Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[pandora-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/bootmem.h>
20 #include <linux/irq.h>
21 #include <linux/io.h>
22 #include <linux/msi.h>
23
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35
36 #include "powernv.h"
37 #include "pci.h"
38
39 #define define_pe_printk_level(func, kern_level)                \
40 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)     \
41 {                                                               \
42         struct va_format vaf;                                   \
43         va_list args;                                           \
44         char pfix[32];                                          \
45         int r;                                                  \
46                                                                 \
47         va_start(args, fmt);                                    \
48                                                                 \
49         vaf.fmt = fmt;                                          \
50         vaf.va = &args;                                         \
51                                                                 \
52         if (pe->pdev)                                           \
53                 strlcpy(pfix, dev_name(&pe->pdev->dev),         \
54                         sizeof(pfix));                          \
55         else                                                    \
56                 sprintf(pfix, "%04x:%02x     ",                 \
57                         pci_domain_nr(pe->pbus),                \
58                         pe->pbus->number);                      \
59         r = printk(kern_level "pci %s: [PE# %.3d] %pV",         \
60                    pfix, pe->pe_number, &vaf);                  \
61                                                                 \
62         va_end(args);                                           \
63                                                                 \
64         return r;                                               \
65 }                                                               \
66
67 define_pe_printk_level(pe_err, KERN_ERR);
68 define_pe_printk_level(pe_warn, KERN_WARNING);
69 define_pe_printk_level(pe_info, KERN_INFO);
70
71 static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
72 {
73         struct device_node *np;
74
75         np = pci_device_to_OF_node(dev);
76         if (!np)
77                 return NULL;
78         return PCI_DN(np);
79 }
80
81 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
82 {
83         unsigned long pe;
84
85         do {
86                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
87                                         phb->ioda.total_pe, 0);
88                 if (pe >= phb->ioda.total_pe)
89                         return IODA_INVALID_PE;
90         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
91
92         phb->ioda.pe_array[pe].phb = phb;
93         phb->ioda.pe_array[pe].pe_number = pe;
94         return pe;
95 }
96
97 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
98 {
99         WARN_ON(phb->ioda.pe_array[pe].pdev);
100
101         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
102         clear_bit(pe, phb->ioda.pe_alloc);
103 }
104
105 /* Currently those 2 are only used when MSIs are enabled, this will change
106  * but in the meantime, we need to protect them to avoid warnings
107  */
108 #ifdef CONFIG_PCI_MSI
109 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
110 {
111         struct pci_controller *hose = pci_bus_to_host(dev->bus);
112         struct pnv_phb *phb = hose->private_data;
113         struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
114
115         if (!pdn)
116                 return NULL;
117         if (pdn->pe_number == IODA_INVALID_PE)
118                 return NULL;
119         return &phb->ioda.pe_array[pdn->pe_number];
120 }
121 #endif /* CONFIG_PCI_MSI */
122
123 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
124 {
125         struct pci_dev *parent;
126         uint8_t bcomp, dcomp, fcomp;
127         long rc, rid_end, rid;
128
129         /* Bus validation ? */
130         if (pe->pbus) {
131                 int count;
132
133                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
134                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
135                 parent = pe->pbus->self;
136                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
137                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
138                 else
139                         count = 1;
140
141                 switch(count) {
142                 case  1: bcomp = OpalPciBusAll;         break;
143                 case  2: bcomp = OpalPciBus7Bits;       break;
144                 case  4: bcomp = OpalPciBus6Bits;       break;
145                 case  8: bcomp = OpalPciBus5Bits;       break;
146                 case 16: bcomp = OpalPciBus4Bits;       break;
147                 case 32: bcomp = OpalPciBus3Bits;       break;
148                 default:
149                         pr_err("%s: Number of subordinate busses %d"
150                                " unsupported\n",
151                                pci_name(pe->pbus->self), count);
152                         /* Do an exact match only */
153                         bcomp = OpalPciBusAll;
154                 }
155                 rid_end = pe->rid + (count << 8);
156         } else {
157                 parent = pe->pdev->bus->self;
