brcmsmac: rework of mac80211 .flush() callback operation
[pandora-kernel.git] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68                           PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71                           PSW_MASK_PSTATE | PSW_ASC_HOME;
72
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107
108 #ifdef CONFIG_64BIT
109 unsigned long MODULES_VADDR;
110 unsigned long MODULES_END;
111 #endif
112
113 /* An array with a pointer to the lowcore of every CPU. */
114 struct _lowcore *lowcore_ptr[NR_CPUS];
115 EXPORT_SYMBOL(lowcore_ptr);
116
117 /*
118  * This is set up by the setup-routine at boot-time
119  * for S390 need to find out, what we have to setup
120  * using address 0x10400 ...
121  */
122
123 #include <asm/setup.h>
124
125 /*
126  * condev= and conmode= setup parameter.
127  */
128
129 static int __init condev_setup(char *str)
130 {
131         int vdev;
132
133         vdev = simple_strtoul(str, &str, 0);
134         if (vdev >= 0 && vdev < 65536) {
135                 console_devno = vdev;
136                 console_irq = -1;
137         }
138         return 1;
139 }
140
141 __setup("condev=", condev_setup);
142
143 static void __init set_preferred_console(void)
144 {
145         if (MACHINE_IS_KVM) {
146                 if (sclp_has_vt220())
147                         add_preferred_console("ttyS", 1, NULL);
148                 else if (sclp_has_linemode())
149                         add_preferred_console("ttyS", 0, NULL);
150                 else
151                         add_preferred_console("hvc", 0, NULL);
152         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
153                 add_preferred_console("ttyS", 0, NULL);
154         else if (CONSOLE_IS_3270)
155                 add_preferred_console("tty3270", 0, NULL);
156 }
157
158 static int __init conmode_setup(char *str)
159 {
160 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
161         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
162                 SET_CONSOLE_SCLP;
163 #endif
164 #if defined(CONFIG_TN3215_CONSOLE)
165         if (strncmp(str, "3215", 5) == 0)
166                 SET_CONSOLE_3215;
167 #endif
168 #if defined(CONFIG_TN3270_CONSOLE)
169         if (strncmp(str, "3270", 5) == 0)
170                 SET_CONSOLE_3270;
171 #endif
172         set_preferred_console();
173         return 1;
174 }
175
176 __setup("conmode=", conmode_setup);
177
178 static void __init conmode_default(void)
179 {
180         char query_buffer[1024];
181         char *ptr;
182
183         if (MACHINE_IS_VM) {
184                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
185                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
186                 ptr = strstr(query_buffer, "SUBCHANNEL =");
187                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
188                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
189                 ptr = strstr(query_buffer, "CONMODE");
190                 /*
191                  * Set the conmode to 3215 so that the device recognition 
192                  * will set the cu_type of the console to 3215. If the
193                  * conmode is 3270 and we don't set it back then both
194                  * 3215 and the 3270 driver will try to access the console
195                  * device (3215 as console and 3270 as normal tty).
196                  */
197                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
198                 if (ptr == NULL) {
199 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
200                         SET_CONSOLE_SCLP;
201 #endif
202                         return;
203                 }
204                 if (strncmp(ptr + 8, "3270", 4) == 0) {
205 #if defined(CONFIG_TN3270_CONSOLE)
206                         SET_CONSOLE_3270;
207 #elif defined(CONFIG_TN3215_CONSOLE)
208                         SET_CONSOLE_3215;
209 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210                         SET_CONSOLE_SCLP;
211 #endif
212                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
213 #if defined(CONFIG_TN3215_CONSOLE)
214                         SET_CONSOLE_3215;
215 #elif defined(CONFIG_TN3270_CONSOLE)
216                         SET_CONSOLE_3270;
217 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218                         SET_CONSOLE_SCLP;
219 #endif
220                 }
221         } else {
222 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
223                 SET_CONSOLE_SCLP;
224 #endif
225         }
226 }
227
228 #ifdef CONFIG_ZFCPDUMP
229 static void __init setup_zfcpdump(unsigned int console_devno)
230 {
231         static char str[41];
232
233         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
234                 return;
235         if (OLDMEM_BASE)
236                 return;
237         if (console_devno != -1)
238                 sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
239                         ipl_info.data.fcp.dev_id.devno, console_devno);
240         else
241                 sprintf(str, " cio_ignore=all,!0.0.%04x",
242                         ipl_info.data.fcp.dev_id.devno);
243         strcat(boot_command_line, str);
244         console_loglevel = 2;
245 }
246 #else
247 static inline void setup_zfcpdump(unsigned int console_devno) {}
248 #endif /* CONFIG_ZFCPDUMP */
249
250  /*
251  * Reboot, halt and power_off stubs. They just call _machine_restart,
252  * _machine_halt or _machine_power_off. 
