s390/comments: unify copyright messages and remove file names
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51         ec_schedule = 0,
52         ec_call_function,
53         ec_call_function_single,
54         ec_stop_cpu,
55 };
56
57 enum {
58         CPU_STATE_STANDBY,
59         CPU_STATE_CONFIGURED,
60 };
61
62 struct pcpu {
63         struct cpu cpu;
64         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
65         unsigned long async_stack;      /* async stack for the cpu */
66         unsigned long panic_stack;      /* panic stack for the cpu */
67         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
68         int state;                      /* physical cpu state */
69         u32 status;                     /* last status received via sigp */
70         u16 address;                    /* physical cpu address */
71 };
72
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76
77 DEFINE_MUTEX(smp_cpu_state_mutex);
78
79 /*
80  * Signal processor helper functions.
81  */
82 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
83 {
84         register unsigned int reg1 asm ("1") = parm;
85         int cc;
86
87         asm volatile(
88                 "       sigp    %1,%2,0(%3)\n"
89                 "       ipm     %0\n"
90                 "       srl     %0,28\n"
91                 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
92         if (status && cc == 1)
93                 *status = reg1;
94         return cc;
95 }
96
97 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
98 {
99         int cc;
100
101         while (1) {
102                 cc = __pcpu_sigp(addr, order, parm, status);
103                 if (cc != SIGP_CC_BUSY)
104                         return cc;
105                 cpu_relax();
106         }
107 }
108
109 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
110 {
111         int cc, retry;
112
113         for (retry = 0; ; retry++) {
114                 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
115                 if (cc != SIGP_CC_BUSY)
116                         break;
117                 if (retry >= 3)
118                         udelay(10);
119         }
120         return cc;
121 }
122
123 static inline int pcpu_stopped(struct pcpu *pcpu)
124 {
125         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
126                         0, &pcpu->status) != SIGP_CC_STATUS_STORED)
127                 return 0;
128         return !!(pcpu->status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
129 }
130
131 static inline int pcpu_running(struct pcpu *pcpu)
132 {
133         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
134                         0, &pcpu->status) != SIGP_CC_STATUS_STORED)
135                 return 1;
136         /* Status stored condition code is equivalent to cpu not running. */
137         return 0;
138 }
139
140 /*
141  * Find struct pcpu by cpu address.
142  */
143 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
144 {
145         int cpu;
146
147         for_each_cpu(cpu, mask)
148                 if (pcpu_devices[cpu].address == address)
149                         return pcpu_devices + cpu;
150         return NULL;
151 }
152
153 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
154 {
155         int order;
156
157         set_bit(ec_bit, &pcpu->ec_mask);
158         order = pcpu_running(pcpu) ?
159                 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
160         pcpu_sigp_retry(pcpu, order, 0);
161 }
162
163 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
164 {
165         struct _lowcore *lc;
166
167         if (pcpu != &pcpu_devices[0]) {
168                 pcpu->lowcore = (struct _lowcore *)
169                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
170                 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
171                 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
172                 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
173                         goto out;
174         }
175         lc = pcpu->lowcore;
176         memcpy(lc, &S390_lowcore, 512);
177         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
178         lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
179         lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
180         lc->cpu_nr = cpu;
181 #ifndef CONFIG_64BIT
182         if (MACHINE_HAS_IEEE) {
183                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
184                 if (!lc->extended_save_area_addr)
185                         goto out;
186         }
187 #else
188         if (vdso_alloc_per_cpu(lc))
189                 goto out;
190 #endif
191         lowcore_ptr[cpu] = lc;
192         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
193         return 0;
194 out:
195         if (pcpu != &pcpu_devices[0]) {
196                 free_page(pcpu->panic_stack);
197                 free_pages(pcpu->async_stack, ASYNC_ORDER);
198                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
199         }
200         return -ENOMEM;
201 }
202
203 #ifdef CONFIG_HOTPLUG_CPU
204
205 static void pcpu_free_lowcore(struct pcpu *pcpu)
206 {
207         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
208         lowcore_ptr[pcpu - pcpu_devices] = NULL;
209 #ifndef CONFIG_64BIT