158                 bcomp = OpalPciBusAll;
159                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
160                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
161                 rid_end = pe->rid + 1;
162         }
163
164         /* Associate PE in PELT */
165         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
166                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
167         if (rc) {
168                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
169                 return -ENXIO;
170         }
171         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
172                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
173
174         /* Add to all parents PELT-V */
175         while (parent) {
176                 struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
177                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
178                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
179                                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
180                         /* XXX What to do in case of error ? */
181                 }
182                 parent = parent->bus->self;
183         }
184         /* Setup reverse map */
185         for (rid = pe->rid; rid < rid_end; rid++)
186                 phb->ioda.pe_rmap[rid] = pe->pe_number;
187
188         /* Setup one MVTs on IODA1 */
189         if (phb->type == PNV_PHB_IODA1) {
190                 pe->mve_number = pe->pe_number;
191                 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
192                                       pe->pe_number);
193                 if (rc) {
194                         pe_err(pe, "OPAL error %ld setting up MVE %d\n",
195                                rc, pe->mve_number);
196                         pe->mve_number = -1;
197                 } else {
198                         rc = opal_pci_set_mve_enable(phb->opal_id,
199                                                      pe->mve_number, OPAL_ENABLE_MVE);
200                         if (rc) {
201                                 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
202                                        rc, pe->mve_number);
203                                 pe->mve_number = -1;
204                         }
205                 }
206         } else if (phb->type == PNV_PHB_IODA2)
207                 pe->mve_number = 0;
208
209         return 0;
210 }
211
212 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
213                                        struct pnv_ioda_pe *pe)
214 {
215         struct pnv_ioda_pe *lpe;
216
217         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
218                 if (lpe->dma_weight < pe->dma_weight) {
219                         list_add_tail(&pe->dma_link, &lpe->dma_link);
220                         return;
221                 }
222         }
223         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
224 }
225
226 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
227 {
228         /* This is quite simplistic. The "base" weight of a device
229          * is 10. 0 means no DMA is to be accounted for it.
230          */
231
232         /* If it's a bridge, no DMA */
233         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
234                 return 0;
235
236         /* Reduce the weight of slow USB controllers */
237         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
238             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
239             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
240                 return 3;
241
242         /* Increase the weight of RAID (includes Obsidian) */
243         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
244                 return 15;
245
246         /* Default */
247         return 10;
248 }
249
250 #if 0
251 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
252 {
253         struct pci_controller *hose = pci_bus_to_host(dev->bus);
254         struct pnv_phb *phb = hose->private_data;
255         struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
256         struct pnv_ioda_pe *pe;
257         int pe_num;
258
259         if (!pdn) {
260                 pr_err("%s: Device tree node not associated properly\n",
261                            pci_name(dev));
262                 return NULL;
263         }
264         if (pdn->pe_number != IODA_INVALID_PE)
265                 return NULL;
266
267         /* PE#0 has been pre-set */
268         if (dev->bus->number == 0)
269                 pe_num = 0;
270         else
271                 pe_num = pnv_ioda_alloc_pe(phb);
272         if (pe_num == IODA_INVALID_PE) {
273                 pr_warning("%s: Not enough PE# available, disabling device\n",
274                            pci_name(dev));
275                 return NULL;
276         }
277
278         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
279          * pointer in the PE data structure, both should be destroyed at the
280          * same time. However, this needs to be looked at more closely again
281          * once we actually start removing things (Hotplug, SR-IOV, ...)
282          *
283          * At some point we want to remove the PDN completely anyways
284          */
285         pe = &phb->ioda.pe_array[pe_num];
286         pci_dev_get(dev);
287         pdn->pcidev = dev;
288         pdn->pe_number = pe_num;
289         pe->pdev = dev;
290         pe->pbus = NULL;
291         pe->tce32_seg = -1;
