[S390] cleanup lowcore access from external interrupts
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/ipl.h>
42 #include <asm/setup.h>
43 #include <asm/sigp.h>
44 #include <asm/pgalloc.h>
45 #include <asm/irq.h>
46 #include <asm/s390_ext.h>
47 #include <asm/cpcmd.h>
48 #include <asm/tlbflush.h>
49 #include <asm/timer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/cputime.h>
53 #include <asm/vdso.h>
54 #include <asm/cpu.h>
55 #include "entry.h"
56
57 /* logical cpu to cpu address */
58 unsigned short __cpu_logical_map[NR_CPUS];
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76
77 static void smp_ext_bitcall(int, int);
78
79 static int raw_cpu_stopped(int cpu)
80 {
81         u32 status;
82
83         switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
84         case sigp_status_stored:
85                 /* Check for stopped and check stop state */
86                 if (status & 0x50)
87                         return 1;
88                 break;
89         default:
90                 break;
91         }
92         return 0;
93 }
94
95 static inline int cpu_stopped(int cpu)
96 {
97         return raw_cpu_stopped(cpu_logical_map(cpu));
98 }
99
100 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
101 {
102         struct _lowcore *lc, *current_lc;
103         struct stack_frame *sf;
104         struct pt_regs *regs;
105         unsigned long sp;
106
107         if (smp_processor_id() == 0)
108                 func(data);
109         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
110         /* Disable lowcore protection */
111         __ctl_clear_bit(0, 28);
112         current_lc = lowcore_ptr[smp_processor_id()];
113         lc = lowcore_ptr[0];
114         if (!lc)
115                 lc = current_lc;
116         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
117         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
118         if (!cpu_online(0))
119                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
120         while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
121                 cpu_relax();
122         sp = lc->panic_stack;
123         sp -= sizeof(struct pt_regs);
124         regs = (struct pt_regs *) sp;
125         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
126         regs->psw = lc->psw_save_area;
127         sp -= STACK_FRAME_OVERHEAD;
128         sf = (struct stack_frame *) sp;
129         sf->back_chain = regs->gprs[15];
130         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
131 }
132
133 void smp_send_stop(void)
134 {
135         int cpu, rc;
136
137         /* Disable all interrupts/machine checks */
138         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
139         trace_hardirqs_off();
140
141         /* stop all processors */
142         for_each_online_cpu(cpu) {
143                 if (cpu == smp_processor_id())
144                         continue;
145                 do {
146                         rc = sigp(cpu, sigp_stop);
147                 } while (rc == sigp_busy);
148
149                 while (!cpu_stopped(cpu))
150                         cpu_relax();
151         }
152 }
153
154 /*
155  * This is the main routine where commands issued by other
156  * cpus are handled.
157  */
158
159 static void do_ext_call_interrupt(unsigned int ext_int_code,
160                                   unsigned int param32, unsigned long param64)
161 {
162         unsigned long bits;
163
164         /*
165          * handle bit signal external calls
166          *
167          * For the ec_schedule signal we have to do nothing. All the work
168          * is done automatically when we return from the interrupt.
169          */
170         bits = xchg(&S390_lowcore.ext_call_fast, 0);
171
172         if (test_bit(ec_call_function, &bits))
173                 generic_smp_call_function_interrupt();
174
175         if (test_bit(ec_call_function_single, &bits))
176                 generic_smp_call_function_single_interrupt();
177 }
178
179 /*
180  * Send an external call sigp to another cpu and return without waiting
181  * for its completion.
182  */
183 static void smp_ext_bitcall(int cpu, int sig)
184 {
185         /*
186          * Set signaling bit in lowcore of target cpu and kick it
187          */
188         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
189         while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
190                 udelay(10);
191 }
192
193 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
194 {
195         int cpu;
196
197         for_each_cpu(cpu, mask)
198                 smp_ext_bitcall(cpu, ec_call_function);
199 }
200
201 void arch_send_call_function_single_ipi(int cpu)
202 {
203         smp_ext_bitcall(cpu, ec_call_function_single);
204 }
205
206 #ifndef CONFIG_64BIT
207 /*
208  * this function sends a 'purge tlb' signal to another CPU.
