pandora: defconfig: update
[pandora-kernel.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33         /* Array of events on this cpu. */
34         struct perf_event       *events[MIPS_MAX_HWEVENTS];
35
36         /*
37          * Set the bit (indexed by the counter number) when the counter
38          * is used for an event.
39          */
40         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42         /*
43          * Software copy of the control register for each performance counter.
44          * MIPS CPUs vary in performance counters. They use this differently,
45          * and even may not use it.
46          */
47         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50         .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55         unsigned int event_id;
56         /*
57          * MIPS performance counters are indexed starting from 0.
58          * CNTR_EVEN indicates the indexes of the counters to be used are
59          * even numbers.
60          */
61         unsigned int cntr_mask;
62         #define CNTR_EVEN       0x55555555
63         #define CNTR_ODD        0xaaaaaaaa
64         #define CNTR_ALL        0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66         enum {
67                 T  = 0,
68                 V  = 1,
69                 P  = 2,
70         } range;
71 #else
72         #define T
73         #define V
74         #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
83
84 struct mips_pmu {
85         u64             max_period;
86         u64             valid_count;
87         u64             overflow;
88         const char      *name;
89         int             irq;
90         u64             (*read_counter)(unsigned int idx);
91         void            (*write_counter)(unsigned int idx, u64 val);
92         const struct mips_perf_event *(*map_raw_event)(u64 config);
93         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94         const struct mips_perf_event (*cache_event_map)
95                                 [PERF_COUNT_HW_CACHE_MAX]
96                                 [PERF_COUNT_HW_CACHE_OP_MAX]
97                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98         unsigned int    num_counters;
99 };
100
101 static struct mips_pmu mipspmu;
102
103 #define M_CONFIG1_PC    (1 << 4)
104
105 #define M_PERFCTL_EXL                   (1      <<  0)
106 #define M_PERFCTL_KERNEL                (1      <<  1)
107 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
108 #define M_PERFCTL_USER                  (1      <<  3)
109 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
110 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
111 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
112 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
113 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
114 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
115 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
117 #define M_PERFCTL_WIDE                  (1      << 30)
118 #define M_PERFCTL_MORE                  (1      << 31)
119
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
121                                         M_PERFCTL_KERNEL |              \
122                                         M_PERFCTL_USER |                \
123                                         M_PERFCTL_SUPERVISOR |          \
124                                         M_PERFCTL_INTERRUPT_ENABLE)
125
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK           0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK            0xfe0
132
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
136
137 static DEFINE_RWLOCK(pmuint_rwlock);
138
139 /*
140  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142  */
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
145                         0 : smp_processor_id())
146 #else
147 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
148                         0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
150
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
153 {
154         if (num_possible_cpus() > 1)
155                 return 1;
156
157         return 0;
158 }
159
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
161 {
162         return counters >> vpe_shift();
163 }
164
165 #else /* !CONFIG_MIPS_MT_SMP */
166 #define vpe_id()        0
167
168 #endif /* CONFIG_MIPS_MT_SMP */
169
170 static void resume_local_counters(void);
171 static void pause_local_counters(void);
172 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
173 static int mipsxx_pmu_handle_shared_irq(void);
174
175 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
176 {
177         if (vpe_id() == 1)
178                 idx = (idx + 2) & 3;
179         return idx;
180 }
181
182 static u64 mipsxx_pmu_read_counter(unsigned int idx)
183 {
184         idx = mipsxx_pmu_swizzle_perf_idx(idx);
185
186         switch (idx) {
187         case 0:
188                 /*
189                  * The counters are unsigned, we must cast to truncate
190                  * off the high bits.
