       \
192                 } else {                                        \
193                         emit_set_const(K, r_TMP);               \
194                         *prog++ = _insn | RS2(r_TMP);           \
195                 }                                               \
196         }                                                       \
197 } while (0)
198
199 #define emit_loadimm(K, DEST)                                           \
200 do {                                                                    \
201         if (is_simm13(K)) {                                             \
202                 /* or %g0, K, DEST */                                   \
203                 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
204         } else {                                                        \
205                 emit_set_const(K, DEST);                                \
206         }                                                               \
207 } while (0)
208
209 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
210 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
211         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
212         *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
213 } while (0)
214
215 #define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
216 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
217         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
218         *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
219 } while (0)
220
221 #define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
222 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
223         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
224         *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
225 } while (0)
226
227 #define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
228 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
229         *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
230 } while (0)
231
232 #define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
233 do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
234         __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
235 } while (0)
236
237 #define emit_ldmem(OFF, DEST)                                   \
238 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST);     \
239 } while (0)
240
241 #define emit_stmem(OFF, SRC)                                    \
242 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC);      \
243 } while (0)
244
245 #ifdef CONFIG_SMP
246 #ifdef CONFIG_SPARC64
247 #define emit_load_cpu(REG)                                              \
248         emit_load16(G6, struct thread_info, cpu, REG)
249 #else
250 #define emit_load_cpu(REG)                                              \
251         emit_load32(G6, struct thread_info, cpu, REG)
252 #endif
253 #else
254 #define emit_load_cpu(REG)      emit_clear(REG)
255 #endif
256
257 #define emit_skb_loadptr(FIELD, DEST) \
258         emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
259 #define emit_skb_load32(FIELD, DEST) \
260         emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
261 #define emit_skb_load16(FIELD, DEST) \
262         emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
263 #define __emit_skb_load8(FIELD, DEST) \
264         __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load8(FIELD, DEST) \
266         emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
267
268 #define emit_jmpl(BASE, IMM_OFF, LREG) \
269         *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
270
271 #define emit_call(FUNC)                                 \
272 do {    void *_here = image + addrs[i] - 8;             \
273         unsigned int _off = (void *)(FUNC) - _here;     \
274         *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
275         emit_nop();                                     \
276 } while (0)
277
278 #define emit_branch(BR_OPC, DEST)                       \
279 do {    unsigned int _here = addrs[i] - 8;              \
280         *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
281 } while (0)
282
283 #define emit_branch_off(BR_OPC, OFF)                    \
284 do {    *prog++ = BR_OPC | WDISP22(OFF);                \
285 } while (0)
286
287 #define emit_jump(DEST)         emit_branch(BA, DEST)
288
289 #define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
290 #define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
291
292 #define emit_cmp(R1, R2) \
293         *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
294
295 #define emit_cmpi(R1, IMM) \
296         *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
297
298 #define emit_btst(R1, R2) \
299         *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
300
301 #define emit_btsti(R1, IMM) \
302         *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
303
304 #define emit_sub(R1, R2, R3) \
305         *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
306
307 #define emit_subi(R1, IMM, R3) \
308         *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
309
310 #define emit_add(R1, R2, R3) \
311         *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
312
313 #define emit_addi(R1, IMM, R3) \
314         *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
315
316 #define emit_and(R1, R2, R3) \
317         *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
318
319 #define emit_andi(R1, IMM, R3) \
320         *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
321
322 #define emit_alloc_stack(SZ) \
323         *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
324
325 #define emit_release_stack(SZ) \
326         *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
327
328 /* A note about branch offset calculations.  The addrs[] array,
329  * indexed by BPF instruction, records the address after all the
330  * sparc instructions emitted for that BPF instruction.
331  *
332  * The most common case is to emit a branch at the end of such
333  * a code sequence.  So this would be two instructions, the
334  * branch and it's delay slot.
335  *
336  * Therefore by default the branch emitters calculate the branch
337  * offset field as:
338  *
339  *      destination - (addrs[i] - 8)
340  *
341  * This "addrs[i] - 8" is the address of the branch itself or
342  * what "." would be in assembler notation.  The "8" part is
343  * how we take into consideration the branch and it's delay
344  * slot mentioned above.