209  */
210 static void smp_ptlb_callback(void *info)
211 {
212         __tlb_flush_local();
213 }
214
215 void smp_ptlb_all(void)
216 {
217         on_each_cpu(smp_ptlb_callback, NULL, 1);
218 }
219 EXPORT_SYMBOL(smp_ptlb_all);
220 #endif /* ! CONFIG_64BIT */
221
222 /*
223  * this function sends a 'reschedule' IPI to another CPU.
224  * it goes straight through and wastes no time serializing
225  * anything. Worst case is that we lose a reschedule ...
226  */
227 void smp_send_reschedule(int cpu)
228 {
229         smp_ext_bitcall(cpu, ec_schedule);
230 }
231
232 /*
233  * parameter area for the set/clear control bit callbacks
234  */
235 struct ec_creg_mask_parms {
236         unsigned long orvals[16];
237         unsigned long andvals[16];
238 };
239
240 /*
241  * callback for setting/clearing control bits
242  */
243 static void smp_ctl_bit_callback(void *info)
244 {
245         struct ec_creg_mask_parms *pp = info;
246         unsigned long cregs[16];
247         int i;
248
249         __ctl_store(cregs, 0, 15);
250         for (i = 0; i <= 15; i++)
251                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
252         __ctl_load(cregs, 0, 15);
253 }
254
255 /*
256  * Set a bit in a control register of all cpus
257  */
258 void smp_ctl_set_bit(int cr, int bit)
259 {
260         struct ec_creg_mask_parms parms;
261
262         memset(&parms.orvals, 0, sizeof(parms.orvals));
263         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
264         parms.orvals[cr] = 1 << bit;
265         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
266 }
267 EXPORT_SYMBOL(smp_ctl_set_bit);
268
269 /*
270  * Clear a bit in a control register of all cpus
271  */
272 void smp_ctl_clear_bit(int cr, int bit)
273 {
274         struct ec_creg_mask_parms parms;
275
276         memset(&parms.orvals, 0, sizeof(parms.orvals));
277         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
278         parms.andvals[cr] = ~(1L << bit);
279         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
280 }
281 EXPORT_SYMBOL(smp_ctl_clear_bit);
282
283 #ifdef CONFIG_ZFCPDUMP
284
285 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
286 {
287         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
288                 return;
289         if (cpu >= NR_CPUS) {
290                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
291                            "the dump\n", cpu, NR_CPUS - 1);
292                 return;
293         }
294         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
295         while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
296                 cpu_relax();
297         memcpy_real(zfcpdump_save_areas[cpu],
298                     (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
299                     sizeof(struct save_area));
300 }
301
302 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
303 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
304
305 #else
306
307 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
308
309 #endif /* CONFIG_ZFCPDUMP */
310
311 static int cpu_known(int cpu_id)
312 {
313         int cpu;
314
315         for_each_present_cpu(cpu) {
316                 if (__cpu_logical_map[cpu] == cpu_id)
317                         return 1;
318         }
319         return 0;
320 }
321
322 static int smp_rescan_cpus_sigp(cpumask_t avail)
323 {
324         int cpu_id, logical_cpu;
325
326         logical_cpu = cpumask_first(&avail);
327         if (logical_cpu >= nr_cpu_ids)
328                 return 0;
329         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
330                 if (cpu_known(cpu_id))
331                         continue;
332                 __cpu_logical_map[logical_cpu] = cpu_id;
333                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
334                 if (!cpu_stopped(logical_cpu))
335                         continue;
336                 cpu_set(logical_cpu, cpu_present_map);
337                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
338                 logical_cpu = cpumask_next(logical_cpu, &avail);