191                  */
192                 return (u32)read_c0_perfcntr0();
193         case 1:
194                 return (u32)read_c0_perfcntr1();
195         case 2:
196                 return (u32)read_c0_perfcntr2();
197         case 3:
198                 return (u32)read_c0_perfcntr3();
199         default:
200                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
201                 return 0;
202         }
203 }
204
205 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
206 {
207         idx = mipsxx_pmu_swizzle_perf_idx(idx);
208
209         switch (idx) {
210         case 0:
211                 return read_c0_perfcntr0_64();
212         case 1:
213                 return read_c0_perfcntr1_64();
214         case 2:
215                 return read_c0_perfcntr2_64();
216         case 3:
217                 return read_c0_perfcntr3_64();
218         default:
219                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
220                 return 0;
221         }
222 }
223
224 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
225 {
226         idx = mipsxx_pmu_swizzle_perf_idx(idx);
227
228         switch (idx) {
229         case 0:
230                 write_c0_perfcntr0(val);
231                 return;
232         case 1:
233                 write_c0_perfcntr1(val);
234                 return;
235         case 2:
236                 write_c0_perfcntr2(val);
237                 return;
238         case 3:
239                 write_c0_perfcntr3(val);
240                 return;
241         }
242 }
243
244 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
245 {
246         idx = mipsxx_pmu_swizzle_perf_idx(idx);
247
248         switch (idx) {
249         case 0:
250                 write_c0_perfcntr0_64(val);
251                 return;
252         case 1:
253                 write_c0_perfcntr1_64(val);
254                 return;
255         case 2:
256                 write_c0_perfcntr2_64(val);
257                 return;
258         case 3:
259                 write_c0_perfcntr3_64(val);
260                 return;
261         }
262 }
263
264 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
265 {
266         idx = mipsxx_pmu_swizzle_perf_idx(idx);
267
268         switch (idx) {
269         case 0:
270                 return read_c0_perfctrl0();
271         case 1:
272                 return read_c0_perfctrl1();
273         case 2:
274                 return read_c0_perfctrl2();
275         case 3:
276                 return read_c0_perfctrl3();
277         default:
278                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
279                 return 0;
280         }
281 }
282
283 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
284 {
285         idx = mipsxx_pmu_swizzle_perf_idx(idx);
286
287         switch (idx) {
288         case 0:
289                 write_c0_perfctrl0(val);
290                 return;
291         case 1:
292                 write_c0_perfctrl1(val);
293                 return;
294         case 2:
295                 write_c0_perfctrl2(val);
296                 return;
297         case 3:
298                 write_c0_perfctrl3(val);
299                 return;
300         }
301 }
302
303 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
304                                     struct hw_perf_event *hwc)
305 {
306         int i;
307
308         /*
309          * We only need to care the counter mask. The range has been
310          * checked definitely.
311          */
312         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
313
314         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
315                 /*
316                  * Note that some MIPS perf events can be counted by both
317                  * even and odd counters, wheresas many other are only by
318                  * even _or_ odd counters. This introduces an issue that
319                  * when the former kind of event takes the counter the
320                  * latter kind of event wants to use, then the "counter
321                  * allocation" for the latter event will fail. In fact if
322                  * they can be dynamically swapped, they both feel happy.
323                  * But here we leave this issue alone for now.
324                  */
325                 if (test_bit(i, &cntr_mask) &&
326                         !test_and_set_bit(i, cpuc->used_mask))
327                         return i;
328         }
329
330         return -EAGAIN;
331 }
332
333 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
334 {
335         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
336
337         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
338
339         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
340                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
341                 /* Make sure interrupt enabled. */
342                 M_PERFCTL_INTERRUPT_ENABLE;
343         /*
344          * We do not actually let the counter run. Leave it until start().