345  *
346  * Sometimes we need to emit a branch earlier in the code
347  * sequence.  And in these situations we adjust "destination"
348  * to accomodate this difference.  For example, if we needed
349  * to emit a branch (and it's delay slot) right before the
350  * final instruction emitted for a BPF opcode, we'd use
351  * "destination + 4" instead of just plain "destination" above.
352  *
353  * This is why you see all of these funny emit_branch() and
354  * emit_jump() calls with adjusted offsets.
355  */
356
357 void bpf_jit_compile(struct bpf_prog *fp)
358 {
359         unsigned int cleanup_addr, proglen, oldproglen = 0;
360         u32 temp[8], *prog, *func, seen = 0, pass;
361         const struct sock_filter *filter = fp->insns;
362         int i, flen = fp->len, pc_ret0 = -1;
363         unsigned int *addrs;
364         void *image;
365
366         if (!bpf_jit_enable)
367                 return;
368
369         addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
370         if (addrs == NULL)
371                 return;
372
373         /* Before first pass, make a rough estimation of addrs[]
374          * each bpf instruction is translated to less than 64 bytes
375          */
376         for (proglen = 0, i = 0; i < flen; i++) {
377                 proglen += 64;
378                 addrs[i] = proglen;
379         }
380         cleanup_addr = proglen; /* epilogue address */
381         image = NULL;
382         for (pass = 0; pass < 10; pass++) {
383                 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
384
385                 /* no prologue/epilogue for trivial filters (RET something) */
386                 proglen = 0;
387                 prog = temp;
388
389                 /* Prologue */
390                 if (seen_or_pass0) {
391                         if (seen_or_pass0 & SEEN_MEM) {
392                                 unsigned int sz = BASE_STACKFRAME;
393                                 sz += BPF_MEMWORDS * sizeof(u32);
394                                 emit_alloc_stack(sz);
395                         }
396
397                         /* Make sure we dont leek kernel memory. */
398                         if (seen_or_pass0 & SEEN_XREG)
399                                 emit_clear(r_X);
400
401                         /* If this filter needs to access skb data,
402                          * load %o4 and %o5 with:
403                          *  %o4 = skb->len - skb->data_len
404                          *  %o5 = skb->data
405                          * And also back up %o7 into r_saved_O7 so we can
406                          * invoke the stubs using 'call'.
407                          */
408                         if (seen_or_pass0 & SEEN_DATAREF) {
409                                 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
410                                 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
411                                 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
412                                 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
413                         }
414                 }
415                 emit_reg_move(O7, r_saved_O7);
416
417                 switch (filter[0].code) {
418                 case BPF_RET | BPF_K:
419                 case BPF_LD | BPF_W | BPF_LEN:
420                 case BPF_LD | BPF_W | BPF_ABS:
421                 case BPF_LD | BPF_H | BPF_ABS:
422                 case BPF_LD | BPF_B | BPF_ABS:
423                         /* The first instruction sets the A register (or is
424                          * a "RET 'constant'")
425                          */
426                         break;
427                 default:
428                         /* Make sure we dont leak kernel information to the
429                          * user.
430                          */
431                         emit_clear(r_A); /* A = 0 */
432                 }
433
434                 for (i = 0; i < flen; i++) {
435                         unsigned int K = filter[i].k;
436                         unsigned int t_offset;
437                         unsigned int f_offset;
438                         u32 t_op, f_op;
439                         u16 code = bpf_anc_helper(&filter[i]);
440                         int ilen;
441
442                         switch (code) {
443                         case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
444                                 emit_alu_X(ADD);
445                                 break;
446                         case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
447                                 emit_alu_K(ADD, K);
448                                 break;
449                         case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
450                                 emit_alu_X(SUB);
451                                 break;
452                         case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
453                                 emit_alu_K(SUB, K);
454                                 break;
455                         case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
456                                 emit_alu_X(AND);
457                                 break;
458                         case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
459                                 emit_alu_K(AND, K);
460                                 break;
461                         case BPF_ALU | BPF_OR | BPF_X:  /* A |= X */
462                                 emit_alu_X(OR);
463                                 break;
464                         case BPF_ALU | BPF_OR | BPF_K:  /* A |= K */
465                                 emit_alu_K(OR, K);
466                                 break;
467                         case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
468                         case BPF_ALU | BPF_XOR | BPF_X:
469                                 emit_alu_X(XOR);
470                                 break;
471                         case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
472                                 emit_alu_K(XOR, K);
473                                 break;
474                         case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
475                                 emit_alu_X(SLL);
476                                 break;
477                         case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
478                                 emit_alu_K(SLL, K);
479                                 break;
480                         case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
481                                 emit_alu_X(SRL);
482                                 break;
483                         case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
484                                 emit_alu_K(SRL, K);
485                                 break;
486                         case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
487                                 emit_alu_X(MUL);
488                                 break;
489                         case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
490                                 emit_alu_K(MUL, K);
491                                 break;
492                         case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
493                                 if (K == 1)
494                                         break;
495                                 emit_write_y(G0);
496 #ifdef CONFIG_SPARC32
497                                 /* The Sparc v8 architecture requires
498                                  * three instructions between a %y
499                                  * register write and the first use.
