Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[pandora-kernel.git] / arch / sparc / net / bpf_jit_comp.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6
7 #include <asm/cacheflush.h>
8 #include <asm/ptrace.h>
9
10 #include "bpf_jit.h"
11
12 int bpf_jit_enable __read_mostly;
13
14 static inline bool is_simm13(unsigned int value)
15 {
16         return value + 0x1000 < 0x2000;
17 }
18
19 static void bpf_flush_icache(void *start_, void *end_)
20 {
21 #ifdef CONFIG_SPARC64
22         /* Cheetah's I-cache is fully coherent.  */
23         if (tlb_type == spitfire) {
24                 unsigned long start = (unsigned long) start_;
25                 unsigned long end = (unsigned long) end_;
26
27                 start &= ~7UL;
28                 end = (end + 7UL) & ~7UL;
29                 while (start < end) {
30                         flushi(start);
31                         start += 32;
32                 }
33         }
34 #endif
35 }
36
37 #define SEEN_DATAREF 1 /* might call external helpers */
38 #define SEEN_XREG    2 /* ebx is used */
39 #define SEEN_MEM     4 /* use mem[] for temporary storage */
40
41 #define S13(X)          ((X) & 0x1fff)
42 #define IMMED           0x00002000
43 #define RD(X)           ((X) << 25)
44 #define RS1(X)          ((X) << 14)
45 #define RS2(X)          ((X))
46 #define OP(X)           ((X) << 30)
47 #define OP2(X)          ((X) << 22)
48 #define OP3(X)          ((X) << 19)
49 #define COND(X)         ((X) << 25)
50 #define F1(X)           OP(X)
51 #define F2(X, Y)        (OP(X) | OP2(Y))
52 #define F3(X, Y)        (OP(X) | OP3(Y))
53
54 #define CONDN           COND(0x0)
55 #define CONDE           COND(0x1)
56 #define CONDLE          COND(0x2)
57 #define CONDL           COND(0x3)
58 #define CONDLEU         COND(0x4)
59 #define CONDCS          COND(0x5)
60 #define CONDNEG         COND(0x6)
61 #define CONDVC          COND(0x7)
62 #define CONDA           COND(0x8)
63 #define CONDNE          COND(0x9)
64 #define CONDG           COND(0xa)
65 #define CONDGE          COND(0xb)
66 #define CONDGU          COND(0xc)
67 #define CONDCC          COND(0xd)
68 #define CONDPOS         COND(0xe)
69 #define CONDVS          COND(0xf)
70
71 #define CONDGEU         CONDCC
72 #define CONDLU          CONDCS
73
74 #define WDISP22(X)      (((X) >> 2) & 0x3fffff)
75
76 #define BA              (F2(0, 2) | CONDA)
77 #define BGU             (F2(0, 2) | CONDGU)
78 #define BLEU            (F2(0, 2) | CONDLEU)
79 #define BGEU            (F2(0, 2) | CONDGEU)
80 #define BLU             (F2(0, 2) | CONDLU)
81 #define BE              (F2(0, 2) | CONDE)
82 #define BNE             (F2(0, 2) | CONDNE)
83
84 #ifdef CONFIG_SPARC64
85 #define BNE_PTR         (F2(0, 1) | CONDNE | (2 << 20))
86 #else
87 #define BNE_PTR         BNE
88 #endif
89
90 #define SETHI(K, REG)   \
91         (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
92 #define OR_LO(K, REG)   \
93         (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
94
95 #define ADD             F3(2, 0x00)
96 #define AND             F3(2, 0x01)
97 #define ANDCC           F3(2, 0x11)
98 #define OR              F3(2, 0x02)
99 #define XOR             F3(2, 0x03)
100 #define SUB             F3(2, 0x04)
101 #define SUBCC           F3(2, 0x14)
102 #define MUL             F3(2, 0x0a)     /* umul */
103 #define DIV             F3(2, 0x0e)     /* udiv */
104 #define SLL             F3(2, 0x25)
105 #define SRL             F3(2, 0x26)
106 #define JMPL            F3(2, 0x38)
107 #define CALL            F1(1)
108 #define BR              F2(0, 0x01)
109 #define RD_Y            F3(2, 0x28)
110 #define WR_Y            F3(2, 0x30)
111
112 #define LD32            F3(3, 0x00)
113 #define LD8             F3(3, 0x01)
114 #define LD16            F3(3, 0x02)
115 #define LD64            F3(3, 0x0b)
116 #define ST32            F3(3, 0x04)
117
118 #ifdef CONFIG_SPARC64
119 #define LDPTR           LD64
120 #define BASE_STACKFRAME 176
121 #else
122 #define LDPTR           LD32
123 #define BASE_STACKFRAME 96
124 #endif
125
126 #define LD32I           (LD32 | IMMED)
127 #define LD8I            (LD8 | IMMED)
128 #define LD16I           (LD16 | IMMED)
129 #define LD64I           (LD64 | IMMED)
130 #define LDPTRI          (LDPTR | IMMED)
131 #define ST32I           (ST32 | IMMED)
132
133 #define emit_nop()              \
134 do {                            \
135         *prog++ = SETHI(0, G0); \
136 } while (0)
137
138 #define emit_neg()                                      \
139 do {    /* sub %g0, r_A, r_A */                         \