345          */
346 }
347
348 static void mipsxx_pmu_disable_event(int idx)
349 {
350         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
351         unsigned long flags;
352
353         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
354
355         local_irq_save(flags);
356         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
357                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
358         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
359         local_irq_restore(flags);
360 }
361
362 static int mipspmu_event_set_period(struct perf_event *event,
363                                     struct hw_perf_event *hwc,
364                                     int idx)
365 {
366         u64 left = local64_read(&hwc->period_left);
367         u64 period = hwc->sample_period;
368         int ret = 0;
369
370         if (unlikely((left + period) & (1ULL << 63))) {
371                 /* left underflowed by more than period. */
372                 left = period;
373                 local64_set(&hwc->period_left, left);
374                 hwc->last_period = period;
375                 ret = 1;
376         } else  if (unlikely((left + period) <= period)) {
377                 /* left underflowed by less than period. */
378                 left += period;
379                 local64_set(&hwc->period_left, left);
380                 hwc->last_period = period;
381                 ret = 1;
382         }
383
384         if (left > mipspmu.max_period) {
385                 left = mipspmu.max_period;
386                 local64_set(&hwc->period_left, left);
387         }
388
389         local64_set(&hwc->prev_count, mipspmu.overflow - left);
390
391         mipspmu.write_counter(idx, mipspmu.overflow - left);
392
393         perf_event_update_userpage(event);
394
395         return ret;
396 }
397
398 static void mipspmu_event_update(struct perf_event *event,
399                                  struct hw_perf_event *hwc,
400                                  int idx)
401 {
402         u64 prev_raw_count, new_raw_count;
403         u64 delta;
404
405 again:
406         prev_raw_count = local64_read(&hwc->prev_count);
407         new_raw_count = mipspmu.read_counter(idx);
408
409         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
410                                 new_raw_count) != prev_raw_count)
411                 goto again;
412
413         delta = new_raw_count - prev_raw_count;
414
415         local64_add(delta, &event->count);
416         local64_sub(delta, &hwc->period_left);
417 }
418
419 static void mipspmu_start(struct perf_event *event, int flags)
420 {
421         struct hw_perf_event *hwc = &event->hw;
422
423         if (flags & PERF_EF_RELOAD)
424                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
425
426         hwc->state = 0;
427
428         /* Set the period for the event. */
429         mipspmu_event_set_period(event, hwc, hwc->idx);
430
431         /* Enable the event. */
432         mipsxx_pmu_enable_event(hwc, hwc->idx);
433 }
434
435 static void mipspmu_stop(struct perf_event *event, int flags)
436 {
437         struct hw_perf_event *hwc = &event->hw;
438
439         if (!(hwc->state & PERF_HES_STOPPED)) {
440                 /* We are working on a local event. */
441                 mipsxx_pmu_disable_event(hwc->idx);
442                 barrier();
443                 mipspmu_event_update(event, hwc, hwc->idx);
444                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
445         }
446 }
447
448 static int mipspmu_add(struct perf_event *event, int flags)
449 {
450         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451         struct hw_perf_event *hwc = &event->hw;
452         int idx;
453         int err = 0;
454
455         perf_pmu_disable(event->pmu);
456
457         /* To look for a free counter for this event. */
458         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
459         if (idx < 0) {
460                 err = idx;
461                 goto out;
462         }
463
464         /*
465          * If there is an event in the counter we are going to use then
466          * make sure it is disabled.
