powerpc/iommu/powernv: Release replaced TCE
[pandora-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debug.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43
44 #include <misc/cxl-base.h>
45
46 #include "powernv.h"
47 #include "pci.h"
48
49 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
50 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
51
52 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
53                             const char *fmt, ...)
54 {
55         struct va_format vaf;
56         va_list args;
57         char pfix[32];
58
59         va_start(args, fmt);
60
61         vaf.fmt = fmt;
62         vaf.va = &args;
63
64         if (pe->flags & PNV_IODA_PE_DEV)
65                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
66         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
67                 sprintf(pfix, "%04x:%02x     ",
68                         pci_domain_nr(pe->pbus), pe->pbus->number);
69 #ifdef CONFIG_PCI_IOV
70         else if (pe->flags & PNV_IODA_PE_VF)
71                 sprintf(pfix, "%04x:%02x:%2x.%d",
72                         pci_domain_nr(pe->parent_dev->bus),
73                         (pe->rid & 0xff00) >> 8,
74                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
75 #endif /* CONFIG_PCI_IOV*/
76
77         printk("%spci %s: [PE# %.3d] %pV",
78                level, pfix, pe->pe_number, &vaf);
79
80         va_end(args);
81 }
82
83 #define pe_err(pe, fmt, ...)                                    \
84         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
85 #define pe_warn(pe, fmt, ...)                                   \
86         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
87 #define pe_info(pe, fmt, ...)                                   \
88         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
89
90 static bool pnv_iommu_bypass_disabled __read_mostly;
91
92 static int __init iommu_setup(char *str)
93 {
94         if (!str)
95                 return -EINVAL;
96
97         while (*str) {
98                 if (!strncmp(str, "nobypass", 8)) {
99                         pnv_iommu_bypass_disabled = true;
100                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
101                         break;
102                 }
103                 str += strcspn(str, ",");
104                 if (*str == ',')
105                         str++;
106         }
107
108         return 0;
109 }
110 early_param("iommu", iommu_setup);
111
112 /*
113  * stdcix is only supposed to be used in hypervisor real mode as per
114  * the architecture spec
115  */
116 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
117 {
118         __asm__ __volatile__("stdcix %0,0,%1"
119                 : : "r" (val), "r" (paddr) : "memory");
120 }
121
122 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
123 {
124         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
125                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
126 }
127
128 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
129 {
130         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
131                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
132                         __func__, pe_no, phb->hose->global_number);
133                 return;
134         }
135
136         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
137                 pr_warn("%s: PE %d was assigned on PHB#%x\n",
138                         __func__, pe_no, phb->hose->global_number);
139                 return;
140         }
141
142         phb->ioda.pe_array[pe_no].phb = phb;
143         phb->ioda.pe_array[pe_no].pe_number = pe_no;
144 }
145
146 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
147 {
148         unsigned long pe;
149
150         do {
151                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
152                                         phb->ioda.total_pe, 0);
153                 if (pe >= phb->ioda.total_pe)
154                         return IODA_INVALID_PE;
155         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
156
157         phb->ioda.pe_array[pe].phb = phb;
158         phb->ioda.pe_array[pe].pe_number = pe;
159         return pe;
160 }
161
162 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
163 {
164         WARN_ON(phb->ioda.pe_array[pe].pdev);
165
166         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
167         clear_bit(pe, phb->ioda.pe_alloc);
168 }
169
170 /* The default M64 BAR is shared by all PEs */
171 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
172 {
173         const char *desc;
174         struct resource *r;
175         s64 rc;
176
177         /* Configure the default M64 BAR */
178         rc = opal_pci_set_phb_mem_window(phb->opal_id,
179                                          OPAL_M64_WINDOW_TYPE,
180                                          phb->ioda.m64_bar_idx,
181                                          phb->ioda.m64_base,
182                                          0, /* unused */
183                                          phb->ioda.m64_size);
184         if (rc != OPAL_SUCCESS) {
185                 desc = "configuring";
186                 goto fail;
187         }
188
189         /* Enable the default M64 BAR */
190         rc = opal_pci_phb_mmio_enable(phb->opal_id,
191                                       OPAL_M64_WINDOW_TYPE,
192                                       phb->ioda.m64_bar_idx,
193                                       OPAL_ENABLE_M64_SPLIT);
194         if (rc != OPAL_SUCCESS) {
195                 desc = "enabling";
196                 goto fail;
197         }
198
199         /* Mark the M64 BAR assigned */
200         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
201
202         /*
203          * Strip off the segment used by the reserved PE, which is
204          * expected to be 0 or last one of PE capabicity.
205          */
206         r = &phb->hose->mem_resources[1];
207         if (phb->ioda.reserved_pe == 0)
208                 r->start += phb->ioda.m64_segsize;
209         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
210                 r->end -= phb->ioda.m64_segsize;
211         else
212                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
213                         phb->ioda.reserved_pe);
214
215         return 0;
216
217 fail:
218         pr_warn("  Failure %lld %s M64 BAR#%d\n",
219                 rc, desc, phb->ioda.m64_bar_idx);
220         opal_pci_phb_mmio_enable(phb->opal_id,
221                                  OPAL_M64_WINDOW_TYPE,
222                                  phb->ioda.m64_bar_idx,
223                                  OPAL_DISABLE_M64);
224         return -EIO;
225 }
226
227 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
228 {
229         resource_size_t sgsz = phb->ioda.m64_segsize;
230         struct pci_dev *pdev;
231         struct resource *r;
232         int base, step, i;
233
234         /*
235          * Root bus always has full M64 range and root port has
236          * M64 range used in reality. So we're checking root port
237          * instead of root bus.
238          */
239         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
240                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
241                         r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
242                         if (!r->parent ||
243                             !pnv_pci_is_mem_pref_64(r->flags))
244                                 continue;
245
246                         base = (r->start - phb->ioda.m64_base) / sgsz;
247                         for (step = 0; step < resource_size(r) / sgsz; step++)
248                                 pnv_ioda_reserve_pe(phb, base + step);
249                 }
250         }
251 }
252
253 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
254                                  struct pci_bus *bus, int all)
255 {
256         resource_size_t segsz = phb->ioda.m64_segsize;
257         struct pci_dev *pdev;
258         struct resource *r;
259         struct pnv_ioda_pe *master_pe, *pe;
260         unsigned long size, *pe_alloc;
261         bool found;
262         int start, i, j;
263
264         /* Root bus shouldn't use M64 */
265         if (pci_is_root_bus(bus))
266                 return IODA_INVALID_PE;
267
268         /* We support only one M64 window on each bus */
269         found = false;
270         pci_bus_for_each_resource(bus, r, i) {
271                 if (r && r->parent &&
272                     pnv_pci_is_mem_pref_64(r->flags)) {
273                         found = true;
274                         break;
275                 }
276         }
277
278         /* No M64 window found ? */
279         if (!found)
280                 return IODA_INVALID_PE;
281
282         /* Allocate bitmap */
283         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
284         pe_alloc = kzalloc(size, GFP_KERNEL);
285         if (!pe_alloc) {
286                 pr_warn("%s: Out of memory !\n",
287                         __func__);
288                 return IODA_INVALID_PE;
289         }
290
291         /*
292          * Figure out reserved PE numbers by the PE
293          * the its child PEs.
294          */
295         start = (r->start - phb->ioda.m64_base) / segsz;
296         for (i = 0; i < resource_size(r) / segsz; i++)
297                 set_bit(start + i, pe_alloc);
298
299         if (all)
300                 goto done;
301
302         /*
303          * If the PE doesn't cover all subordinate buses,
304          * we need subtract from reserved PEs for children.
305          */
306         list_for_each_entry(pdev, &bus->devices, bus_list) {
307                 if (!pdev->subordinate)
308                         continue;
309
310                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
311                         if (!r || !r->parent ||
312                             !pnv_pci_is_mem_pref_64(r->flags))
313                                 continue;
314
315                         start = (r->start - phb->ioda.m64_base) / segsz;
316                         for (j = 0; j < resource_size(r) / segsz ; j++)
317                                 clear_bit(start + j, pe_alloc);
318                 }
319         }
320
321         /*
322          * the current bus might not own M64 window and that's all
323          * contributed by its child buses. For the case, we needn't
324          * pick M64 dependent PE#.
325          */
326         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
327                 kfree(pe_alloc);
328                 return IODA_INVALID_PE;
329         }
330
331         /*
332          * Figure out the master PE and put all slave PEs to master
333          * PE's list to form compound PE.