339                 if (logical_cpu >= nr_cpu_ids)
340                         break;
341         }
342         return 0;
343 }
344
345 static int smp_rescan_cpus_sclp(cpumask_t avail)
346 {
347         struct sclp_cpu_info *info;
348         int cpu_id, logical_cpu, cpu;
349         int rc;
350
351         logical_cpu = cpumask_first(&avail);
352         if (logical_cpu >= nr_cpu_ids)
353                 return 0;
354         info = kmalloc(sizeof(*info), GFP_KERNEL);
355         if (!info)
356                 return -ENOMEM;
357         rc = sclp_get_cpu_info(info);
358         if (rc)
359                 goto out;
360         for (cpu = 0; cpu < info->combined; cpu++) {
361                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
362                         continue;
363                 cpu_id = info->cpu[cpu].address;
364                 if (cpu_known(cpu_id))
365                         continue;
366                 __cpu_logical_map[logical_cpu] = cpu_id;
367                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
368                 cpu_set(logical_cpu, cpu_present_map);
369                 if (cpu >= info->configured)
370                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
371                 else
372                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
373                 logical_cpu = cpumask_next(logical_cpu, &avail);
374                 if (logical_cpu >= nr_cpu_ids)
375                         break;
376         }
377 out:
378         kfree(info);
379         return rc;
380 }
381
382 static int __smp_rescan_cpus(void)
383 {
384         cpumask_t avail;
385
386         cpus_xor(avail, cpu_possible_map, cpu_present_map);
387         if (smp_use_sigp_detection)
388                 return smp_rescan_cpus_sigp(avail);
389         else
390                 return smp_rescan_cpus_sclp(avail);
391 }
392
393 static void __init smp_detect_cpus(void)
394 {
395         unsigned int cpu, c_cpus, s_cpus;
396         struct sclp_cpu_info *info;
397         u16 boot_cpu_addr, cpu_addr;
398
399         c_cpus = 1;
400         s_cpus = 0;
401         boot_cpu_addr = __cpu_logical_map[0];
402         info = kmalloc(sizeof(*info), GFP_KERNEL);
403         if (!info)
404                 panic("smp_detect_cpus failed to allocate memory\n");
405         /* Use sigp detection algorithm if sclp doesn't work. */
406         if (sclp_get_cpu_info(info)) {
407                 smp_use_sigp_detection = 1;
408                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
409                         if (cpu == boot_cpu_addr)
410                                 continue;
411                         if (!raw_cpu_stopped(cpu))
412                                 continue;
413                         smp_get_save_area(c_cpus, cpu);
414                         c_cpus++;
415                 }
416                 goto out;
417         }
418
419         if (info->has_cpu_type) {
420                 for (cpu = 0; cpu < info->combined; cpu++) {
421                         if (info->cpu[cpu].address == boot_cpu_addr) {
422                                 smp_cpu_type = info->cpu[cpu].type;
423                                 break;
424                         }
425                 }
426         }
427
428         for (cpu = 0; cpu < info->combined; cpu++) {
429                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
430                         continue;
431                 cpu_addr = info->cpu[cpu].address;
432                 if (cpu_addr == boot_cpu_addr)
433                         continue;
434                 if (!raw_cpu_stopped(cpu_addr)) {
435                         s_cpus++;
436                         continue;
437                 }
438                 smp_get_save_area(c_cpus, cpu_addr);
439                 c_cpus++;
440         }
441 out:
442         kfree(info);
443         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
444         get_online_cpus();
445         __smp_rescan_cpus();
446         put_online_cpus();
447 }
448
449 /*
450  *      Activate a secondary processor.