140         *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
141 } while (0)
142
143 #define emit_reg_move(FROM, TO)                         \
144 do {    /* or %g0, FROM, TO */                          \
145         *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
146 } while (0)
147
148 #define emit_clear(REG)                                 \
149 do {    /* or %g0, %g0, REG */                          \
150         *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
151 } while (0)
152
153 #define emit_set_const(K, REG)                                  \
154 do {    /* sethi %hi(K), REG */                                 \
155         *prog++ = SETHI(K, REG);                                \
156         /* or REG, %lo(K), REG */                               \
157         *prog++ = OR_LO(K, REG);                                \
158 } while (0)
159
160         /* Emit
161          *
162          *      OP      r_A, r_X, r_A
163          */
164 #define emit_alu_X(OPCODE)                                      \
165 do {                                                            \
166         seen |= SEEN_XREG;                                      \
167         *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
168 } while (0)
169
170         /* Emit either:
171          *
172          *      OP      r_A, K, r_A
173          *
174          * or
175          *
176          *      sethi   %hi(K), r_TMP
177          *      or      r_TMP, %lo(K), r_TMP
178          *      OP      r_A, r_TMP, r_A
179          *
180          * depending upon whether K fits in a signed 13-bit
181          * immediate instruction field.  Emit nothing if K
182          * is zero.
183          */
184 #define emit_alu_K(OPCODE, K)                                   \
185 do {                                                            \
186         if (K) {                                                \
187                 unsigned int _insn = OPCODE;                    \
188                 _insn |= RS1(r_A) | RD(r_A);                    \
189                 if (is_simm13(K)) {                             \
190                         *prog++ = _insn | IMMED | S13(K);       \
191                 } else {                                        \
192                         emit_set_const(K, r_TMP);               \
193                         *prog++ = _insn | RS2(r_TMP);           \
194                 }                                               \
195         }                                                       \
196 } while (0)
197
198 #define emit_loadimm(K, DEST)                                           \
199 do {                                                                    \
200         if (is_simm13(K)) {                                             \
201                 /* or %g0, K, DEST */                                   \
202                 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
203         } else {                                                        \
204                 emit_set_const(K, DEST);                                \
205         }                                                               \
206 } while (0)
207
208 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
209 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
210         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
211         *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
212 } while (0)
213
214 #define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
215 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
216         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
217         *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
218 } while (0)
219
220 #define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
221 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
222         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
223         *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
224 } while (0)
225
226 #define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
227 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
228         *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
229 } while (0)
230
231 #define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
232 do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
233         __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
234 } while (0)
235
236 #define emit_ldmem(OFF, DEST)                                   \