253  */
254
255 void machine_restart(char *command)
256 {
257         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
258                 /*
259                  * Only unblank the console if we are called in enabled
260                  * context or a bust_spinlocks cleared the way for us.
261                  */
262                 console_unblank();
263         _machine_restart(command);
264 }
265
266 void machine_halt(void)
267 {
268         if (!in_interrupt() || oops_in_progress)
269                 /*
270                  * Only unblank the console if we are called in enabled
271                  * context or a bust_spinlocks cleared the way for us.
272                  */
273                 console_unblank();
274         _machine_halt();
275 }
276
277 void machine_power_off(void)
278 {
279         if (!in_interrupt() || oops_in_progress)
280                 /*
281                  * Only unblank the console if we are called in enabled
282                  * context or a bust_spinlocks cleared the way for us.
283                  */
284                 console_unblank();
285         _machine_power_off();
286 }
287
288 /*
289  * Dummy power off function.
290  */
291 void (*pm_power_off)(void) = machine_power_off;
292
293 static int __init early_parse_mem(char *p)
294 {
295         memory_end = memparse(p, &p);
296         memory_end_set = 1;
297         return 0;
298 }
299 early_param("mem", early_parse_mem);
300
301 static int __init parse_vmalloc(char *arg)
302 {
303         if (!arg)
304                 return -EINVAL;
305         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
306         return 0;
307 }
308 early_param("vmalloc", parse_vmalloc);
309
310 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
311 EXPORT_SYMBOL_GPL(s390_user_mode);
312
313 static void __init set_user_mode_primary(void)
314 {
315         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
316         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
317 #ifdef CONFIG_COMPAT
318         psw32_user_bits =
319                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
320 #endif
321         uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
322 }
323
324 static int __init early_parse_user_mode(char *p)
325 {
326         if (p && strcmp(p, "primary") == 0)
327                 s390_user_mode = PRIMARY_SPACE_MODE;
328         else if (!p || strcmp(p, "home") == 0)
329                 s390_user_mode = HOME_SPACE_MODE;
330         else
331                 return 1;
332         return 0;
333 }
334 early_param("user_mode", early_parse_user_mode);
335
336 static void __init setup_addressing_mode(void)
337 {
338         if (s390_user_mode != PRIMARY_SPACE_MODE)
339                 return;
340         set_user_mode_primary();
341         if (MACHINE_HAS_MVCOS)
342                 pr_info("Address spaces switched, mvcos available\n");
343         else
344                 pr_info("Address spaces switched, mvcos not available\n");
345 }
346
347 void *restart_stack __attribute__((__section__(".data")));
348
349 static void __init setup_lowcore(void)
350 {
351         struct _lowcore *lc;
352
353         /*
354          * Setup lowcore for boot cpu
355          */
356         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
357         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
358         lc->restart_psw.mask = psw_kernel_bits;
359         lc->restart_psw.addr =
360                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
361         lc->external_new_psw.mask = psw_kernel_bits |
362                 PSW_MASK_DAT | PSW_MASK_MCHECK;
363         lc->external_new_psw.addr =
364                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
365         lc->svc_new_psw.mask = psw_kernel_bits |
366                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
367         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
368         lc->program_new_psw.mask = psw_kernel_bits |
369                 PSW_MASK_DAT | PSW_MASK_MCHECK;
370         lc->program_new_psw.addr =
371                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
372         lc->mcck_new_psw.mask = psw_kernel_bits;
373         lc->mcck_new_psw.addr =
374                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
375         lc->io_new_psw.mask = psw_kernel_bits |
376                 PSW_MASK_DAT | PSW_MASK_MCHECK;
377         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
378         lc->clock_comparator = -1ULL;
379         lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
380         lc->async_stack = (unsigned long)
381                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
382         lc->panic_stack = (unsigned long)
383                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
384         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