210         if (MACHINE_HAS_IEEE) {
211                 struct _lowcore *lc = pcpu->lowcore;
212
213                 free_page((unsigned long) lc->extended_save_area_addr);
214                 lc->extended_save_area_addr = 0;
215         }
216 #else
217         vdso_free_per_cpu(pcpu->lowcore);
218 #endif
219         if (pcpu != &pcpu_devices[0]) {
220                 free_page(pcpu->panic_stack);
221                 free_pages(pcpu->async_stack, ASYNC_ORDER);
222                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
223         }
224 }
225
226 #endif /* CONFIG_HOTPLUG_CPU */
227
228 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
229 {
230         struct _lowcore *lc = pcpu->lowcore;
231
232         atomic_inc(&init_mm.context.attach_count);
233         lc->cpu_nr = cpu;
234         lc->percpu_offset = __per_cpu_offset[cpu];
235         lc->kernel_asce = S390_lowcore.kernel_asce;
236         lc->machine_flags = S390_lowcore.machine_flags;
237         lc->ftrace_func = S390_lowcore.ftrace_func;
238         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
239         __ctl_store(lc->cregs_save_area, 0, 15);
240         save_access_regs((unsigned int *) lc->access_regs_save_area);
241         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
242                MAX_FACILITY_BIT/8);
243 }
244
245 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
246 {
247         struct _lowcore *lc = pcpu->lowcore;
248         struct thread_info *ti = task_thread_info(tsk);
249
250         lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
251         lc->thread_info = (unsigned long) task_thread_info(tsk);
252         lc->current_task = (unsigned long) tsk;
253         lc->user_timer = ti->user_timer;
254         lc->system_timer = ti->system_timer;
255         lc->steal_timer = 0;
256 }
257
258 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
259 {
260         struct _lowcore *lc = pcpu->lowcore;
261
262         lc->restart_stack = lc->kernel_stack;
263         lc->restart_fn = (unsigned long) func;
264         lc->restart_data = (unsigned long) data;
265         lc->restart_source = -1UL;
266         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
267 }
268
269 /*
270  * Call function via PSW restart on pcpu and stop the current cpu.
271  */
272 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
273                           void *data, unsigned long stack)
274 {
275         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
276         unsigned long source_cpu = stap();
277
278         __load_psw_mask(psw_kernel_bits);
279         if (pcpu->address == source_cpu)
280                 func(data);     /* should not return */
281         /* Stop target cpu (if func returns this stops the current cpu). */
282         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
283         /* Restart func on the target cpu and stop the current cpu. */
284         mem_assign_absolute(lc->restart_stack, stack);
285         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
286         mem_assign_absolute(lc->restart_data, (unsigned long) data);
287         mem_assign_absolute(lc->restart_source, source_cpu);
288         asm volatile(
289                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
290                 "       brc     2,0b    # busy, try again\n"
291                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
292                 "       brc     2,1b    # busy, try again\n"
293                 : : "d" (pcpu->address), "d" (source_cpu),
294                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
295                 : "0", "1", "cc");
296         for (;;) ;
297 }
298
299 /*
300  * Call function on an online CPU.
301  */
302 void smp_call_online_cpu(void (*func)(void *), void *data)
303 {
304         struct pcpu *pcpu;
305
306         /* Use the current cpu if it is online. */
307         pcpu = pcpu_find_address(cpu_online_mask, stap());
308         if (!pcpu)
309                 /* Use the first online cpu. */
310                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
311         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
312 }
313
314 /*
315  * Call function on the ipl CPU.
316  */
317 void smp_call_ipl_cpu(void (*func)(void *), void *data)
318 {
319         pcpu_delegate(&pcpu_devices[0], func, data,
320                       pcpu_devices->panic_stack + PAGE_SIZE);
321 }
322
323 int smp_find_processor_id(u16 address)
324 {
325         int cpu;
326
327         for_each_present_cpu(cpu)
328                 if (pcpu_devices[cpu].address == address)
329                         return cpu;
330         return -1;
331 }
332
333 int smp_vcpu_scheduled(int cpu)
334 {
335         return pcpu_running(pcpu_devices + cpu);
336 }
337
338 void smp_yield(void)
339 {
340         if (MACHINE_HAS_DIAG44)
341                 asm volatile("diag 0,0,0x44");
342 }
343
344 void smp_yield_cpu(int cpu)
345 {
346         if (MACHINE_HAS_DIAG9C)
347                 asm volatile("diag %0,0,0x9c"
348                              : : "d" (pcpu_devices[cpu].address));
349         else if (MACHINE_HAS_DIAG44)
350                 asm volatile("diag 0,0,0x44");
351 }
352
353 /*
354  * Send cpus emergency shutdown signal. This gives the cpus the
355  * opportunity to complete outstanding interrupts.