451  */
452 int __cpuinit start_secondary(void *cpuvoid)
453 {
454         /* Setup the cpu */
455         cpu_init();
456         preempt_disable();
457         /* Enable TOD clock interrupts on the secondary cpu. */
458         init_cpu_timer();
459         /* Enable cpu timer interrupts on the secondary cpu. */
460         init_cpu_vtimer();
461         /* Enable pfault pseudo page faults on this cpu. */
462         pfault_init();
463
464         /* call cpu notifiers */
465         notify_cpu_starting(smp_processor_id());
466         /* Mark this cpu as online */
467         ipi_call_lock();
468         cpu_set(smp_processor_id(), cpu_online_map);
469         ipi_call_unlock();
470         /* Switch on interrupts */
471         local_irq_enable();
472         /* Print info about this processor */
473         print_cpu_info();
474         /* cpu_idle will call schedule for us */
475         cpu_idle();
476         return 0;
477 }
478
479 static void __init smp_create_idle(unsigned int cpu)
480 {
481         struct task_struct *p;
482
483         /*
484          *  don't care about the psw and regs settings since we'll never
485          *  reschedule the forked task.
486          */
487         p = fork_idle(cpu);
488         if (IS_ERR(p))
489                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
490         current_set[cpu] = p;
491 }
492
493 static int __cpuinit smp_alloc_lowcore(int cpu)
494 {
495         unsigned long async_stack, panic_stack;
496         struct _lowcore *lowcore;
497
498         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
499         if (!lowcore)
500                 return -ENOMEM;
501         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
502         panic_stack = __get_free_page(GFP_KERNEL);
503         if (!panic_stack || !async_stack)
504                 goto out;
505         memcpy(lowcore, &S390_lowcore, 512);
506         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
507         lowcore->async_stack = async_stack + ASYNC_SIZE;
508         lowcore->panic_stack = panic_stack + PAGE_SIZE;
509
510 #ifndef CONFIG_64BIT
511         if (MACHINE_HAS_IEEE) {
512                 unsigned long save_area;
513
514                 save_area = get_zeroed_page(GFP_KERNEL);
515                 if (!save_area)
516                         goto out;
517                 lowcore->extended_save_area_addr = (u32) save_area;
518         }
519 #else
520         if (vdso_alloc_per_cpu(cpu, lowcore))
521                 goto out;
522 #endif
523         lowcore_ptr[cpu] = lowcore;
524         return 0;
525
526 out:
527         free_page(panic_stack);
528         free_pages(async_stack, ASYNC_ORDER);
529         free_pages((unsigned long) lowcore, LC_ORDER);
530         return -ENOMEM;
531 }
532
533 static void smp_free_lowcore(int cpu)
534 {
535         struct _lowcore *lowcore;
536
537         lowcore = lowcore_ptr[cpu];
538 #ifndef CONFIG_64BIT
539         if (MACHINE_HAS_IEEE)
540                 free_page((unsigned long) lowcore->extended_save_area_addr);
541 #else
542         vdso_free_per_cpu(cpu, lowcore);
543 #endif
544         free_page(lowcore->panic_stack - PAGE_SIZE);
545         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
546         free_pages((unsigned long) lowcore, LC_ORDER);
547         lowcore_ptr[cpu] = NULL;
548 }
549
550 /* Upping and downing of CPUs */
551 int __cpuinit __cpu_up(unsigned int cpu)
552 {
553         struct _lowcore *cpu_lowcore;
554         struct task_struct *idle;
555         struct stack_frame *sf;
556         u32 lowcore;
557         int ccode;
558
559         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
560                 return -EIO;
561         if (smp_alloc_lowcore(cpu))
562                 return -ENOMEM;
563         do {
564                 ccode = sigp(cpu, sigp_initial_cpu_reset);
565                 if (ccode == sigp_busy)
566                         udelay(10);
567                 if (ccode == sigp_not_operational)
568                         goto err_out;
569         } while (ccode == sigp_busy);
570
571         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
572         while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
573                 udelay(10);
574
575         idle = current_set[cpu];
576         cpu_lowcore = lowcore_ptr[cpu];
577         cpu_lowcore->kernel_stack = (unsigned long)
578                 task_stack_page(idle) + THREAD_SIZE;
579         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