292         pe->mve_number = -1;
293         pe->rid = dev->bus->number << 8 | pdn->devfn;
294
295         pe_info(pe, "Associated device to PE\n");
296
297         if (pnv_ioda_configure_pe(phb, pe)) {
298                 /* XXX What do we do here ? */
299                 if (pe_num)
300                         pnv_ioda_free_pe(phb, pe_num);
301                 pdn->pe_number = IODA_INVALID_PE;
302                 pe->pdev = NULL;
303                 pci_dev_put(dev);
304                 return NULL;
305         }
306
307         /* Assign a DMA weight to the device */
308         pe->dma_weight = pnv_ioda_dma_weight(dev);
309         if (pe->dma_weight != 0) {
310                 phb->ioda.dma_weight += pe->dma_weight;
311                 phb->ioda.dma_pe_count++;
312         }
313
314         /* Link the PE */
315         pnv_ioda_link_pe_by_weight(phb, pe);
316
317         return pe;
318 }
319 #endif /* Useful for SRIOV case */
320
321 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
322 {
323         struct pci_dev *dev;
324
325         list_for_each_entry(dev, &bus->devices, bus_list) {
326                 struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
327
328                 if (pdn == NULL) {
329                         pr_warn("%s: No device node associated with device !\n",
330                                 pci_name(dev));
331                         continue;
332                 }
333                 pci_dev_get(dev);
334                 pdn->pcidev = dev;
335                 pdn->pe_number = pe->pe_number;
336                 pe->dma_weight += pnv_ioda_dma_weight(dev);
337                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
338                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
339         }
340 }
341
342 /*
343  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
344  * single PCI bus. Another one that contains the primary PCI bus and its
345  * subordinate PCI devices and buses. The second type of PE is normally
346  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
347  */
348 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
349 {
350         struct pci_controller *hose = pci_bus_to_host(bus);
351         struct pnv_phb *phb = hose->private_data;
352         struct pnv_ioda_pe *pe;
353         int pe_num;
354
355         pe_num = pnv_ioda_alloc_pe(phb);
356         if (pe_num == IODA_INVALID_PE) {
357                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
358                         __func__, pci_domain_nr(bus), bus->number);
359                 return;
360         }
361
362         pe = &phb->ioda.pe_array[pe_num];
363         pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
364         pe->pbus = bus;
365         pe->pdev = NULL;
366         pe->tce32_seg = -1;
367         pe->mve_number = -1;
368         pe->rid = bus->busn_res.start << 8;
369         pe->dma_weight = 0;
370
371         if (all)
372                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
373                         bus->busn_res.start, bus->busn_res.end, pe_num);
374         else
375                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
376                         bus->busn_res.start, pe_num);
377
378         if (pnv_ioda_configure_pe(phb, pe)) {
379                 /* XXX What do we do here ? */
380                 if (pe_num)
381                         pnv_ioda_free_pe(phb, pe_num);
382                 pe->pbus = NULL;
383                 return;
384         }
385
386         /* Associate it with all child devices */
387         pnv_ioda_setup_same_PE(bus, pe);
388
389         /* Put PE to the list */
390         list_add_tail(&pe->list, &phb->ioda.pe_list);
391
392         /* Account for one DMA PE if at least one DMA capable device exist
393          * below the bridge
394          */
395         if (pe->dma_weight != 0) {
396                 phb->ioda.dma_weight += pe->dma_weight;
397                 phb->ioda.dma_pe_count++;
398         }
399
400         /* Link the PE */
401         pnv_ioda_link_pe_by_weight(phb, pe);
402 }
403
404 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
405 {
406         struct pci_dev *dev;
407
408         pnv_ioda_setup_bus_PE(bus, 0);
409
410         list_for_each_entry(dev, &bus->devices, bus_list) {
411                 if (dev->subordinate) {
412                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
413                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
414                         else
415                                 pnv_ioda_setup_PEs(dev->subordinate);
416                 }
417         }
418 }
419
420 /*
421  * Configure PEs so that the downstream PCI buses and devices
422  * could have their associated PE#. Unfortunately, we didn't
423  * figure out the way to identify the PLX bridge yet. So we
424  * simply put the PCI bus and the subordinate behind the root
425  * port to PE# here. The game rule here is expected to be changed
426  * as soon as we can detected PLX bridge correctly.
427  */
428 static void pnv_pci_ioda_setup_PEs(void)
429 {
430         struct pci_controller *hose, *tmp;
431
432         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
433                 pnv_ioda_setup_PEs(hose->bus);
434         }
435 }
436
437 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
438 {
439         struct pci_dn *pdn = pnv_ioda_get_pdn(pdev);
440         struct pnv_ioda_pe *pe;
441
442         /*
443          * The function can be called while the PE#
444          * hasn't been assigned. Do nothing for the
445          * case.