356  */
357 void smp_emergency_stop(cpumask_t *cpumask)
358 {
359         u64 end;
360         int cpu;
361
362         end = get_clock() + (1000000UL << 12);
363         for_each_cpu(cpu, cpumask) {
364                 struct pcpu *pcpu = pcpu_devices + cpu;
365                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
366                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
367                                    0, NULL) == SIGP_CC_BUSY &&
368                        get_clock() < end)
369                         cpu_relax();
370         }
371         while (get_clock() < end) {
372                 for_each_cpu(cpu, cpumask)
373                         if (pcpu_stopped(pcpu_devices + cpu))
374                                 cpumask_clear_cpu(cpu, cpumask);
375                 if (cpumask_empty(cpumask))
376                         break;
377                 cpu_relax();
378         }
379 }
380
381 /*
382  * Stop all cpus but the current one.
383  */
384 void smp_send_stop(void)
385 {
386         cpumask_t cpumask;
387         int cpu;
388
389         /* Disable all interrupts/machine checks */
390         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
391         trace_hardirqs_off();
392
393         debug_set_critical();
394         cpumask_copy(&cpumask, cpu_online_mask);
395         cpumask_clear_cpu(smp_processor_id(), &cpumask);
396
397         if (oops_in_progress)
398                 smp_emergency_stop(&cpumask);
399
400         /* stop all processors */
401         for_each_cpu(cpu, &cpumask) {
402                 struct pcpu *pcpu = pcpu_devices + cpu;
403                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
404                 while (!pcpu_stopped(pcpu))
405                         cpu_relax();
406         }
407 }
408
409 /*
410  * Stop the current cpu.
411  */
412 void smp_stop_cpu(void)
413 {
414         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
415         for (;;) ;
416 }
417
418 /*
419  * This is the main routine where commands issued by other
420  * cpus are handled.
421  */
422 static void do_ext_call_interrupt(struct ext_code ext_code,
423                                   unsigned int param32, unsigned long param64)
424 {
425         unsigned long bits;
426         int cpu;
427
428         cpu = smp_processor_id();
429         if (ext_code.code == 0x1202)
430                 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
431         else
432                 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
433         /*
434          * handle bit signal external calls
435          */
436         bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
437
438         if (test_bit(ec_stop_cpu, &bits))
439                 smp_stop_cpu();
440
441         if (test_bit(ec_schedule, &bits))
442                 scheduler_ipi();
443
444         if (test_bit(ec_call_function, &bits))
445                 generic_smp_call_function_interrupt();
446
447         if (test_bit(ec_call_function_single, &bits))
448                 generic_smp_call_function_single_interrupt();
449
450 }
451
452 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
453 {
454         int cpu;
455
456         for_each_cpu(cpu, mask)
457                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
458 }
459
460 void arch_send_call_function_single_ipi(int cpu)
461 {
462         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
463 }
464
465 #ifndef CONFIG_64BIT
466 /*
467  * this function sends a 'purge tlb' signal to another CPU.
468  */
469 static void smp_ptlb_callback(void *info)
470 {
471         __tlb_flush_local();
472 }
473
474 void smp_ptlb_all(void)
475 {
476         on_each_cpu(smp_ptlb_callback, NULL, 1);
477 }
478 EXPORT_SYMBOL(smp_ptlb_all);
479 #endif /* ! CONFIG_64BIT */
480
481 /*
482  * this function sends a 'reschedule' IPI to another CPU.
483  * it goes straight through and wastes no time serializing
484  * anything. Worst case is that we lose a reschedule ...