580         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
581                                      - sizeof(struct pt_regs)
582                                      - sizeof(struct stack_frame));
583         memset(sf, 0, sizeof(struct stack_frame));
584         sf->gprs[9] = (unsigned long) sf;
585         cpu_lowcore->save_area[15] = (unsigned long) sf;
586         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
587         atomic_inc(&init_mm.context.attach_count);
588         asm volatile(
589                 "       stam    0,15,0(%0)"
590                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
591         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
592         cpu_lowcore->current_task = (unsigned long) idle;
593         cpu_lowcore->cpu_nr = cpu;
594         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
595         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
596         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
597         eieio();
598
599         while (sigp(cpu, sigp_restart) == sigp_busy)
600                 udelay(10);
601
602         while (!cpu_online(cpu))
603                 cpu_relax();
604         return 0;
605
606 err_out:
607         smp_free_lowcore(cpu);
608         return -EIO;
609 }
610
611 static int __init setup_possible_cpus(char *s)
612 {
613         int pcpus, cpu;
614
615         pcpus = simple_strtoul(s, NULL, 0);
616         init_cpu_possible(cpumask_of(0));
617         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
618                 set_cpu_possible(cpu, true);
619         return 0;
620 }
621 early_param("possible_cpus", setup_possible_cpus);
622
623 #ifdef CONFIG_HOTPLUG_CPU
624
625 int __cpu_disable(void)
626 {
627         struct ec_creg_mask_parms cr_parms;
628         int cpu = smp_processor_id();
629
630         cpu_clear(cpu, cpu_online_map);
631
632         /* Disable pfault pseudo page faults on this cpu. */
633         pfault_fini();
634
635         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
636         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
637
638         /* disable all external interrupts */
639         cr_parms.orvals[0] = 0;
640         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
641                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
642         /* disable all I/O interrupts */
643         cr_parms.orvals[6] = 0;
644         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
645                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
646         /* disable most machine checks */
647         cr_parms.orvals[14] = 0;
648         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
649                                  1 << 25 | 1 << 24);
650
651         smp_ctl_bit_callback(&cr_parms);
652
653         return 0;
654 }
655
656 void __cpu_die(unsigned int cpu)
657 {
658         /* Wait until target cpu is down */
659         while (!cpu_stopped(cpu))
660                 cpu_relax();
661         while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
662                 udelay(10);
663         smp_free_lowcore(cpu);
664         atomic_dec(&init_mm.context.attach_count);
665         pr_info("Processor %d stopped\n", cpu);
666 }
667
668 void cpu_die(void)
669 {
670         idle_task_exit();
671         while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
672                 cpu_relax();
673         for (;;);
674 }
675
676 #endif /* CONFIG_HOTPLUG_CPU */
677
678 void __init smp_prepare_cpus(unsigned int max_cpus)
679 {
680 #ifndef CONFIG_64BIT
681         unsigned long save_area = 0;
682 #endif
683         unsigned long async_stack, panic_stack;
684         struct _lowcore *lowcore;
685         unsigned int cpu;
686
687         smp_detect_cpus();
688
689         /* request the 0x1201 emergency signal external interrupt */
690         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
691                 panic("Couldn't request external interrupt 0x1201");
692         print_cpu_info();
693
694         /* Reallocate current lowcore, but keep its contents. */
695         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
696         panic_stack = __get_free_page(GFP_KERNEL);
697         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
698         BUG_ON(!lowcore || !panic_stack || !async_stack);
699 #ifndef CONFIG_64BIT
700         if (MACHINE_HAS_IEEE)
701                 save_area = get_zeroed_page(GFP_KERNEL);
