Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[pandora-kernel.git] / arch / parisc / kernel / module.c
1 /*    Kernel dynamically loadable module help for PARISC.
2  *
3  *    The best reference for this stuff is probably the Processor-
4  *    Specific ELF Supplement for PA-RISC:
5  *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
6  *
7  *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
8  *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9  *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
10  *
11  *
12  *    This program is free software; you can redistribute it and/or modify
13  *    it under the terms of the GNU General Public License as published by
14  *    the Free Software Foundation; either version 2 of the License, or
15  *    (at your option) any later version.
16  *
17  *    This program is distributed in the hope that it will be useful,
18  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *    GNU General Public License for more details.
21  *
22  *    You should have received a copy of the GNU General Public License
23  *    along with this program; if not, write to the Free Software
24  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  *
27  *    Notes:
28  *    - PLT stub handling
29  *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30  *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31  *      fail to reach their PLT stub if we only create one big stub array for
32  *      all sections at the beginning of the core or init section.
33  *      Instead we now insert individual PLT stub entries directly in front of
34  *      of the code sections where the stubs are actually called.
35  *      This reduces the distance between the PCREL location and the stub entry
36  *      so that the relocations can be fulfilled.
37  *      While calculating the final layout of the kernel module in memory, the
38  *      kernel module loader calls arch_mod_section_prepend() to request the
39  *      to be reserved amount of memory in front of each individual section.
40  *
41  *    - SEGREL32 handling
42  *      We are not doing SEGREL32 handling correctly. According to the ABI, we
43  *      should do a value offset, like this:
44  *                      if (in_init(me, (void *)val))
45  *                              val -= (uint32_t)me->module_init;
46  *                      else
47  *                              val -= (uint32_t)me->module_core;
48  *      However, SEGREL32 is used only for PARISC unwind entries, and we want
49  *      those entries to have an absolute address, and not just an offset.
50  *
51  *      The unwind table mechanism has the ability to specify an offset for 
52  *      the unwind table; however, because we split off the init functions into
53  *      a different piece of memory, it is not possible to do this using a 
54  *      single offset. Instead, we use the above hack for now.
55  */
56
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
60 #include <linux/fs.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66
67 #include <asm/pgtable.h>
68 #include <asm/unwind.h>
69
70 #if 0
71 #define DEBUGP printk
72 #else
73 #define DEBUGP(fmt...)
74 #endif
75
76 #define RELOC_REACHABLE(val, bits) \
77         (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||   \
78              ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
79         0 : 1)
80
81 #define CHECK_RELOC(val, bits) \
82         if (!RELOC_REACHABLE(val, bits)) { \
83                 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
84                 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85                 return -ENOEXEC;                        \
86         }
87
88 /* Maximum number of GOT entries. We use a long displacement ldd from
89  * the bottom of the table, which has a maximum signed displacement of
90  * 0x3fff; however, since we're only going forward, this becomes
91  * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
92  * at most 1023 entries.