385         lc->thread_info = (unsigned long) &init_thread_union;
386         lc->machine_flags = S390_lowcore.machine_flags;
387         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
388         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
389                MAX_FACILITY_BIT/8);
390 #ifndef CONFIG_64BIT
391         if (MACHINE_HAS_IEEE) {
392                 lc->extended_save_area_addr = (__u32)
393                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
394                 /* enable extended save area */
395                 __ctl_set_bit(14, 29);
396         }
397 #else
398         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
399 #endif
400         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
401         lc->async_enter_timer = S390_lowcore.async_enter_timer;
402         lc->exit_timer = S390_lowcore.exit_timer;
403         lc->user_timer = S390_lowcore.user_timer;
404         lc->system_timer = S390_lowcore.system_timer;
405         lc->steal_timer = S390_lowcore.steal_timer;
406         lc->last_update_timer = S390_lowcore.last_update_timer;
407         lc->last_update_clock = S390_lowcore.last_update_clock;
408         lc->ftrace_func = S390_lowcore.ftrace_func;
409
410         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
411         restart_stack += ASYNC_SIZE;
412
413         /*
414          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
415          * restart data to the absolute zero lowcore. This is necesary if
416          * PSW restart is done on an offline CPU that has lowcore zero.
417          */
418         lc->restart_stack = (unsigned long) restart_stack;
419         lc->restart_fn = (unsigned long) do_restart;
420         lc->restart_data = 0;
421         lc->restart_source = -1UL;
422
423         /* Setup absolute zero lowcore */
424         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
425         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
426         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
427         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
428         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
429
430         set_prefix((u32)(unsigned long) lc);
431         lowcore_ptr[0] = lc;
432 }
433
434 static struct resource code_resource = {
435         .name  = "Kernel code",
436         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
437 };
438
439 static struct resource data_resource = {
440         .name = "Kernel data",
441         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
442 };
443
444 static struct resource bss_resource = {
445         .name = "Kernel bss",
446         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
447 };
448
449 static struct resource __initdata *standard_resources[] = {
450         &code_resource,
451         &data_resource,
452         &bss_resource,
453 };
454
455 static void __init setup_resources(void)
456 {
457         struct resource *res, *std_res, *sub_res;
458         int i, j;
459
460         code_resource.start = (unsigned long) &_text;
461         code_resource.end = (unsigned long) &_etext - 1;
462         data_resource.start = (unsigned long) &_etext;
463         data_resource.end = (unsigned long) &_edata - 1;
464         bss_resource.start = (unsigned long) &__bss_start;
465         bss_resource.end = (unsigned long) &__bss_stop - 1;
466
467         for (i = 0; i < MEMORY_CHUNKS; i++) {
468                 if (!memory_chunk[i].size)
469                         continue;
470                 if (memory_chunk[i].type == CHUNK_OLDMEM ||
471                     memory_chunk[i].type == CHUNK_CRASHK)
472                         continue;
473                 res = alloc_bootmem_low(sizeof(*res));
474                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
475                 switch (memory_chunk[i].type) {
476                 case CHUNK_READ_WRITE:
477                 case CHUNK_CRASHK:
478                         res->name = "System RAM";
479                         break;
480                 case CHUNK_READ_ONLY:
481                         res->name = "System ROM";
482                         res->flags |= IORESOURCE_READONLY;
483                         break;
484                 default:
485                         res->name = "reserved";
486                 }
487                 res->start = memory_chunk[i].addr;
488                 res->end = res->start + memory_chunk[i].size - 1;
489                 request_resource(&iomem_resource, res);
490
491                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
492                         std_res = standard_resources[j];
493                         if (std_res->start < res->start ||
494                             std_res->start > res->end)
495                                 continue;
496                         if (std_res->end > res->end) {
497                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