446          */
447         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
448                 return;
449
450         pe = &phb->ioda.pe_array[pdn->pe_number];
451         set_iommu_table_base(&pdev->dev, &pe->tce32_table);
452 }
453
454 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
455                                          u64 *startp, u64 *endp)
456 {
457         u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
458         unsigned long start, end, inc;
459
460         start = __pa(startp);
461         end = __pa(endp);
462
463         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
464         if (tbl->it_busno) {
465                 start <<= 12;
466                 end <<= 12;
467                 inc = 128 << 12;
468                 start |= tbl->it_busno;
469                 end |= tbl->it_busno;
470         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
471                 /* p7ioc-style invalidation, 2 TCEs per write */
472                 start |= (1ull << 63);
473                 end |= (1ull << 63);
474                 inc = 16;
475         } else {
476                 /* Default (older HW) */
477                 inc = 128;
478         }
479
480         end |= inc - 1; /* round up end to be different than start */
481
482         mb(); /* Ensure above stores are visible */
483         while (start <= end) {
484                 __raw_writeq(start, invalidate);
485                 start += inc;
486         }
487
488         /*
489          * The iommu layer will do another mb() for us on build()
490          * and we don't care on free()
491          */
492 }
493
494 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
495                                          struct iommu_table *tbl,
496                                          u64 *startp, u64 *endp)
497 {
498         unsigned long start, end, inc;
499         u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
500
501         /* We'll invalidate DMA address in PE scope */
502         start = 0x2ul << 60;
503         start |= (pe->pe_number & 0xFF);
504         end = start;
505
506         /* Figure out the start, end and step */
507         inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
508         start |= (inc << 12);
509         inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
510         end |= (inc << 12);
511         inc = (0x1ul << 12);
512         mb();
513
514         while (start <= end) {
515                 __raw_writeq(start, invalidate);
516                 start += inc;
517         }
518 }
519
520 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
521                                  u64 *startp, u64 *endp)
522 {
523         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
524                                               tce32_table);
525         struct pnv_phb *phb = pe->phb;
526
527         if (phb->type == PNV_PHB_IODA1)
528                 pnv_pci_ioda1_tce_invalidate(tbl, startp, endp);
529         else
530                 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp);
531 }
532
533 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
534                                       struct pnv_ioda_pe *pe, unsigned int base,
535                                       unsigned int segs)
536 {
537
538         struct page *tce_mem = NULL;
539         const __be64 *swinvp;
540         struct iommu_table *tbl;
541         unsigned int i;
542         int64_t rc;
543         void *addr;
544
545         /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
546 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
547
548         /* XXX FIXME: Handle 64-bit only DMA devices */
549         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
550         /* XXX FIXME: Allocate multi-level tables on PHB3 */
551
552         /* We shouldn't already have a 32-bit DMA associated */
553         if (WARN_ON(pe->tce32_seg >= 0))
554                 return;
555
556         /* Grab a 32-bit TCE table */
557         pe->tce32_seg = base;
558         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
559                 (base << 28), ((base + segs) << 28) - 1);
560
561         /* XXX Currently, we allocate one big contiguous table for the
562          * TCEs. We only really need one chunk per 256M of TCE space
563          * (ie per segment) but that's an optimization for later, it
564          * requires some added smarts with our get/put_tce implementation
565          */
566         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
567                                    get_order(TCE32_TABLE_SIZE * segs));
568         if (!tce_mem) {
569                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
570                 goto fail;
571         }
572         addr = page_address(tce_mem);
573         memset(addr, 0, TCE32_TABLE_SIZE * segs);
574
575         /* Configure HW */
576         for (i = 0; i < segs; i++) {
577                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
578                                               pe->pe_number,
579                                               base + i, 1,
580                                               __pa(addr) + TCE32_TABLE_SIZE * i,
581                                               TCE32_TABLE_SIZE, 0x1000);
582                 if (rc) {
583                         pe_err(pe, " Failed to configure 32-bit TCE table,"
584                                " err %ld\n", rc);
585                         goto fail;
586                 }
587         }
588
589         /* Setup linux iommu table */
590         tbl = &pe->tce32_table;
591         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
592                                   base << 28);
593
594         /* OPAL variant of P7IOC SW invalidated TCEs */
595         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
596         if (swinvp) {
597                 /* We need a couple more fields -- an address and a data
598                  * to or.  Since the bus is only printed out on table free
599                  * errors, and on the first pass the data will be a relative
600                  * bus number, print that out instead.
601                  */
602                 tbl->it_busno = 0;
603                 tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
604                 tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
605                                TCE_PCI_SWINV_PAIR;
606         }
607         iommu_init_table(tbl, phb->hose->node);
608
609         return;
610  fail:
611         /* XXX Failure: Try to fallback to 64-bit only ? */
612         if (pe->tce32_seg >= 0)
613                 pe->tce32_seg = -1;
614         if (tce_mem)
615                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
616 }
617
618 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
619                                        struct pnv_ioda_pe *pe)
620 {
621         struct page *tce_mem = NULL;
622         void *addr;
623         const __be64 *swinvp;
624         struct iommu_table *tbl;
625         unsigned int tce_table_size, end;
626         int64_t rc;
627
628         /* We shouldn't already have a 32-bit DMA associated */
629         if (WARN_ON(pe->tce32_seg >= 0))
630                 return;
631
632         /* The PE will reserve all possible 32-bits space */
633         pe->tce32_seg = 0;
634         end = (1 << ilog2(phb->ioda.m32_pci_base));
635         tce_table_size = (end / 0x1000) * 8;
636         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
637                 end);
638
639         /* Allocate TCE table */
640         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
641                                    get_order(tce_table_size));
642         if (!tce_mem) {
643                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
644                 goto fail;
645         }
646         addr = page_address(tce_mem);
647         memset(addr, 0, tce_table_size);
648
649         /*
650          * Map TCE table through TVT. The TVE index is the PE number
651          * shifted by 1 bit for 32-bits DMA space.
