[PATCH] powerpc: task_stack_page()
[pandora-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2  *  arch/ppc/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  */
18
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #ifdef CONFIG_PPC64
51 #include <asm/firmware.h>
52 #include <asm/time.h>
53 #endif
54
55 extern unsigned long _get_SP(void);
56
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62
63 /*
64  * Make sure the floating-point register state in the
65  * the thread_struct is up to date for task tsk.
66  */
67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69         if (tsk->thread.regs) {
70                 /*
71                  * We need to disable preemption here because if we didn't,
72                  * another process could get scheduled after the regs->msr
73                  * test but before we have finished saving the FP registers
74                  * to the thread_struct.  That process could take over the
75                  * FPU, and then when we get scheduled again we would store
76                  * bogus values for the remaining FP registers.
77                  */
78                 preempt_disable();
79                 if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81                         /*
82                          * This should only ever be called for current or
83                          * for a stopped child process.  Since we save away
84                          * the FP register state on context switch on SMP,
85                          * there is something wrong if a stopped child appears
86                          * to still have its FP state in the CPU registers.
87                          */
88                         BUG_ON(tsk != current);
89 #endif
90                         giveup_fpu(current);
91                 }
92                 preempt_enable();
93         }
94 }
95
96 void enable_kernel_fp(void)
97 {
98         WARN_ON(preemptible());
99
100 #ifdef CONFIG_SMP
101         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102                 giveup_fpu(current);
103         else
104                 giveup_fpu(NULL);       /* just enables FP for kernel */
105 #else
106         giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110
111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
112 {
113         if (!tsk->thread.regs)
114                 return 0;
115         flush_fp_to_thread(current);
116
117         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
118
119         return 1;
120 }
121
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
124 {
125         WARN_ON(preemptible());
126
127 #ifdef CONFIG_SMP
128         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129                 giveup_altivec(current);
130         else
131                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
132 #else
133         giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
135 }
136 EXPORT_SYMBOL(enable_kernel_altivec);
137
138 /*
139  * Make sure the VMX/Altivec register state in the
140  * the thread_struct is up to date for task tsk.
141  */
142 void flush_altivec_to_thread(struct task_struct *tsk)
143 {
144         if (tsk->thread.regs) {
145                 preempt_disable();
146                 if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148                         BUG_ON(tsk != current);
149 #endif
150                         giveup_altivec(current);
151                 }
152                 preempt_enable();
153         }
154 }
155
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 {
158         flush_altivec_to_thread(current);
159         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160         return 1;
161 }
162 #endif /* CONFIG_ALTIVEC */
163
164 #ifdef CONFIG_SPE
165
166 void enable_kernel_spe(void)
167 {
168         WARN_ON(preemptible());
169
170 #ifdef CONFIG_SMP
171         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
172                 giveup_spe(current);
173         else
174                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
175 #else
176         giveup_spe(last_task_used_spe);
177 #endif /* __SMP __ */
178 }
179 EXPORT_SYMBOL(enable_kernel_spe);
180
181 void flush_spe_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 preempt_disable();
185                 if (tsk->thread.regs->msr & MSR_SPE) {
186 #ifdef CONFIG_SMP
187                         BUG_ON(tsk != current);
188 #endif
189                         giveup_spe(current);
190                 }
191                 preempt_enable();
192         }
193 }
194
195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
196 {
197         flush_spe_to_thread(current);
198         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
200         return 1;
201 }
202 #endif /* CONFIG_SPE */
203
204 /*
205  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
206  * and the current task has some state, discard it.