702 #endif
703         local_irq_disable();
704         local_mcck_disable();
705         lowcore_ptr[smp_processor_id()] = lowcore;
706         *lowcore = S390_lowcore;
707         lowcore->panic_stack = panic_stack + PAGE_SIZE;
708         lowcore->async_stack = async_stack + ASYNC_SIZE;
709 #ifndef CONFIG_64BIT
710         if (MACHINE_HAS_IEEE)
711                 lowcore->extended_save_area_addr = (u32) save_area;
712 #endif
713         set_prefix((u32)(unsigned long) lowcore);
714         local_mcck_enable();
715         local_irq_enable();
716 #ifdef CONFIG_64BIT
717         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
718                 BUG();
719 #endif
720         for_each_possible_cpu(cpu)
721                 if (cpu != smp_processor_id())
722                         smp_create_idle(cpu);
723 }
724
725 void __init smp_prepare_boot_cpu(void)
726 {
727         BUG_ON(smp_processor_id() != 0);
728
729         current_thread_info()->cpu = 0;
730         cpu_set(0, cpu_present_map);
731         cpu_set(0, cpu_online_map);
732         S390_lowcore.percpu_offset = __per_cpu_offset[0];
733         current_set[0] = current;
734         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
735         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
736 }
737
738 void __init smp_cpus_done(unsigned int max_cpus)
739 {
740 }
741
742 void __init smp_setup_processor_id(void)
743 {
744         S390_lowcore.cpu_nr = 0;
745         __cpu_logical_map[0] = stap();
746 }
747
748 /*
749  * the frequency of the profiling timer can be changed
750  * by writing a multiplier value into /proc/profile.
751  *
752  * usually you want to run this on all CPUs ;)
753  */
754 int setup_profiling_timer(unsigned int multiplier)
755 {
756         return 0;
757 }
758
759 #ifdef CONFIG_HOTPLUG_CPU
760 static ssize_t cpu_configure_show(struct sys_device *dev,
761                                 struct sysdev_attribute *attr, char *buf)
762 {
763         ssize_t count;
764
765         mutex_lock(&smp_cpu_state_mutex);
766         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
767         mutex_unlock(&smp_cpu_state_mutex);
768         return count;
769 }
770
771 static ssize_t cpu_configure_store(struct sys_device *dev,
772                                   struct sysdev_attribute *attr,
773                                   const char *buf, size_t count)
774 {
775         int cpu = dev->id;
776         int val, rc;
777         char delim;
778
779         if (sscanf(buf, "%d %c", &val, &delim) != 1)
780                 return -EINVAL;
781         if (val != 0 && val != 1)
782                 return -EINVAL;
783
784         get_online_cpus();
785         mutex_lock(&smp_cpu_state_mutex);
786         rc = -EBUSY;
787         /* disallow configuration changes of online cpus and cpu 0 */
788         if (cpu_online(cpu) || cpu == 0)
789                 goto out;
790         rc = 0;
791         switch (val) {
792         case 0:
793                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
794                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
795                         if (!rc) {
796                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
797                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
798                         }
799                 }
800                 break;
801         case 1:
802                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
803                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
804                         if (!rc) {
805                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
806                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
807                         }
808                 }
809                 break;
810         default:
811                 break;
812         }
813 out:
814         mutex_unlock(&smp_cpu_state_mutex);
815         put_online_cpus();
816         return rc ? rc : count;
817 }
818 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
819 #endif /* CONFIG_HOTPLUG_CPU */
820
821 static ssize_t cpu_polarization_show(struct sys_device *dev,
822                                      struct sysdev_attribute *attr, char *buf)
823 {
824         int cpu = dev->id;
825         ssize_t count;
826
827         mutex_lock(&smp_cpu_state_mutex);
828         switch (smp_cpu_polarization[cpu]) {
829         case POLARIZATION_HRZ:
830                 count = sprintf(buf, "horizontal\n");