93  * To overcome this 14bit displacement with some kernel modules, we'll
94  * use instead the unusal 16bit displacement method (see reassemble_16a)
95  * which gives us a maximum positive displacement of 0x7fff, and as such
96  * allows us to allocate up to 4095 GOT entries. */
97 #define MAX_GOTS        4095
98
99 /* three functions to determine where in the module core
100  * or init pieces the location is */
101 static inline int in_init(struct module *me, void *loc)
102 {
103         return (loc >= me->module_init &&
104                 loc <= (me->module_init + me->init_size));
105 }
106
107 static inline int in_core(struct module *me, void *loc)
108 {
109         return (loc >= me->module_core &&
110                 loc <= (me->module_core + me->core_size));
111 }
112
113 static inline int in_local(struct module *me, void *loc)
114 {
115         return in_init(me, loc) || in_core(me, loc);
116 }
117
118 #ifndef CONFIG_64BIT
119 struct got_entry {
120         Elf32_Addr addr;
121 };
122
123 struct stub_entry {
124         Elf32_Word insns[2]; /* each stub entry has two insns */
125 };
126 #else
127 struct got_entry {
128         Elf64_Addr addr;
129 };
130
131 struct stub_entry {
132         Elf64_Word insns[4]; /* each stub entry has four insns */
133 };
134 #endif
135
136 /* Field selection types defined by hppa */
137 #define rnd(x)                  (((x)+0x1000)&~0x1fff)
138 /* fsel: full 32 bits */
139 #define fsel(v,a)               ((v)+(a))
140 /* lsel: select left 21 bits */
141 #define lsel(v,a)               (((v)+(a))>>11)
142 /* rsel: select right 11 bits */
143 #define rsel(v,a)               (((v)+(a))&0x7ff)
144 /* lrsel with rounding of addend to nearest 8k */
145 #define lrsel(v,a)              (((v)+rnd(a))>>11)
146 /* rrsel with rounding of addend to nearest 8k */
147 #define rrsel(v,a)              ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149 #define mask(x,sz)              ((x) & ~((1<<(sz))-1))
150
151
152 /* The reassemble_* functions prepare an immediate value for
153    insertion into an opcode. pa-risc uses all sorts of weird bitfields
154    in the instruction to hold the value.  */
155 static inline int sign_unext(int x, int len)
156 {
157         int len_ones;
158
159         len_ones = (1 << len) - 1;
160         return x & len_ones;
161 }
162
163 static inline int low_sign_unext(int x, int len)
164 {
165         int sign, temp;
166
167         sign = (x >> (len-1)) & 1;
168         temp = sign_unext(x, len-1);
169         return (temp << 1) | sign;
170 }
171
172 static inline int reassemble_14(int as14)
173 {
174         return (((as14 & 0x1fff) << 1) |
175                 ((as14 & 0x2000) >> 13));
176 }
177
178 static inline int reassemble_16a(int as16)
179 {
180         int s, t;
181
182         /* Unusual 16-bit encoding, for wide mode only.  */
183         t = (as16 << 1) & 0xffff;
184         s = (as16 & 0x8000);
185         return (t ^ s ^ (s >> 1)) | (s >> 15);
186 }
187
188
189 static inline int reassemble_17(int as17)
190 {
191         return (((as17 & 0x10000) >> 16) |
192                 ((as17 & 0x0f800) << 5) |
193                 ((as17 & 0x00400) >> 8) |
194                 ((as17 & 0x003ff) << 3));
195 }
196
197 static inline int reassemble_21(int as21)
198 {
199         return (((as21 & 0x100000) >> 20) |
200                 ((as21 & 0x0ffe00) >> 8) |
201                 ((as21 & 0x000180) << 7) |
202                 ((as21 & 0x00007c) << 14) |
203                 ((as21 & 0x000003) << 12));
204 }
205
206 static inline int reassemble_22(int as22)
207 {
208         return (((as22 & 0x200000) >> 21) |
209                 ((as22 & 0x1f0000) << 5) |
210                 ((as22 & 0x00f800) << 5) |
211                 ((as22 & 0x000400) >> 8) |
212                 ((as22 & 0x0003ff) << 3));
213 }
214
215 void *module_alloc(unsigned long size)
216 {
217         /* using RWX means less protection for modules, but it's
218          * easier than trying to map the text, data, init_text and
219          * init_data correctly */
220         return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221                                     GFP_KERNEL | __GFP_HIGHMEM,
222                                     PAGE_KERNEL_RWX, NUMA_NO_NODE,
223                                     __builtin_return_address(0));
224 }
225
226 #ifndef CONFIG_64BIT
227 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228 {
229         return 0;
230 }
231
232 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233 {
234         return 0;
235 }
236
237 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238 {
239         unsigned long cnt = 0;
240
241         for (; n > 0; n--, rela++)
242         {
243                 switch (ELF32_R_TYPE(rela->r_info)) {