334          */
335 done:
336         master_pe = NULL;
337         i = -1;
338         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
339                 phb->ioda.total_pe) {
340                 pe = &phb->ioda.pe_array[i];
341
342                 if (!master_pe) {
343                         pe->flags |= PNV_IODA_PE_MASTER;
344                         INIT_LIST_HEAD(&pe->slaves);
345                         master_pe = pe;
346                 } else {
347                         pe->flags |= PNV_IODA_PE_SLAVE;
348                         pe->master = master_pe;
349                         list_add_tail(&pe->list, &master_pe->slaves);
350                 }
351         }
352
353         kfree(pe_alloc);
354         return master_pe->pe_number;
355 }
356
357 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
358 {
359         struct pci_controller *hose = phb->hose;
360         struct device_node *dn = hose->dn;
361         struct resource *res;
362         const u32 *r;
363         u64 pci_addr;
364
365         /* FIXME: Support M64 for P7IOC */
366         if (phb->type != PNV_PHB_IODA2) {
367                 pr_info("  Not support M64 window\n");
368                 return;
369         }
370
371         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
372                 pr_info("  Firmware too old to support M64 window\n");
373                 return;
374         }
375
376         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
377         if (!r) {
378                 pr_info("  No <ibm,opal-m64-window> on %s\n",
379                         dn->full_name);
380                 return;
381         }
382
383         res = &hose->mem_resources[1];
384         res->start = of_translate_address(dn, r + 2);
385         res->end = res->start + of_read_number(r + 4, 2) - 1;
386         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
387         pci_addr = of_read_number(r, 2);
388         hose->mem_offset[1] = res->start - pci_addr;
389
390         phb->ioda.m64_size = resource_size(res);
391         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
392         phb->ioda.m64_base = pci_addr;
393
394         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
395                         res->start, res->end, pci_addr);
396
397         /* Use last M64 BAR to cover M64 window */
398         phb->ioda.m64_bar_idx = 15;
399         phb->init_m64 = pnv_ioda2_init_m64;
400         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
401         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
402 }
403
404 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
405 {
406         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
407         struct pnv_ioda_pe *slave;
408         s64 rc;
409
410         /* Fetch master PE */
411         if (pe->flags & PNV_IODA_PE_SLAVE) {
412                 pe = pe->master;
413                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
414                         return;
415
416                 pe_no = pe->pe_number;
417         }
418
419         /* Freeze master PE */
420         rc = opal_pci_eeh_freeze_set(phb->opal_id,
421                                      pe_no,
422                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
423         if (rc != OPAL_SUCCESS) {
424                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
425                         __func__, rc, phb->hose->global_number, pe_no);
426                 return;
427         }
428
429         /* Freeze slave PEs */
430         if (!(pe->flags & PNV_IODA_PE_MASTER))
431                 return;
432
433         list_for_each_entry(slave, &pe->slaves, list) {
434                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
435                                              slave->pe_number,
436                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
437                 if (rc != OPAL_SUCCESS)
438                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
439                                 __func__, rc, phb->hose->global_number,
440                                 slave->pe_number);
441         }
442 }
443
444 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
445 {
446         struct pnv_ioda_pe *pe, *slave;
447         s64 rc;
448
449         /* Find master PE */
450         pe = &phb->ioda.pe_array[pe_no];
451         if (pe->flags & PNV_IODA_PE_SLAVE) {
452                 pe = pe->master;
453                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
454                 pe_no = pe->pe_number;
455         }
456
457         /* Clear frozen state for master PE */
458         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
459         if (rc != OPAL_SUCCESS) {
460                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
461                         __func__, rc, opt, phb->hose->global_number, pe_no);
462                 return -EIO;
463         }
464
465         if (!(pe->flags & PNV_IODA_PE_MASTER))
466                 return 0;
467
468         /* Clear frozen state for slave PEs */
469         list_for_each_entry(slave, &pe->slaves, list) {
470                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
471                                              slave->pe_number,
472                                              opt);
473                 if (rc != OPAL_SUCCESS) {
474                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
475                                 __func__, rc, opt, phb->hose->global_number,
476                                 slave->pe_number);
477                         return -EIO;
478                 }
479         }
480
481         return 0;
482 }
483
484 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
485 {
486         struct pnv_ioda_pe *slave, *pe;
487         u8 fstate, state;
488         __be16 pcierr;
489         s64 rc;
490
491         /* Sanity check on PE number */
492         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
493                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
494
495         /*
496          * Fetch the master PE and the PE instance might be
497          * not initialized yet.
498          */
499         pe = &phb->ioda.pe_array[pe_no];
500         if (pe->flags & PNV_IODA_PE_SLAVE) {
501                 pe = pe->master;
502                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503                 pe_no = pe->pe_number;
504         }
505
506         /* Check the master PE */
507         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
508                                         &state, &pcierr, NULL);
509         if (rc != OPAL_SUCCESS) {
510                 pr_warn("%s: Failure %lld getting "
511                         "PHB#%x-PE#%x state\n",
512                         __func__, rc,
513                         phb->hose->global_number, pe_no);
514                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
515         }
516
517         /* Check the slave PE */
518         if (!(pe->flags & PNV_IODA_PE_MASTER))
519                 return state;
520
521         list_for_each_entry(slave, &pe->slaves, list) {
522                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
523                                                 slave->pe_number,
524                                                 &fstate,
525                                                 &pcierr,
526                                                 NULL);
527                 if (rc != OPAL_SUCCESS) {
528                         pr_warn("%s: Failure %lld getting "
529                                 "PHB#%x-PE#%x state\n",
530                                 __func__, rc,
531                                 phb->hose->global_number, slave->pe_number);
532                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
533                 }
534
535                 /*
536                  * Override the result based on the ascending
537                  * priority.
538                  */
539                 if (fstate > state)
540                         state = fstate;
541         }
542
543         return state;
544 }
545
546 /* Currently those 2 are only used when MSIs are enabled, this will change
547  * but in the meantime, we need to protect them to avoid warnings
548  */
549 #ifdef CONFIG_PCI_MSI
550 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
551 {
552         struct pci_controller *hose = pci_bus_to_host(dev->bus);
553         struct pnv_phb *phb = hose->private_data;
554         struct pci_dn *pdn = pci_get_pdn(dev);
555
556         if (!pdn)
557                 return NULL;
558         if (pdn->pe_number == IODA_INVALID_PE)
559                 return NULL;
560         return &phb->ioda.pe_array[pdn->pe_number];
561 }
562 #endif /* CONFIG_PCI_MSI */
563
564 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
565                                   struct pnv_ioda_pe *parent,
566                                   struct pnv_ioda_pe *child,
567                                   bool is_add)
568 {
569         const char *desc = is_add ? "adding" : "removing";
570         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
571                               OPAL_REMOVE_PE_FROM_DOMAIN;
572         struct pnv_ioda_pe *slave;
573         long rc;
574
575         /* Parent PE affects child PE */
576         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
577                                 child->pe_number, op);
578         if (rc != OPAL_SUCCESS) {
579                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
580                         rc, desc);
581                 return -ENXIO;
582         }
583
584         if (!(child->flags & PNV_IODA_PE_MASTER))
585                 return 0;
586
587         /* Compound case: parent PE affects slave PEs */
588         list_for_each_entry(slave, &child->slaves, list) {
589                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
590                                         slave->pe_number, op);
591                 if (rc != OPAL_SUCCESS) {
592                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
593                                 rc, desc);
594                         return -ENXIO;
595                 }
596         }
597
598         return 0;
599 }
600
601 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
602                               struct pnv_ioda_pe *pe,
603                               bool is_add)
604 {
605         struct pnv_ioda_pe *slave;
606         struct pci_dev *pdev = NULL;
607         int ret;
608
609         /*
610          * Clear PE frozen state. If it's master PE, we need
611          * clear slave PE frozen state as well.
612          */
613         if (is_add) {
614                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
615                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
616                 if (pe->flags & PNV_IODA_PE_MASTER) {
617                         list_for_each_entry(slave, &pe->slaves, list)
618                                 opal_pci_eeh_freeze_clear(phb->opal_id,
619                                                           slave->pe_number,
620                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
621                 }
622         }
623
624         /*
625          * Associate PE in PELT. We need add the PE into the
626          * corresponding PELT-V as well. Otherwise, the error
627          * originated from the PE might contribute to other
628          * PEs.
629          */
630         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
631         if (ret)
632                 return ret;
633
634         /* For compound PEs, any one affects all of them */
635         if (pe->flags & PNV_IODA_PE_MASTER) {
636                 list_for_each_entry(slave, &pe->slaves, list) {
637                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
638                         if (ret)
639                                 return ret;
640                 }
641         }
642
643         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
644                 pdev = pe->pbus->self;
645         else if (pe->flags & PNV_IODA_PE_DEV)
646                 pdev = pe->pdev->bus->self;
647 #ifdef CONFIG_PCI_IOV
648         else if (pe->flags & PNV_IODA_PE_VF)
649                 pdev = pe->parent_dev->bus->self;
650 #endif /* CONFIG_PCI_IOV */
651         while (pdev) {
652                 struct pci_dn *pdn = pci_get_pdn(pdev);
653                 struct pnv_ioda_pe *parent;
654
655                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
656                         parent = &phb->ioda.pe_array[pdn->pe_number];
657                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
658                         if (ret)
659                                 return ret;
660                 }
661
662                 pdev = pdev->bus->self;
663         }
664
665         return 0;
666 }
667
668 #ifdef CONFIG_PCI_IOV
669 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
670 {
671         struct pci_dev *parent;
672         uint8_t bcomp, dcomp, fcomp;
673         int64_t rc;
674         long rid_end, rid;
675
676         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
677         if (pe->pbus) {
678                 int count;
679
680                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
681                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
682                 parent = pe->pbus->self;
683                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
684                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
685                 else
686                         count = 1;
687
688                 switch(count) {
689                 case  1: bcomp = OpalPciBusAll;         break;
690                 case  2: bcomp = OpalPciBus7Bits;       break;
691                 case  4: bcomp = OpalPciBus6Bits;       break;
692                 case  8: bcomp = OpalPciBus5Bits;       break;
693                 case 16: bcomp = OpalPciBus4Bits;       break;
694                 case 32: bcomp = OpalPciBus3Bits;       break;
695                 default:
696                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
697                                 count);
698                         /* Do an exact match only */
699                         bcomp = OpalPciBusAll;
700                 }
701                 rid_end = pe->rid + (count << 8);
702         } else {
703                 if (pe->flags & PNV_IODA_PE_VF)
704                         parent = pe->parent_dev;
705                 else
706                         parent = pe->pdev->bus->self;
707                 bcomp = OpalPciBusAll;
708                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
709                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
710                 rid_end = pe->rid + 1;
711         }
712
713         /* Clear the reverse map */
714         for (rid = pe->rid; rid < rid_end; rid++)
715                 phb->ioda.pe_rmap[rid] = 0;
716
717         /* Release from all parents PELT-V */
718         while (parent) {
719                 struct pci_dn *pdn = pci_get_pdn(parent);
720                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
721                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
722                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
723                         /* XXX What to do in case of error ? */
724                 }
725                 parent = parent->bus->self;
726         }
727
728         opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
729                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730
731         /* Disassociate PE in PELT */
732         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
733                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
734         if (rc)
735                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
736         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
737                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
738         if (rc)
739                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
740
741         pe->pbus = NULL;
742         pe->pdev = NULL;
743         pe->parent_dev = NULL;
744
745         return 0;
746 }
747 #endif /* CONFIG_PCI_IOV */
748
749 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
750 {
751         struct pci_dev *parent;
752         uint8_t bcomp, dcomp, fcomp;
753         long rc, rid_end, rid;
754
755         /* Bus validation ? */
756         if (pe->pbus) {
757                 int count;
758
759                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
760                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
761                 parent = pe->pbus->self;
762                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
763                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
764                 else
765                         count = 1;
766
767                 switch(count) {
768                 case  1: bcomp = OpalPciBusAll;         break;
769                 case  2: bcomp = OpalPciBus7Bits;       break;
770                 case  4: bcomp = OpalPciBus6Bits;       break;
771                 case  8: bcomp = OpalPciBus5Bits;       break;
772                 case 16: bcomp = OpalPciBus4Bits;       break;
773                 case 32: bcomp = OpalPciBus3Bits;       break;
774                 default:
775                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
776                                 count);
777                         /* Do an exact match only */
778                         bcomp = OpalPciBusAll;
779                 }
780                 rid_end = pe->rid + (count << 8);
781         } else {
782 #ifdef CONFIG_PCI_IOV
783                 if (pe->flags & PNV_IODA_PE_VF)
784                         parent = pe->parent_dev;
785                 else
786 #endif /* CONFIG_PCI_IOV */
787                         parent = pe->pdev->bus->self;
788                 bcomp = OpalPciBusAll;
789                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
790                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
791                 rid_end = pe->rid + 1;
792         }
793
794         /*
795          * Associate PE in PELT. We need add the PE into the
796          * corresponding PELT-V as well. Otherwise, the error
797          * originated from the PE might contribute to other
798          * PEs.