500                                  */
501                                 emit_nop();
502                                 emit_nop();
503                                 emit_nop();
504 #endif
505                                 emit_alu_K(DIV, K);
506                                 break;
507                         case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
508                                 emit_cmpi(r_X, 0);
509                                 if (pc_ret0 > 0) {
510                                         t_offset = addrs[pc_ret0 - 1];
511 #ifdef CONFIG_SPARC32
512                                         emit_branch(BE, t_offset + 20);
513 #else
514                                         emit_branch(BE, t_offset + 8);
515 #endif
516                                         emit_nop(); /* delay slot */
517                                 } else {
518                                         emit_branch_off(BNE, 16);
519                                         emit_nop();
520 #ifdef CONFIG_SPARC32
521                                         emit_jump(cleanup_addr + 20);
522 #else
523                                         emit_jump(cleanup_addr + 8);
524 #endif
525                                         emit_clear(r_A);
526                                 }
527                                 emit_write_y(G0);
528 #ifdef CONFIG_SPARC32
529                                 /* The Sparc v8 architecture requires
530                                  * three instructions between a %y
531                                  * register write and the first use.
532                                  */
533                                 emit_nop();
534                                 emit_nop();
535                                 emit_nop();
536 #endif
537                                 emit_alu_X(DIV);
538                                 break;
539                         case BPF_ALU | BPF_NEG:
540                                 emit_neg();
541                                 break;
542                         case BPF_RET | BPF_K:
543                                 if (!K) {
544                                         if (pc_ret0 == -1)
545                                                 pc_ret0 = i;
546                                         emit_clear(r_A);
547                                 } else {
548                                         emit_loadimm(K, r_A);
549                                 }
550                                 /* Fallthrough */
551                         case BPF_RET | BPF_A:
552                                 if (seen_or_pass0) {
553                                         if (i != flen - 1) {
554                                                 emit_jump(cleanup_addr);
555                                                 emit_nop();
556                                                 break;
557                                         }
558                                         if (seen_or_pass0 & SEEN_MEM) {
559                                                 unsigned int sz = BASE_STACKFRAME;
560                                                 sz += BPF_MEMWORDS * sizeof(u32);
561                                                 emit_release_stack(sz);
562                                         }
563                                 }
564                                 /* jmpl %r_saved_O7 + 8, %g0 */
565                                 emit_jmpl(r_saved_O7, 8, G0);
566                                 emit_reg_move(r_A, O0); /* delay slot */
567                                 break;
568                         case BPF_MISC | BPF_TAX:
569                                 seen |= SEEN_XREG;
570                                 emit_reg_move(r_A, r_X);
571                                 break;
572                         case BPF_MISC | BPF_TXA:
573                                 seen |= SEEN_XREG;
574                                 emit_reg_move(r_X, r_A);
575                                 break;
576                         case BPF_ANC | SKF_AD_CPU:
577                                 emit_load_cpu(r_A);
578                                 break;
579                         case BPF_ANC | SKF_AD_PROTOCOL:
580                                 emit_skb_load16(protocol, r_A);
581                                 break;
582 #if 0
583                                 /* GCC won't let us take the address of
584                                  * a bit field even though we very much
585                                  * know what we are doing here.