244                         case R_PARISC_PCREL17F:
245                         case R_PARISC_PCREL22F:
246                                 cnt++;
247                 }
248         }
249
250         return cnt;
251 }
252 #else
253 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254 {
255         unsigned long cnt = 0;
256
257         for (; n > 0; n--, rela++)
258         {
259                 switch (ELF64_R_TYPE(rela->r_info)) {
260                         case R_PARISC_LTOFF21L:
261                         case R_PARISC_LTOFF14R:
262                         case R_PARISC_PCREL22F:
263                                 cnt++;
264                 }
265         }
266
267         return cnt;
268 }
269
270 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271 {
272         unsigned long cnt = 0;
273
274         for (; n > 0; n--, rela++)
275         {
276                 switch (ELF64_R_TYPE(rela->r_info)) {
277                         case R_PARISC_FPTR64:
278                                 cnt++;
279                 }
280         }
281
282         return cnt;
283 }
284
285 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286 {
287         unsigned long cnt = 0;
288
289         for (; n > 0; n--, rela++)
290         {
291                 switch (ELF64_R_TYPE(rela->r_info)) {
292                         case R_PARISC_PCREL22F:
293                                 cnt++;
294                 }
295         }
296
297         return cnt;
298 }
299 #endif
300
301
302 /* Free memory returned from module_alloc */
303 void module_free(struct module *mod, void *module_region)
304 {
305         kfree(mod->arch.section);
306         mod->arch.section = NULL;
307
308         vfree(module_region);
309 }
310
311 /* Additional bytes needed in front of individual sections */
312 unsigned int arch_mod_section_prepend(struct module *mod,
313                                       unsigned int section)
314 {
315         /* size needed for all stubs of this section (including
316          * one additional for correct alignment of the stubs) */
317         return (mod->arch.section[section].stub_entries + 1)
318                 * sizeof(struct stub_entry);
319 }
320
321 #define CONST 
322 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
323                               CONST Elf_Shdr *sechdrs,
324                               CONST char *secstrings,
325                               struct module *me)
326 {
327         unsigned long gots = 0, fdescs = 0, len;
328         unsigned int i;
329
330         len = hdr->e_shnum * sizeof(me->arch.section[0]);
331         me->arch.section = kzalloc(len, GFP_KERNEL);
332         if (!me->arch.section)
333                 return -ENOMEM;
334
335         for (i = 1; i < hdr->e_shnum; i++) {
336                 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
337                 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
338                 unsigned int count, s;
339
340                 if (strncmp(secstrings + sechdrs[i].sh_name,
341                             ".PARISC.unwind", 14) == 0)
342                         me->arch.unwind_section = i;
343
344                 if (sechdrs[i].sh_type != SHT_RELA)
345                         continue;
346
347                 /* some of these are not relevant for 32-bit/64-bit
348                  * we leave them here to make the code common. the
349                  * compiler will do its thing and optimize out the
350                  * stuff we don't need
351                  */
352                 gots += count_gots(rels, nrels);
353                 fdescs += count_fdescs(rels, nrels);
354
355                 /* XXX: By sorting the relocs and finding duplicate entries
356                  *  we could reduce the number of necessary stubs and save
357                  *  some memory. */
358                 count = count_stubs(rels, nrels);
359                 if (!count)
360                         continue;
361
362                 /* so we need relocation stubs. reserve necessary memory. */
363                 /* sh_info gives the section for which we need to add stubs. */
364                 s = sechdrs[i].sh_info;
365
366                 /* each code section should only have one relocation section */
367                 WARN_ON(me->arch.section[s].stub_entries);
368
369                 /* store number of stubs we need for this section */
370                 me->arch.section[s].stub_entries += count;
371         }
372
373         /* align things a bit */
374         me->core_size = ALIGN(me->core_size, 16);
375         me->arch.got_offset = me->core_size;
376         me->core_size += gots * sizeof(struct got_entry);
377
378         me->core_size = ALIGN(me->core_size, 16);
379         me->arch.fdesc_offset = me->core_size;