652          */
653         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
654                                         pe->pe_number << 1, 1, __pa(addr),
655                                         tce_table_size, 0x1000);
656         if (rc) {
657                 pe_err(pe, "Failed to configure 32-bit TCE table,"
658                        " err %ld\n", rc);
659                 goto fail;
660         }
661
662         /* Setup linux iommu table */
663         tbl = &pe->tce32_table;
664         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
665
666         /* OPAL variant of PHB3 invalidated TCEs */
667         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
668         if (swinvp) {
669                 /* We need a couple more fields -- an address and a data
670                  * to or.  Since the bus is only printed out on table free
671                  * errors, and on the first pass the data will be a relative
672                  * bus number, print that out instead.
673                  */
674                 tbl->it_busno = 0;
675                 tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
676                 tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
677         }
678         iommu_init_table(tbl, phb->hose->node);
679
680         return;
681 fail:
682         if (pe->tce32_seg >= 0)
683                 pe->tce32_seg = -1;
684         if (tce_mem)
685                 __free_pages(tce_mem, get_order(tce_table_size));
686 }
687
688 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
689 {
690         struct pci_controller *hose = phb->hose;
691         unsigned int residual, remaining, segs, tw, base;
692         struct pnv_ioda_pe *pe;
693
694         /* If we have more PE# than segments available, hand out one
695          * per PE until we run out and let the rest fail. If not,
696          * then we assign at least one segment per PE, plus more based
697          * on the amount of devices under that PE
698          */
699         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
700                 residual = 0;
701         else
702                 residual = phb->ioda.tce32_count -
703                         phb->ioda.dma_pe_count;
704
705         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
706                 hose->global_number, phb->ioda.tce32_count);
707         pr_info("PCI: %d PE# for a total weight of %d\n",
708                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
709
710         /* Walk our PE list and configure their DMA segments, hand them
711          * out one base segment plus any residual segments based on
712          * weight
713          */
714         remaining = phb->ioda.tce32_count;
715         tw = phb->ioda.dma_weight;
716         base = 0;
717         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
718                 if (!pe->dma_weight)
719                         continue;
720                 if (!remaining) {
721                         pe_warn(pe, "No DMA32 resources available\n");
722                         continue;
723                 }
724                 segs = 1;
725                 if (residual) {
726                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
727                         if (segs > remaining)
728                                 segs = remaining;
729                 }
730
731                 /*
732                  * For IODA2 compliant PHB3, we needn't care about the weight.
733                  * The all available 32-bits DMA space will be assigned to
734                  * the specific PE.
735                  */
736                 if (phb->type == PNV_PHB_IODA1) {
737                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
738                                 pe->dma_weight, segs);
739                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
740                 } else {
741                         pe_info(pe, "Assign DMA32 space\n");
742                         segs = 0;
743                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
744                 }
745
746                 remaining -= segs;
747                 base += segs;
748         }
749 }
750
751 #ifdef CONFIG_PCI_MSI
752 static void pnv_ioda2_msi_eoi(struct irq_data *d)
753 {
754         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
755         struct irq_chip *chip = irq_data_get_irq_chip(d);
756         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
757                                            ioda.irq_chip);
758         int64_t rc;
759
760         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
761         WARN_ON_ONCE(rc);
762
763         icp_native_eoi(d);
764 }
765
766 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
767                                   unsigned int hwirq, unsigned int virq,
768                                   unsigned int is_64, struct msi_msg *msg)
769 {
770         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
771         struct irq_data *idata;
772         struct irq_chip *ichip;
773         unsigned int xive_num = hwirq - phb->msi_base;
774         uint64_t addr64;
775         uint32_t addr32, data;
776         int rc;
777
778         /* No PE assigned ? bail out ... no MSI for you ! */
779         if (pe == NULL)
780                 return -ENXIO;
781
782         /* Check if we have an MVE */
783         if (pe->mve_number < 0)
784                 return -ENXIO;
785
786         /* Assign XIVE to PE */
787         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
788         if (rc) {
789                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
790                         pci_name(dev), rc, xive_num);
791                 return -EIO;
792         }
793
794         if (is_64) {
795                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
796                                      &addr64, &data);
797                 if (rc) {
798                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
799                                 pci_name(dev), rc);
800                         return -EIO;
801                 }
802                 msg->address_hi = addr64 >> 32;
803                 msg->address_lo = addr64 & 0xfffffffful;
804         } else {
805                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
806                                      &addr32, &data);
807                 if (rc) {
808                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
809                                 pci_name(dev), rc);
810                         return -EIO;
811                 }
812                 msg->address_hi = 0;
813                 msg->address_lo = addr32;
814         }
815         msg->data = data;
816
817         /*
818          * Change the IRQ chip for the MSI interrupts on PHB3.