207  */
208 static inline void discard_lazy_cpu_state(void)
209 {
210 #ifndef CONFIG_SMP
211         preempt_disable();
212         if (last_task_used_math == current)
213                 last_task_used_math = NULL;
214 #ifdef CONFIG_ALTIVEC
215         if (last_task_used_altivec == current)
216                 last_task_used_altivec = NULL;
217 #endif /* CONFIG_ALTIVEC */
218 #ifdef CONFIG_SPE
219         if (last_task_used_spe == current)
220                 last_task_used_spe = NULL;
221 #endif
222         preempt_enable();
223 #endif /* CONFIG_SMP */
224 }
225
226 int set_dabr(unsigned long dabr)
227 {
228         if (ppc_md.set_dabr)
229                 return ppc_md.set_dabr(dabr);
230
231         mtspr(SPRN_DABR, dabr);
232         return 0;
233 }
234
235 #ifdef CONFIG_PPC64
236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
237 static DEFINE_PER_CPU(unsigned long, current_dabr);
238 #endif
239
240 struct task_struct *__switch_to(struct task_struct *prev,
241         struct task_struct *new)
242 {
243         struct thread_struct *new_thread, *old_thread;
244         unsigned long flags;
245         struct task_struct *last;
246
247 #ifdef CONFIG_SMP
248         /* avoid complexity of lazy save/restore of fpu
249          * by just saving it every time we switch out if
250          * this task used the fpu during the last quantum.
251          *
252          * If it tries to use the fpu again, it'll trap and
253          * reload its fp regs.  So we don't have to do a restore
254          * every switch, just a save.
255          *  -- Cort
256          */
257         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258                 giveup_fpu(prev);
259 #ifdef CONFIG_ALTIVEC
260         /*
261          * If the previous thread used altivec in the last quantum
262          * (thus changing altivec regs) then save them.
263          * We used to check the VRSAVE register but not all apps
264          * set it, so we don't rely on it now (and in fact we need
265          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
266          *
267          * On SMP we always save/restore altivec regs just to avoid the
268          * complexity of changing processors.
269          *  -- Cort
270          */
271         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
272                 giveup_altivec(prev);
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
275         /*
276          * If the previous thread used spe in the last quantum
277          * (thus changing spe regs) then save them.
278          *
279          * On SMP we always save/restore spe regs just to avoid the
280          * complexity of changing processors.
281          */
282         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283                 giveup_spe(prev);
284 #endif /* CONFIG_SPE */
285
286 #else  /* CONFIG_SMP */
287 #ifdef CONFIG_ALTIVEC
288         /* Avoid the trap.  On smp this this never happens since
289          * we don't set last_task_used_altivec -- Cort
290          */
291         if (new->thread.regs && last_task_used_altivec == new)
292                 new->thread.regs->msr |= MSR_VEC;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_SPE
295         /* Avoid the trap.  On smp this this never happens since
296          * we don't set last_task_used_spe
297          */
298         if (new->thread.regs && last_task_used_spe == new)
299                 new->thread.regs->msr |= MSR_SPE;
300 #endif /* CONFIG_SPE */
301
302 #endif /* CONFIG_SMP */
303
304 #ifdef CONFIG_PPC64     /* for now */
305         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
306                 set_dabr(new->thread.dabr);
307                 __get_cpu_var(current_dabr) = new->thread.dabr;
308         }
309
310         flush_tlb_pending();
311 #endif
312
313         new_thread = &new->thread;
314         old_thread = &current->thread;
315
316 #ifdef CONFIG_PPC64
317         /*
318          * Collect processor utilization data per process
319          */
320         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
321                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
322                 long unsigned start_tb, current_tb;
323                 start_tb = old_thread->start_tb;
324                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
325                 old_thread->accum_tb += (current_tb - start_tb);
326                 new_thread->start_tb = current_tb;
327         }
328 #endif
329
330         local_irq_save(flags);
331         last = _switch(old_thread, new_thread);
332
333         local_irq_restore(flags);
334
335         return last;
336 }
337
338 static int instructions_to_print = 16;
339
340 #ifdef CONFIG_PPC64
341 #define BAD_PC(pc)      ((REGION_ID(pc) != KERNEL_REGION_ID) && \