380         me->core_size += fdescs * sizeof(Elf_Fdesc);
381
382         me->arch.got_max = gots;
383         me->arch.fdesc_max = fdescs;
384
385         return 0;
386 }
387
388 #ifdef CONFIG_64BIT
389 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
390 {
391         unsigned int i;
392         struct got_entry *got;
393
394         value += addend;
395
396         BUG_ON(value == 0);
397
398         got = me->module_core + me->arch.got_offset;
399         for (i = 0; got[i].addr; i++)
400                 if (got[i].addr == value)
401                         goto out;
402
403         BUG_ON(++me->arch.got_count > me->arch.got_max);
404
405         got[i].addr = value;
406  out:
407         DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
408                value);
409         return i * sizeof(struct got_entry);
410 }
411 #endif /* CONFIG_64BIT */
412
413 #ifdef CONFIG_64BIT
414 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
415 {
416         Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
417
418         if (!value) {
419                 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
420                 return 0;
421         }
422
423         /* Look for existing fdesc entry. */
424         while (fdesc->addr) {
425                 if (fdesc->addr == value)
426                         return (Elf_Addr)fdesc;
427                 fdesc++;
428         }
429
430         BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
431
432         /* Create new one */
433         fdesc->addr = value;
434         fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
435         return (Elf_Addr)fdesc;
436 }
437 #endif /* CONFIG_64BIT */
438
439 enum elf_stub_type {
440         ELF_STUB_GOT,
441         ELF_STUB_MILLI,
442         ELF_STUB_DIRECT,
443 };
444
445 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
446         enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
447 {
448         struct stub_entry *stub;
449         int __maybe_unused d;
450
451         /* initialize stub_offset to point in front of the section */
452         if (!me->arch.section[targetsec].stub_offset) {
453                 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
454                                 sizeof(struct stub_entry);
455                 /* get correct alignment for the stubs */
456                 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
457                 me->arch.section[targetsec].stub_offset = loc0;
458         }
459
460         /* get address of stub entry */
461         stub = (void *) me->arch.section[targetsec].stub_offset;
462         me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
463
464         /* do not write outside available stub area */
465         BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
466
467
468 #ifndef CONFIG_64BIT
469 /* for 32-bit the stub looks like this:
470  *      ldil L'XXX,%r1
471  *      be,n R'XXX(%sr4,%r1)
472  */
473         //value = *(unsigned long *)((value + addend) & ~3); /* why? */
474
475         stub->insns[0] = 0x20200000;    /* ldil L'XXX,%r1       */
476         stub->insns[1] = 0xe0202002;    /* be,n R'XXX(%sr4,%r1) */
477
478         stub->insns[0] |= reassemble_21(lrsel(value, addend));
479         stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
480
481 #else
482 /* for 64-bit we have three kinds of stubs:
483  * for normal function calls:
484  *      ldd 0(%dp),%dp
485  *      ldd 10(%dp), %r1
486  *      bve (%r1)
487  *      ldd 18(%dp), %dp
488  *
489  * for millicode:
490  *      ldil 0, %r1
491  *      ldo 0(%r1), %r1
492  *      ldd 10(%r1), %r1
493  *      bve,n (%r1)
494  *
495  * for direct branches (jumps between different section of the
496  * same module):
497  *      ldil 0, %r1
498  *      ldo 0(%r1), %r1
499  *      bve,n (%r1)
500  */
501         switch (stub_type) {
502         case ELF_STUB_GOT:
503                 d = get_got(me, value, addend);
504                 if (d <= 15) {
505                         /* Format 5 */
506                         stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp  */
507                         stub->insns[0] |= low_sign_unext(d, 5) << 16;
508                 } else {
509                         /* Format 3 */
510                         stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp  */
511                         stub->insns[0] |= reassemble_16a(d);
512                 }
513                 stub->insns[1] = 0x53610020;    /* ldd 10(%dp),%r1      */
514                 stub->insns[2] = 0xe820d000;    /* bve (%r1)            */
515                 stub->insns[3] = 0x537b0030;    /* ldd 18(%dp),%dp      */
516                 break;
517         case ELF_STUB_MILLI:
518                 stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