467          */
468         event->hw.idx = idx;
469         mipsxx_pmu_disable_event(idx);
470         cpuc->events[idx] = event;
471
472         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
473         if (flags & PERF_EF_START)
474                 mipspmu_start(event, PERF_EF_RELOAD);
475
476         /* Propagate our changes to the userspace mapping. */
477         perf_event_update_userpage(event);
478
479 out:
480         perf_pmu_enable(event->pmu);
481         return err;
482 }
483
484 static void mipspmu_del(struct perf_event *event, int flags)
485 {
486         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
487         struct hw_perf_event *hwc = &event->hw;
488         int idx = hwc->idx;
489
490         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
491
492         mipspmu_stop(event, PERF_EF_UPDATE);
493         cpuc->events[idx] = NULL;
494         clear_bit(idx, cpuc->used_mask);
495
496         perf_event_update_userpage(event);
497 }
498
499 static void mipspmu_read(struct perf_event *event)
500 {
501         struct hw_perf_event *hwc = &event->hw;
502
503         /* Don't read disabled counters! */
504         if (hwc->idx < 0)
505                 return;
506
507         mipspmu_event_update(event, hwc, hwc->idx);
508 }
509
510 static void mipspmu_enable(struct pmu *pmu)
511 {
512 #ifdef CONFIG_MIPS_MT_SMP
513         write_unlock(&pmuint_rwlock);
514 #endif
515         resume_local_counters();
516 }
517
518 /*
519  * MIPS performance counters can be per-TC. The control registers can
520  * not be directly accessed accross CPUs. Hence if we want to do global
521  * control, we need cross CPU calls. on_each_cpu() can help us, but we
522  * can not make sure this function is called with interrupts enabled. So
523  * here we pause local counters and then grab a rwlock and leave the
524  * counters on other CPUs alone. If any counter interrupt raises while
525  * we own the write lock, simply pause local counters on that CPU and
526  * spin in the handler. Also we know we won't be switched to another
527  * CPU after pausing local counters and before grabbing the lock.
528  */
529 static void mipspmu_disable(struct pmu *pmu)
530 {
531         pause_local_counters();
532 #ifdef CONFIG_MIPS_MT_SMP
533         write_lock(&pmuint_rwlock);
534 #endif
535 }
536
537 static atomic_t active_events = ATOMIC_INIT(0);
538 static DEFINE_MUTEX(pmu_reserve_mutex);
539 static int (*save_perf_irq)(void);
540
541 static int mipspmu_get_irq(void)
542 {
543         int err;
544
545         if (mipspmu.irq >= 0) {
546                 /* Request my own irq handler. */
547                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
548                         IRQF_PERCPU | IRQF_NOBALANCING,
549                         "mips_perf_pmu", NULL);
550                 if (err) {
551                         pr_warning("Unable to request IRQ%d for MIPS "
552                            "performance counters!\n", mipspmu.irq);
553                 }
554         } else if (cp0_perfcount_irq < 0) {
555                 /*
556                  * We are sharing the irq number with the timer interrupt.
557                  */
558                 save_perf_irq = perf_irq;
559                 perf_irq = mipsxx_pmu_handle_shared_irq;
560                 err = 0;
561         } else {
562                 pr_warning("The platform hasn't properly defined its "
563                         "interrupt controller.\n");
564                 err = -ENOENT;
565         }
566
567         return err;
568 }
569
570 static void mipspmu_free_irq(void)
571 {
572         if (mipspmu.irq >= 0)
573                 free_irq(mipspmu.irq, NULL);
574         else if (cp0_perfcount_irq < 0)
575                 perf_irq = save_perf_irq;
576 }
577
578 /*
579  * mipsxx/rm9000/loongson2 have different performance counters, they have
580  * specific low-level init routines.
581  */
582 static void reset_counters(void *arg);
583 static int __hw_perf_event_init(struct perf_event *event);
584
585 static void hw_perf_event_destroy(struct perf_event *event)
586 {
587         if (atomic_dec_and_mutex_lock(&active_events,
588                                 &pmu_reserve_mutex)) {
589                 /*
590                  * We must not call the destroy function with interrupts
591                  * disabled.