342                          (REGION_ID(pc) != VMALLOC_REGION_ID))
343 #else
344 #define BAD_PC(pc)      ((pc) < KERNELBASE)
345 #endif
346
347 static void show_instructions(struct pt_regs *regs)
348 {
349         int i;
350         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
351                         sizeof(int));
352
353         printk("Instruction dump:");
354
355         for (i = 0; i < instructions_to_print; i++) {
356                 int instr;
357
358                 if (!(i % 8))
359                         printk("\n");
360
361                 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
362                         printk("XXXXXXXX ");
363                 } else {
364                         if (regs->nip == pc)
365                                 printk("<%08x> ", instr);
366                         else
367                                 printk("%08x ", instr);
368                 }
369
370                 pc += sizeof(int);
371         }
372
373         printk("\n");
374 }
375
376 static struct regbit {
377         unsigned long bit;
378         const char *name;
379 } msr_bits[] = {
380         {MSR_EE,        "EE"},
381         {MSR_PR,        "PR"},
382         {MSR_FP,        "FP"},
383         {MSR_ME,        "ME"},
384         {MSR_IR,        "IR"},
385         {MSR_DR,        "DR"},
386         {0,             NULL}
387 };
388
389 static void printbits(unsigned long val, struct regbit *bits)
390 {
391         const char *sep = "";
392
393         printk("<");
394         for (; bits->bit; ++bits)
395                 if (val & bits->bit) {
396                         printk("%s%s", sep, bits->name);
397                         sep = ",";
398                 }
399         printk(">");
400 }
401
402 #ifdef CONFIG_PPC64
403 #define REG             "%016lX"
404 #define REGS_PER_LINE   4
405 #define LAST_VOLATILE   13
406 #else
407 #define REG             "%08lX"
408 #define REGS_PER_LINE   8
409 #define LAST_VOLATILE   12
410 #endif
411
412 void show_regs(struct pt_regs * regs)
413 {
414         int i, trap;
415
416         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
417                regs->nip, regs->link, regs->ctr);
418         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
419                regs, regs->trap, print_tainted(), system_utsname.release);
420         printk("MSR: "REG" ", regs->msr);
421         printbits(regs->msr, msr_bits);
422         printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
423         trap = TRAP(regs);
424         if (trap == 0x300 || trap == 0x600)
425                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
426         printk("TASK = %p[%d] '%s' THREAD: %p",
427                current, current->pid, current->comm, task_thread_info(current));
428
429 #ifdef CONFIG_SMP
430         printk(" CPU: %d", smp_processor_id());
431 #endif /* CONFIG_SMP */
432
433         for (i = 0;  i < 32;  i++) {
434                 if ((i % REGS_PER_LINE) == 0)
435                         printk("\n" KERN_INFO "GPR%02d: ", i);
436                 printk(REG " ", regs->gpr[i]);
437                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
438                         break;
439         }
440         printk("\n");
441 #ifdef CONFIG_KALLSYMS
442         /*
443          * Lookup NIP late so we have the best change of getting the
444          * above info out without failing
445          */
446         printk("NIP ["REG"] ", regs->nip);
447         print_symbol("%s\n", regs->nip);
448         printk("LR ["REG"] ", regs->link);
449         print_symbol("%s\n", regs->link);
450 #endif
451         show_stack(current, (unsigned long *) regs->gpr[1]);
452         if (!user_mode(regs))
453                 show_instructions(regs);
454 }
455
456 void exit_thread(void)
457 {
458         kprobe_flush_task(current);
459         discard_lazy_cpu_state();
460 }
461
462 void flush_thread(void)
463 {
464 #ifdef CONFIG_PPC64
465         struct thread_info *t = current_thread_info();
466
467         if (t->flags & _TIF_ABI_PENDING)
468                 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
469 #endif
470
471         discard_lazy_cpu_state();
472
473 #ifdef CONFIG_PPC64     /* for now */
474         if (current->thread.dabr) {
475                 current->thread.dabr = 0;
476                 set_dabr(0);
477         }
478 #endif
479 }
480
481 void
482 release_thread(struct task_struct *t)
483 {
484 }
485
486 /*
487  * This gets called before we allocate a new thread and copy
488  * the current task into it.
489  */
490 void prepare_to_copy(struct task_struct *tsk)
491 {
492         flush_fp_to_thread(current);
493         flush_altivec_to_thread(current);
494         flush_spe_to_thread(current);
495 }
496
497 /*
498  * Copy a thread..