519                 stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
520                 stub->insns[2] = 0x50210020;    /* ldd 10(%r1),%r1      */
521                 stub->insns[3] = 0xe820d002;    /* bve,n (%r1)          */
522
523                 stub->insns[0] |= reassemble_21(lrsel(value, addend));
524                 stub->insns[1] |= reassemble_14(rrsel(value, addend));
525                 break;
526         case ELF_STUB_DIRECT:
527                 stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
528                 stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
529                 stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
530
531                 stub->insns[0] |= reassemble_21(lrsel(value, addend));
532                 stub->insns[1] |= reassemble_14(rrsel(value, addend));
533                 break;
534         }
535
536 #endif
537
538         return (Elf_Addr)stub;
539 }
540
541 #ifndef CONFIG_64BIT
542 int apply_relocate_add(Elf_Shdr *sechdrs,
543                        const char *strtab,
544                        unsigned int symindex,
545                        unsigned int relsec,
546                        struct module *me)
547 {
548         int i;
549         Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
550         Elf32_Sym *sym;
551         Elf32_Word *loc;
552         Elf32_Addr val;
553         Elf32_Sword addend;
554         Elf32_Addr dot;
555         Elf_Addr loc0;
556         unsigned int targetsec = sechdrs[relsec].sh_info;
557         //unsigned long dp = (unsigned long)$global$;
558         register unsigned long dp asm ("r27");
559
560         DEBUGP("Applying relocate section %u to %u\n", relsec,
561                targetsec);
562         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
563                 /* This is where to make the change */
564                 loc = (void *)sechdrs[targetsec].sh_addr
565                       + rel[i].r_offset;
566                 /* This is the start of the target section */
567                 loc0 = sechdrs[targetsec].sh_addr;
568                 /* This is the symbol it is referring to */
569                 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
570                         + ELF32_R_SYM(rel[i].r_info);
571                 if (!sym->st_value) {
572                         printk(KERN_WARNING "%s: Unknown symbol %s\n",
573                                me->name, strtab + sym->st_name);
574                         return -ENOENT;
575                 }
576                 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
577                 dot =  (Elf32_Addr)loc & ~0x03;
578
579                 val = sym->st_value;
580                 addend = rel[i].r_addend;
581
582 #if 0
583 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
584                 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
585                         strtab + sym->st_name,
586                         (uint32_t)loc, val, addend,
587                         r(R_PARISC_PLABEL32)
588                         r(R_PARISC_DIR32)
589                         r(R_PARISC_DIR21L)
590                         r(R_PARISC_DIR14R)
591                         r(R_PARISC_SEGREL32)
592                         r(R_PARISC_DPREL21L)
593                         r(R_PARISC_DPREL14R)
594                         r(R_PARISC_PCREL17F)
595                         r(R_PARISC_PCREL22F)
596                         "UNKNOWN");
597 #undef r
598 #endif
599
600                 switch (ELF32_R_TYPE(rel[i].r_info)) {
601                 case R_PARISC_PLABEL32:
602                         /* 32-bit function address */
603                         /* no function descriptors... */
604                         *loc = fsel(val, addend);
605                         break;
606                 case R_PARISC_DIR32:
607                         /* direct 32-bit ref */
608                         *loc = fsel(val, addend);
609                         break;
610                 case R_PARISC_DIR21L:
611                         /* left 21 bits of effective address */
612                         val = lrsel(val, addend);
613                         *loc = mask(*loc, 21) | reassemble_21(val);
614                         break;
615                 case R_PARISC_DIR14R:
616                         /* right 14 bits of effective address */
617                         val = rrsel(val, addend);
618                         *loc = mask(*loc, 14) | reassemble_14(val);
619                         break;
620                 case R_PARISC_SEGREL32:
621                         /* 32-bit segment relative address */
622                         /* See note about special handling of SEGREL32 at
623                          * the beginning of this file.