586                                  */
587                         case BPF_ANC | SKF_AD_PKTTYPE:
588                                 __emit_skb_load8(pkt_type, r_A);
589                                 emit_alu_K(SRL, 5);
590                                 break;
591 #endif
592                         case BPF_ANC | SKF_AD_IFINDEX:
593                                 emit_skb_loadptr(dev, r_A);
594                                 emit_cmpi(r_A, 0);
595                                 emit_branch(BE_PTR, cleanup_addr + 4);
596                                 emit_nop();
597                                 emit_load32(r_A, struct net_device, ifindex, r_A);
598                                 break;
599                         case BPF_ANC | SKF_AD_MARK:
600                                 emit_skb_load32(mark, r_A);
601                                 break;
602                         case BPF_ANC | SKF_AD_QUEUE:
603                                 emit_skb_load16(queue_mapping, r_A);
604                                 break;
605                         case BPF_ANC | SKF_AD_HATYPE:
606                                 emit_skb_loadptr(dev, r_A);
607                                 emit_cmpi(r_A, 0);
608                                 emit_branch(BE_PTR, cleanup_addr + 4);
609                                 emit_nop();
610                                 emit_load16(r_A, struct net_device, type, r_A);
611                                 break;
612                         case BPF_ANC | SKF_AD_RXHASH:
613                                 emit_skb_load32(hash, r_A);
614                                 break;
615                         case BPF_ANC | SKF_AD_VLAN_TAG:
616                         case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
617                                 emit_skb_load16(vlan_tci, r_A);
618                                 if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
619                                         emit_andi(r_A, VLAN_VID_MASK, r_A);
620                                 } else {
621                                         emit_loadimm(VLAN_TAG_PRESENT, r_TMP);
622                                         emit_and(r_A, r_TMP, r_A);
623                                 }
624                                 break;
625
626                         case BPF_LD | BPF_IMM:
627                                 emit_loadimm(K, r_A);
628                                 break;
629                         case BPF_LDX | BPF_IMM:
630                                 emit_loadimm(K, r_X);
631                                 break;
632                         case BPF_LD | BPF_MEM:
633                                 emit_ldmem(K * 4, r_A);
634                                 break;
635                         case BPF_LDX | BPF_MEM:
636                                 emit_ldmem(K * 4, r_X);
637                                 break;
638                         case BPF_ST:
639                                 emit_stmem(K * 4, r_A);
640                                 break;
641                         case BPF_STX:
642                                 emit_stmem(K * 4, r_X);
643                                 break;
644
645 #define CHOOSE_LOAD_FUNC(K, func) \
646         ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
647
648                         case BPF_LD | BPF_W | BPF_ABS:
649                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
650 common_load:                    seen |= SEEN_DATAREF;
651                                 emit_loadimm(K, r_OFF);
652                                 emit_call(func);
653                                 break;
654                         case BPF_LD | BPF_H | BPF_ABS:
655                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
656                                 goto common_load;
657                         case BPF_LD | BPF_B | BPF_ABS:
658                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
659                                 goto common_load;
660                         case BPF_LDX | BPF_B | BPF_MSH:
661                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
662                                 goto common_load;
663                         case BPF_LD | BPF_W | BPF_IND:
664                                 func = bpf_jit_load_word;
665 common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
666                                 if (K) {
667                                         if (is_simm13(K)) {
668                                                 emit_addi(r_X, K, r_OFF);
669                                         } else {
670                                                 emit_loadimm(K, r_TMP);
671                                                 emit_add(r_X, r_TMP, r_OFF);
672                                         }
673                                 } else {
674                                         emit_reg_move(r_X, r_OFF);
675                                 }
676                                 emit_call(func);
677                                 break;
678                         case BPF_LD | BPF_H | BPF_IND:
679                                 func = bpf_jit_load_half;
680                                 goto common_load_ind;
681                         case BPF_LD | BPF_B | BPF_IND:
682                                 func = bpf_jit_load_byte;
683                                 goto common_load_ind;
684                         case BPF_JMP | BPF_JA:
685                                 emit_jump(addrs[i + K]);
686                                 emit_nop();
687                                 break;
688
689 #define COND_SEL(CODE, TOP, FOP)        \
690         case CODE:                      \
691                 t_op = TOP;             \
692                 f_op = FOP;             \
693                 goto cond_branch
694
695                         COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
696                         COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