819          * The corresponding IRQ chip should be populated for
820          * the first time.
821          */
822         if (phb->type == PNV_PHB_IODA2) {
823                 if (!phb->ioda.irq_chip_init) {
824                         idata = irq_get_irq_data(virq);
825                         ichip = irq_data_get_irq_chip(idata);
826                         phb->ioda.irq_chip_init = 1;
827                         phb->ioda.irq_chip = *ichip;
828                         phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
829                 }
830
831                 irq_set_chip(virq, &phb->ioda.irq_chip);
832         }
833
834         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
835                  " address=%x_%08x data=%x PE# %d\n",
836                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
837                  msg->address_hi, msg->address_lo, data, pe->pe_number);
838
839         return 0;
840 }
841
842 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
843 {
844         unsigned int count;
845         const __be32 *prop = of_get_property(phb->hose->dn,
846                                              "ibm,opal-msi-ranges", NULL);
847         if (!prop) {
848                 /* BML Fallback */
849                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
850         }
851         if (!prop)
852                 return;
853
854         phb->msi_base = be32_to_cpup(prop);
855         count = be32_to_cpup(prop + 1);
856         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
857                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
858                        phb->hose->global_number);
859                 return;
860         }
861
862         phb->msi_setup = pnv_pci_ioda_msi_setup;
863         phb->msi32_support = 1;
864         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
865                 count, phb->msi_base);
866 }
867 #else
868 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
869 #endif /* CONFIG_PCI_MSI */
870
871 /*
872  * This function is supposed to be called on basis of PE from top
873  * to bottom style. So the the I/O or MMIO segment assigned to
874  * parent PE could be overrided by its child PEs if necessary.
875  */
876 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
877                                   struct pnv_ioda_pe *pe)
878 {
879         struct pnv_phb *phb = hose->private_data;
880         struct pci_bus_region region;
881         struct resource *res;
882         int i, index;
883         int rc;
884
885         /*
886          * NOTE: We only care PCI bus based PE for now. For PCI
887          * device based PE, for example SRIOV sensitive VF should
888          * be figured out later.
889          */
890         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
891
892         pci_bus_for_each_resource(pe->pbus, res, i) {
893                 if (!res || !res->flags ||
894                     res->start > res->end)
895                         continue;
896
897                 if (res->flags & IORESOURCE_IO) {
898                         region.start = res->start - phb->ioda.io_pci_base;
899                         region.end   = res->end - phb->ioda.io_pci_base;
900                         index = region.start / phb->ioda.io_segsize;
901
902                         while (index < phb->ioda.total_pe &&
903                                region.start <= region.end) {
904                                 phb->ioda.io_segmap[index] = pe->pe_number;
905                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
906                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
907                                 if (rc != OPAL_SUCCESS) {
908                                         pr_err("%s: OPAL error %d when mapping IO "
909                                                "segment #%d to PE#%d\n",
910                                                __func__, rc, index, pe->pe_number);
911                                         break;
912                                 }
913
914                                 region.start += phb->ioda.io_segsize;
915                                 index++;
916                         }
917                 } else if (res->flags & IORESOURCE_MEM) {
918                         /* WARNING: Assumes M32 is mem region 0 in PHB. We need to
919                          * harden that algorithm when we start supporting M64
920                          */
921                         region.start = res->start -
922                                        hose->mem_offset[0] -
923                                        phb->ioda.m32_pci_base;
924                         region.end   = res->end -
925                                        hose->mem_offset[0] -
926                                        phb->ioda.m32_pci_base;
927                         index = region.start / phb->ioda.m32_segsize;
928
929                         while (index < phb->ioda.total_pe &&
930                                region.start <= region.end) {
931                                 phb->ioda.m32_segmap[index] = pe->pe_number;
932                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
933                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
934                                 if (rc != OPAL_SUCCESS) {
935                                         pr_err("%s: OPAL error %d when mapping M32 "
936                                                "segment#%d to PE#%d",
937                                                __func__, rc, index, pe->pe_number);
938                                         break;
939                                 }
940
941                                 region.start += phb->ioda.m32_segsize;
942                                 index++;
943                         }
944                 }
945         }
946 }
947
948 static void pnv_pci_ioda_setup_seg(void)
949 {
950         struct pci_controller *tmp, *hose;
951         struct pnv_phb *phb;
952         struct pnv_ioda_pe *pe;
953
954         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
955                 phb = hose->private_data;
956                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
957                         pnv_ioda_setup_pe_seg(hose, pe);
958                 }
959         }
960 }
961
962 static void pnv_pci_ioda_setup_DMA(void)
963 {
964         struct pci_controller *hose, *tmp;
965         struct pnv_phb *phb;
966
967         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
968                 pnv_ioda_setup_dma(hose->private_data);
969
970                 /* Mark the PHB initialization done */
971                 phb = hose->private_data;
972                 phb->initialized = 1;
973         }
974 }
975
976 static void pnv_pci_ioda_fixup(void)
977 {
978         pnv_pci_ioda_setup_PEs();
979         pnv_pci_ioda_setup_seg();
980         pnv_pci_ioda_setup_DMA();
981 }
982
983 /*
984  * Returns the alignment for I/O or memory windows for P2P
985  * bridges. That actually depends on how PEs are segmented.