498                                 *sub_res = *std_res;
499                                 sub_res->end = res->end;
500                                 std_res->start = res->end + 1;
501                                 request_resource(res, sub_res);
502                         } else {
503                                 request_resource(res, std_res);
504                         }
505                 }
506         }
507 }
508
509 unsigned long real_memory_size;
510 EXPORT_SYMBOL_GPL(real_memory_size);
511
512 static void __init setup_memory_end(void)
513 {
514         unsigned long vmax, vmalloc_size, tmp;
515         int i;
516
517
518 #ifdef CONFIG_ZFCPDUMP
519         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
520                 memory_end = ZFCPDUMP_HSA_SIZE;
521                 memory_end_set = 1;
522         }
523 #endif
524         real_memory_size = 0;
525         memory_end &= PAGE_MASK;
526
527         /*
528          * Make sure all chunks are MAX_ORDER aligned so we don't need the
529          * extra checks that HOLES_IN_ZONE would require.
530          */
531         for (i = 0; i < MEMORY_CHUNKS; i++) {
532                 unsigned long start, end;
533                 struct mem_chunk *chunk;
534                 unsigned long align;
535
536                 chunk = &memory_chunk[i];
537                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
538                 start = (chunk->addr + align - 1) & ~(align - 1);
539                 end = (chunk->addr + chunk->size) & ~(align - 1);
540                 if (start >= end)
541                         memset(chunk, 0, sizeof(*chunk));
542                 else {
543                         chunk->addr = start;
544                         chunk->size = end - start;
545                 }
546                 real_memory_size = max(real_memory_size,
547                                        chunk->addr + chunk->size);
548         }
549
550         /* Choose kernel address space layout: 2, 3, or 4 levels. */
551 #ifdef CONFIG_64BIT
552         vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
553         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
554         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
555         if (tmp <= (1UL << 42))
556                 vmax = 1UL << 42;       /* 3-level kernel page table */
557         else
558                 vmax = 1UL << 53;       /* 4-level kernel page table */
559         /* module area is at the end of the kernel address space. */
560         MODULES_END = vmax;
561         MODULES_VADDR = MODULES_END - MODULES_LEN;
562         VMALLOC_END = MODULES_VADDR;
563 #else
564         vmalloc_size = VMALLOC_END ?: 96UL << 20;
565         vmax = 1UL << 31;               /* 2-level kernel page table */
566         /* vmalloc area is at the end of the kernel address space. */
567         VMALLOC_END = vmax;
568 #endif
569         VMALLOC_START = vmax - vmalloc_size;
570
571         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
572         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
573         tmp = VMALLOC_START - tmp * sizeof(struct page);
574         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
575         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
576         vmemmap = (struct page *) tmp;
577
578         /* Take care that memory_end is set and <= vmemmap */
579         memory_end = min(memory_end ?: real_memory_size, tmp);
580
581         /* Fixup memory chunk array to fit into 0..memory_end */
582         for (i = 0; i < MEMORY_CHUNKS; i++) {
583                 struct mem_chunk *chunk = &memory_chunk[i];
584
585                 if (chunk->addr >= memory_end) {
586                         memset(chunk, 0, sizeof(*chunk));
587                         continue;
588                 }
589                 if (chunk->addr + chunk->size > memory_end)
590                         chunk->size = memory_end - chunk->addr;
591         }
592 }
593
594 static void __init setup_vmcoreinfo(void)
595 {
596         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
597 }
598
599 #ifdef CONFIG_CRASH_DUMP
600
601 /*
602  * Find suitable location for crashkernel memory
603  */
604 static unsigned long __init find_crash_base(unsigned long crash_size,
605                                             char **msg)
606 {
607         unsigned long crash_base;
608         struct mem_chunk *chunk;
609         int i;
610
611         if (memory_chunk[0].size < crash_size) {
612                 *msg = "first memory chunk must be at least crashkernel size";
613                 return 0;
614         }
615         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
616                 return OLDMEM_BASE;
617
618         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
619                 chunk = &memory_chunk[i];
620                 if (chunk->size == 0)