799          */
800         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
801                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
802         if (rc) {
803                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
804                 return -ENXIO;
805         }
806
807         /* Configure PELTV */
808         pnv_ioda_set_peltv(phb, pe, true);
809
810         /* Setup reverse map */
811         for (rid = pe->rid; rid < rid_end; rid++)
812                 phb->ioda.pe_rmap[rid] = pe->pe_number;
813
814         /* Setup one MVTs on IODA1 */
815         if (phb->type != PNV_PHB_IODA1) {
816                 pe->mve_number = 0;
817                 goto out;
818         }
819
820         pe->mve_number = pe->pe_number;
821         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
822         if (rc != OPAL_SUCCESS) {
823                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
824                        rc, pe->mve_number);
825                 pe->mve_number = -1;
826         } else {
827                 rc = opal_pci_set_mve_enable(phb->opal_id,
828                                              pe->mve_number, OPAL_ENABLE_MVE);
829                 if (rc) {
830                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
831                                rc, pe->mve_number);
832                         pe->mve_number = -1;
833                 }
834         }
835
836 out:
837         return 0;
838 }
839
840 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
841                                        struct pnv_ioda_pe *pe)
842 {
843         struct pnv_ioda_pe *lpe;
844
845         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
846                 if (lpe->dma_weight < pe->dma_weight) {
847                         list_add_tail(&pe->dma_link, &lpe->dma_link);
848                         return;
849                 }
850         }
851         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
852 }
853
854 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
855 {
856         /* This is quite simplistic. The "base" weight of a device
857          * is 10. 0 means no DMA is to be accounted for it.
858          */
859
860         /* If it's a bridge, no DMA */
861         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
862                 return 0;
863
864         /* Reduce the weight of slow USB controllers */
865         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
866             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
867             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
868                 return 3;
869
870         /* Increase the weight of RAID (includes Obsidian) */
871         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
872                 return 15;
873
874         /* Default */
875         return 10;
876 }
877
878 #ifdef CONFIG_PCI_IOV
879 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
880 {
881         struct pci_dn *pdn = pci_get_pdn(dev);
882         int i;
883         struct resource *res, res2;
884         resource_size_t size;
885         u16 num_vfs;
886
887         if (!dev->is_physfn)
888                 return -EINVAL;
889
890         /*
891          * "offset" is in VFs.  The M64 windows are sized so that when they
892          * are segmented, each segment is the same size as the IOV BAR.
893          * Each segment is in a separate PE, and the high order bits of the
894          * address are the PE number.  Therefore, each VF's BAR is in a
895          * separate PE, and changing the IOV BAR start address changes the
896          * range of PEs the VFs are in.
897          */
898         num_vfs = pdn->num_vfs;
899         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
900                 res = &dev->resource[i + PCI_IOV_RESOURCES];
901                 if (!res->flags || !res->parent)
902                         continue;
903
904                 if (!pnv_pci_is_mem_pref_64(res->flags))
905                         continue;
906
907                 /*
908                  * The actual IOV BAR range is determined by the start address
909                  * and the actual size for num_vfs VFs BAR.  This check is to
910                  * make sure that after shifting, the range will not overlap
911                  * with another device.
912                  */
913                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
914                 res2.flags = res->flags;
915                 res2.start = res->start + (size * offset);
916                 res2.end = res2.start + (size * num_vfs) - 1;
917
918                 if (res2.end > res->end) {
919                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
920                                 i, &res2, res, num_vfs, offset);
921                         return -EBUSY;
922                 }
923         }
924
925         /*
926          * After doing so, there would be a "hole" in the /proc/iomem when
927          * offset is a positive value. It looks like the device return some
928          * mmio back to the system, which actually no one could use it.
929          */
930         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
931                 res = &dev->resource[i + PCI_IOV_RESOURCES];
932                 if (!res->flags || !res->parent)
933                         continue;
934
935                 if (!pnv_pci_is_mem_pref_64(res->flags))
936                         continue;
937
938                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
939                 res2 = *res;
940                 res->start += size * offset;
941
942                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
943                          i, &res2, res, num_vfs, offset);
944                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
945         }
946         return 0;
947 }
948 #endif /* CONFIG_PCI_IOV */
949
950 #if 0
951 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
952 {
953         struct pci_controller *hose = pci_bus_to_host(dev->bus);
954         struct pnv_phb *phb = hose->private_data;
955         struct pci_dn *pdn = pci_get_pdn(dev);
956         struct pnv_ioda_pe *pe;
957         int pe_num;
958
959         if (!pdn) {
960                 pr_err("%s: Device tree node not associated properly\n",
961                            pci_name(dev));
962                 return NULL;
963         }
964         if (pdn->pe_number != IODA_INVALID_PE)
965                 return NULL;
966
967         /* PE#0 has been pre-set */
968         if (dev->bus->number == 0)
969                 pe_num = 0;
970         else
971                 pe_num = pnv_ioda_alloc_pe(phb);
972         if (pe_num == IODA_INVALID_PE) {
973                 pr_warning("%s: Not enough PE# available, disabling device\n",
974                            pci_name(dev));
975                 return NULL;
976         }
977
978         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
979          * pointer in the PE data structure, both should be destroyed at the
980          * same time. However, this needs to be looked at more closely again
981          * once we actually start removing things (Hotplug, SR-IOV, ...)
982          *
983          * At some point we want to remove the PDN completely anyways
984          */
985         pe = &phb->ioda.pe_array[pe_num];
986         pci_dev_get(dev);
987         pdn->pcidev = dev;
988         pdn->pe_number = pe_num;
989         pe->pdev = dev;
990         pe->pbus = NULL;
991         pe->tce32_seg = -1;
992         pe->mve_number = -1;
993         pe->rid = dev->bus->number << 8 | pdn->devfn;
994
995         pe_info(pe, "Associated device to PE\n");
996
997         if (pnv_ioda_configure_pe(phb, pe)) {
998                 /* XXX What do we do here ? */
999                 if (pe_num)
1000                         pnv_ioda_free_pe(phb, pe_num);
1001                 pdn->pe_number = IODA_INVALID_PE;
1002                 pe->pdev = NULL;
1003                 pci_dev_put(dev);
1004                 return NULL;
1005         }
1006
1007         /* Assign a DMA weight to the device */
1008         pe->dma_weight = pnv_ioda_dma_weight(dev);
1009         if (pe->dma_weight != 0) {
1010                 phb->ioda.dma_weight += pe->dma_weight;
1011                 phb->ioda.dma_pe_count++;
1012         }
1013
1014         /* Link the PE */
1015         pnv_ioda_link_pe_by_weight(phb, pe);
1016
1017         return pe;
1018 }
1019 #endif /* Useful for SRIOV case */
1020
1021 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1022 {
1023         struct pci_dev *dev;
1024
1025         list_for_each_entry(dev, &bus->devices, bus_list) {
1026                 struct pci_dn *pdn = pci_get_pdn(dev);
1027
1028                 if (pdn == NULL) {
1029                         pr_warn("%s: No device node associated with device !\n",
1030                                 pci_name(dev));
1031                         continue;
1032                 }
1033                 pdn->pe_number = pe->pe_number;
1034                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1035                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1036                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1037         }
1038 }
1039
1040 /*
1041  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1042  * single PCI bus. Another one that contains the primary PCI bus and its
1043  * subordinate PCI devices and buses. The second type of PE is normally
1044  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1045  */
1046 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1047 {
1048         struct pci_controller *hose = pci_bus_to_host(bus);
1049         struct pnv_phb *phb = hose->private_data;
1050         struct pnv_ioda_pe *pe;
1051         int pe_num = IODA_INVALID_PE;
1052
1053         /* Check if PE is determined by M64 */
1054         if (phb->pick_m64_pe)
1055                 pe_num = phb->pick_m64_pe(phb, bus, all);
1056
1057         /* The PE number isn't pinned by M64 */
1058         if (pe_num == IODA_INVALID_PE)
1059                 pe_num = pnv_ioda_alloc_pe(phb);
1060
1061         if (pe_num == IODA_INVALID_PE) {
1062                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1063                         __func__, pci_domain_nr(bus), bus->number);
1064                 return;
1065         }
1066
1067         pe = &phb->ioda.pe_array[pe_num];
1068         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1069         pe->pbus = bus;
1070         pe->pdev = NULL;
1071         pe->tce32_seg = -1;
1072         pe->mve_number = -1;
1073         pe->rid = bus->busn_res.start << 8;
1074         pe->dma_weight = 0;
1075
1076         if (all)
1077                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1078                         bus->busn_res.start, bus->busn_res.end, pe_num);
1079         else
1080                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1081                         bus->busn_res.start, pe_num);
1082
1083         if (pnv_ioda_configure_pe(phb, pe)) {
1084                 /* XXX What do we do here ? */
1085                 if (pe_num)
1086                         pnv_ioda_free_pe(phb, pe_num);
1087                 pe->pbus = NULL;
1088                 return;
1089         }
1090
1091         /* Associate it with all child devices */
1092         pnv_ioda_setup_same_PE(bus, pe);
1093
1094         /* Put PE to the list */
1095         list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
1097         /* Account for one DMA PE if at least one DMA capable device exist
1098          * below the bridge
1099          */
1100         if (pe->dma_weight != 0) {
1101                 phb->ioda.dma_weight += pe->dma_weight;
1102                 phb->ioda.dma_pe_count++;
1103         }
1104
1105         /* Link the PE */
1106         pnv_ioda_link_pe_by_weight(phb, pe);
1107 }
1108
1109 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1110 {
1111         struct pci_dev *dev;
1112
1113         pnv_ioda_setup_bus_PE(bus, 0);
1114
1115         list_for_each_entry(dev, &bus->devices, bus_list) {
1116                 if (dev->subordinate) {
1117                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1118                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1119                         else
1120                                 pnv_ioda_setup_PEs(dev->subordinate);
1121                 }
1122         }
1123 }
1124
1125 /*
1126  * Configure PEs so that the downstream PCI buses and devices
1127  * could have their associated PE#. Unfortunately, we didn't
1128  * figure out the way to identify the PLX bridge yet. So we
1129  * simply put the PCI bus and the subordinate behind the root
1130  * port to PE# here. The game rule here is expected to be changed
1131  * as soon as we can detected PLX bridge correctly.