986  * For now, we return I/O or M32 segment size for PE sensitive
987  * P2P bridges. Otherwise, the default values (4KiB for I/O,
988  * 1MiB for memory) will be returned.
989  *
990  * The current PCI bus might be put into one PE, which was
991  * create against the parent PCI bridge. For that case, we
992  * needn't enlarge the alignment so that we can save some
993  * resources.
994  */
995 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
996                                                 unsigned long type)
997 {
998         struct pci_dev *bridge;
999         struct pci_controller *hose = pci_bus_to_host(bus);
1000         struct pnv_phb *phb = hose->private_data;
1001         int num_pci_bridges = 0;
1002
1003         bridge = bus->self;
1004         while (bridge) {
1005                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1006                         num_pci_bridges++;
1007                         if (num_pci_bridges >= 2)
1008                                 return 1;
1009                 }
1010
1011                 bridge = bridge->bus->self;
1012         }
1013
1014         /* We need support prefetchable memory window later */
1015         if (type & IORESOURCE_MEM)
1016                 return phb->ioda.m32_segsize;
1017
1018         return phb->ioda.io_segsize;
1019 }
1020
1021 /* Prevent enabling devices for which we couldn't properly
1022  * assign a PE
1023  */
1024 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1025 {
1026         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1027         struct pnv_phb *phb = hose->private_data;
1028         struct pci_dn *pdn;
1029
1030         /* The function is probably called while the PEs have
1031          * not be created yet. For example, resource reassignment
1032          * during PCI probe period. We just skip the check if
1033          * PEs isn't ready.
1034          */
1035         if (!phb->initialized)
1036                 return 0;
1037
1038         pdn = pnv_ioda_get_pdn(dev);
1039         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1040                 return -EINVAL;
1041
1042         return 0;
1043 }
1044
1045 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1046                                u32 devfn)
1047 {
1048         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1049 }
1050
1051 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1052 {
1053         opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1054                        OPAL_ASSERT_RESET);
1055 }
1056
1057 void __init pnv_pci_init_ioda_phb(struct device_node *np, int ioda_type)
1058 {
1059         struct pci_controller *hose;
1060         static int primary = 1;
1061         struct pnv_phb *phb;
1062         unsigned long size, m32map_off, iomap_off, pemap_off;
1063         const u64 *prop64;
1064         const u32 *prop32;
1065         u64 phb_id;
1066         void *aux;
1067         long rc;
1068
1069         pr_info(" Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1070
1071         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1072         if (!prop64) {
1073                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1074                 return;
1075         }
1076         phb_id = be64_to_cpup(prop64);
1077         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1078
1079         phb = alloc_bootmem(sizeof(struct pnv_phb));
1080         if (phb) {
1081                 memset(phb, 0, sizeof(struct pnv_phb));
1082                 phb->hose = hose = pcibios_alloc_controller(np);
1083         }
1084         if (!phb || !phb->hose) {
1085                 pr_err("PCI: Failed to allocate PCI controller for %s\n",
1086                        np->full_name);
1087                 return;
1088         }
1089
1090         spin_lock_init(&phb->lock);
1091         /* XXX Use device-tree */
1092         hose->first_busno = 0;
1093         hose->last_busno = 0xff;
1094         hose->private_data = phb;
1095         phb->opal_id = phb_id;
1096         phb->type = ioda_type;
1097
1098         /* Detect specific models for error handling */
1099         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1100                 phb->model = PNV_PHB_MODEL_P7IOC;
1101         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1102                 phb->model = PNV_PHB_MODEL_PHB3;
1103         else
1104                 phb->model = PNV_PHB_MODEL_UNKNOWN;
1105
1106         /* Parse 32-bit and IO ranges (if any) */
1107         pci_process_bridge_OF_ranges(phb->hose, np, primary);
1108         primary = 0;
1109
1110         /* Get registers */
1111         phb->regs = of_iomap(np, 0);
1112         if (phb->regs == NULL)
1113                 pr_err("  Failed to map registers !\n");
1114
1115         /* Initialize more IODA stuff */
1116         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1117         if (!prop32)
1118                 phb->ioda.total_pe = 1;
1119         else
1120                 phb->ioda.total_pe = *prop32;
1121
1122         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1123         /* FW Has already off top 64k of M32 space (MSI space) */