237 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST);     \
238 } while (0)
239
240 #define emit_stmem(OFF, SRC)                                    \
241 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC);      \
242 } while (0)
243
244 #ifdef CONFIG_SMP
245 #ifdef CONFIG_SPARC64
246 #define emit_load_cpu(REG)                                              \
247         emit_load16(G6, struct thread_info, cpu, REG)
248 #else
249 #define emit_load_cpu(REG)                                              \
250         emit_load32(G6, struct thread_info, cpu, REG)
251 #endif
252 #else
253 #define emit_load_cpu(REG)      emit_clear(REG)
254 #endif
255
256 #define emit_skb_loadptr(FIELD, DEST) \
257         emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
258 #define emit_skb_load32(FIELD, DEST) \
259         emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
260 #define emit_skb_load16(FIELD, DEST) \
261         emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
262 #define __emit_skb_load8(FIELD, DEST) \
263         __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
264 #define emit_skb_load8(FIELD, DEST) \
265         emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
266
267 #define emit_jmpl(BASE, IMM_OFF, LREG) \
268         *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
269
270 #define emit_call(FUNC)                                 \
271 do {    void *_here = image + addrs[i] - 8;             \
272         unsigned int _off = (void *)(FUNC) - _here;     \
273         *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
274         emit_nop();                                     \
275 } while (0)
276
277 #define emit_branch(BR_OPC, DEST)                       \
278 do {    unsigned int _here = addrs[i] - 8;              \
279         *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
280 } while (0)
281
282 #define emit_branch_off(BR_OPC, OFF)                    \
283 do {    *prog++ = BR_OPC | WDISP22(OFF);                \
284 } while (0)
285
286 #define emit_jump(DEST)         emit_branch(BA, DEST)
287
288 #define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
289 #define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
290
291 #define emit_cmp(R1, R2) \
292         *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
293
294 #define emit_cmpi(R1, IMM) \
295         *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
296
297 #define emit_btst(R1, R2) \
298         *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
299
300 #define emit_btsti(R1, IMM) \
301         *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
302
303 #define emit_sub(R1, R2, R3) \
304         *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
305
306 #define emit_subi(R1, IMM, R3) \
307         *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
308
309 #define emit_add(R1, R2, R3) \
310         *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
311
312 #define emit_addi(R1, IMM, R3) \
313         *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
314
315 #define emit_alloc_stack(SZ) \
316         *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
317
318 #define emit_release_stack(SZ) \
319         *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
320
321 /* A note about branch offset calculations.  The addrs[] array,
322  * indexed by BPF instruction, records the address after all the
323  * sparc instructions emitted for that BPF instruction.
324  *
325  * The most common case is to emit a branch at the end of such
326  * a code sequence.  So this would be two instructions, the
327  * branch and it's delay slot.
328  *
329  * Therefore by default the branch emitters calculate the branch
330  * offset field as:
331  *
332  *      destination - (addrs[i] - 8)
333  *
334  * This "addrs[i] - 8" is the address of the branch itself or
335  * what "." would be in assembler notation.  The "8" part is
336  * how we take into consideration the branch and it's delay
337  * slot mentioned above.
338  *
339  * Sometimes we need to emit a branch earlier in the code
340  * sequence.  And in these situations we adjust "destination"
341  * to accomodate this difference.  For example, if we needed
342  * to emit a branch (and it's delay slot) right before the
343  * final instruction emitted for a BPF opcode, we'd use
344  * "destination + 4" instead of just plain "destination" above.
345  *
346  * This is why you see all of these funny emit_branch() and
347  * emit_jump() calls with adjusted offsets.