624                          */
625                         *loc = fsel(val, addend); 
626                         break;
627                 case R_PARISC_DPREL21L:
628                         /* left 21 bit of relative address */
629                         val = lrsel(val - dp, addend);
630                         *loc = mask(*loc, 21) | reassemble_21(val);
631                         break;
632                 case R_PARISC_DPREL14R:
633                         /* right 14 bit of relative address */
634                         val = rrsel(val - dp, addend);
635                         *loc = mask(*loc, 14) | reassemble_14(val);
636                         break;
637                 case R_PARISC_PCREL17F:
638                         /* 17-bit PC relative address */
639                         /* calculate direct call offset */
640                         val += addend;
641                         val = (val - dot - 8)/4;
642                         if (!RELOC_REACHABLE(val, 17)) {
643                                 /* direct distance too far, create
644                                  * stub entry instead */
645                                 val = get_stub(me, sym->st_value, addend,
646                                         ELF_STUB_DIRECT, loc0, targetsec);
647                                 val = (val - dot - 8)/4;
648                                 CHECK_RELOC(val, 17);
649                         }
650                         *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
651                         break;
652                 case R_PARISC_PCREL22F:
653                         /* 22-bit PC relative address; only defined for pa20 */
654                         /* calculate direct call offset */
655                         val += addend;
656                         val = (val - dot - 8)/4;
657                         if (!RELOC_REACHABLE(val, 22)) {
658                                 /* direct distance too far, create
659                                  * stub entry instead */
660                                 val = get_stub(me, sym->st_value, addend,
661                                         ELF_STUB_DIRECT, loc0, targetsec);
662                                 val = (val - dot - 8)/4;
663                                 CHECK_RELOC(val, 22);
664                         }
665                         *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
666                         break;
667
668                 default:
669                         printk(KERN_ERR "module %s: Unknown relocation: %u\n",
670                                me->name, ELF32_R_TYPE(rel[i].r_info));
671                         return -ENOEXEC;
672                 }
673         }
674
675         return 0;
676 }
677
678 #else
679 int apply_relocate_add(Elf_Shdr *sechdrs,
680                        const char *strtab,
681                        unsigned int symindex,
682                        unsigned int relsec,
683                        struct module *me)
684 {
685         int i;
686         Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
687         Elf64_Sym *sym;
688         Elf64_Word *loc;
689         Elf64_Xword *loc64;
690         Elf64_Addr val;
691         Elf64_Sxword addend;
692         Elf64_Addr dot;
693         Elf_Addr loc0;
694         unsigned int targetsec = sechdrs[relsec].sh_info;
695
696         DEBUGP("Applying relocate section %u to %u\n", relsec,
697                targetsec);
698         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
699                 /* This is where to make the change */
700                 loc = (void *)sechdrs[targetsec].sh_addr
701                       + rel[i].r_offset;
702                 /* This is the start of the target section */
703                 loc0 = sechdrs[targetsec].sh_addr;
704                 /* This is the symbol it is referring to */
705                 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
706                         + ELF64_R_SYM(rel[i].r_info);
707                 if (!sym->st_value) {
708                         printk(KERN_WARNING "%s: Unknown symbol %s\n",
709                                me->name, strtab + sym->st_name);
710                         return -ENOENT;
711                 }
712                 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
713                 dot = (Elf64_Addr)loc & ~0x03;
714                 loc64 = (Elf64_Xword *)loc;
715
716                 val = sym->st_value;
717                 addend = rel[i].r_addend;
718
719 #if 0
720 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