1132  */
1133 static void pnv_pci_ioda_setup_PEs(void)
1134 {
1135         struct pci_controller *hose, *tmp;
1136         struct pnv_phb *phb;
1137
1138         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1139                 phb = hose->private_data;
1140
1141                 /* M64 layout might affect PE allocation */
1142                 if (phb->reserve_m64_pe)
1143                         phb->reserve_m64_pe(phb);
1144
1145                 pnv_ioda_setup_PEs(hose->bus);
1146         }
1147 }
1148
1149 #ifdef CONFIG_PCI_IOV
1150 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1151 {
1152         struct pci_bus        *bus;
1153         struct pci_controller *hose;
1154         struct pnv_phb        *phb;
1155         struct pci_dn         *pdn;
1156         int                    i, j;
1157
1158         bus = pdev->bus;
1159         hose = pci_bus_to_host(bus);
1160         phb = hose->private_data;
1161         pdn = pci_get_pdn(pdev);
1162
1163         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1164                 for (j = 0; j < M64_PER_IOV; j++) {
1165                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1166                                 continue;
1167                         opal_pci_phb_mmio_enable(phb->opal_id,
1168                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1169                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1170                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1171                 }
1172
1173         return 0;
1174 }
1175
1176 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1177 {
1178         struct pci_bus        *bus;
1179         struct pci_controller *hose;
1180         struct pnv_phb        *phb;
1181         struct pci_dn         *pdn;
1182         unsigned int           win;
1183         struct resource       *res;
1184         int                    i, j;
1185         int64_t                rc;
1186         int                    total_vfs;
1187         resource_size_t        size, start;
1188         int                    pe_num;
1189         int                    vf_groups;
1190         int                    vf_per_group;
1191
1192         bus = pdev->bus;
1193         hose = pci_bus_to_host(bus);
1194         phb = hose->private_data;
1195         pdn = pci_get_pdn(pdev);
1196         total_vfs = pci_sriov_get_totalvfs(pdev);
1197
1198         /* Initialize the m64_wins to IODA_INVALID_M64 */
1199         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1200                 for (j = 0; j < M64_PER_IOV; j++)
1201                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1202
1203         if (pdn->m64_per_iov == M64_PER_IOV) {
1204                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1205                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1206                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1207         } else {
1208                 vf_groups = 1;
1209                 vf_per_group = 1;
1210         }
1211
1212         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1213                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1214                 if (!res->flags || !res->parent)
1215                         continue;
1216
1217                 if (!pnv_pci_is_mem_pref_64(res->flags))
1218                         continue;
1219
1220                 for (j = 0; j < vf_groups; j++) {
1221                         do {
1222                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1223                                                 phb->ioda.m64_bar_idx + 1, 0);
1224
1225                                 if (win >= phb->ioda.m64_bar_idx + 1)
1226                                         goto m64_failed;
1227                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1228
1229                         pdn->m64_wins[i][j] = win;
1230
1231                         if (pdn->m64_per_iov == M64_PER_IOV) {
1232                                 size = pci_iov_resource_size(pdev,
1233                                                         PCI_IOV_RESOURCES + i);
1234                                 size = size * vf_per_group;
1235                                 start = res->start + size * j;
1236                         } else {
1237                                 size = resource_size(res);
1238                                 start = res->start;
1239                         }
1240
1241                         /* Map the M64 here */
1242                         if (pdn->m64_per_iov == M64_PER_IOV) {
1243                                 pe_num = pdn->offset + j;
1244                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1245                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1246                                                 pdn->m64_wins[i][j], 0);
1247                         }
1248
1249                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1250                                                  OPAL_M64_WINDOW_TYPE,
1251                                                  pdn->m64_wins[i][j],
1252                                                  start,
1253                                                  0, /* unused */
1254                                                  size);
1255
1256
1257                         if (rc != OPAL_SUCCESS) {
1258                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1259                                         win, rc);
1260                                 goto m64_failed;
1261                         }
1262
1263                         if (pdn->m64_per_iov == M64_PER_IOV)
1264                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1265                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1266                         else
1267                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1268                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1269
1270                         if (rc != OPAL_SUCCESS) {
1271                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1272                                         win, rc);
1273                                 goto m64_failed;
1274                         }
1275                 }
1276         }
1277         return 0;
1278
1279 m64_failed:
1280         pnv_pci_vf_release_m64(pdev);
1281         return -EBUSY;
1282 }
1283
1284 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1285 {
1286         struct pci_bus        *bus;
1287         struct pci_controller *hose;
1288         struct pnv_phb        *phb;
1289         struct iommu_table    *tbl;
1290         unsigned long         addr;
1291         int64_t               rc;
1292
1293         bus = dev->bus;
1294         hose = pci_bus_to_host(bus);
1295         phb = hose->private_data;
1296         tbl = pe->table_group.tables[0];
1297         addr = tbl->it_base;
1298
1299         opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1300                                    pe->pe_number << 1, 1, __pa(addr),
1301                                    0, 0x1000);
1302
1303         rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1304                                         pe->pe_number,
1305                                         (pe->pe_number << 1) + 1,
1306                                         pe->tce_bypass_base,
1307                                         0);
1308         if (rc)
1309                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1310
1311         pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1312         if (pe->table_group.group) {
1313                 iommu_group_put(pe->table_group.group);
1314                 BUG_ON(pe->table_group.group);
1315         }
1316         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1317         free_pages(addr, get_order(TCE32_TABLE_SIZE));
1318 }
1319
1320 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1321 {
1322         struct pci_bus        *bus;
1323         struct pci_controller *hose;
1324         struct pnv_phb        *phb;
1325         struct pnv_ioda_pe    *pe, *pe_n;
1326         struct pci_dn         *pdn;
1327         u16                    vf_index;
1328         int64_t                rc;
1329
1330         bus = pdev->bus;
1331         hose = pci_bus_to_host(bus);
1332         phb = hose->private_data;
1333         pdn = pci_get_pdn(pdev);
1334
1335         if (!pdev->is_physfn)
1336                 return;
1337
1338         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1339                 int   vf_group;
1340                 int   vf_per_group;
1341                 int   vf_index1;
1342
1343                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1344
1345                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1346                         for (vf_index = vf_group * vf_per_group;
1347                                 vf_index < (vf_group + 1) * vf_per_group &&
1348                                 vf_index < num_vfs;
1349                                 vf_index++)
1350                                 for (vf_index1 = vf_group * vf_per_group;
1351                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1352                                         vf_index1 < num_vfs;
1353                                         vf_index1++){
1354
1355                                         rc = opal_pci_set_peltv(phb->opal_id,
1356                                                 pdn->offset + vf_index,
1357                                                 pdn->offset + vf_index1,
1358                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1359
1360                                         if (rc)
1361                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1362                                                 __func__,
1363                                                 pdn->offset + vf_index1, rc);
1364                                 }
1365         }
1366
1367         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1368                 if (pe->parent_dev != pdev)
1369                         continue;
1370
1371                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1372
1373                 /* Remove from list */
1374                 mutex_lock(&phb->ioda.pe_list_mutex);
1375                 list_del(&pe->list);
1376                 mutex_unlock(&phb->ioda.pe_list_mutex);
1377
1378                 pnv_ioda_deconfigure_pe(phb, pe);
1379
1380                 pnv_ioda_free_pe(phb, pe->pe_number);
1381         }
1382 }
1383
1384 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1385 {
1386         struct pci_bus        *bus;
1387         struct pci_controller *hose;
1388         struct pnv_phb        *phb;
1389         struct pci_dn         *pdn;
1390         struct pci_sriov      *iov;
1391         u16 num_vfs;
1392
1393         bus = pdev->bus;
1394         hose = pci_bus_to_host(bus);
1395         phb = hose->private_data;
1396         pdn = pci_get_pdn(pdev);
1397         iov = pdev->sriov;
1398         num_vfs = pdn->num_vfs;
1399
1400         /* Release VF PEs */
1401         pnv_ioda_release_vf_PE(pdev, num_vfs);
1402
1403         if (phb->type == PNV_PHB_IODA2) {
1404                 if (pdn->m64_per_iov == 1)
1405                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1406
1407                 /* Release M64 windows */
1408                 pnv_pci_vf_release_m64(pdev);
1409
1410                 /* Release PE numbers */
1411                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1412                 pdn->offset = 0;
1413         }
1414 }
1415
1416 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1417                                        struct pnv_ioda_pe *pe);
1418 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1419 {
1420         struct pci_bus        *bus;
1421         struct pci_controller *hose;
1422         struct pnv_phb        *phb;
1423         struct pnv_ioda_pe    *pe;
1424         int                    pe_num;
1425         u16                    vf_index;
1426         struct pci_dn         *pdn;
1427         int64_t                rc;
1428
1429         bus = pdev->bus;
1430         hose = pci_bus_to_host(bus);
1431         phb = hose->private_data;
1432         pdn = pci_get_pdn(pdev);
1433
1434         if (!pdev->is_physfn)
1435                 return;
1436
1437         /* Reserve PE for each VF */
1438         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1439                 pe_num = pdn->offset + vf_index;
1440
1441                 pe = &phb->ioda.pe_array[pe_num];
1442                 pe->pe_number = pe_num;
1443                 pe->phb = phb;
1444                 pe->flags = PNV_IODA_PE_VF;
1445                 pe->pbus = NULL;
1446                 pe->parent_dev = pdev;
1447                 pe->tce32_seg = -1;
1448                 pe->mve_number = -1;
1449                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1450                            pci_iov_virtfn_devfn(pdev, vf_index);
1451
1452                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1453                         hose->global_number, pdev->bus->number,
1454                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1455                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1456
1457                 if (pnv_ioda_configure_pe(phb, pe)) {
1458                         /* XXX What do we do here ? */
1459                         if (pe_num)
1460                                 pnv_ioda_free_pe(phb, pe_num);
1461                         pe->pdev = NULL;
1462                         continue;
1463                 }
1464
1465                 /* Put PE to the list */
1466                 mutex_lock(&phb->ioda.pe_list_mutex);
1467                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1468                 mutex_unlock(&phb->ioda.pe_list_mutex);
1469
1470                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1471         }
1472
1473         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1474                 int   vf_group;
1475                 int   vf_per_group;
1476                 int   vf_index1;
1477
1478                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1479
1480                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1481                         for (vf_index = vf_group * vf_per_group;
1482                              vf_index < (vf_group + 1) * vf_per_group &&
1483                              vf_index < num_vfs;
1484                              vf_index++) {
1485                                 for (vf_index1 = vf_group * vf_per_group;
1486                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1487                                      vf_index1 < num_vfs;
1488                                      vf_index1++) {
1489
1490                                         rc = opal_pci_set_peltv(phb->opal_id,
1491                                                 pdn->offset + vf_index,
1492                                                 pdn->offset + vf_index1,
1493                                                 OPAL_ADD_PE_TO_DOMAIN);
1494
1495                                         if (rc)
1496                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1497                                                 __func__,
1498                                                 pdn->offset + vf_index1, rc);
1499                                 }
1500                         }
1501                 }
1502         }
1503 }
1504
1505 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1506 {
1507         struct pci_bus        *bus;
1508         struct pci_controller *hose;
1509         struct pnv_phb        *phb;
1510         struct pci_dn         *pdn;
1511         int                    ret;
1512
1513         bus = pdev->bus;
1514         hose = pci_bus_to_host(bus);
1515         phb = hose->private_data;
1516         pdn = pci_get_pdn(pdev);
1517
1518         if (phb->type == PNV_PHB_IODA2) {
1519                 /* Calculate available PE for required VFs */
1520                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1521                 pdn->offset = bitmap_find_next_zero_area(
1522                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1523                         0, num_vfs, 0);
1524                 if (pdn->offset >= phb->ioda.total_pe) {
1525                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1526                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1527                         pdn->offset = 0;
1528                         return -EBUSY;
1529                 }
1530                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1531                 pdn->num_vfs = num_vfs;
1532                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1533
1534                 /* Assign M64 window accordingly */
1535                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1536                 if (ret) {
1537                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1538                         goto m64_failed;
1539                 }
1540
1541                 /*
1542                  * When using one M64 BAR to map one IOV BAR, we need to shift
1543                  * the IOV BAR according to the PE# allocated to the VFs.