348  */
349
350 void bpf_jit_compile(struct sk_filter *fp)
351 {
352         unsigned int cleanup_addr, proglen, oldproglen = 0;
353         u32 temp[8], *prog, *func, seen = 0, pass;
354         const struct sock_filter *filter = fp->insns;
355         int i, flen = fp->len, pc_ret0 = -1;
356         unsigned int *addrs;
357         void *image;
358
359         if (!bpf_jit_enable)
360                 return;
361
362         addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
363         if (addrs == NULL)
364                 return;
365
366         /* Before first pass, make a rough estimation of addrs[]
367          * each bpf instruction is translated to less than 64 bytes
368          */
369         for (proglen = 0, i = 0; i < flen; i++) {
370                 proglen += 64;
371                 addrs[i] = proglen;
372         }
373         cleanup_addr = proglen; /* epilogue address */
374         image = NULL;
375         for (pass = 0; pass < 10; pass++) {
376                 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
377
378                 /* no prologue/epilogue for trivial filters (RET something) */
379                 proglen = 0;
380                 prog = temp;
381
382                 /* Prologue */
383                 if (seen_or_pass0) {
384                         if (seen_or_pass0 & SEEN_MEM) {
385                                 unsigned int sz = BASE_STACKFRAME;
386                                 sz += BPF_MEMWORDS * sizeof(u32);
387                                 emit_alloc_stack(sz);
388                         }
389
390                         /* Make sure we dont leek kernel memory. */
391                         if (seen_or_pass0 & SEEN_XREG)
392                                 emit_clear(r_X);
393
394                         /* If this filter needs to access skb data,
395                          * load %o4 and %o5 with:
396                          *  %o4 = skb->len - skb->data_len
397                          *  %o5 = skb->data
398                          * And also back up %o7 into r_saved_O7 so we can
399                          * invoke the stubs using 'call'.
400                          */
401                         if (seen_or_pass0 & SEEN_DATAREF) {
402                                 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
403                                 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
404                                 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
405                                 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
406                         }
407                 }
408                 emit_reg_move(O7, r_saved_O7);
409
410                 switch (filter[0].code) {
411                 case BPF_S_RET_K:
412                 case BPF_S_LD_W_LEN:
413                 case BPF_S_ANC_PROTOCOL:
414                 case BPF_S_ANC_PKTTYPE:
415                 case BPF_S_ANC_IFINDEX:
416                 case BPF_S_ANC_MARK:
417                 case BPF_S_ANC_RXHASH:
418                 case BPF_S_ANC_CPU:
419                 case BPF_S_ANC_QUEUE:
420                 case BPF_S_LD_W_ABS:
421                 case BPF_S_LD_H_ABS:
422                 case BPF_S_LD_B_ABS:
423                         /* The first instruction sets the A register (or is
424                          * a "RET 'constant'")
425                          */
426                         break;
427                 default:
428                         /* Make sure we dont leak kernel information to the
429                          * user.
430                          */
431                         emit_clear(r_A); /* A = 0 */
432                 }
433
434                 for (i = 0; i < flen; i++) {
435                         unsigned int K = filter[i].k;
436                         unsigned int t_offset;
437                         unsigned int f_offset;
438                         u32 t_op, f_op;
439                         int ilen;
440
441                         switch (filter[i].code) {
442                         case BPF_S_ALU_ADD_X:   /* A += X; */
443                                 emit_alu_X(ADD);
444                                 break;
445                         case BPF_S_ALU_ADD_K:   /* A += K; */
446                                 emit_alu_K(ADD, K);
447                                 break;
448                         case BPF_S_ALU_SUB_X:   /* A -= X; */
449                                 emit_alu_X(SUB);
450                                 break;
451                         case BPF_S_ALU_SUB_K:   /* A -= K */
452                                 emit_alu_K(SUB, K);
453                                 break;
454                         case BPF_S_ALU_AND_X:   /* A &= X */
455                                 emit_alu_X(AND);
456                                 break;
457                         case BPF_S_ALU_AND_K:   /* A &= K */
458                                 emit_alu_K(AND, K);
459                                 break;
460                         case BPF_S_ALU_OR_X:    /* A |= X */
461                                 emit_alu_X(OR);
462                                 break;
463                         case BPF_S_ALU_OR_K:    /* A |= K */
464                                 emit_alu_K(OR, K);
465                                 break;
466                         case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
467                                 emit_alu_X(XOR);