1124         phb->ioda.m32_size += 0x10000;
1125
1126         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1127         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1128         phb->ioda.io_size = hose->pci_io_size;
1129         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1130         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1131
1132         /* Allocate aux data & arrays
1133          *
1134          * XXX TODO: Don't allocate io segmap on PHB3
1135          */
1136         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1137         m32map_off = size;
1138         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1139         iomap_off = size;
1140         size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1141         pemap_off = size;
1142         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1143         aux = alloc_bootmem(size);
1144         memset(aux, 0, size);
1145         phb->ioda.pe_alloc = aux;
1146         phb->ioda.m32_segmap = aux + m32map_off;
1147         phb->ioda.io_segmap = aux + iomap_off;
1148         phb->ioda.pe_array = aux + pemap_off;
1149         set_bit(0, phb->ioda.pe_alloc);
1150
1151         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1152         INIT_LIST_HEAD(&phb->ioda.pe_list);
1153
1154         /* Calculate how many 32-bit TCE segments we have */
1155         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1156
1157         /* Clear unusable m64 */
1158         hose->mem_resources[1].flags = 0;
1159         hose->mem_resources[1].start = 0;
1160         hose->mem_resources[1].end = 0;
1161         hose->mem_resources[2].flags = 0;
1162         hose->mem_resources[2].start = 0;
1163         hose->mem_resources[2].end = 0;
1164
1165 #if 0 /* We should really do that ... */
1166         rc = opal_pci_set_phb_mem_window(opal->phb_id,
1167                                          window_type,
1168                                          window_num,
1169                                          starting_real_address,
1170                                          starting_pci_address,
1171                                          segment_size);
1172 #endif
1173
1174         pr_info("  %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
1175                 phb->ioda.total_pe,
1176                 phb->ioda.m32_size, phb->ioda.m32_segsize,
1177                 phb->ioda.io_size, phb->ioda.io_segsize);
1178
1179         phb->hose->ops = &pnv_pci_ops;
1180
1181         /* Setup RID -> PE mapping function */
1182         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1183
1184         /* Setup TCEs */
1185         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1186
1187         /* Setup shutdown function for kexec */
1188         phb->shutdown = pnv_pci_ioda_shutdown;
1189
1190         /* Setup MSI support */
1191         pnv_pci_init_ioda_msis(phb);
1192
1193         /*
1194          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1195          * to let the PCI core do resource assignment. It's supposed
1196          * that the PCI core will do correct I/O and MMIO alignment
1197          * for the P2P bridge bars so that each PCI bus (excluding
1198          * the child P2P bridges) can form individual PE.
1199          */
1200         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1201         ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1202         ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1203         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1204
1205         /* Reset IODA tables to a clean state */
1206         rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1207         if (rc)
1208                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1209
1210         /*
1211          * On IODA1 map everything to PE#0, on IODA2 we assume the IODA reset
1212          * has cleared the RTT which has the same effect
1213          */
1214         if (ioda_type == PNV_PHB_IODA1)
1215                 opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
1216 }
1217
1218 void pnv_pci_init_ioda2_phb(struct device_node *np)
1219 {
1220         pnv_pci_init_ioda_phb(np, PNV_PHB_IODA2);
1221 }
1222
1223 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1224 {
1225         struct device_node *phbn;
1226         const u64 *prop64;
1227         u64 hub_id;
1228
1229         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1230
1231         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1232         if (!prop64) {
1233                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1234                 return;
1235         }
1236         hub_id = be64_to_cpup(prop64);
1237         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1238
1239         /* Count child PHBs */
1240         for_each_child_of_node(np, phbn) {
1241                 /* Look for IODA1 PHBs */
1242                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1243                         pnv_pci_init_ioda_phb(phbn, PNV_PHB_IODA1);
1244         }
1245 }