1544                  * Otherwise, the PE# for the VF will conflict with others.
1545                  */
1546                 if (pdn->m64_per_iov == 1) {
1547                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1548                         if (ret)
1549                                 goto m64_failed;
1550                 }
1551         }
1552
1553         /* Setup VF PEs */
1554         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1555
1556         return 0;
1557
1558 m64_failed:
1559         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1560         pdn->offset = 0;
1561
1562         return ret;
1563 }
1564
1565 int pcibios_sriov_disable(struct pci_dev *pdev)
1566 {
1567         pnv_pci_sriov_disable(pdev);
1568
1569         /* Release PCI data */
1570         remove_dev_pci_data(pdev);
1571         return 0;
1572 }
1573
1574 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1575 {
1576         /* Allocate PCI data */
1577         add_dev_pci_data(pdev);
1578
1579         pnv_pci_sriov_enable(pdev, num_vfs);
1580         return 0;
1581 }
1582 #endif /* CONFIG_PCI_IOV */
1583
1584 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1585 {
1586         struct pci_dn *pdn = pci_get_pdn(pdev);
1587         struct pnv_ioda_pe *pe;
1588
1589         /*
1590          * The function can be called while the PE#
1591          * hasn't been assigned. Do nothing for the
1592          * case.
1593          */
1594         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1595                 return;
1596
1597         pe = &phb->ioda.pe_array[pdn->pe_number];
1598         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1599         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1600         /*
1601          * Note: iommu_add_device() will fail here as
1602          * for physical PE: the device is already added by now;
1603          * for virtual PE: sysfs entries are not ready yet and
1604          * tce_iommu_bus_notifier will add the device to a group later.
1605          */
1606 }
1607
1608 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1609 {
1610         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1611         struct pnv_phb *phb = hose->private_data;
1612         struct pci_dn *pdn = pci_get_pdn(pdev);
1613         struct pnv_ioda_pe *pe;
1614         uint64_t top;
1615         bool bypass = false;
1616
1617         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1618                 return -ENODEV;;
1619
1620         pe = &phb->ioda.pe_array[pdn->pe_number];
1621         if (pe->tce_bypass_enabled) {
1622                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1623                 bypass = (dma_mask >= top);
1624         }
1625
1626         if (bypass) {
1627                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1628                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1629                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1630         } else {
1631                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1632                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1633                 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1634         }
1635         *pdev->dev.dma_mask = dma_mask;
1636         return 0;
1637 }
1638
1639 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1640                                               struct pci_dev *pdev)
1641 {
1642         struct pci_dn *pdn = pci_get_pdn(pdev);
1643         struct pnv_ioda_pe *pe;
1644         u64 end, mask;
1645
1646         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1647                 return 0;
1648
1649         pe = &phb->ioda.pe_array[pdn->pe_number];
1650         if (!pe->tce_bypass_enabled)
1651                 return __dma_get_required_mask(&pdev->dev);
1652
1653
1654         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1655         mask = 1ULL << (fls64(end) - 1);
1656         mask += mask - 1;
1657
1658         return mask;
1659 }
1660
1661 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1662                                    struct pci_bus *bus)
1663 {
1664         struct pci_dev *dev;
1665
1666         list_for_each_entry(dev, &bus->devices, bus_list) {
1667                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1668                 iommu_add_device(&dev->dev);
1669
1670                 if (dev->subordinate)
1671                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1672         }
1673 }
1674
1675 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1676                 unsigned long index, unsigned long npages, bool rm)
1677 {
1678         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1679                         &tbl->it_group_list, struct iommu_table_group_link,
1680                         next);
1681         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1682                         struct pnv_ioda_pe, table_group);
1683         __be64 __iomem *invalidate = rm ?
1684                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1685                 pe->phb->ioda.tce_inval_reg;
1686         unsigned long start, end, inc;
1687         const unsigned shift = tbl->it_page_shift;
1688
1689         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1690         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1691                         npages - 1);
1692
1693         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1694         if (tbl->it_busno) {
1695                 start <<= shift;
1696                 end <<= shift;
1697                 inc = 128ull << shift;
1698                 start |= tbl->it_busno;
1699                 end |= tbl->it_busno;
1700         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1701                 /* p7ioc-style invalidation, 2 TCEs per write */
1702                 start |= (1ull << 63);
1703                 end |= (1ull << 63);
1704                 inc = 16;
1705         } else {
1706                 /* Default (older HW) */
1707                 inc = 128;
1708         }
1709
1710         end |= inc - 1; /* round up end to be different than start */
1711
1712         mb(); /* Ensure above stores are visible */
1713         while (start <= end) {
1714                 if (rm)
1715                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1716                 else
1717                         __raw_writeq(cpu_to_be64(start), invalidate);
1718                 start += inc;
1719         }
1720
1721         /*
1722          * The iommu layer will do another mb() for us on build()
1723          * and we don't care on free()
1724          */
1725 }
1726
1727 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1728                 long npages, unsigned long uaddr,
1729                 enum dma_data_direction direction,
1730                 struct dma_attrs *attrs)
1731 {
1732         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1733                         attrs);
1734
1735         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1736                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1737
1738         return ret;
1739 }
1740
1741 #ifdef CONFIG_IOMMU_API
1742 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1743                 unsigned long *hpa, enum dma_data_direction *direction)
1744 {
1745         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1746
1747         if (!ret && (tbl->it_type &
1748                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1749                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1750
1751         return ret;
1752 }
1753 #endif
1754
1755 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1756                 long npages)
1757 {
1758         pnv_tce_free(tbl, index, npages);
1759
1760         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1761                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1762 }
1763
1764 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1765         .set = pnv_ioda1_tce_build,
1766 #ifdef CONFIG_IOMMU_API
1767         .exchange = pnv_ioda1_tce_xchg,
1768 #endif
1769         .clear = pnv_ioda1_tce_free,
1770         .get = pnv_tce_get,
1771 };
1772
1773 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1774 {
1775         /* 01xb - invalidate TCEs that match the specified PE# */
1776         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1777         struct pnv_phb *phb = pe->phb;
1778
1779         if (!phb->ioda.tce_inval_reg)
1780                 return;
1781
1782         mb(); /* Ensure above stores are visible */
1783         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1784 }
1785
1786 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1787                 __be64 __iomem *invalidate, unsigned shift,
1788                 unsigned long index, unsigned long npages)
1789 {
1790         unsigned long start, end, inc;
1791
1792         /* We'll invalidate DMA address in PE scope */
1793         start = 0x2ull << 60;
1794         start |= (pe_number & 0xFF);
1795         end = start;
1796
1797         /* Figure out the start, end and step */
1798         start |= (index << shift);
1799         end |= ((index + npages - 1) << shift);
1800         inc = (0x1ull << shift);
1801         mb();
1802
1803         while (start <= end) {
1804                 if (rm)
1805                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1806                 else
1807                         __raw_writeq(cpu_to_be64(start), invalidate);
1808                 start += inc;
1809         }
1810 }
1811
1812 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1813                 unsigned long index, unsigned long npages, bool rm)
1814 {
1815         struct iommu_table_group_link *tgl;
1816
1817         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1818                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1819                                 struct pnv_ioda_pe, table_group);
1820                 __be64 __iomem *invalidate = rm ?
1821                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1822                         pe->phb->ioda.tce_inval_reg;
1823
1824                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1825                         invalidate, tbl->it_page_shift,
1826                         index, npages);
1827         }
1828 }
1829
1830 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1831                 long npages, unsigned long uaddr,
1832                 enum dma_data_direction direction,
1833                 struct dma_attrs *attrs)
1834 {
1835         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1836                         attrs);
1837
1838         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1839                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1840
1841         return ret;
1842 }
1843
1844 #ifdef CONFIG_IOMMU_API
1845 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1846                 unsigned long *hpa, enum dma_data_direction *direction)
1847 {
1848         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1849
1850         if (!ret && (tbl->it_type &
1851                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1852                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1853
1854         return ret;
1855 }
1856 #endif
1857
1858 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1859                 long npages)
1860 {
1861         pnv_tce_free(tbl, index, npages);
1862
1863         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1864                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1865 }
1866
1867 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1868         .set = pnv_ioda2_tce_build,
1869 #ifdef CONFIG_IOMMU_API
1870         .exchange = pnv_ioda2_tce_xchg,
1871 #endif
1872         .clear = pnv_ioda2_tce_free,
1873         .get = pnv_tce_get,
1874 };
1875
1876 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1877                                       struct pnv_ioda_pe *pe, unsigned int base,
1878                                       unsigned int segs)
1879 {
1880
1881         struct page *tce_mem = NULL;
1882         struct iommu_table *tbl;
1883         unsigned int i;
1884         int64_t rc;
1885         void *addr;
1886
1887         /* XXX FIXME: Handle 64-bit only DMA devices */
1888         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1889         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1890
1891         /* We shouldn't already have a 32-bit DMA associated */
1892         if (WARN_ON(pe->tce32_seg >= 0))
1893                 return;
1894
1895         tbl = pnv_pci_table_alloc(phb->hose->node);
1896         iommu_register_group(&pe->table_group, phb->hose->global_number,
1897                         pe->pe_number);
1898         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1899
1900         /* Grab a 32-bit TCE table */
1901         pe->tce32_seg = base;
1902         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1903                 (base << 28), ((base + segs) << 28) - 1);
1904
1905         /* XXX Currently, we allocate one big contiguous table for the
1906          * TCEs. We only really need one chunk per 256M of TCE space
1907          * (ie per segment) but that's an optimization for later, it
1908          * requires some added smarts with our get/put_tce implementation
1909          */
1910         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1911                                    get_order(TCE32_TABLE_SIZE * segs));
1912         if (!tce_mem) {
1913                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1914                 goto fail;
1915         }
1916         addr = page_address(tce_mem);
1917         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1918
1919         /* Configure HW */
1920         for (i = 0; i < segs; i++) {
1921                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1922                                               pe->pe_number,
1923                                               base + i, 1,
1924                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1925                                               TCE32_TABLE_SIZE, 0x1000);
1926                 if (rc) {
1927                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1928                                " err %ld\n", rc);
1929                         goto fail;
1930                 }
1931         }
1932
1933         /* Setup linux iommu table */
1934         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1935                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1936
1937         /* OPAL variant of P7IOC SW invalidated TCEs */
1938         if (phb->ioda.tce_inval_reg)
1939                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1940                                  TCE_PCI_SWINV_FREE   |
1941                                  TCE_PCI_SWINV_PAIR);
1942
1943         tbl->it_ops = &pnv_ioda1_iommu_ops;
1944         iommu_init_table(tbl, phb->hose->node);
1945
1946         if (pe->flags & PNV_IODA_PE_DEV) {
1947                 /*
1948                  * Setting table base here only for carrying iommu_group
1949                  * further down to let iommu_add_device() do the job.