621                         continue;
622                 if (chunk->type != CHUNK_READ_WRITE)
623                         continue;
624                 if (chunk->size < crash_size)
625                         continue;
626                 crash_base = (chunk->addr + chunk->size) - crash_size;
627                 if (crash_base < crash_size)
628                         continue;
629                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
630                         continue;
631                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
632                         continue;
633                 return crash_base;
634         }
635         *msg = "no suitable area found";
636         return 0;
637 }
638
639 /*
640  * Check if crash_base and crash_size is valid
641  */
642 static int __init verify_crash_base(unsigned long crash_base,
643                                     unsigned long crash_size,
644                                     char **msg)
645 {
646         struct mem_chunk *chunk;
647         int i;
648
649         /*
650          * Because we do the swap to zero, we must have at least 'crash_size'
651          * bytes free space before crash_base
652          */
653         if (crash_size > crash_base) {
654                 *msg = "crashkernel offset must be greater than size";
655                 return -EINVAL;
656         }
657
658         /* First memory chunk must be at least crash_size */
659         if (memory_chunk[0].size < crash_size) {
660                 *msg = "first memory chunk must be at least crashkernel size";
661                 return -EINVAL;
662         }
663         /* Check if we fit into the respective memory chunk */
664         for (i = 0; i < MEMORY_CHUNKS; i++) {
665                 chunk = &memory_chunk[i];
666                 if (chunk->size == 0)
667                         continue;
668                 if (crash_base < chunk->addr)
669                         continue;
670                 if (crash_base >= chunk->addr + chunk->size)
671                         continue;
672                 /* we have found the memory chunk */
673                 if (crash_base + crash_size > chunk->addr + chunk->size) {
674                         *msg = "selected memory chunk is too small for "
675                                 "crashkernel memory";
676                         return -EINVAL;
677                 }
678                 return 0;
679         }
680         *msg = "invalid memory range specified";
681         return -EINVAL;
682 }
683
684 /*
685  * Reserve kdump memory by creating a memory hole in the mem_chunk array
686  */
687 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
688                                          int type)
689 {
690         create_mem_hole(memory_chunk, addr, size, type);
691 }
692
693 /*
694  * When kdump is enabled, we have to ensure that no memory from
695  * the area [0 - crashkernel memory size] and
696  * [crashk_res.start - crashk_res.end] is set offline.
697  */
698 static int kdump_mem_notifier(struct notifier_block *nb,
699                               unsigned long action, void *data)
700 {
701         struct memory_notify *arg = data;
702
703         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
704                 return NOTIFY_BAD;
705         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
706                 return NOTIFY_OK;
707         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
708                 return NOTIFY_OK;
709         return NOTIFY_BAD;
710 }
711
712 static struct notifier_block kdump_mem_nb = {
713         .notifier_call = kdump_mem_notifier,
714 };
715
716 #endif
717
718 /*
719  * Make sure that oldmem, where the dump is stored, is protected
720  */
721 static void reserve_oldmem(void)
722 {
723 #ifdef CONFIG_CRASH_DUMP
724         if (!OLDMEM_BASE)
725                 return;
726
727         reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
728         reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
729                               CHUNK_OLDMEM);
730         if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
731                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
732         else
733                 saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
734 #endif
735 }
736
737 /*
738  * Reserve memory for kdump kernel to be loaded with kexec
739  */
740 static void __init reserve_crashkernel(void)
741 {
742 #ifdef CONFIG_CRASH_DUMP
743         unsigned long long crash_base, crash_size;
744         char *msg = NULL;
745         int rc;
746
747         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
748                                &crash_base);
749         if (rc || crash_size == 0)
750                 return;
751         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
752         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