499  */
500 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
501                 unsigned long unused, struct task_struct *p,
502                 struct pt_regs *regs)
503 {
504         struct pt_regs *childregs, *kregs;
505         extern void ret_from_fork(void);
506         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
507
508         CHECK_FULL_REGS(regs);
509         /* Copy registers */
510         sp -= sizeof(struct pt_regs);
511         childregs = (struct pt_regs *) sp;
512         *childregs = *regs;
513         if ((childregs->msr & MSR_PR) == 0) {
514                 /* for kernel thread, set `current' and stackptr in new task */
515                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
516 #ifdef CONFIG_PPC32
517                 childregs->gpr[2] = (unsigned long) p;
518 #else
519                 clear_tsk_thread_flag(p, TIF_32BIT);
520 #endif
521                 p->thread.regs = NULL;  /* no user register state */
522         } else {
523                 childregs->gpr[1] = usp;
524                 p->thread.regs = childregs;
525                 if (clone_flags & CLONE_SETTLS) {
526 #ifdef CONFIG_PPC64
527                         if (!test_thread_flag(TIF_32BIT))
528                                 childregs->gpr[13] = childregs->gpr[6];
529                         else
530 #endif
531                                 childregs->gpr[2] = childregs->gpr[6];
532                 }
533         }
534         childregs->gpr[3] = 0;  /* Result from fork() */
535         sp -= STACK_FRAME_OVERHEAD;
536
537         /*
538          * The way this works is that at some point in the future
539          * some task will call _switch to switch to the new task.
540          * That will pop off the stack frame created below and start
541          * the new task running at ret_from_fork.  The new task will
542          * do some house keeping and then return from the fork or clone
543          * system call, using the stack frame created above.
544          */
545         sp -= sizeof(struct pt_regs);
546         kregs = (struct pt_regs *) sp;
547         sp -= STACK_FRAME_OVERHEAD;
548         p->thread.ksp = sp;
549
550 #ifdef CONFIG_PPC64
551         if (cpu_has_feature(CPU_FTR_SLB)) {
552                 unsigned long sp_vsid = get_kernel_vsid(sp);
553                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
554
555                 sp_vsid <<= SLB_VSID_SHIFT;
556                 sp_vsid |= SLB_VSID_KERNEL | llp;
557                 p->thread.ksp_vsid = sp_vsid;
558         }
559
560         /*
561          * The PPC64 ABI makes use of a TOC to contain function 
562          * pointers.  The function (ret_from_except) is actually a pointer
563          * to the TOC entry.  The first entry is a pointer to the actual
564          * function.
565          */
566         kregs->nip = *((unsigned long *)ret_from_fork);
567 #else
568         kregs->nip = (unsigned long)ret_from_fork;
569         p->thread.last_syscall = -1;
570 #endif
571
572         return 0;
573 }
574
575 /*
576  * Set up a thread for executing a new program
577  */
578 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
579 {
580 #ifdef CONFIG_PPC64
581         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
582 #endif
583
584         set_fs(USER_DS);
585
586         /*
587          * If we exec out of a kernel thread then thread.regs will not be
588          * set.  Do it now.
589          */
590         if (!current->thread.regs) {
591                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
592                 current->thread.regs = regs - 1;
593         }
594
595         memset(regs->gpr, 0, sizeof(regs->gpr));
596         regs->ctr = 0;
597         regs->link = 0;
598         regs->xer = 0;
599         regs->ccr = 0;
600         regs->gpr[1] = sp;
601
602 #ifdef CONFIG_PPC32
603         regs->mq = 0;
604         regs->nip = start;
605         regs->msr = MSR_USER;
606 #else
607         if (!test_thread_flag(TIF_32BIT)) {
608                 unsigned long entry, toc;
609
610                 /* start is a relocated pointer to the function descriptor for
611                  * the elf _start routine.  The first entry in the function
612                  * descriptor is the entry address of _start and the second
613                  * entry is the TOC value we need to use.
614                  */
615                 __get_user(entry, (unsigned long __user *)start);
616                 __get_user(toc, (unsigned long __user *)start+1);
617
618                 /* Check whether the e_entry function descriptor entries
619                  * need to be relocated before we can use them.