1950                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1951                  */
1952                 set_iommu_table_base(&pe->pdev->dev, tbl);
1953                 iommu_add_device(&pe->pdev->dev);
1954         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1955                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1956
1957         return;
1958  fail:
1959         /* XXX Failure: Try to fallback to 64-bit only ? */
1960         if (pe->tce32_seg >= 0)
1961                 pe->tce32_seg = -1;
1962         if (tce_mem)
1963                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1964         if (tbl) {
1965                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1966                 iommu_free_table(tbl, "pnv");
1967         }
1968 }
1969
1970 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1971 {
1972         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1973         int64_t rc;
1974
1975         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1976         if (enable) {
1977                 phys_addr_t top = memblock_end_of_DRAM();
1978
1979                 top = roundup_pow_of_two(top);
1980                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1981                                                      pe->pe_number,
1982                                                      window_id,
1983                                                      pe->tce_bypass_base,
1984                                                      top);
1985         } else {
1986                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1987                                                      pe->pe_number,
1988                                                      window_id,
1989                                                      pe->tce_bypass_base,
1990                                                      0);
1991         }
1992         if (rc)
1993                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1994         else
1995                 pe->tce_bypass_enabled = enable;
1996 }
1997
1998 #ifdef CONFIG_IOMMU_API
1999 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2000 {
2001         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2002                                                 table_group);
2003
2004         iommu_take_ownership(table_group->tables[0]);
2005         pnv_pci_ioda2_set_bypass(pe, false);
2006 }
2007
2008 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2009 {
2010         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2011                                                 table_group);
2012
2013         iommu_release_ownership(table_group->tables[0]);
2014         pnv_pci_ioda2_set_bypass(pe, true);
2015 }
2016
2017 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2018         .take_ownership = pnv_ioda2_take_ownership,
2019         .release_ownership = pnv_ioda2_release_ownership,
2020 };
2021 #endif
2022
2023 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2024 {
2025         const __be64 *swinvp;
2026
2027         /* OPAL variant of PHB3 invalidated TCEs */
2028         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2029         if (!swinvp)
2030                 return;
2031
2032         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2033         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2034 }
2035
2036 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2037                                        struct pnv_ioda_pe *pe)
2038 {
2039         struct page *tce_mem = NULL;
2040         void *addr;
2041         struct iommu_table *tbl;
2042         unsigned int tce_table_size, end;
2043         int64_t rc;
2044
2045         /* We shouldn't already have a 32-bit DMA associated */
2046         if (WARN_ON(pe->tce32_seg >= 0))
2047                 return;
2048
2049         /* TVE #1 is selected by PCI address bit 59 */
2050         pe->tce_bypass_base = 1ull << 59;
2051
2052         tbl = pnv_pci_table_alloc(phb->hose->node);
2053         iommu_register_group(&pe->table_group, phb->hose->global_number,
2054                         pe->pe_number);
2055         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2056
2057         /* The PE will reserve all possible 32-bits space */
2058         pe->tce32_seg = 0;
2059         end = (1 << ilog2(phb->ioda.m32_pci_base));
2060         tce_table_size = (end / 0x1000) * 8;
2061         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2062                 end);
2063
2064         /* Allocate TCE table */
2065         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2066                                    get_order(tce_table_size));
2067         if (!tce_mem) {
2068                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
2069                 goto fail;
2070         }
2071         addr = page_address(tce_mem);
2072         memset(addr, 0, tce_table_size);
2073
2074         /*
2075          * Map TCE table through TVT. The TVE index is the PE number
2076          * shifted by 1 bit for 32-bits DMA space.
2077          */
2078         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2079                                         pe->pe_number << 1, 1, __pa(addr),
2080                                         tce_table_size, 0x1000);
2081         if (rc) {
2082                 pe_err(pe, "Failed to configure 32-bit TCE table,"
2083                        " err %ld\n", rc);
2084                 goto fail;
2085         }
2086
2087         pnv_pci_ioda2_tce_invalidate_entire(pe);
2088
2089         /* Setup linux iommu table */
2090         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
2091                         IOMMU_PAGE_SHIFT_4K);
2092
2093         /* OPAL variant of PHB3 invalidated TCEs */
2094         if (phb->ioda.tce_inval_reg)
2095                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2096
2097         tbl->it_ops = &pnv_ioda2_iommu_ops;
2098         iommu_init_table(tbl, phb->hose->node);
2099 #ifdef CONFIG_IOMMU_API
2100         pe->table_group.ops = &pnv_pci_ioda2_ops;
2101 #endif
2102
2103         if (pe->flags & PNV_IODA_PE_DEV) {
2104                 /*
2105                  * Setting table base here only for carrying iommu_group
2106                  * further down to let iommu_add_device() do the job.
2107                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2108                  */
2109                 set_iommu_table_base(&pe->pdev->dev, tbl);
2110                 iommu_add_device(&pe->pdev->dev);
2111         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2112                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2113
2114         /* Also create a bypass window */
2115         if (!pnv_iommu_bypass_disabled)
2116                 pnv_pci_ioda2_set_bypass(pe, true);
2117
2118         return;
2119 fail:
2120         if (pe->tce32_seg >= 0)
2121                 pe->tce32_seg = -1;
2122         if (tce_mem)
2123                 __free_pages(tce_mem, get_order(tce_table_size));
2124         if (tbl) {
2125                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2126                 iommu_free_table(tbl, "pnv");
2127         }
2128 }
2129
2130 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2131 {
2132         struct pci_controller *hose = phb->hose;
2133         unsigned int residual, remaining, segs, tw, base;
2134         struct pnv_ioda_pe *pe;
2135
2136         /* If we have more PE# than segments available, hand out one
2137          * per PE until we run out and let the rest fail. If not,
2138          * then we assign at least one segment per PE, plus more based
2139          * on the amount of devices under that PE
2140          */
2141         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2142                 residual = 0;
2143         else
2144                 residual = phb->ioda.tce32_count -
2145                         phb->ioda.dma_pe_count;
2146
2147         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2148                 hose->global_number, phb->ioda.tce32_count);
2149         pr_info("PCI: %d PE# for a total weight of %d\n",
2150                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2151
2152         pnv_pci_ioda_setup_opal_tce_kill(phb);
2153
2154         /* Walk our PE list and configure their DMA segments, hand them
2155          * out one base segment plus any residual segments based on
2156          * weight
2157          */
2158         remaining = phb->ioda.tce32_count;
2159         tw = phb->ioda.dma_weight;
2160         base = 0;
2161         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2162                 if (!pe->dma_weight)
2163                         continue;
2164                 if (!remaining) {
2165                         pe_warn(pe, "No DMA32 resources available\n");
2166                         continue;
2167                 }
2168                 segs = 1;
2169                 if (residual) {
2170                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2171                         if (segs > remaining)
2172                                 segs = remaining;
2173                 }
2174
2175                 /*
2176                  * For IODA2 compliant PHB3, we needn't care about the weight.
2177                  * The all available 32-bits DMA space will be assigned to
2178                  * the specific PE.
2179                  */
2180                 if (phb->type == PNV_PHB_IODA1) {
2181                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2182                                 pe->dma_weight, segs);
2183                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2184                 } else {
2185                         pe_info(pe, "Assign DMA32 space\n");
2186                         segs = 0;
2187                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2188                 }
2189
2190                 remaining -= segs;
2191                 base += segs;
2192         }
2193 }
2194
2195 #ifdef CONFIG_PCI_MSI
2196 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2197 {
2198         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2199         struct irq_chip *chip = irq_data_get_irq_chip(d);
2200         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2201                                            ioda.irq_chip);
2202         int64_t rc;
2203
2204         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2205         WARN_ON_ONCE(rc);
2206
2207         icp_native_eoi(d);
2208 }
2209
2210
2211 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2212 {
2213         struct irq_data *idata;
2214         struct irq_chip *ichip;
2215
2216         if (phb->type != PNV_PHB_IODA2)
2217                 return;
2218
2219         if (!phb->ioda.irq_chip_init) {
2220                 /*
2221                  * First time we setup an MSI IRQ, we need to setup the
2222                  * corresponding IRQ chip to route correctly.
2223                  */
2224                 idata = irq_get_irq_data(virq);
2225                 ichip = irq_data_get_irq_chip(idata);
2226                 phb->ioda.irq_chip_init = 1;
2227                 phb->ioda.irq_chip = *ichip;
2228                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2229         }
2230         irq_set_chip(virq, &phb->ioda.irq_chip);
2231 }
2232
2233 #ifdef CONFIG_CXL_BASE
2234
2235 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2236 {
2237         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2238
2239         return of_node_get(hose->dn);
2240 }
2241 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2242
2243 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2244 {
2245         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2246         struct pnv_phb *phb = hose->private_data;
2247         struct pnv_ioda_pe *pe;
2248         int rc;
2249
2250         pe = pnv_ioda_get_pe(dev);
2251         if (!pe)
2252                 return -ENODEV;
2253
2254         pe_info(pe, "Switching PHB to CXL\n");
2255
2256         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2257         if (rc)
2258                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2259
2260         return rc;
2261 }
2262 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2263
2264 /* Find PHB for cxl dev and allocate MSI hwirqs?
