2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
7 #include <linux/init.h>
8 #include <linux/module.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/sysctl.h>
17 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include <asm/cacheflush.h>
21 #include <asm/mmu_context.h>
23 /* Slightly simplified from the non-hugepage variant because by
24 * definition we don't have to worry about any page coloring stuff
26 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
27 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
29 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
35 struct mm_struct *mm = current->mm;
36 struct vm_area_struct * vma;
37 unsigned long task_size = TASK_SIZE;
38 unsigned long start_addr;
40 if (test_thread_flag(TIF_32BIT))
41 task_size = STACK_TOP32;
42 if (unlikely(len >= VA_EXCLUDE_START))
45 if (len > mm->cached_hole_size) {
46 start_addr = addr = mm->free_area_cache;
48 start_addr = addr = TASK_UNMAPPED_BASE;
49 mm->cached_hole_size = 0;
55 addr = ALIGN(addr, HPAGE_SIZE);
57 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
58 /* At this point: (!vma || addr < vma->vm_end). */
59 if (addr < VA_EXCLUDE_START &&
60 (addr + len) >= VA_EXCLUDE_START) {
61 addr = VA_EXCLUDE_END;
62 vma = find_vma(mm, VA_EXCLUDE_END);
64 if (unlikely(task_size < addr)) {
65 if (start_addr != TASK_UNMAPPED_BASE) {
66 start_addr = addr = TASK_UNMAPPED_BASE;
67 mm->cached_hole_size = 0;
72 if (likely(!vma || addr + len <= vma->vm_start)) {
74 * Remember the place where we stopped the search:
76 mm->free_area_cache = addr + len;
79 if (addr + mm->cached_hole_size < vma->vm_start)
80 mm->cached_hole_size = vma->vm_start - addr;
82 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
87 hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
88 const unsigned long len,
89 const unsigned long pgoff,
90 const unsigned long flags)
92 struct vm_area_struct *vma;
93 struct mm_struct *mm = current->mm;
94 unsigned long addr = addr0;
96 /* This should only ever run for 32-bit processes. */
97 BUG_ON(!test_thread_flag(TIF_32BIT));
99 /* check if free_area_cache is useful for us */
100 if (len <= mm->cached_hole_size) {
101 mm->cached_hole_size = 0;
102 mm->free_area_cache = mm->mmap_base;
105 /* either no address requested or can't fit in requested address hole */
106 addr = mm->free_area_cache & HPAGE_MASK;
108 /* make sure it can fit in the remaining address space */
109 if (likely(addr > len)) {
110 vma = find_vma(mm, addr-len);
111 if (!vma || addr <= vma->vm_start) {
112 /* remember the address as a hint for next time */
113 return (mm->free_area_cache = addr-len);
117 if (unlikely(mm->mmap_base < len))
120 addr = (mm->mmap_base-len) & HPAGE_MASK;
124 * Lookup failure means no vma is above this address,
125 * else if new region fits below vma->vm_start,
126 * return with success:
128 vma = find_vma(mm, addr);
129 if (likely(!vma || addr+len <= vma->vm_start)) {
130 /* remember the address as a hint for next time */
131 return (mm->free_area_cache = addr);
134 /* remember the largest hole we saw so far */
135 if (addr + mm->cached_hole_size < vma->vm_start)
136 mm->cached_hole_size = vma->vm_start - addr;
138 /* try just below the current vma->vm_start */
139 addr = (vma->vm_start-len) & HPAGE_MASK;
140 } while (likely(len < vma->vm_start));
144 * A failed mmap() very likely causes application failure,
145 * so fall back to the bottom-up function here. This scenario
146 * can happen with large stack limits and large mmap()
149 mm->cached_hole_size = ~0UL;
150 mm->free_area_cache = TASK_UNMAPPED_BASE;
151 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
153 * Restore the topdown base:
155 mm->free_area_cache = mm->mmap_base;
156 mm->cached_hole_size = ~0UL;
162 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
163 unsigned long len, unsigned long pgoff, unsigned long flags)
165 struct mm_struct *mm = current->mm;
166 struct vm_area_struct *vma;
167 unsigned long task_size = TASK_SIZE;
169 if (test_thread_flag(TIF_32BIT))
170 task_size = STACK_TOP32;
172 if (len & ~HPAGE_MASK)
177 if (flags & MAP_FIXED) {
178 if (prepare_hugepage_range(file, addr, len))
184 addr = ALIGN(addr, HPAGE_SIZE);
185 vma = find_vma(mm, addr);
186 if (task_size - len >= addr &&
187 (!vma || addr + len <= vma->vm_start))
190 if (mm->get_unmapped_area == arch_get_unmapped_area)
191 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
194 return hugetlb_get_unmapped_area_topdown(file, addr, len,
198 pte_t *huge_pte_alloc(struct mm_struct *mm,
199 unsigned long addr, unsigned long sz)
206 /* We must align the address, because our caller will run
207 * set_huge_pte_at() on whatever we return, which writes out
208 * all of the sub-ptes for the hugepage range. So we have
209 * to give it the first such sub-pte.
213 pgd = pgd_offset(mm, addr);
214 pud = pud_alloc(mm, pgd, addr);
216 pmd = pmd_alloc(mm, pud, addr);
218 pte = pte_alloc_map(mm, pmd, addr);
223 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
232 pgd = pgd_offset(mm, addr);
233 if (!pgd_none(*pgd)) {
234 pud = pud_offset(pgd, addr);
235 if (!pud_none(*pud)) {
236 pmd = pmd_offset(pud, addr);
238 pte = pte_offset_map(pmd, addr);
244 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
249 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
250 pte_t *ptep, pte_t entry)
254 if (!pte_present(*ptep) && pte_present(entry))
255 mm->context.huge_pte_count++;
258 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
259 set_pte_at(mm, addr, ptep, entry);
262 pte_val(entry) += PAGE_SIZE;
266 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
273 if (pte_present(entry))
274 mm->context.huge_pte_count--;
278 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
279 pte_clear(mm, addr, ptep);
287 struct page *follow_huge_addr(struct mm_struct *mm,
288 unsigned long address, int write)
290 return ERR_PTR(-EINVAL);
293 int pmd_huge(pmd_t pmd)
298 int pud_huge(pud_t pud)
303 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
304 pmd_t *pmd, int write)
309 static void context_reload(void *__data)
311 struct mm_struct *mm = __data;
313 if (mm == current->mm)
314 load_secondary_context(mm);
317 void hugetlb_prefault_arch_hook(struct mm_struct *mm)
319 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
321 if (likely(tp->tsb != NULL))
324 tsb_grow(mm, MM_TSB_HUGE, 0);
325 tsb_context_switch(mm);
328 /* On UltraSPARC-III+ and later, configure the second half of
329 * the Data-TLB for huge pages.
331 if (tlb_type == cheetah_plus) {
334 spin_lock(&ctx_alloc_lock);
335 ctx = mm->context.sparc64_ctx_val;
336 ctx &= ~CTX_PGSZ_MASK;
337 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
338 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
340 if (ctx != mm->context.sparc64_ctx_val) {
341 /* When changing the page size fields, we
342 * must perform a context flush so that no
343 * stale entries match. This flush must
344 * occur with the original context register
349 /* Reload the context register of all processors
350 * also executing in this address space.
352 mm->context.sparc64_ctx_val = ctx;
353 on_each_cpu(context_reload, mm, 0);
355 spin_unlock(&ctx_alloc_lock);