753         if (register_memory_notifier(&kdump_mem_nb))
754                 return;
755         if (!crash_base)
756                 crash_base = find_crash_base(crash_size, &msg);
757         if (!crash_base) {
758                 pr_info("crashkernel reservation failed: %s\n", msg);
759                 unregister_memory_notifier(&kdump_mem_nb);
760                 return;
761         }
762         if (verify_crash_base(crash_base, crash_size, &msg)) {
763                 pr_info("crashkernel reservation failed: %s\n", msg);
764                 unregister_memory_notifier(&kdump_mem_nb);
765                 return;
766         }
767         if (!OLDMEM_BASE && MACHINE_IS_VM)
768                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
769         crashk_res.start = crash_base;
770         crashk_res.end = crash_base + crash_size - 1;
771         insert_resource(&iomem_resource, &crashk_res);
772         reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
773         pr_info("Reserving %lluMB of memory at %lluMB "
774                 "for crashkernel (System RAM: %luMB)\n",
775                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
776         os_info_crashkernel_add(crash_base, crash_size);
777 #endif
778 }
779
780 static void __init setup_memory(void)
781 {
782         unsigned long bootmap_size;
783         unsigned long start_pfn, end_pfn;
784         int i;
785
786         /*
787          * partially used pages are not usable - thus
788          * we are rounding upwards:
789          */
790         start_pfn = PFN_UP(__pa(&_end));
791         end_pfn = max_pfn = PFN_DOWN(memory_end);
792
793 #ifdef CONFIG_BLK_DEV_INITRD
794         /*
795          * Move the initrd in case the bitmap of the bootmem allocater
796          * would overwrite it.
797          */
798
799         if (INITRD_START && INITRD_SIZE) {
800                 unsigned long bmap_size;
801                 unsigned long start;
802
803                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
804                 bmap_size = PFN_PHYS(bmap_size);
805
806                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
807                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
808
809 #ifdef CONFIG_CRASH_DUMP
810                         if (OLDMEM_BASE) {
811                                 /* Move initrd behind kdump oldmem */
812                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
813                                     start < OLDMEM_BASE + OLDMEM_SIZE)
814                                         start = OLDMEM_BASE + OLDMEM_SIZE;
815                         }
816 #endif
817                         if (start + INITRD_SIZE > memory_end) {
818                                 pr_err("initrd extends beyond end of "
819                                        "memory (0x%08lx > 0x%08lx) "
820                                        "disabling initrd\n",
821                                        start + INITRD_SIZE, memory_end);
822                                 INITRD_START = INITRD_SIZE = 0;
823                         } else {
824                                 pr_info("Moving initrd (0x%08lx -> "
825                                         "0x%08lx, size: %ld)\n",
826                                         INITRD_START, start, INITRD_SIZE);
827                                 memmove((void *) start, (void *) INITRD_START,
828                                         INITRD_SIZE);
829                                 INITRD_START = start;
830                         }
831                 }
832         }
833 #endif
834
835         /*
836          * Initialize the boot-time allocator
837          */
838         bootmap_size = init_bootmem(start_pfn, end_pfn);
839
840         /*
841          * Register RAM areas with the bootmem allocator.
842          */
843
844         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
845                 unsigned long start_chunk, end_chunk, pfn;
846
847                 if (memory_chunk[i].type != CHUNK_READ_WRITE &&
848                     memory_chunk[i].type != CHUNK_CRASHK)
849                         continue;
850                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
851                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
852                 end_chunk = min(end_chunk, end_pfn);
853                 if (start_chunk >= end_chunk)
854                         continue;
855                 memblock_add_node(PFN_PHYS(start_chunk),
856                                   PFN_PHYS(end_chunk - start_chunk), 0);
857                 pfn = max(start_chunk, start_pfn);
858                 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
859         }
860
861         psw_set_key(PAGE_DEFAULT_KEY);
862
863         free_bootmem_with_active_regions(0, max_pfn);
864
865         /*
866          * Reserve memory used for lowcore/command line/kernel image.