2265  * Returns the absolute hardware IRQ number
2266  */
2267 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2268 {
2269         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2270         struct pnv_phb *phb = hose->private_data;
2271         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2272
2273         if (hwirq < 0) {
2274                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2275                 return -ENOSPC;
2276         }
2277
2278         return phb->msi_base + hwirq;
2279 }
2280 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2281
2282 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2283 {
2284         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2285         struct pnv_phb *phb = hose->private_data;
2286
2287         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2288 }
2289 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2290
2291 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2292                                   struct pci_dev *dev)
2293 {
2294         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2295         struct pnv_phb *phb = hose->private_data;
2296         int i, hwirq;
2297
2298         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2299                 if (!irqs->range[i])
2300                         continue;
2301                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2302                          i, irqs->offset[i],
2303                          irqs->range[i]);
2304                 hwirq = irqs->offset[i] - phb->msi_base;
2305                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2306                                        irqs->range[i]);
2307         }
2308 }
2309 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2310
2311 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2312                                struct pci_dev *dev, int num)
2313 {
2314         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2315         struct pnv_phb *phb = hose->private_data;
2316         int i, hwirq, try;
2317
2318         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2319
2320         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2321         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2322                 try = num;
2323                 while (try) {
2324                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2325                         if (hwirq >= 0)
2326                                 break;
2327                         try /= 2;
2328                 }
2329                 if (!try)
2330                         goto fail;
2331
2332                 irqs->offset[i] = phb->msi_base + hwirq;
2333                 irqs->range[i] = try;
2334                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2335                          i, irqs->offset[i], irqs->range[i]);
2336                 num -= try;
2337         }
2338         if (num)
2339                 goto fail;
2340
2341         return 0;
2342 fail:
2343         pnv_cxl_release_hwirq_ranges(irqs, dev);
2344         return -ENOSPC;
2345 }
2346 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2347
2348 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2349 {
2350         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2351         struct pnv_phb *phb = hose->private_data;
2352
2353         return phb->msi_bmp.irq_count;
2354 }
2355 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2356
2357 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2358                            unsigned int virq)
2359 {
2360         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2361         struct pnv_phb *phb = hose->private_data;
2362         unsigned int xive_num = hwirq - phb->msi_base;
2363         struct pnv_ioda_pe *pe;
2364         int rc;
2365
2366         if (!(pe = pnv_ioda_get_pe(dev)))
2367                 return -ENODEV;
2368
2369         /* Assign XIVE to PE */
2370         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2371         if (rc) {
2372                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2373                         "hwirq 0x%x XIVE 0x%x PE\n",
2374                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2375                 return -EIO;
2376         }
2377         set_msi_irq_chip(phb, virq);
2378
2379         return 0;
2380 }
2381 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2382 #endif
2383
2384 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2385                                   unsigned int hwirq, unsigned int virq,
2386                                   unsigned int is_64, struct msi_msg *msg)
2387 {
2388         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2389         unsigned int xive_num = hwirq - phb->msi_base;
2390         __be32 data;
2391         int rc;
2392
2393         /* No PE assigned ? bail out ... no MSI for you ! */
2394         if (pe == NULL)
2395                 return -ENXIO;
2396
2397         /* Check if we have an MVE */
2398         if (pe->mve_number < 0)
2399                 return -ENXIO;
2400
2401         /* Force 32-bit MSI on some broken devices */
2402         if (dev->no_64bit_msi)
2403                 is_64 = 0;
2404
2405         /* Assign XIVE to PE */
2406         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2407         if (rc) {
2408                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2409                         pci_name(dev), rc, xive_num);
2410                 return -EIO;
2411         }
2412
2413         if (is_64) {
2414                 __be64 addr64;
2415
2416                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2417                                      &addr64, &data);
2418                 if (rc) {
2419                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2420                                 pci_name(dev), rc);
2421                         return -EIO;
2422                 }
2423                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2424                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2425         } else {
2426                 __be32 addr32;
2427
2428                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2429                                      &addr32, &data);
2430                 if (rc) {
2431                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2432                                 pci_name(dev), rc);
2433                         return -EIO;
2434                 }
2435                 msg->address_hi = 0;
2436                 msg->address_lo = be32_to_cpu(addr32);
2437         }
2438         msg->data = be32_to_cpu(data);
2439
2440         set_msi_irq_chip(phb, virq);
2441
2442         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2443                  " address=%x_%08x data=%x PE# %d\n",
2444                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2445                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2446
2447         return 0;
2448 }
2449
2450 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2451 {
2452         unsigned int count;
2453         const __be32 *prop = of_get_property(phb->hose->dn,
2454                                              "ibm,opal-msi-ranges", NULL);
2455         if (!prop) {
2456                 /* BML Fallback */
2457                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2458         }
2459         if (!prop)
2460                 return;
2461
2462         phb->msi_base = be32_to_cpup(prop);
2463         count = be32_to_cpup(prop + 1);
2464         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2465                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2466                        phb->hose->global_number);
2467                 return;
2468         }
2469
2470         phb->msi_setup = pnv_pci_ioda_msi_setup;
2471         phb->msi32_support = 1;
2472         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2473                 count, phb->msi_base);
2474 }
2475 #else
2476 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2477 #endif /* CONFIG_PCI_MSI */
2478
2479 #ifdef CONFIG_PCI_IOV
2480 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2481 {
2482         struct pci_controller *hose;
2483         struct pnv_phb *phb;
2484         struct resource *res;
2485         int i;
2486         resource_size_t size;
2487         struct pci_dn *pdn;
2488         int mul, total_vfs;
2489
2490         if (!pdev->is_physfn || pdev->is_added)
2491                 return;
2492
2493         hose = pci_bus_to_host(pdev->bus);
2494         phb = hose->private_data;
2495
2496         pdn = pci_get_pdn(pdev);
2497         pdn->vfs_expanded = 0;
2498
2499         total_vfs = pci_sriov_get_totalvfs(pdev);
2500         pdn->m64_per_iov = 1;
2501         mul = phb->ioda.total_pe;
2502
2503         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2504                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2505                 if (!res->flags || res->parent)
2506                         continue;
2507                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2508                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2509                                  i, res);
2510                         continue;
2511                 }
2512
2513                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2514
2515                 /* bigger than 64M */
2516                 if (size > (1 << 26)) {
2517                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2518                                  i, res);
2519                         pdn->m64_per_iov = M64_PER_IOV;
2520                         mul = roundup_pow_of_two(total_vfs);
2521                         break;
2522                 }
2523         }
2524
2525         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2526                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2527                 if (!res->flags || res->parent)
2528                         continue;
2529                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2530                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2531                                  i, res);
2532                         continue;
2533                 }
2534
2535                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2536                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2537                 res->end = res->start + size * mul - 1;
2538                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2539                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2540                          i, res, mul);
2541         }
2542         pdn->vfs_expanded = mul;
2543 }
2544 #endif /* CONFIG_PCI_IOV */
2545
2546 /*
2547  * This function is supposed to be called on basis of PE from top
2548  * to bottom style. So the the I/O or MMIO segment assigned to
2549  * parent PE could be overrided by its child PEs if necessary.
2550  */
2551 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2552                                   struct pnv_ioda_pe *pe)
2553 {
2554         struct pnv_phb *phb = hose->private_data;
2555         struct pci_bus_region region;
2556         struct resource *res;
2557         int i, index;
2558         int rc;
2559
2560         /*
2561          * NOTE: We only care PCI bus based PE for now. For PCI
2562          * device based PE, for example SRIOV sensitive VF should
2563          * be figured out later.
2564          */
2565         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2566
2567         pci_bus_for_each_resource(pe->pbus, res, i) {
2568                 if (!res || !res->flags ||
2569                     res->start > res->end)
2570                         continue;
2571
2572                 if (res->flags & IORESOURCE_IO) {
2573                         region.start = res->start - phb->ioda.io_pci_base;
2574                         region.end   = res->end - phb->ioda.io_pci_base;
2575                         index = region.start / phb->ioda.io_segsize;
2576
2577                         while (index < phb->ioda.total_pe &&
2578                                region.start <= region.end) {
2579                                 phb->ioda.io_segmap[index] = pe->pe_number;
2580                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2581                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2582                                 if (rc != OPAL_SUCCESS) {
2583                                         pr_err("%s: OPAL error %d when mapping IO "
2584                                                "segment #%d to PE#%d\n",
2585                                                __func__, rc, index, pe->pe_number);
2586                                         break;
2587                                 }
2588
2589                                 region.start += phb->ioda.io_segsize;
2590                                 index++;
2591                         }
2592                 } else if ((res->flags & IORESOURCE_MEM) &&
2593                            !pnv_pci_is_mem_pref_64(res->flags)) {
2594                         region.start = res->start -
2595                                        hose->mem_offset[0] -
2596                                        phb->ioda.m32_pci_base;
2597                         region.end   = res->end -
2598                                        hose->mem_offset[0] -
2599                                        phb->ioda.m32_pci_base;
2600                         index = region.start / phb->ioda.m32_segsize;
2601
2602                         while (index < phb->ioda.total_pe &&
2603                                region.start <= region.end) {
2604                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2605                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2606                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2607                                 if (rc != OPAL_SUCCESS) {
2608                                         pr_err("%s: OPAL error %d when mapping M32 "
2609                                                "segment#%d to PE#%d",
2610                                                __func__, rc, index, pe->pe_number);
2611                                         break;
2612                                 }
2613
2614                                 region.start += phb->ioda.m32_segsize;
2615                                 index++;
2616                         }
2617                 }
2618         }
2619 }
2620
2621 static void pnv_pci_ioda_setup_seg(void)
2622 {
2623         struct pci_controller *tmp, *hose;
2624         struct pnv_phb *phb;
2625         struct pnv_ioda_pe *pe;
2626
2627         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2628                 phb = hose->private_data;
2629                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2630                         pnv_ioda_setup_pe_seg(hose, pe);
2631                 }
2632         }
2633 }
2634
2635 static void pnv_pci_ioda_setup_DMA(void)
2636 {
2637         struct pci_controller *hose, *tmp;
2638         struct pnv_phb *phb;
2639
2640         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2641                 pnv_ioda_setup_dma(hose->private_data);
2642
2643                 /* Mark the PHB initialization done */
2644                 phb = hose->private_data;
2645                 phb->initialized = 1;
2646         }
2647 }
2648
2649 static void pnv_pci_ioda_create_dbgfs(void)
2650 {
2651 #ifdef CONFIG_DEBUG_FS
2652         struct pci_controller *hose, *tmp;
2653         struct pnv_phb *phb;
2654         char name[16];
2655
2656         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2657                 phb = hose->private_data;
2658
2659                 sprintf(name, "PCI%04x", hose->global_number);
2660                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2661                 if (!phb->dbgfs)
2662                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2663                                 __func__, hose->global_number);
2664         }
2665 #endif /* CONFIG_DEBUG_FS */
2666 }
2667
2668 static void pnv_pci_ioda_fixup(void)
2669 {
2670         pnv_pci_ioda_setup_PEs();
2671         pnv_pci_ioda_setup_seg();
2672         pnv_pci_ioda_setup_DMA();
2673
2674         pnv_pci_ioda_create_dbgfs();
2675
2676 #ifdef CONFIG_EEH
2677         eeh_init();
2678         eeh_addr_cache_build();
2679 #endif
2680 }
2681
2682 /*
2683  * Returns the alignment for I/O or memory windows for P2P
2684  * bridges. That actually depends on how PEs are segmented.
