s390/comments: unify copyright messages and remove file names
[pandora-kernel.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18
19 static DEFINE_MUTEX(vmem_mutex);
20
21 struct memory_segment {
22         struct list_head list;
23         unsigned long start;
24         unsigned long size;
25 };
26
27 static LIST_HEAD(mem_segs);
28
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31         if (slab_is_available())
32                 return (void *)__get_free_pages(GFP_KERNEL, order);
33         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38         pud_t *pud = NULL;
39
40 #ifdef CONFIG_64BIT
41         pud = vmem_alloc_pages(2);
42         if (!pud)
43                 return NULL;
44         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46         return pud;
47 }
48
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51         pmd_t *pmd = NULL;
52
53 #ifdef CONFIG_64BIT
54         pmd = vmem_alloc_pages(2);
55         if (!pmd)
56                 return NULL;
57         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59         return pmd;
60 }
61
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64         pte_t *pte;
65
66         if (slab_is_available())
67                 pte = (pte_t *) page_table_alloc(&init_mm, address);
68         else
69                 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70         if (!pte)
71                 return NULL;
72         clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73                     PTRS_PER_PTE * sizeof(pte_t));
74         return pte;
75 }
76
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82         unsigned long address;
83         pgd_t *pg_dir;
84         pud_t *pu_dir;
85         pmd_t *pm_dir;
86         pte_t *pt_dir;
87         pte_t  pte;
88         int ret = -ENOMEM;
89
90         for (address = start; address < start + size; address += PAGE_SIZE) {
91                 pg_dir = pgd_offset_k(address);
92                 if (pgd_none(*pg_dir)) {
93                         pu_dir = vmem_pud_alloc();
94                         if (!pu_dir)
95                                 goto out;
96                         pgd_populate(&init_mm, pg_dir, pu_dir);
97                 }
98
99                 pu_dir = pud_offset(pg_dir, address);
100                 if (pud_none(*pu_dir)) {
101                         pm_dir = vmem_pmd_alloc();
102                         if (!pm_dir)
103                                 goto out;
104                         pud_populate(&init_mm, pu_dir, pm_dir);
105                 }
106
107                 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
108                 pm_dir = pmd_offset(pu_dir, address);
109
110 #ifdef CONFIG_64BIT
111                 if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
112                     (address + HPAGE_SIZE <= start + size) &&
113                     (address >= HPAGE_SIZE)) {
114                         pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
115                         pmd_val(*pm_dir) = pte_val(pte);
116                         address += HPAGE_SIZE - PAGE_SIZE;
117                         continue;
118                 }
119 #endif
120                 if (pmd_none(*pm_dir)) {
121                         pt_dir = vmem_pte_alloc(address);
122                         if (!pt_dir)
123                                 goto out;
124                         pmd_populate(&init_mm, pm_dir, pt_dir);
125                 }
126
127                 pt_dir = pte_offset_kernel(pm_dir, address);
128                 *pt_dir = pte;
129         }
130         ret = 0;
131 out:
132         flush_tlb_kernel_range(start, start + size);
133         return ret;
134 }
135
136 /*
137  * Remove a physical memory range from the 1:1 mapping.
138  * Currently only invalidates page table entries.
139  */
140 static void vmem_remove_range(unsigned long start, unsigned long size)
141 {
142         unsigned long address;
143         pgd_t *pg_dir;
144         pud_t *pu_dir;
145         pmd_t *pm_dir;
146         pte_t *pt_dir;
147         pte_t  pte;
148
149         pte_val(pte) = _PAGE_TYPE_EMPTY;
150         for (address = start; address < start + size; address += PAGE_SIZE) {
151                 pg_dir = pgd_offset_k(address);
152                 pu_dir = pud_offset(pg_dir, address);
153                 if (pud_none(*pu_dir))
154                         continue;
155                 pm_dir = pmd_offset(pu_dir, address);
156                 if (pmd_none(*pm_dir))
157                         continue;
158
159                 if (pmd_huge(*pm_dir)) {
160                         pmd_clear(pm_dir);
161                         address += HPAGE_SIZE - PAGE_SIZE;
162                         continue;
163                 }
164
165                 pt_dir = pte_offset_kernel(pm_dir, address);
166                 *pt_dir = pte;
167         }
168         flush_tlb_kernel_range(start, start + size);
169 }
170
171 /*
172  * Add a backed mem_map array to the virtual mem_map array.
173  */
174 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
175 {
176         unsigned long address, start_addr, end_addr;
177         pgd_t *pg_dir;
178         pud_t *pu_dir;
179         pmd_t *pm_dir;
180         pte_t *pt_dir;
181         pte_t  pte;
182         int ret = -ENOMEM;
183
184         start_addr = (unsigned long) start;
185         end_addr = (unsigned long) (start + nr);
186
187         for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
188                 pg_dir = pgd_offset_k(address);
189                 if (pgd_none(*pg_dir)) {
190                         pu_dir = vmem_pud_alloc();
191                         if (!pu_dir)
192                                 goto out;
193                         pgd_populate(&init_mm, pg_dir, pu_dir);
194                 }
195
196                 pu_dir = pud_offset(pg_dir, address);
197                 if (pud_none(*pu_dir)) {
198                         pm_dir = vmem_pmd_alloc();
199                         if (!pm_dir)
200                                 goto out;
201                         pud_populate(&init_mm, pu_dir, pm_dir);
202                 }
203
204                 pm_dir = pmd_offset(pu_dir, address);
205                 if (pmd_none(*pm_dir)) {
206                         pt_dir = vmem_pte_alloc(address);
207                         if (!pt_dir)
208                                 goto out;
209                         pmd_populate(&init_mm, pm_dir, pt_dir);
210                 }
211
212                 pt_dir = pte_offset_kernel(pm_dir, address);
213                 if (pte_none(*pt_dir)) {
214                         unsigned long new_page;
215
216                         new_page =__pa(vmem_alloc_pages(0));
217                         if (!new_page)
218                                 goto out;
219                         pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
220                         *pt_dir = pte;
221                 }
222         }
223         memset(start, 0, nr * sizeof(struct page));
224         ret = 0;
225 out:
226         flush_tlb_kernel_range(start_addr, end_addr);
227         return ret;
228 }
229
230 /*
231  * Add memory segment to the segment list if it doesn't overlap with
232  * an already present segment.