485  */
486 void smp_send_reschedule(int cpu)
487 {
488         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
489 }
490
491 /*
492  * parameter area for the set/clear control bit callbacks
493  */
494 struct ec_creg_mask_parms {
495         unsigned long orval;
496         unsigned long andval;
497         int cr;
498 };
499
500 /*
501  * callback for setting/clearing control bits
502  */
503 static void smp_ctl_bit_callback(void *info)
504 {
505         struct ec_creg_mask_parms *pp = info;
506         unsigned long cregs[16];
507
508         __ctl_store(cregs, 0, 15);
509         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
510         __ctl_load(cregs, 0, 15);
511 }
512
513 /*
514  * Set a bit in a control register of all cpus
515  */
516 void smp_ctl_set_bit(int cr, int bit)
517 {
518         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
519
520         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
521 }
522 EXPORT_SYMBOL(smp_ctl_set_bit);
523
524 /*
525  * Clear a bit in a control register of all cpus
526  */
527 void smp_ctl_clear_bit(int cr, int bit)
528 {
529         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
530
531         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
532 }
533 EXPORT_SYMBOL(smp_ctl_clear_bit);
534
535 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
536
537 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
538 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
539
540 static void __init smp_get_save_area(int cpu, u16 address)
541 {
542         void *lc = pcpu_devices[0].lowcore;
543         struct save_area *save_area;
544
545         if (is_kdump_kernel())
546                 return;
547         if (!OLDMEM_BASE && (address == boot_cpu_address ||
548                              ipl_info.type != IPL_TYPE_FCP_DUMP))
549                 return;
550         if (cpu >= NR_CPUS) {
551                 pr_warning("CPU %i exceeds the maximum %i and is excluded "
552                            "from the dump\n", cpu, NR_CPUS - 1);
553                 return;
554         }
555         save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
556         if (!save_area)
557                 panic("could not allocate memory for save area\n");
558         zfcpdump_save_areas[cpu] = save_area;
559 #ifdef CONFIG_CRASH_DUMP
560         if (address == boot_cpu_address) {
561                 /* Copy the registers of the boot cpu. */
562                 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
563                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
564                 return;
565         }
566 #endif
567         /* Get the registers of a non-boot cpu. */
568         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
569         memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
570 }
571
572 int smp_store_status(int cpu)
573 {
574         struct pcpu *pcpu;
575
576         pcpu = pcpu_devices + cpu;
577         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
578                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
579                 return -EIO;
580         return 0;
581 }
582
583 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
584
585 static inline void smp_get_save_area(int cpu, u16 address) { }
586
587 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
588
589 static struct sclp_cpu_info *smp_get_cpu_info(void)
590 {
591         static int use_sigp_detection;
592         struct sclp_cpu_info *info;
593         int address;
594
595         info = kzalloc(sizeof(*info), GFP_KERNEL);
596         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
597                 use_sigp_detection = 1;
598                 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
599                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
600                             SIGP_CC_NOT_OPERATIONAL)
601                                 continue;
602                         info->cpu[info->configured].address = address;
603                         info->configured++;
604                 }
605                 info->combined = info->configured;
606         }
607         return info;
608 }
609
610 static int __devinit smp_add_present_cpu(int cpu);
611
612 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
613                                        int sysfs_add)
614 {
615         struct pcpu *pcpu;
616         cpumask_t avail;
617         int cpu, nr, i;
618
619         nr = 0;
620         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
621         cpu = cpumask_first(&avail);
622         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
623                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
624                         continue;
625                 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
626                         continue;
627                 pcpu = pcpu_devices + cpu;
628                 pcpu->address = info->cpu[i].address;
629                 pcpu->state = (cpu >= info->configured) ?
630                         CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
631                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
632                 set_cpu_present(cpu, true);
633                 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
634                         set_cpu_present(cpu, false);
635                 else
636                         nr++;
637                 cpu = cpumask_next(cpu, &avail);
638         }
639         return nr;
640 }
641
642 static void __init smp_detect_cpus(void)
643 {
644         unsigned int cpu, c_cpus, s_cpus;
645         struct sclp_cpu_info *info;
646
647         info = smp_get_cpu_info();
648         if (!info)
649                 panic("smp_detect_cpus failed to allocate memory\n");
650         if (info->has_cpu_type) {
651                 for (cpu = 0; cpu < info->combined; cpu++) {
652                         if (info->cpu[cpu].address != boot_cpu_address)
653                                 continue;
654                         /* The boot cpu dictates the cpu type. */
655                         boot_cpu_type = info->cpu[cpu].type;
656                         break;
657                 }
658         }
659         c_cpus = s_cpus = 0;
660         for (cpu = 0; cpu < info->combined; cpu++) {
661                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
662                         continue;
663                 if (cpu < info->configured) {
664                         smp_get_save_area(c_cpus, info->cpu[cpu].address);
665                         c_cpus++;
666                 } else
667                         s_cpus++;
668         }
669         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
670         get_online_cpus();
671         __smp_rescan_cpus(info, 0);
672         put_online_cpus();
673         kfree(info);
674 }
675
676 /*
677  *      Activate a secondary processor.