620                  */
621                 if (load_addr != 0) {
622                         entry += load_addr;
623                         toc   += load_addr;
624                 }
625                 regs->nip = entry;
626                 regs->gpr[2] = toc;
627                 regs->msr = MSR_USER64;
628         } else {
629                 regs->nip = start;
630                 regs->gpr[2] = 0;
631                 regs->msr = MSR_USER32;
632         }
633 #endif
634
635         discard_lazy_cpu_state();
636         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
637         current->thread.fpscr.val = 0;
638 #ifdef CONFIG_ALTIVEC
639         memset(current->thread.vr, 0, sizeof(current->thread.vr));
640         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
641         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
642         current->thread.vrsave = 0;
643         current->thread.used_vr = 0;
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_SPE
646         memset(current->thread.evr, 0, sizeof(current->thread.evr));
647         current->thread.acc = 0;
648         current->thread.spefscr = 0;
649         current->thread.used_spe = 0;
650 #endif /* CONFIG_SPE */
651 }
652
653 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
654                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
655
656 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
657 {
658         struct pt_regs *regs = tsk->thread.regs;
659
660         /* This is a bit hairy.  If we are an SPE enabled  processor
661          * (have embedded fp) we store the IEEE exception enable flags in
662          * fpexc_mode.  fpexc_mode is also used for setting FP exception
663          * mode (asyn, precise, disabled) for 'Classic' FP. */
664         if (val & PR_FP_EXC_SW_ENABLE) {
665 #ifdef CONFIG_SPE
666                 tsk->thread.fpexc_mode = val &
667                         (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
668                 return 0;
669 #else
670                 return -EINVAL;
671 #endif
672         }
673
674         /* on a CONFIG_SPE this does not hurt us.  The bits that
675          * __pack_fe01 use do not overlap with bits used for
676          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
677          * on CONFIG_SPE implementations are reserved so writing to
678          * them does not change anything */
679         if (val > PR_FP_EXC_PRECISE)
680                 return -EINVAL;
681         tsk->thread.fpexc_mode = __pack_fe01(val);
682         if (regs != NULL && (regs->msr & MSR_FP) != 0)
683                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
684                         | tsk->thread.fpexc_mode;
685         return 0;
686 }
687
688 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
689 {
690         unsigned int val;
691
692         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
693 #ifdef CONFIG_SPE
694                 val = tsk->thread.fpexc_mode;
695 #else
696                 return -EINVAL;
697 #endif
698         else
699                 val = __unpack_fe01(tsk->thread.fpexc_mode);
700         return put_user(val, (unsigned int __user *) adr);
701 }
702
703 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
704
705 int sys_clone(unsigned long clone_flags, unsigned long usp,
706               int __user *parent_tidp, void __user *child_threadptr,
707               int __user *child_tidp, int p6,
708               struct pt_regs *regs)
709 {
710         CHECK_FULL_REGS(regs);
711         if (usp == 0)
712                 usp = regs->gpr[1];     /* stack pointer for child */
713 #ifdef CONFIG_PPC64
714         if (test_thread_flag(TIF_32BIT)) {
715                 parent_tidp = TRUNC_PTR(parent_tidp);
716                 child_tidp = TRUNC_PTR(child_tidp);
717         }
718 #endif
719         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
720 }
721
722 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
723              unsigned long p4, unsigned long p5, unsigned long p6,
724              struct pt_regs *regs)
725 {
726         CHECK_FULL_REGS(regs);
727         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
728 }
729
730 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
731               unsigned long p4, unsigned long p5, unsigned long p6,
732               struct pt_regs *regs)
733 {
734         CHECK_FULL_REGS(regs);
735         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
736                         regs, 0, NULL, NULL);
737 }
738
739 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
740                unsigned long a3, unsigned long a4, unsigned long a5,
741                struct pt_regs *regs)
742 {
743         int error;
744         char *filename;
745
746         filename = getname((char __user *) a0);
747         error = PTR_ERR(filename);
748         if (IS_ERR(filename))
749                 goto out;