468                                 break;
469                         case BPF_S_ALU_LSH_X:   /* A <<= X */
470                                 emit_alu_X(SLL);
471                                 break;
472                         case BPF_S_ALU_LSH_K:   /* A <<= K */
473                                 emit_alu_K(SLL, K);
474                                 break;
475                         case BPF_S_ALU_RSH_X:   /* A >>= X */
476                                 emit_alu_X(SRL);
477                                 break;
478                         case BPF_S_ALU_RSH_K:   /* A >>= K */
479                                 emit_alu_K(SRL, K);
480                                 break;
481                         case BPF_S_ALU_MUL_X:   /* A *= X; */
482                                 emit_alu_X(MUL);
483                                 break;
484                         case BPF_S_ALU_MUL_K:   /* A *= K */
485                                 emit_alu_K(MUL, K);
486                                 break;
487                         case BPF_S_ALU_DIV_K:   /* A /= K */
488                                 emit_alu_K(MUL, K);
489                                 emit_read_y(r_A);
490                                 break;
491                         case BPF_S_ALU_DIV_X:   /* A /= X; */
492                                 emit_cmpi(r_X, 0);
493                                 if (pc_ret0 > 0) {
494                                         t_offset = addrs[pc_ret0 - 1];
495 #ifdef CONFIG_SPARC32
496                                         emit_branch(BE, t_offset + 20);
497 #else
498                                         emit_branch(BE, t_offset + 8);
499 #endif
500                                         emit_nop(); /* delay slot */
501                                 } else {
502                                         emit_branch_off(BNE, 16);
503                                         emit_nop();
504 #ifdef CONFIG_SPARC32
505                                         emit_jump(cleanup_addr + 20);
506 #else
507                                         emit_jump(cleanup_addr + 8);
508 #endif
509                                         emit_clear(r_A);
510                                 }
511                                 emit_write_y(G0);
512 #ifdef CONFIG_SPARC32
513                                 /* The Sparc v8 architecture requires
514                                  * three instructions between a %y
515                                  * register write and the first use.
516                                  */
517                                 emit_nop();
518                                 emit_nop();
519                                 emit_nop();
520 #endif
521                                 emit_alu_X(DIV);
522                                 break;
523                         case BPF_S_ALU_NEG:
524                                 emit_neg();
525                                 break;
526                         case BPF_S_RET_K:
527                                 if (!K) {
528                                         if (pc_ret0 == -1)
529                                                 pc_ret0 = i;
530                                         emit_clear(r_A);
531                                 } else {
532                                         emit_loadimm(K, r_A);
533                                 }
534                                 /* Fallthrough */
535                         case BPF_S_RET_A:
536                                 if (seen_or_pass0) {
537                                         if (i != flen - 1) {
538                                                 emit_jump(cleanup_addr);
539                                                 emit_nop();
540                                                 break;
541                                         }
542                                         if (seen_or_pass0 & SEEN_MEM) {
543                                                 unsigned int sz = BASE_STACKFRAME;
544                                                 sz += BPF_MEMWORDS * sizeof(u32);
545                                                 emit_release_stack(sz);
546                                         }
547                                 }
548                                 /* jmpl %r_saved_O7 + 8, %g0 */
549                                 emit_jmpl(r_saved_O7, 8, G0);
550                                 emit_reg_move(r_A, O0); /* delay slot */
551                                 break;
552                         case BPF_S_MISC_TAX:
553                                 seen |= SEEN_XREG;
554                                 emit_reg_move(r_A, r_X);
555                                 break;
556                         case BPF_S_MISC_TXA:
557                                 seen |= SEEN_XREG;
558                                 emit_reg_move(r_X, r_A);
559                                 break;
560                         case BPF_S_ANC_CPU:
561                                 emit_load_cpu(r_A);
562                                 break;
563                         case BPF_S_ANC_PROTOCOL:
564                                 emit_skb_load16(protocol, r_A);
565                                 break;
566 #if 0
567                                 /* GCC won't let us take the address of
568                                  * a bit field even though we very much
569                                  * know what we are doing here.