831                 break;
832         case POLARIZATION_VL:
833                 count = sprintf(buf, "vertical:low\n");
834                 break;
835         case POLARIZATION_VM:
836                 count = sprintf(buf, "vertical:medium\n");
837                 break;
838         case POLARIZATION_VH:
839                 count = sprintf(buf, "vertical:high\n");
840                 break;
841         default:
842                 count = sprintf(buf, "unknown\n");
843                 break;
844         }
845         mutex_unlock(&smp_cpu_state_mutex);
846         return count;
847 }
848 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
849
850 static ssize_t show_cpu_address(struct sys_device *dev,
851                                 struct sysdev_attribute *attr, char *buf)
852 {
853         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
854 }
855 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
856
857
858 static struct attribute *cpu_common_attrs[] = {
859 #ifdef CONFIG_HOTPLUG_CPU
860         &attr_configure.attr,
861 #endif
862         &attr_address.attr,
863         &attr_polarization.attr,
864         NULL,
865 };
866
867 static struct attribute_group cpu_common_attr_group = {
868         .attrs = cpu_common_attrs,
869 };
870
871 static ssize_t show_capability(struct sys_device *dev,
872                                 struct sysdev_attribute *attr, char *buf)
873 {
874         unsigned int capability;
875         int rc;
876
877         rc = get_cpu_capability(&capability);
878         if (rc)
879                 return rc;
880         return sprintf(buf, "%u\n", capability);
881 }
882 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
883
884 static ssize_t show_idle_count(struct sys_device *dev,
885                                 struct sysdev_attribute *attr, char *buf)
886 {
887         struct s390_idle_data *idle;
888         unsigned long long idle_count;
889         unsigned int sequence;
890
891         idle = &per_cpu(s390_idle, dev->id);
892 repeat:
893         sequence = idle->sequence;
894         smp_rmb();
895         if (sequence & 1)
896                 goto repeat;
897         idle_count = idle->idle_count;
898         if (idle->idle_enter)
899                 idle_count++;
900         smp_rmb();
901         if (idle->sequence != sequence)
902                 goto repeat;
903         return sprintf(buf, "%llu\n", idle_count);
904 }
905 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
906
907 static ssize_t show_idle_time(struct sys_device *dev,
908                                 struct sysdev_attribute *attr, char *buf)
909 {
910         struct s390_idle_data *idle;
911         unsigned long long now, idle_time, idle_enter;
912         unsigned int sequence;
913
914         idle = &per_cpu(s390_idle, dev->id);
915         now = get_clock();
916 repeat:
917         sequence = idle->sequence;
918         smp_rmb();
919         if (sequence & 1)
920                 goto repeat;
921         idle_time = idle->idle_time;
922         idle_enter = idle->idle_enter;
923         if (idle_enter != 0ULL && idle_enter < now)
924                 idle_time += now - idle_enter;
925         smp_rmb();
926         if (idle->sequence != sequence)
927                 goto repeat;
928         return sprintf(buf, "%llu\n", idle_time >> 12);
929 }
930 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
931
932 static struct attribute *cpu_online_attrs[] = {
933         &attr_capability.attr,
934         &attr_idle_count.attr,
935         &attr_idle_time_us.attr,
936         NULL,
937 };
938
939 static struct attribute_group cpu_online_attr_group = {
940         .attrs = cpu_online_attrs,
941 };
942
943 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
944                                     unsigned long action, void *hcpu)
945 {
946         unsigned int cpu = (unsigned int)(long)hcpu;
947         struct cpu *c = &per_cpu(cpu_devices, cpu);
948         struct sys_device *s = &c->sysdev;
949         struct s390_idle_data *idle;
950         int err = 0;
951
952         switch (action) {
953         case CPU_ONLINE:
954         case CPU_ONLINE_FROZEN:
955                 idle = &per_cpu(s390_idle, cpu);
956                 memset(idle, 0, sizeof(struct s390_idle_data));
957                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
958                 break;
959         case CPU_DEAD:
960         case CPU_DEAD_FROZEN:
961                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