678  */
679 static void __cpuinit smp_start_secondary(void *cpuvoid)
680 {
681         S390_lowcore.last_update_clock = get_clock();
682         S390_lowcore.restart_stack = (unsigned long) restart_stack;
683         S390_lowcore.restart_fn = (unsigned long) do_restart;
684         S390_lowcore.restart_data = 0;
685         S390_lowcore.restart_source = -1UL;
686         restore_access_regs(S390_lowcore.access_regs_save_area);
687         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
688         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
689         cpu_init();
690         preempt_disable();
691         init_cpu_timer();
692         init_cpu_vtimer();
693         pfault_init();
694         notify_cpu_starting(smp_processor_id());
695         ipi_call_lock();
696         set_cpu_online(smp_processor_id(), true);
697         ipi_call_unlock();
698         local_irq_enable();
699         /* cpu_idle will call schedule for us */
700         cpu_idle();
701 }
702
703 /* Upping and downing of CPUs */
704 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
705 {
706         struct pcpu *pcpu;
707         int rc;
708
709         pcpu = pcpu_devices + cpu;
710         if (pcpu->state != CPU_STATE_CONFIGURED)
711                 return -EIO;
712         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
713             SIGP_CC_ORDER_CODE_ACCEPTED)
714                 return -EIO;
715
716         rc = pcpu_alloc_lowcore(pcpu, cpu);
717         if (rc)
718                 return rc;
719         pcpu_prepare_secondary(pcpu, cpu);
720         pcpu_attach_task(pcpu, tidle);
721         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
722         while (!cpu_online(cpu))
723                 cpu_relax();
724         return 0;
725 }
726
727 static int __init setup_possible_cpus(char *s)
728 {
729         int max, cpu;
730
731         if (kstrtoint(s, 0, &max) < 0)
732                 return 0;
733         init_cpu_possible(cpumask_of(0));
734         for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
735                 set_cpu_possible(cpu, true);
736         return 0;
737 }
738 early_param("possible_cpus", setup_possible_cpus);
739
740 #ifdef CONFIG_HOTPLUG_CPU
741
742 int __cpu_disable(void)
743 {
744         unsigned long cregs[16];
745
746         set_cpu_online(smp_processor_id(), false);
747         /* Disable pseudo page faults on this cpu. */
748         pfault_fini();
749         /* Disable interrupt sources via control register. */
750         __ctl_store(cregs, 0, 15);
751         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
752         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
753         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
754         __ctl_load(cregs, 0, 15);
755         return 0;
756 }
757
758 void __cpu_die(unsigned int cpu)
759 {
760         struct pcpu *pcpu;
761
762         /* Wait until target cpu is down */
763         pcpu = pcpu_devices + cpu;
764         while (!pcpu_stopped(pcpu))
765                 cpu_relax();
766         pcpu_free_lowcore(pcpu);
767         atomic_dec(&init_mm.context.attach_count);
768 }
769
770 void __noreturn cpu_die(void)
771 {
772         idle_task_exit();
773         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
774         for (;;) ;
775 }
776
777 #endif /* CONFIG_HOTPLUG_CPU */
778
779 void __init smp_prepare_cpus(unsigned int max_cpus)
780 {
781         /* request the 0x1201 emergency signal external interrupt */
782         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
783                 panic("Couldn't request external interrupt 0x1201");
784         /* request the 0x1202 external call external interrupt */
785         if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
786                 panic("Couldn't request external interrupt 0x1202");
787         smp_detect_cpus();
788 }
789
790 void __init smp_prepare_boot_cpu(void)
791 {
792         struct pcpu *pcpu = pcpu_devices;
793
794         boot_cpu_address = stap();
795         pcpu->state = CPU_STATE_CONFIGURED;
796         pcpu->address = boot_cpu_address;
797         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
798         pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
799         pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
800         S390_lowcore.percpu_offset = __per_cpu_offset[0];
801         cpu_set_polarization(0, POLARIZATION_UNKNOWN);
802         set_cpu_present(0, true);
803         set_cpu_online(0, true);
804 }
805
806 void __init smp_cpus_done(unsigned int max_cpus)
807 {
808 }
809
810 void __init smp_setup_processor_id(void)
811 {
812         S390_lowcore.cpu_nr = 0;
813 }
814
815 /*
816  * the frequency of the profiling timer can be changed
817  * by writing a multiplier value into /proc/profile.