867          */
868         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
869         reserve_bootmem((unsigned long)_stext,
870                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
871                         BOOTMEM_DEFAULT);
872         /*
873          * Reserve the bootmem bitmap itself as well. We do this in two
874          * steps (first step was init_bootmem()) because this catches
875          * the (very unlikely) case of us accidentally initializing the
876          * bootmem allocator with an invalid RAM area.
877          */
878         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
879                         BOOTMEM_DEFAULT);
880
881 #ifdef CONFIG_CRASH_DUMP
882         if (crashk_res.start)
883                 reserve_bootmem(crashk_res.start,
884                                 crashk_res.end - crashk_res.start + 1,
885                                 BOOTMEM_DEFAULT);
886         if (is_kdump_kernel())
887                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
888                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
889 #endif
890 #ifdef CONFIG_BLK_DEV_INITRD
891         if (INITRD_START && INITRD_SIZE) {
892                 if (INITRD_START + INITRD_SIZE <= memory_end) {
893                         reserve_bootmem(INITRD_START, INITRD_SIZE,
894                                         BOOTMEM_DEFAULT);
895                         initrd_start = INITRD_START;
896                         initrd_end = initrd_start + INITRD_SIZE;
897                 } else {
898                         pr_err("initrd extends beyond end of "
899                                "memory (0x%08lx > 0x%08lx) "
900                                "disabling initrd\n",
901                                initrd_start + INITRD_SIZE, memory_end);
902                         initrd_start = initrd_end = 0;
903                 }
904         }
905 #endif
906 }
907
908 /*
909  * Setup hardware capabilities.
910  */
911 static void __init setup_hwcaps(void)
912 {
913         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
914         struct cpuid cpu_id;
915         int i;
916
917         /*
918          * The store facility list bits numbers as found in the principles
919          * of operation are numbered with bit 1UL<<31 as number 0 to
920          * bit 1UL<<0 as number 31.
921          *   Bit 0: instructions named N3, "backported" to esa-mode
922          *   Bit 2: z/Architecture mode is active
923          *   Bit 7: the store-facility-list-extended facility is installed
924          *   Bit 17: the message-security assist is installed
925          *   Bit 19: the long-displacement facility is installed
926          *   Bit 21: the extended-immediate facility is installed
927          *   Bit 22: extended-translation facility 3 is installed
928          *   Bit 30: extended-translation facility 3 enhancement facility
929          * These get translated to:
930          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
931          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
932          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
933          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
934          */
935         for (i = 0; i < 6; i++)
936                 if (test_facility(stfl_bits[i]))
937                         elf_hwcap |= 1UL << i;
938
939         if (test_facility(22) && test_facility(30))
940                 elf_hwcap |= HWCAP_S390_ETF3EH;
941
942         /*
943          * Check for additional facilities with store-facility-list-extended.
944          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
945          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
946          * as stored by stfl, bits 32-xxx contain additional facilities.
947          * How many facility words are stored depends on the number of
948          * doublewords passed to the instruction. The additional facilities
949          * are:
950          *   Bit 42: decimal floating point facility is installed
951          *   Bit 44: perform floating point operation facility is installed
952          * translated to:
953          *   HWCAP_S390_DFP bit 6 (42 && 44).
954          */
955         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
956                 elf_hwcap |= HWCAP_S390_DFP;
957
958         /*
959          * Huge page support HWCAP_S390_HPAGE is bit 7.
960          */
961         if (MACHINE_HAS_HPAGE)
962                 elf_hwcap |= HWCAP_S390_HPAGE;
963
964 #if defined(CONFIG_64BIT)
965         /*
966          * 64-bit register support for 31-bit processes
967          * HWCAP_S390_HIGH_GPRS is bit 9.
968          */
969         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
970
971         /*
972          * Transactional execution support HWCAP_S390_TE is bit 10.