570                                  */
571                         case BPF_S_ANC_PKTTYPE:
572                                 __emit_skb_load8(pkt_type, r_A);
573                                 emit_alu_K(SRL, 5);
574                                 break;
575 #endif
576                         case BPF_S_ANC_IFINDEX:
577                                 emit_skb_loadptr(dev, r_A);
578                                 emit_cmpi(r_A, 0);
579                                 emit_branch(BNE_PTR, cleanup_addr + 4);
580                                 emit_nop();
581                                 emit_load32(r_A, struct net_device, ifindex, r_A);
582                                 break;
583                         case BPF_S_ANC_MARK:
584                                 emit_skb_load32(mark, r_A);
585                                 break;
586                         case BPF_S_ANC_QUEUE:
587                                 emit_skb_load16(queue_mapping, r_A);
588                                 break;
589                         case BPF_S_ANC_HATYPE:
590                                 emit_skb_loadptr(dev, r_A);
591                                 emit_cmpi(r_A, 0);
592                                 emit_branch(BNE_PTR, cleanup_addr + 4);
593                                 emit_nop();
594                                 emit_load16(r_A, struct net_device, type, r_A);
595                                 break;
596                         case BPF_S_ANC_RXHASH:
597                                 emit_skb_load32(rxhash, r_A);
598                                 break;
599
600                         case BPF_S_LD_IMM:
601                                 emit_loadimm(K, r_A);
602                                 break;
603                         case BPF_S_LDX_IMM:
604                                 emit_loadimm(K, r_X);
605                                 break;
606                         case BPF_S_LD_MEM:
607                                 emit_ldmem(K * 4, r_A);
608                                 break;
609                         case BPF_S_LDX_MEM:
610                                 emit_ldmem(K * 4, r_X);
611                                 break;
612                         case BPF_S_ST:
613                                 emit_stmem(K * 4, r_A);
614                                 break;
615                         case BPF_S_STX:
616                                 emit_stmem(K * 4, r_X);
617                                 break;
618
619 #define CHOOSE_LOAD_FUNC(K, func) \
620         ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
621
622                         case BPF_S_LD_W_ABS:
623                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
624 common_load:                    seen |= SEEN_DATAREF;
625                                 emit_loadimm(K, r_OFF);
626                                 emit_call(func);
627                                 break;
628                         case BPF_S_LD_H_ABS:
629                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
630                                 goto common_load;
631                         case BPF_S_LD_B_ABS:
632                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
633                                 goto common_load;
634                         case BPF_S_LDX_B_MSH:
635                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
636                                 goto common_load;
637                         case BPF_S_LD_W_IND:
638                                 func = bpf_jit_load_word;
639 common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
640                                 if (K) {
641                                         if (is_simm13(K)) {
642                                                 emit_addi(r_X, K, r_OFF);
643                                         } else {
644                                                 emit_loadimm(K, r_TMP);
645                                                 emit_add(r_X, r_TMP, r_OFF);
646                                         }
647                                 } else {
648                                         emit_reg_move(r_X, r_OFF);
649                                 }
650                                 emit_call(func);
651                                 break;
652                         case BPF_S_LD_H_IND:
653                                 func = bpf_jit_load_half;
654                                 goto common_load_ind;
655                         case BPF_S_LD_B_IND:
656                                 func = bpf_jit_load_byte;
657                                 goto common_load_ind;
658                         case BPF_S_JMP_JA:
659                                 emit_jump(addrs[i + K]);
660                                 emit_nop();
661                                 break;
662
663 #define COND_SEL(CODE, TOP, FOP)        \
664         case CODE:                      \
665                 t_op = TOP;             \
666                 f_op = FOP;             \
667                 goto cond_branch
668
669                         COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
670                         COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
671                         COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
672                         COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
673                         COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
674                         COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
675                         COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
676                         COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
677
678 cond_branch:                    f_offset = addrs[i + filter[i].jf];
679                                 t_offset = addrs[i + filter[i].jt];
680
681                                 /* same targets, can avoid doing the test :) */