962                 break;
963         }
964         return notifier_from_errno(err);
965 }
966
967 static struct notifier_block __cpuinitdata smp_cpu_nb = {
968         .notifier_call = smp_cpu_notify,
969 };
970
971 static int __devinit smp_add_present_cpu(int cpu)
972 {
973         struct cpu *c = &per_cpu(cpu_devices, cpu);
974         struct sys_device *s = &c->sysdev;
975         int rc;
976
977         c->hotpluggable = 1;
978         rc = register_cpu(c, cpu);
979         if (rc)
980                 goto out;
981         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
982         if (rc)
983                 goto out_cpu;
984         if (!cpu_online(cpu))
985                 goto out;
986         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
987         if (!rc)
988                 return 0;
989         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
990 out_cpu:
991 #ifdef CONFIG_HOTPLUG_CPU
992         unregister_cpu(c);
993 #endif
994 out:
995         return rc;
996 }
997
998 #ifdef CONFIG_HOTPLUG_CPU
999
1000 int __ref smp_rescan_cpus(void)
1001 {
1002         cpumask_t newcpus;
1003         int cpu;
1004         int rc;
1005
1006         get_online_cpus();
1007         mutex_lock(&smp_cpu_state_mutex);
1008         newcpus = cpu_present_map;
1009         rc = __smp_rescan_cpus();
1010         if (rc)
1011                 goto out;
1012         cpus_andnot(newcpus, cpu_present_map, newcpus);
1013         for_each_cpu_mask(cpu, newcpus) {
1014                 rc = smp_add_present_cpu(cpu);
1015                 if (rc)
1016                         cpu_clear(cpu, cpu_present_map);
1017         }
1018         rc = 0;
1019 out:
1020         mutex_unlock(&smp_cpu_state_mutex);
1021         put_online_cpus();
1022         if (!cpus_empty(newcpus))
1023                 topology_schedule_update();
1024         return rc;
1025 }
1026
1027 static ssize_t __ref rescan_store(struct sysdev_class *class,
1028                                   struct sysdev_class_attribute *attr,
1029                                   const char *buf,
1030                                   size_t count)
1031 {
1032         int rc;
1033
1034         rc = smp_rescan_cpus();
1035         return rc ? rc : count;
1036 }
1037 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1038 #endif /* CONFIG_HOTPLUG_CPU */
1039
1040 static ssize_t dispatching_show(struct sysdev_class *class,
1041                                 struct sysdev_class_attribute *attr,
1042                                 char *buf)
1043 {
1044         ssize_t count;
1045
1046         mutex_lock(&smp_cpu_state_mutex);
1047         count = sprintf(buf, "%d\n", cpu_management);
1048         mutex_unlock(&smp_cpu_state_mutex);
1049         return count;
1050 }
1051
1052 static ssize_t dispatching_store(struct sysdev_class *dev,
1053                                  struct sysdev_class_attribute *attr,
1054                                  const char *buf,
1055                                  size_t count)
1056 {
1057         int val, rc;
1058         char delim;
1059
1060         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1061                 return -EINVAL;
1062         if (val != 0 && val != 1)
1063                 return -EINVAL;
1064         rc = 0;
1065         get_online_cpus();
1066         mutex_lock(&smp_cpu_state_mutex);
1067         if (cpu_management == val)
1068                 goto out;
1069         rc = topology_set_cpu_management(val);
1070         if (!rc)
1071                 cpu_management = val;
1072 out:
1073         mutex_unlock(&smp_cpu_state_mutex);
1074         put_online_cpus();
1075         return rc ? rc : count;
1076 }
1077 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1078                          dispatching_store);
1079
1080 static int __init topology_init(void)
1081 {
1082         int cpu;
1083         int rc;
1084
1085         register_cpu_notifier(&smp_cpu_nb);
1086
1087 #ifdef CONFIG_HOTPLUG_CPU
1088         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1089         if (rc)
1090                 return rc;
1091 #endif
1092         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1093         if (rc)
1094                 return rc;
1095         for_each_present_cpu(cpu) {
1096                 rc = smp_add_present_cpu(cpu);
1097                 if (rc)
1098                         return rc;
1099         }
1100         return 0;
1101 }
1102 subsys_initcall(topology_init);