721                 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
722                         strtab + sym->st_name,
723                         loc, val, addend,
724                         r(R_PARISC_LTOFF14R)
725                         r(R_PARISC_LTOFF21L)
726                         r(R_PARISC_PCREL22F)
727                         r(R_PARISC_DIR64)
728                         r(R_PARISC_SEGREL32)
729                         r(R_PARISC_FPTR64)
730                         "UNKNOWN");
731 #undef r
732 #endif
733
734                 switch (ELF64_R_TYPE(rel[i].r_info)) {
735                 case R_PARISC_LTOFF21L:
736                         /* LT-relative; left 21 bits */
737                         val = get_got(me, val, addend);
738                         DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
739                                strtab + sym->st_name,
740                                loc, val);
741                         val = lrsel(val, 0);
742                         *loc = mask(*loc, 21) | reassemble_21(val);
743                         break;
744                 case R_PARISC_LTOFF14R:
745                         /* L(ltoff(val+addend)) */
746                         /* LT-relative; right 14 bits */
747                         val = get_got(me, val, addend);
748                         val = rrsel(val, 0);
749                         DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
750                                strtab + sym->st_name,
751                                loc, val);
752                         *loc = mask(*loc, 14) | reassemble_14(val);
753                         break;
754                 case R_PARISC_PCREL22F:
755                         /* PC-relative; 22 bits */
756                         DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
757                                strtab + sym->st_name,
758                                loc, val);
759                         val += addend;
760                         /* can we reach it locally? */
761                         if (in_local(me, (void *)val)) {
762                                 /* this is the case where the symbol is local
763                                  * to the module, but in a different section,
764                                  * so stub the jump in case it's more than 22
765                                  * bits away */
766                                 val = (val - dot - 8)/4;
767                                 if (!RELOC_REACHABLE(val, 22)) {
768                                         /* direct distance too far, create
769                                          * stub entry instead */
770                                         val = get_stub(me, sym->st_value,
771                                                 addend, ELF_STUB_DIRECT,
772                                                 loc0, targetsec);
773                                 } else {
774                                         /* Ok, we can reach it directly. */
775                                         val = sym->st_value;
776                                         val += addend;
777                                 }
778                         } else {
779                                 val = sym->st_value;
780                                 if (strncmp(strtab + sym->st_name, "$$", 2)
781                                     == 0)
782                                         val = get_stub(me, val, addend, ELF_STUB_MILLI,
783                                                        loc0, targetsec);
784                                 else
785                                         val = get_stub(me, val, addend, ELF_STUB_GOT,
786                                                        loc0, targetsec);
787                         }
788                         DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
789                                strtab + sym->st_name, loc, sym->st_value,
790                                addend, val);
791                         val = (val - dot - 8)/4;
792                         CHECK_RELOC(val, 22);
793                         *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
794                         break;
795                 case R_PARISC_DIR64:
796                         /* 64-bit effective address */
797                         *loc64 = val + addend;
798                         break;
799                 case R_PARISC_SEGREL32:
800                         /* 32-bit segment relative address */
801                         /* See note about special handling of SEGREL32 at
802                          * the beginning of this file.