682                                 if (filter[i].jt == filter[i].jf) {
683                                         emit_jump(t_offset);
684                                         emit_nop();
685                                         break;
686                                 }
687
688                                 switch (filter[i].code) {
689                                 case BPF_S_JMP_JGT_X:
690                                 case BPF_S_JMP_JGE_X:
691                                 case BPF_S_JMP_JEQ_X:
692                                         seen |= SEEN_XREG;
693                                         emit_cmp(r_A, r_X);
694                                         break;
695                                 case BPF_S_JMP_JSET_X:
696                                         seen |= SEEN_XREG;
697                                         emit_btst(r_A, r_X);
698                                         break;
699                                 case BPF_S_JMP_JEQ_K:
700                                 case BPF_S_JMP_JGT_K:
701                                 case BPF_S_JMP_JGE_K:
702                                         if (is_simm13(K)) {
703                                                 emit_cmpi(r_A, K);
704                                         } else {
705                                                 emit_loadimm(K, r_TMP);
706                                                 emit_cmp(r_A, r_TMP);
707                                         }
708                                         break;
709                                 case BPF_S_JMP_JSET_K:
710                                         if (is_simm13(K)) {
711                                                 emit_btsti(r_A, K);
712                                         } else {
713                                                 emit_loadimm(K, r_TMP);
714                                                 emit_btst(r_A, r_TMP);
715                                         }
716                                         break;
717                                 }
718                                 if (filter[i].jt != 0) {
719                                         if (filter[i].jf)
720                                                 t_offset += 8;
721                                         emit_branch(t_op, t_offset);
722                                         emit_nop(); /* delay slot */
723                                         if (filter[i].jf) {
724                                                 emit_jump(f_offset);
725                                                 emit_nop();
726                                         }
727                                         break;
728                                 }
729                                 emit_branch(f_op, f_offset);
730                                 emit_nop(); /* delay slot */
731                                 break;
732
733                         default:
734                                 /* hmm, too complex filter, give up with jit compiler */
735                                 goto out;
736                         }
737                         ilen = (void *) prog - (void *) temp;
738                         if (image) {
739                                 if (unlikely(proglen + ilen > oldproglen)) {
740                                         pr_err("bpb_jit_compile fatal error\n");
741                                         kfree(addrs);
742                                         module_free(NULL, image);
743                                         return;
744                                 }
745                                 memcpy(image + proglen, temp, ilen);
746                         }
747                         proglen += ilen;
748                         addrs[i] = proglen;
749                         prog = temp;
750                 }
751                 /* last bpf instruction is always a RET :
752                  * use it to give the cleanup instruction(s) addr
753                  */
754                 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
755                 if (seen_or_pass0 & SEEN_MEM)
756                         cleanup_addr -= 4; /* add %sp, X, %sp; */
757
758                 if (image) {
759                         if (proglen != oldproglen)
760                                 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
761                                        proglen, oldproglen);
762                         break;
763                 }
764                 if (proglen == oldproglen) {
765                         image = module_alloc(max_t(unsigned int,
766                                                    proglen,
767                                                    sizeof(struct work_struct)));
768                         if (!image)
769                                 goto out;
770                 }
771                 oldproglen = proglen;
772         }
773
774         if (bpf_jit_enable > 1)
775                 pr_err("flen=%d proglen=%u pass=%d image=%p\n",
776                        flen, proglen, pass, image);
777
778         if (image) {
779                 if (bpf_jit_enable > 1)
780                         print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
781                                        16, 1, image, proglen, false);
782                 bpf_flush_icache(image, image + proglen);
783                 fp->bpf_func = (void *)image;
784         }
785 out:
786         kfree(addrs);
787         return;
788 }
789
790 static void jit_free_defer(struct work_struct *arg)
791 {
792         module_free(NULL, arg);
793 }
794
795 /* run from softirq, we must use a work_struct to call
796  * module_free() from process context
797  */
798 void bpf_jit_free(struct sk_filter *fp)
799 {
800         if (fp->bpf_func != sk_run_filter) {
801                 struct work_struct *work = (struct work_struct *)fp->bpf_func;
802
803                 INIT_WORK(work, jit_free_defer);
804                 schedule_work(work);
805         }
806 }