233  */
234 static int insert_memory_segment(struct memory_segment *seg)
235 {
236         struct memory_segment *tmp;
237
238         if (seg->start + seg->size > VMEM_MAX_PHYS ||
239             seg->start + seg->size < seg->start)
240                 return -ERANGE;
241
242         list_for_each_entry(tmp, &mem_segs, list) {
243                 if (seg->start >= tmp->start + tmp->size)
244                         continue;
245                 if (seg->start + seg->size <= tmp->start)
246                         continue;
247                 return -ENOSPC;
248         }
249         list_add(&seg->list, &mem_segs);
250         return 0;
251 }
252
253 /*
254  * Remove memory segment from the segment list.
255  */
256 static void remove_memory_segment(struct memory_segment *seg)
257 {
258         list_del(&seg->list);
259 }
260
261 static void __remove_shared_memory(struct memory_segment *seg)
262 {
263         remove_memory_segment(seg);
264         vmem_remove_range(seg->start, seg->size);
265 }
266
267 int vmem_remove_mapping(unsigned long start, unsigned long size)
268 {
269         struct memory_segment *seg;
270         int ret;
271
272         mutex_lock(&vmem_mutex);
273
274         ret = -ENOENT;
275         list_for_each_entry(seg, &mem_segs, list) {
276                 if (seg->start == start && seg->size == size)
277                         break;
278         }
279
280         if (seg->start != start || seg->size != size)
281                 goto out;
282
283         ret = 0;
284         __remove_shared_memory(seg);
285         kfree(seg);
286 out:
287         mutex_unlock(&vmem_mutex);
288         return ret;
289 }
290
291 int vmem_add_mapping(unsigned long start, unsigned long size)
292 {
293         struct memory_segment *seg;
294         int ret;
295
296         mutex_lock(&vmem_mutex);
297         ret = -ENOMEM;
298         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
299         if (!seg)
300                 goto out;
301         seg->start = start;
302         seg->size = size;
303
304         ret = insert_memory_segment(seg);
305         if (ret)
306                 goto out_free;
307
308         ret = vmem_add_mem(start, size, 0);
309         if (ret)
310                 goto out_remove;
311         goto out;
312
313 out_remove:
314         __remove_shared_memory(seg);
315 out_free:
316         kfree(seg);
317 out:
318         mutex_unlock(&vmem_mutex);
319         return ret;
320 }
321
322 /*
323  * map whole physical memory to virtual memory (identity mapping)
324  * we reserve enough space in the vmalloc area for vmemmap to hotplug
325  * additional memory segments.
326  */
327 void __init vmem_map_init(void)
328 {
329         unsigned long ro_start, ro_end;
330         unsigned long start, end;
331         int i;
332
333         ro_start = ((unsigned long)&_stext) & PAGE_MASK;
334         ro_end = PFN_ALIGN((unsigned long)&_eshared);
335         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
336                 if (memory_chunk[i].type == CHUNK_CRASHK ||
337                     memory_chunk[i].type == CHUNK_OLDMEM)
338                         continue;
339                 start = memory_chunk[i].addr;
340                 end = memory_chunk[i].addr + memory_chunk[i].size;
341                 if (start >= ro_end || end <= ro_start)
342                         vmem_add_mem(start, end - start, 0);
343                 else if (start >= ro_start && end <= ro_end)
344                         vmem_add_mem(start, end - start, 1);
345                 else if (start >= ro_start) {
346                         vmem_add_mem(start, ro_end - start, 1);
347                         vmem_add_mem(ro_end, end - ro_end, 0);
348                 } else if (end < ro_end) {
349                         vmem_add_mem(start, ro_start - start, 0);
350                         vmem_add_mem(ro_start, end - ro_start, 1);
351                 } else {
352                         vmem_add_mem(start, ro_start - start, 0);
353                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
354                         vmem_add_mem(ro_end, end - ro_end, 0);
355                 }
356         }
357 }
358
359 /*
360  * Convert memory chunk array to a memory segment list so there is a single
361  * list that contains both r/w memory and shared memory segments.
362  */
363 static int __init vmem_convert_memory_chunk(void)
364 {
365         struct memory_segment *seg;
366         int i;
367
368         mutex_lock(&vmem_mutex);
369         for (i = 0; i < MEMORY_CHUNKS; i++) {
370                 if (!memory_chunk[i].size)
371                         continue;
372                 if (memory_chunk[i].type == CHUNK_CRASHK ||
373                     memory_chunk[i].type == CHUNK_OLDMEM)
374                         continue;
375                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
376                 if (!seg)
377                         panic("Out of memory...\n");
378                 seg->start = memory_chunk[i].addr;
379                 seg->size = memory_chunk[i].size;
380                 insert_memory_segment(seg);
381         }
382         mutex_unlock(&vmem_mutex);
383         return 0;
384 }
385
386 core_initcall(vmem_convert_memory_chunk);