592                  */
593                 on_each_cpu(reset_counters,
594                         (void *)(long)mipspmu.num_counters, 1);
595                 mipspmu_free_irq();
596                 mutex_unlock(&pmu_reserve_mutex);
597         }
598 }
599
600 static int mipspmu_event_init(struct perf_event *event)
601 {
602         int err = 0;
603
604         switch (event->attr.type) {
605         case PERF_TYPE_RAW:
606         case PERF_TYPE_HARDWARE:
607         case PERF_TYPE_HW_CACHE:
608                 break;
609
610         default:
611                 return -ENOENT;
612         }
613
614         if (event->cpu >= nr_cpumask_bits ||
615             (event->cpu >= 0 && !cpu_online(event->cpu)))
616                 return -ENODEV;
617
618         if (!atomic_inc_not_zero(&active_events)) {
619                 if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
620                         atomic_dec(&active_events);
621                         return -EINVAL;
622                 }
623
624                 mutex_lock(&pmu_reserve_mutex);
625                 if (atomic_read(&active_events) == 0)
626                         err = mipspmu_get_irq();
627
628                 if (!err)
629                         atomic_inc(&active_events);
630                 mutex_unlock(&pmu_reserve_mutex);
631         }
632
633         if (err)
634                 return err;
635
636         err = __hw_perf_event_init(event);
637         if (err)
638                 hw_perf_event_destroy(event);
639
640         return err;
641 }
642
643 static struct pmu pmu = {
644         .pmu_enable     = mipspmu_enable,
645         .pmu_disable    = mipspmu_disable,
646         .event_init     = mipspmu_event_init,
647         .add            = mipspmu_add,
648         .del            = mipspmu_del,
649         .start          = mipspmu_start,
650         .stop           = mipspmu_stop,
651         .read           = mipspmu_read,
652 };
653
654 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
655 {
656 /*
657  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
658  * event_id.
659  */
660 #ifdef CONFIG_MIPS_MT_SMP
661         return ((unsigned int)pev->range << 24) |
662                 (pev->cntr_mask & 0xffff00) |
663                 (pev->event_id & 0xff);
664 #else
665         return (pev->cntr_mask & 0xffff00) |
666                 (pev->event_id & 0xff);
667 #endif
668 }
669
670 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
671 {
672         const struct mips_perf_event *pev;
673
674         pev = ((*mipspmu.general_event_map)[idx].event_id ==
675                 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
676                 &(*mipspmu.general_event_map)[idx]);
677
678         return pev;
679 }
680
681 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
682 {
683         unsigned int cache_type, cache_op, cache_result;
684         const struct mips_perf_event *pev;
685
686         cache_type = (config >> 0) & 0xff;
687         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
688                 return ERR_PTR(-EINVAL);
689
690         cache_op = (config >> 8) & 0xff;
691         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
692                 return ERR_PTR(-EINVAL);
693
694         cache_result = (config >> 16) & 0xff;
695         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
696                 return ERR_PTR(-EINVAL);
697
698         pev = &((*mipspmu.cache_event_map)
699                                         [cache_type]
700                                         [cache_op]
701                                         [cache_result]);
702
703         if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
704                 return ERR_PTR(-EOPNOTSUPP);
705
706         return pev;
707
708 }
709
710 static int validate_event(struct cpu_hw_events *cpuc,
711                struct perf_event *event)
712 {
713         struct hw_perf_event fake_hwc = event->hw;
714
715         /* Allow mixed event group. So return 1 to pass validation. */
716         if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
717                 return 1;
718
719         return mipsxx_pmu_alloc_counter(cpuc, &fake_hwc) >= 0;
720 }
721
722 static int validate_group(struct perf_event *event)
723 {
724         struct perf_event *sibling, *leader = event->group_leader;
725         struct cpu_hw_events fake_cpuc;
726
727         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
728
729         if (!validate_event(&fake_cpuc, leader))
730                 return -EINVAL;
731
732         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
733                 if (!validate_event(&fake_cpuc, sibling))
734                         return -EINVAL;
735         }
736
737         if (!validate_event(&fake_cpuc, event))
738                 return -EINVAL;
739
740         return 0;
741 }
742
743 /* This is needed by specific irq handlers in perf_event_*.c */
744 static void handle_associated_event(struct cpu_hw_events *cpuc,
745                                     int idx, struct perf_sample_data *data,
746                                     struct pt_regs *regs)
747 {
748         struct perf_event *event = cpuc->events[idx];
749         struct hw_perf_event *hwc = &event->hw;
750
751         mipspmu_event_update(event, hwc, idx);
752         data->period = event->hw.last_period;
753         if (!mipspmu_event_set_period(event, hwc, idx))