803                          */
804                         *loc = fsel(val, addend); 
805                         break;
806                 case R_PARISC_FPTR64:
807                         /* 64-bit function address */
808                         if(in_local(me, (void *)(val + addend))) {
809                                 *loc64 = get_fdesc(me, val+addend);
810                                 DEBUGP("FDESC for %s at %p points to %lx\n",
811                                        strtab + sym->st_name, *loc64,
812                                        ((Elf_Fdesc *)*loc64)->addr);
813                         } else {
814                                 /* if the symbol is not local to this
815                                  * module then val+addend is a pointer
816                                  * to the function descriptor */
817                                 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
818                                        strtab + sym->st_name,
819                                        loc, val);
820                                 *loc64 = val + addend;
821                         }
822                         break;
823
824                 default:
825                         printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
826                                me->name, ELF64_R_TYPE(rel[i].r_info));
827                         return -ENOEXEC;
828                 }
829         }
830         return 0;
831 }
832 #endif
833
834 static void
835 register_unwind_table(struct module *me,
836                       const Elf_Shdr *sechdrs)
837 {
838         unsigned char *table, *end;
839         unsigned long gp;
840
841         if (!me->arch.unwind_section)
842                 return;
843
844         table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
845         end = table + sechdrs[me->arch.unwind_section].sh_size;
846         gp = (Elf_Addr)me->module_core + me->arch.got_offset;
847
848         DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
849                me->arch.unwind_section, table, end, gp);
850         me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
851 }
852
853 static void
854 deregister_unwind_table(struct module *me)
855 {
856         if (me->arch.unwind)
857                 unwind_table_remove(me->arch.unwind);
858 }
859
860 int module_finalize(const Elf_Ehdr *hdr,
861                     const Elf_Shdr *sechdrs,
862                     struct module *me)
863 {
864         int i;
865         unsigned long nsyms;
866         const char *strtab = NULL;
867         Elf_Sym *newptr, *oldptr;
868         Elf_Shdr *symhdr = NULL;
869 #ifdef DEBUG
870         Elf_Fdesc *entry;
871         u32 *addr;
872
873         entry = (Elf_Fdesc *)me->init;
874         printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
875                entry->gp, entry->addr);
876         addr = (u32 *)entry->addr;
877         printk("INSNS: %x %x %x %x\n",
878                addr[0], addr[1], addr[2], addr[3]);
879         printk("got entries used %ld, gots max %ld\n"
880                "fdescs used %ld, fdescs max %ld\n",
881                me->arch.got_count, me->arch.got_max,
882                me->arch.fdesc_count, me->arch.fdesc_max);
883 #endif
884
885         register_unwind_table(me, sechdrs);
886
887         /* haven't filled in me->symtab yet, so have to find it
888          * ourselves */
889         for (i = 1; i < hdr->e_shnum; i++) {
890                 if(sechdrs[i].sh_type == SHT_SYMTAB
891                    && (sechdrs[i].sh_flags & SHF_ALLOC)) {
892                         int strindex = sechdrs[i].sh_link;
893                         /* FIXME: AWFUL HACK
894                          * The cast is to drop the const from
895                          * the sechdrs pointer */
896                         symhdr = (Elf_Shdr *)&sechdrs[i];
897                         strtab = (char *)sechdrs[strindex].sh_addr;
898                         break;
899                 }
900         }
901
902         DEBUGP("module %s: strtab %p, symhdr %p\n",
903                me->name, strtab, symhdr);
904
905         if(me->arch.got_count > MAX_GOTS) {
906                 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
907                                 me->name, me->arch.got_count, MAX_GOTS);
908                 return -EINVAL;
909         }
910
911         kfree(me->arch.section);
912         me->arch.section = NULL;
913
914         /* no symbol table */
915         if(symhdr == NULL)
916                 return 0;
917
918         oldptr = (void *)symhdr->sh_addr;
919         newptr = oldptr + 1;    /* we start counting at 1 */
920         nsyms = symhdr->sh_size / sizeof(Elf_Sym);
921         DEBUGP("OLD num_symtab %lu\n", nsyms);
922
923         for (i = 1; i < nsyms; i++) {
924                 oldptr++;       /* note, count starts at 1 so preincrement */
925                 if(strncmp(strtab + oldptr->st_name,
926                               ".L", 2) == 0)
927                         continue;
928
929                 if(newptr != oldptr)
930                         *newptr++ = *oldptr;
931                 else
932                         newptr++;
933
934         }
935         nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
936         DEBUGP("NEW num_symtab %lu\n", nsyms);
937         symhdr->sh_size = nsyms * sizeof(Elf_Sym);
938         return 0;
939 }
940
941 void module_arch_cleanup(struct module *mod)
942 {
943         deregister_unwind_table(mod);
944 }