818  *
819  * usually you want to run this on all CPUs ;)
820  */
821 int setup_profiling_timer(unsigned int multiplier)
822 {
823         return 0;
824 }
825
826 #ifdef CONFIG_HOTPLUG_CPU
827 static ssize_t cpu_configure_show(struct device *dev,
828                                   struct device_attribute *attr, char *buf)
829 {
830         ssize_t count;
831
832         mutex_lock(&smp_cpu_state_mutex);
833         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
834         mutex_unlock(&smp_cpu_state_mutex);
835         return count;
836 }
837
838 static ssize_t cpu_configure_store(struct device *dev,
839                                    struct device_attribute *attr,
840                                    const char *buf, size_t count)
841 {
842         struct pcpu *pcpu;
843         int cpu, val, rc;
844         char delim;
845
846         if (sscanf(buf, "%d %c", &val, &delim) != 1)
847                 return -EINVAL;
848         if (val != 0 && val != 1)
849                 return -EINVAL;
850         get_online_cpus();
851         mutex_lock(&smp_cpu_state_mutex);
852         rc = -EBUSY;
853         /* disallow configuration changes of online cpus and cpu 0 */
854         cpu = dev->id;
855         if (cpu_online(cpu) || cpu == 0)
856                 goto out;
857         pcpu = pcpu_devices + cpu;
858         rc = 0;
859         switch (val) {
860         case 0:
861                 if (pcpu->state != CPU_STATE_CONFIGURED)
862                         break;
863                 rc = sclp_cpu_deconfigure(pcpu->address);
864                 if (rc)
865                         break;
866                 pcpu->state = CPU_STATE_STANDBY;
867                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
868                 topology_expect_change();
869                 break;
870         case 1:
871                 if (pcpu->state != CPU_STATE_STANDBY)
872                         break;
873                 rc = sclp_cpu_configure(pcpu->address);
874                 if (rc)
875                         break;
876                 pcpu->state = CPU_STATE_CONFIGURED;
877                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
878                 topology_expect_change();
879                 break;
880         default:
881                 break;
882         }
883 out:
884         mutex_unlock(&smp_cpu_state_mutex);
885         put_online_cpus();
886         return rc ? rc : count;
887 }
888 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
889 #endif /* CONFIG_HOTPLUG_CPU */
890
891 static ssize_t show_cpu_address(struct device *dev,
892                                 struct device_attribute *attr, char *buf)
893 {
894         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
895 }
896 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
897
898 static struct attribute *cpu_common_attrs[] = {
899 #ifdef CONFIG_HOTPLUG_CPU
900         &dev_attr_configure.attr,
901 #endif
902         &dev_attr_address.attr,
903         NULL,
904 };
905
906 static struct attribute_group cpu_common_attr_group = {
907         .attrs = cpu_common_attrs,
908 };
909
910 static ssize_t show_idle_count(struct device *dev,
911                                 struct device_attribute *attr, char *buf)
912 {
913         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
914         unsigned long long idle_count;
915         unsigned int sequence;
916
917         do {
918                 sequence = ACCESS_ONCE(idle->sequence);
919                 idle_count = ACCESS_ONCE(idle->idle_count);
920                 if (ACCESS_ONCE(idle->idle_enter))
921                         idle_count++;
922         } while ((sequence & 1) || (idle->sequence != sequence));
923         return sprintf(buf, "%llu\n", idle_count);
924 }
925 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
926
927 static ssize_t show_idle_time(struct device *dev,
928                                 struct device_attribute *attr, char *buf)
929 {
930         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
931         unsigned long long now, idle_time, idle_enter, idle_exit;
932         unsigned int sequence;
933
934         do {
935                 now = get_clock();
936                 sequence = ACCESS_ONCE(idle->sequence);