973          */
974         if (test_facility(50) && test_facility(73))
975                 elf_hwcap |= HWCAP_S390_TE;
976 #endif
977
978         get_cpu_id(&cpu_id);
979         switch (cpu_id.machine) {
980         case 0x9672:
981 #if !defined(CONFIG_64BIT)
982         default:        /* Use "g5" as default for 31 bit kernels. */
983 #endif
984                 strcpy(elf_platform, "g5");
985                 break;
986         case 0x2064:
987         case 0x2066:
988 #if defined(CONFIG_64BIT)
989         default:        /* Use "z900" as default for 64 bit kernels. */
990 #endif
991                 strcpy(elf_platform, "z900");
992                 break;
993         case 0x2084:
994         case 0x2086:
995                 strcpy(elf_platform, "z990");
996                 break;
997         case 0x2094:
998         case 0x2096:
999                 strcpy(elf_platform, "z9-109");
1000                 break;
1001         case 0x2097:
1002         case 0x2098:
1003                 strcpy(elf_platform, "z10");
1004                 break;
1005         case 0x2817:
1006         case 0x2818:
1007                 strcpy(elf_platform, "z196");
1008                 break;
1009         case 0x2827:
1010                 strcpy(elf_platform, "zEC12");
1011                 break;
1012         }
1013 }
1014
1015 /*
1016  * Setup function called from init/main.c just after the banner
1017  * was printed.
1018  */
1019
1020 void __init setup_arch(char **cmdline_p)
1021 {
1022         /*
1023          * print what head.S has found out about the machine
1024          */
1025 #ifndef CONFIG_64BIT
1026         if (MACHINE_IS_VM)
1027                 pr_info("Linux is running as a z/VM "
1028                         "guest operating system in 31-bit mode\n");
1029         else if (MACHINE_IS_LPAR)
1030                 pr_info("Linux is running natively in 31-bit mode\n");
1031         if (MACHINE_HAS_IEEE)
1032                 pr_info("The hardware system has IEEE compatible "
1033                         "floating point units\n");
1034         else
1035                 pr_info("The hardware system has no IEEE compatible "
1036                         "floating point units\n");
1037 #else /* CONFIG_64BIT */
1038         if (MACHINE_IS_VM)
1039                 pr_info("Linux is running as a z/VM "
1040                         "guest operating system in 64-bit mode\n");
1041         else if (MACHINE_IS_KVM)
1042                 pr_info("Linux is running under KVM in 64-bit mode\n");
1043         else if (MACHINE_IS_LPAR)
1044                 pr_info("Linux is running natively in 64-bit mode\n");
1045 #endif /* CONFIG_64BIT */
1046
1047         /* Have one command line that is parsed and saved in /proc/cmdline */
1048         /* boot_command_line has been already set up in early.c */
1049         *cmdline_p = boot_command_line;
1050
1051         ROOT_DEV = Root_RAM0;
1052
1053         init_mm.start_code = PAGE_OFFSET;
1054         init_mm.end_code = (unsigned long) &_etext;
1055         init_mm.end_data = (unsigned long) &_edata;
1056         init_mm.brk = (unsigned long) &_end;
1057
1058         if (MACHINE_HAS_MVCOS)
1059                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1060         else
1061                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1062
1063         parse_early_param();
1064
1065         os_info_init();
1066         setup_ipl();
1067         setup_memory_end();
1068         setup_addressing_mode();
1069         reserve_oldmem();
1070         reserve_crashkernel();
1071         setup_memory();
1072         setup_resources();
1073         setup_vmcoreinfo();
1074         setup_lowcore();
1075
1076         cpu_init();
1077         s390_init_cpu_topology();
1078
1079         /*
1080          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1081          */
1082         setup_hwcaps();
1083
1084         /*
1085          * Create kernel page tables and switch to virtual addressing.
1086          */
1087         paging_init();
1088
1089         /* Setup default console */
1090         conmode_default();
1091         set_preferred_console();
1092
1093         /* Setup zfcpdump support */
1094         setup_zfcpdump(console_devno);
1095 }