750         flush_fp_to_thread(current);
751         flush_altivec_to_thread(current);
752         flush_spe_to_thread(current);
753         error = do_execve(filename, (char __user * __user *) a1,
754                           (char __user * __user *) a2, regs);
755         if (error == 0) {
756                 task_lock(current);
757                 current->ptrace &= ~PT_DTRACE;
758                 task_unlock(current);
759         }
760         putname(filename);
761 out:
762         return error;
763 }
764
765 static int validate_sp(unsigned long sp, struct task_struct *p,
766                        unsigned long nbytes)
767 {
768         unsigned long stack_page = (unsigned long)task_stack_page(p);
769
770         if (sp >= stack_page + sizeof(struct thread_struct)
771             && sp <= stack_page + THREAD_SIZE - nbytes)
772                 return 1;
773
774 #ifdef CONFIG_IRQSTACKS
775         stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
776         if (sp >= stack_page + sizeof(struct thread_struct)
777             && sp <= stack_page + THREAD_SIZE - nbytes)
778                 return 1;
779
780         stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
781         if (sp >= stack_page + sizeof(struct thread_struct)
782             && sp <= stack_page + THREAD_SIZE - nbytes)
783                 return 1;
784 #endif
785
786         return 0;
787 }
788
789 #ifdef CONFIG_PPC64
790 #define MIN_STACK_FRAME 112     /* same as STACK_FRAME_OVERHEAD, in fact */
791 #define FRAME_LR_SAVE   2
792 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
793 #define REGS_MARKER     0x7265677368657265ul
794 #define FRAME_MARKER    12
795 #else
796 #define MIN_STACK_FRAME 16
797 #define FRAME_LR_SAVE   1
798 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
799 #define REGS_MARKER     0x72656773ul
800 #define FRAME_MARKER    2
801 #endif
802
803 unsigned long get_wchan(struct task_struct *p)
804 {
805         unsigned long ip, sp;
806         int count = 0;
807
808         if (!p || p == current || p->state == TASK_RUNNING)
809                 return 0;
810
811         sp = p->thread.ksp;
812         if (!validate_sp(sp, p, MIN_STACK_FRAME))
813                 return 0;
814
815         do {
816                 sp = *(unsigned long *)sp;
817                 if (!validate_sp(sp, p, MIN_STACK_FRAME))
818                         return 0;
819                 if (count > 0) {
820                         ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
821                         if (!in_sched_functions(ip))
822                                 return ip;
823                 }
824         } while (count++ < 16);
825         return 0;
826 }
827 EXPORT_SYMBOL(get_wchan);
828
829 static int kstack_depth_to_print = 64;
830
831 void show_stack(struct task_struct *tsk, unsigned long *stack)
832 {
833         unsigned long sp, ip, lr, newsp;
834         int count = 0;
835         int firstframe = 1;
836
837         sp = (unsigned long) stack;
838         if (tsk == NULL)
839                 tsk = current;
840         if (sp == 0) {
841                 if (tsk == current)
842                         asm("mr %0,1" : "=r" (sp));
843                 else
844                         sp = tsk->thread.ksp;
845         }
846
847         lr = 0;
848         printk("Call Trace:\n");
849         do {
850                 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
851                         return;
852
853                 stack = (unsigned long *) sp;
854                 newsp = stack[0];
855                 ip = stack[FRAME_LR_SAVE];
856                 if (!firstframe || ip != lr) {
857                         printk("["REG"] ["REG"] ", sp, ip);
858                         print_symbol("%s", ip);
859                         if (firstframe)
860                                 printk(" (unreliable)");
861                         printk("\n");
862                 }
863                 firstframe = 0;
864
865                 /*
866                  * See if this is an exception frame.
867                  * We look for the "regshere" marker in the current frame.
868                  */
869                 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
870                     && stack[FRAME_MARKER] == REGS_MARKER) {
871                         struct pt_regs *regs = (struct pt_regs *)
872                                 (sp + STACK_FRAME_OVERHEAD);
873                         printk("--- Exception: %lx", regs->trap);
874                         print_symbol(" at %s\n", regs->nip);
875                         lr = regs->link;
876                         print_symbol("    LR = %s\n", lr);
877                         firstframe = 1;
878                 }
879
880                 sp = newsp;
881         } while (count++ < kstack_depth_to_print);
882 }
883
884 void dump_stack(void)
885 {
886         show_stack(current, NULL);
887 }
888 EXPORT_SYMBOL(dump_stack);