937                 idle_time = ACCESS_ONCE(idle->idle_time);
938                 idle_enter = ACCESS_ONCE(idle->idle_enter);
939                 idle_exit = ACCESS_ONCE(idle->idle_exit);
940         } while ((sequence & 1) || (idle->sequence != sequence));
941         idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
942         return sprintf(buf, "%llu\n", idle_time >> 12);
943 }
944 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
945
946 static struct attribute *cpu_online_attrs[] = {
947         &dev_attr_idle_count.attr,
948         &dev_attr_idle_time_us.attr,
949         NULL,
950 };
951
952 static struct attribute_group cpu_online_attr_group = {
953         .attrs = cpu_online_attrs,
954 };
955
956 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
957                                     unsigned long action, void *hcpu)
958 {
959         unsigned int cpu = (unsigned int)(long)hcpu;
960         struct cpu *c = &pcpu_devices[cpu].cpu;
961         struct device *s = &c->dev;
962         int err = 0;
963
964         switch (action) {
965         case CPU_ONLINE:
966         case CPU_ONLINE_FROZEN:
967                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
968                 break;
969         case CPU_DEAD:
970         case CPU_DEAD_FROZEN:
971                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
972                 break;
973         }
974         return notifier_from_errno(err);
975 }
976
977 static struct notifier_block __cpuinitdata smp_cpu_nb = {
978         .notifier_call = smp_cpu_notify,
979 };
980
981 static int __devinit smp_add_present_cpu(int cpu)
982 {
983         struct cpu *c = &pcpu_devices[cpu].cpu;
984         struct device *s = &c->dev;
985         int rc;
986
987         c->hotpluggable = 1;
988         rc = register_cpu(c, cpu);
989         if (rc)
990                 goto out;
991         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
992         if (rc)
993                 goto out_cpu;
994         if (cpu_online(cpu)) {
995                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
996                 if (rc)
997                         goto out_online;
998         }
999         rc = topology_cpu_init(c);
1000         if (rc)
1001                 goto out_topology;
1002         return 0;
1003
1004 out_topology:
1005         if (cpu_online(cpu))
1006                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1007 out_online:
1008         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1009 out_cpu:
1010 #ifdef CONFIG_HOTPLUG_CPU
1011         unregister_cpu(c);
1012 #endif
1013 out:
1014         return rc;
1015 }
1016
1017 #ifdef CONFIG_HOTPLUG_CPU
1018
1019 int __ref smp_rescan_cpus(void)
1020 {
1021         struct sclp_cpu_info *info;
1022         int nr;
1023
1024         info = smp_get_cpu_info();
1025         if (!info)
1026                 return -ENOMEM;
1027         get_online_cpus();
1028         mutex_lock(&smp_cpu_state_mutex);
1029         nr = __smp_rescan_cpus(info, 1);
1030         mutex_unlock(&smp_cpu_state_mutex);
1031         put_online_cpus();
1032         kfree(info);
1033         if (nr)
1034                 topology_schedule_update();
1035         return 0;
1036 }
1037
1038 static ssize_t __ref rescan_store(struct device *dev,
1039                                   struct device_attribute *attr,
1040                                   const char *buf,
1041                                   size_t count)
1042 {
1043         int rc;
1044
1045         rc = smp_rescan_cpus();
1046         return rc ? rc : count;
1047 }
1048 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1049 #endif /* CONFIG_HOTPLUG_CPU */
1050
1051 static int __init s390_smp_init(void)
1052 {
1053         int cpu, rc;
1054
1055         register_cpu_notifier(&smp_cpu_nb);
1056 #ifdef CONFIG_HOTPLUG_CPU
1057         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1058         if (rc)
1059                 return rc;
1060 #endif
1061         for_each_present_cpu(cpu) {
1062                 rc = smp_add_present_cpu(cpu);
1063                 if (rc)
1064                         return rc;
1065         }
1066         return 0;
1067 }
1068 subsys_initcall(s390_smp_init);