2685  * For now, we return I/O or M32 segment size for PE sensitive
2686  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2687  * 1MiB for memory) will be returned.
2688  *
2689  * The current PCI bus might be put into one PE, which was
2690  * create against the parent PCI bridge. For that case, we
2691  * needn't enlarge the alignment so that we can save some
2692  * resources.
2693  */
2694 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2695                                                 unsigned long type)
2696 {
2697         struct pci_dev *bridge;
2698         struct pci_controller *hose = pci_bus_to_host(bus);
2699         struct pnv_phb *phb = hose->private_data;
2700         int num_pci_bridges = 0;
2701
2702         bridge = bus->self;
2703         while (bridge) {
2704                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2705                         num_pci_bridges++;
2706                         if (num_pci_bridges >= 2)
2707                                 return 1;
2708                 }
2709
2710                 bridge = bridge->bus->self;
2711         }
2712
2713         /* We fail back to M32 if M64 isn't supported */
2714         if (phb->ioda.m64_segsize &&
2715             pnv_pci_is_mem_pref_64(type))
2716                 return phb->ioda.m64_segsize;
2717         if (type & IORESOURCE_MEM)
2718                 return phb->ioda.m32_segsize;
2719
2720         return phb->ioda.io_segsize;
2721 }
2722
2723 #ifdef CONFIG_PCI_IOV
2724 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2725                                                       int resno)
2726 {
2727         struct pci_dn *pdn = pci_get_pdn(pdev);
2728         resource_size_t align, iov_align;
2729
2730         iov_align = resource_size(&pdev->resource[resno]);
2731         if (iov_align)
2732                 return iov_align;
2733
2734         align = pci_iov_resource_size(pdev, resno);
2735         if (pdn->vfs_expanded)
2736                 return pdn->vfs_expanded * align;
2737
2738         return align;
2739 }
2740 #endif /* CONFIG_PCI_IOV */
2741
2742 /* Prevent enabling devices for which we couldn't properly
2743  * assign a PE
2744  */
2745 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2746 {
2747         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2748         struct pnv_phb *phb = hose->private_data;
2749         struct pci_dn *pdn;
2750
2751         /* The function is probably called while the PEs have
2752          * not be created yet. For example, resource reassignment
2753          * during PCI probe period. We just skip the check if
2754          * PEs isn't ready.
2755          */
2756         if (!phb->initialized)
2757                 return true;
2758
2759         pdn = pci_get_pdn(dev);
2760         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2761                 return false;
2762
2763         return true;
2764 }
2765
2766 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2767                                u32 devfn)
2768 {
2769         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2770 }
2771
2772 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2773 {
2774         struct pnv_phb *phb = hose->private_data;
2775
2776         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2777                        OPAL_ASSERT_RESET);
2778 }
2779
2780 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2781        .dma_dev_setup = pnv_pci_dma_dev_setup,
2782 #ifdef CONFIG_PCI_MSI
2783        .setup_msi_irqs = pnv_setup_msi_irqs,
2784        .teardown_msi_irqs = pnv_teardown_msi_irqs,
2785 #endif
2786        .enable_device_hook = pnv_pci_enable_device_hook,
2787        .window_alignment = pnv_pci_window_alignment,
2788        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2789        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
2790        .shutdown = pnv_pci_ioda_shutdown,
2791 };
2792
2793 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2794                                          u64 hub_id, int ioda_type)
2795 {
2796         struct pci_controller *hose;
2797         struct pnv_phb *phb;
2798         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
2799         const __be64 *prop64;
2800         const __be32 *prop32;
2801         int len;
2802         u64 phb_id;
2803         void *aux;
2804         long rc;
2805
2806         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
2807
2808         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2809         if (!prop64) {
2810                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2811                 return;
2812         }
2813         phb_id = be64_to_cpup(prop64);
2814         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2815
2816         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
2817
2818         /* Allocate PCI controller */
2819         phb->hose = hose = pcibios_alloc_controller(np);
2820         if (!phb->hose) {
2821                 pr_err("  Can't allocate PCI controller for %s\n",
2822                        np->full_name);
2823                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
2824                 return;
2825         }
2826
2827         spin_lock_init(&phb->lock);
2828         prop32 = of_get_property(np, "bus-range", &len);
2829         if (prop32 && len == 8) {
2830                 hose->first_busno = be32_to_cpu(prop32[0]);
2831                 hose->last_busno = be32_to_cpu(prop32[1]);
2832         } else {
2833                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
2834                 hose->first_busno = 0;
2835                 hose->last_busno = 0xff;
2836         }
2837         hose->private_data = phb;
2838         phb->hub_id = hub_id;
2839         phb->opal_id = phb_id;
2840         phb->type = ioda_type;
2841         mutex_init(&phb->ioda.pe_alloc_mutex);
2842
2843         /* Detect specific models for error handling */
2844         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2845                 phb->model = PNV_PHB_MODEL_P7IOC;
2846         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2847                 phb->model = PNV_PHB_MODEL_PHB3;
2848         else
2849                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2850
2851         /* Parse 32-bit and IO ranges (if any) */
2852         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2853
2854         /* Get registers */
2855         phb->regs = of_iomap(np, 0);
2856         if (phb->regs == NULL)
2857                 pr_err("  Failed to map registers !\n");
2858
2859         /* Initialize more IODA stuff */
2860         phb->ioda.total_pe = 1;
2861         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2862         if (prop32)
2863                 phb->ioda.total_pe = be32_to_cpup(prop32);
2864         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2865         if (prop32)
2866                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
2867
2868         /* Parse 64-bit MMIO range */
2869         pnv_ioda_parse_m64_window(phb);
2870
2871         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2872         /* FW Has already off top 64k of M32 space (MSI space) */
2873         phb->ioda.m32_size += 0x10000;
2874
2875         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2876         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2877         phb->ioda.io_size = hose->pci_io_size;
2878         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2879         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2880
2881         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2882         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2883         m32map_off = size;
2884         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2885         if (phb->type == PNV_PHB_IODA1) {
2886                 iomap_off = size;
2887                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2888         }
2889         pemap_off = size;
2890         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2891         aux = memblock_virt_alloc(size, 0);
2892         phb->ioda.pe_alloc = aux;
2893         phb->ioda.m32_segmap = aux + m32map_off;
2894         if (phb->type == PNV_PHB_IODA1)
2895                 phb->ioda.io_segmap = aux + iomap_off;
2896         phb->ioda.pe_array = aux + pemap_off;
2897         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2898
2899         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2900         INIT_LIST_HEAD(&phb->ioda.pe_list);
2901         mutex_init(&phb->ioda.pe_list_mutex);
2902
2903         /* Calculate how many 32-bit TCE segments we have */
2904         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2905
2906 #if 0 /* We should really do that ... */
2907         rc = opal_pci_set_phb_mem_window(opal->phb_id,
2908                                          window_type,
2909                                          window_num,
2910                                          starting_real_address,
2911                                          starting_pci_address,
2912                                          segment_size);
2913 #endif
2914
2915         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2916                 phb->ioda.total_pe, phb->ioda.reserved_pe,
2917                 phb->ioda.m32_size, phb->ioda.m32_segsize);
2918         if (phb->ioda.m64_size)
2919                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2920                         phb->ioda.m64_size, phb->ioda.m64_segsize);
2921         if (phb->ioda.io_size)
2922                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
2923                         phb->ioda.io_size, phb->ioda.io_segsize);
2924
2925
2926         phb->hose->ops = &pnv_pci_ops;
2927         phb->get_pe_state = pnv_ioda_get_pe_state;
2928         phb->freeze_pe = pnv_ioda_freeze_pe;
2929         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2930
2931         /* Setup RID -> PE mapping function */
2932         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2933
2934         /* Setup TCEs */
2935         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2936         phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2937
2938         /* Setup MSI support */
2939         pnv_pci_init_ioda_msis(phb);
2940
2941         /*
2942          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2943          * to let the PCI core do resource assignment. It's supposed
2944          * that the PCI core will do correct I/O and MMIO alignment
2945          * for the P2P bridge bars so that each PCI bus (excluding
2946          * the child P2P bridges) can form individual PE.
2947          */
2948         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2949         hose->controller_ops = pnv_pci_ioda_controller_ops;
2950
2951 #ifdef CONFIG_PCI_IOV
2952         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
2953         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2954 #endif
2955
2956         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2957
2958         /* Reset IODA tables to a clean state */
2959         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2960         if (rc)
2961                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2962
2963         /* If we're running in kdump kerenl, the previous kerenl never
2964          * shutdown PCI devices correctly. We already got IODA table
2965          * cleaned out. So we have to issue PHB reset to stop all PCI
2966          * transactions from previous kerenl.
2967          */
2968         if (is_kdump_kernel()) {
2969                 pr_info("  Issue PHB reset ...\n");
2970                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2971                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2972         }
2973
2974         /* Remove M64 resource if we can't configure it successfully */
2975         if (!phb->init_m64 || phb->init_m64(phb))
2976                 hose->mem_resources[1].flags = 0;
2977 }
2978
2979 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2980 {
2981         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2982 }
2983
2984 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2985 {
2986         struct device_node *phbn;
2987         const __be64 *prop64;
2988         u64 hub_id;
2989
2990         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2991
2992         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2993         if (!prop64) {
2994                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2995                 return;
2996         }
2997         hub_id = be64_to_cpup(prop64);
2998         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2999
3000         /* Count child PHBs */
3001         for_each_child_of_node(np, phbn) {
3002                 /* Look for IODA1 PHBs */
3003                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3004                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3005         }
3006 }