754                 return;
755
756         if (perf_event_overflow(event, data, regs))
757                 mipsxx_pmu_disable_event(idx);
758 }
759
760
761 static int __n_counters(void)
762 {
763         if (!(read_c0_config1() & M_CONFIG1_PC))
764                 return 0;
765         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
766                 return 1;
767         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
768                 return 2;
769         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
770                 return 3;
771
772         return 4;
773 }
774
775 static int n_counters(void)
776 {
777         int counters;
778
779         switch (current_cpu_type()) {
780         case CPU_R10000:
781                 counters = 2;
782                 break;
783
784         case CPU_R12000:
785         case CPU_R14000:
786                 counters = 4;
787                 break;
788
789         default:
790                 counters = __n_counters();
791         }
792
793         return counters;
794 }
795
796 static void reset_counters(void *arg)
797 {
798         int counters = (int)(long)arg;
799         switch (counters) {
800         case 4:
801                 mipsxx_pmu_write_control(3, 0);
802                 mipspmu.write_counter(3, 0);
803         case 3:
804                 mipsxx_pmu_write_control(2, 0);
805                 mipspmu.write_counter(2, 0);
806         case 2:
807                 mipsxx_pmu_write_control(1, 0);
808                 mipspmu.write_counter(1, 0);
809         case 1:
810                 mipsxx_pmu_write_control(0, 0);
811                 mipspmu.write_counter(0, 0);
812         }
813 }
814
815 /* 24K/34K/1004K cores can share the same event map. */
816 static const struct mips_perf_event mipsxxcore_event_map
817                                 [PERF_COUNT_HW_MAX] = {
818         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
819         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
820         [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
821         [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
822         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
823         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
824         [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
825 };
826
827 /* 74K core has different branch event code. */
828 static const struct mips_perf_event mipsxx74Kcore_event_map
829                                 [PERF_COUNT_HW_MAX] = {
830         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
831         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
832         [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
833         [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
834         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
835         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
836         [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
837 };
838
839 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
840         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
841         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
842         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
843         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
844         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
845         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
846         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
847 };
848
849 /* 24K/34K/1004K cores can share the same cache event map. */
850 static const struct mips_perf_event mipsxxcore_cache_map
851                                 [PERF_COUNT_HW_CACHE_MAX]
852                                 [PERF_COUNT_HW_CACHE_OP_MAX]
853                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
854 [C(L1D)] = {
855         /*
856          * Like some other architectures (e.g. ARM), the performance
857          * counters don't differentiate between read and write
858          * accesses/misses, so this isn't strictly correct, but it's the
859          * best we can do. Writes and reads get combined.
860          */
861         [C(OP_READ)] = {
862                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
863                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
864         },
865         [C(OP_WRITE)] = {
866                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
867                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
868         },
869         [C(OP_PREFETCH)] = {
870                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
871                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
872         },
873 },
874 [C(L1I)] = {
875         [C(OP_READ)] = {
876                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
877                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
878         },
879         [C(OP_WRITE)] = {
880                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
881                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
882         },
883         [C(OP_PREFETCH)] = {
884                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
885                 /*
886                  * Note that MIPS has only "hit" events countable for
887                  * the prefetch operation.