697                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
698                         COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
699                         COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
700                         COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
701                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
702                         COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
703
704 cond_branch:                    f_offset = addrs[i + filter[i].jf];
705                                 t_offset = addrs[i + filter[i].jt];
706
707                                 /* same targets, can avoid doing the test :) */
708                                 if (filter[i].jt == filter[i].jf) {
709                                         emit_jump(t_offset);
710                                         emit_nop();
711                                         break;
712                                 }
713
714                                 switch (code) {
715                                 case BPF_JMP | BPF_JGT | BPF_X:
716                                 case BPF_JMP | BPF_JGE | BPF_X:
717                                 case BPF_JMP | BPF_JEQ | BPF_X:
718                                         seen |= SEEN_XREG;
719                                         emit_cmp(r_A, r_X);
720                                         break;
721                                 case BPF_JMP | BPF_JSET | BPF_X:
722                                         seen |= SEEN_XREG;
723                                         emit_btst(r_A, r_X);
724                                         break;
725                                 case BPF_JMP | BPF_JEQ | BPF_K:
726                                 case BPF_JMP | BPF_JGT | BPF_K:
727                                 case BPF_JMP | BPF_JGE | BPF_K:
728                                         if (is_simm13(K)) {
729                                                 emit_cmpi(r_A, K);
730                                         } else {
731                                                 emit_loadimm(K, r_TMP);
732                                                 emit_cmp(r_A, r_TMP);
733                                         }
734                                         break;
735                                 case BPF_JMP | BPF_JSET | BPF_K:
736                                         if (is_simm13(K)) {
737                                                 emit_btsti(r_A, K);
738                                         } else {
739                                                 emit_loadimm(K, r_TMP);
740                                                 emit_btst(r_A, r_TMP);
741                                         }
742                                         break;
743                                 }
744                                 if (filter[i].jt != 0) {
745                                         if (filter[i].jf)
746                                                 t_offset += 8;
747                                         emit_branch(t_op, t_offset);
748                                         emit_nop(); /* delay slot */
749                                         if (filter[i].jf) {
750                                                 emit_jump(f_offset);
751                                                 emit_nop();
752                                         }
753                                         break;
754                                 }
755                                 emit_branch(f_op, f_offset);
756                                 emit_nop(); /* delay slot */
757                                 break;
758
759                         default:
760                                 /* hmm, too complex filter, give up with jit compiler */
761                                 goto out;
762                         }
763                         ilen = (void *) prog - (void *) temp;
764                         if (image) {
765                                 if (unlikely(proglen + ilen > oldproglen)) {
766                                         pr_err("bpb_jit_compile fatal error\n");
767                                         kfree(addrs);
768                                         module_free(NULL, image);
769                                         return;
770                                 }
771                                 memcpy(image + proglen, temp, ilen);
772                         }
773                         proglen += ilen;
774                         addrs[i] = proglen;
775                         prog = temp;
776                 }
777                 /* last bpf instruction is always a RET :
778                  * use it to give the cleanup instruction(s) addr
779                  */
780                 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
781                 if (seen_or_pass0 & SEEN_MEM)
782                         cleanup_addr -= 4; /* add %sp, X, %sp; */
783
784                 if (image) {
785                         if (proglen != oldproglen)
786                                 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
787                                        proglen, oldproglen);
788                         break;
789                 }
790                 if (proglen == oldproglen) {
791                         image = module_alloc(proglen);
792                         if (!image)
793                                 goto out;
794                 }
795                 oldproglen = proglen;
796         }
797
798         if (bpf_jit_enable > 1)
799                 bpf_jit_dump(flen, proglen, pass, image);
800
801         if (image) {
802                 bpf_flush_icache(image, image + proglen);
803                 fp->bpf_func = (void *)image;
804                 fp->jited = 1;
805         }
806 out:
807         kfree(addrs);
808         return;
809 }
810
811 void bpf_jit_free(struct bpf_prog *fp)
812 {
813         if (fp->jited)
814                 module_free(NULL, fp->bpf_func);
815         kfree(fp);
816 }