888                  */
889                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
890         },
891 },
892 [C(LL)] = {
893         [C(OP_READ)] = {
894                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
895                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
896         },
897         [C(OP_WRITE)] = {
898                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
899                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
900         },
901         [C(OP_PREFETCH)] = {
902                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
903                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
904         },
905 },
906 [C(DTLB)] = {
907         [C(OP_READ)] = {
908                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
909                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
910         },
911         [C(OP_WRITE)] = {
912                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
913                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
914         },
915         [C(OP_PREFETCH)] = {
916                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
917                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
918         },
919 },
920 [C(ITLB)] = {
921         [C(OP_READ)] = {
922                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
923                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
924         },
925         [C(OP_WRITE)] = {
926                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
927                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
928         },
929         [C(OP_PREFETCH)] = {
930                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
931                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
932         },
933 },
934 [C(BPU)] = {
935         /* Using the same code for *HW_BRANCH* */
936         [C(OP_READ)] = {
937                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
938                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
939         },
940         [C(OP_WRITE)] = {
941                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
942                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
943         },
944         [C(OP_PREFETCH)] = {
945                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
946                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
947         },
948 },
949 [C(NODE)] = {
950         [C(OP_READ)] = {
951                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
952                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
953         },
954         [C(OP_WRITE)] = {
955                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
956                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
957         },
958         [C(OP_PREFETCH)] = {
959                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
960                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
961         },
962 },
963 };
964
965 /* 74K core has completely different cache event map. */
966 static const struct mips_perf_event mipsxx74Kcore_cache_map
967                                 [PERF_COUNT_HW_CACHE_MAX]
968                                 [PERF_COUNT_HW_CACHE_OP_MAX]
969                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
970 [C(L1D)] = {
971         /*
972          * Like some other architectures (e.g. ARM), the performance
973          * counters don't differentiate between read and write
974          * accesses/misses, so this isn't strictly correct, but it's the
975          * best we can do. Writes and reads get combined.
976          */
977         [C(OP_READ)] = {
978                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
979                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
980         },
981         [C(OP_WRITE)] = {
982                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
983                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
984         },
985         [C(OP_PREFETCH)] = {
986                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
987                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
988         },
989 },
990 [C(L1I)] = {
991         [C(OP_READ)] = {
992                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
993                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
994         },
995         [C(OP_WRITE)] = {
996                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
997                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
998         },
999         [C(OP_PREFETCH)] = {
1000                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
1001                 /*
1002                  * Note that MIPS has only "hit" events countable for
1003                  * the prefetch operation.
1004                  */
1005                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1006         },
1007 },
1008 [C(LL)] = {
1009         [C(OP_READ)] = {
1010                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1011                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1012         },
1013         [C(OP_WRITE)] = {
1014                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1015                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1016         },
1017         [C(OP_PREFETCH)] = {
1018                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1019                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1020         },
1021 },
1022 [C(DTLB)] = {
1023         /* 74K core does not have specific DTLB events. */
1024         [C(OP_READ)] = {
1025                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1026                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1027         },
1028         [C(OP_WRITE)] = {
1029                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1030                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1031         },
1032         [C(OP_PREFETCH)] = {
1033                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1034                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1035         },
1036 },
1037 [C(ITLB)] = {
1038         [C(OP_READ)] = {
1039                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1040                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1041         },
1042         [C(OP_WRITE)] = {
1043                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1044                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1045         },
1046         [C(OP_PREFETCH)] = {
1047                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1048                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1049         },
1050 },
1051 [C(BPU)] = {
1052         /* Using the same code for *HW_BRANCH* */
1053         [C(OP_READ)] = {
1054                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1055                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1056         },
1057         [C(OP_WRITE)] = {
1058                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1059                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1060         },
1061         [C(OP_PREFETCH)] = {
1062                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1063                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1064         },
1065 },
1066 [C(NODE)] = {
1067         [C(OP_READ)] = {
1068                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1069                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1070         },
1071         [C(OP_WRITE)] = {
1072                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1073                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1074         },
1075         [C(OP_PREFETCH)] = {
1076                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1077                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1078         },
1079 },
1080 };
1081
1082
1083 static const struct mips_perf_event octeon_cache_map
1084                                 [PERF_COUNT_HW_CACHE_MAX]
1085                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1086                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1087 [C(L1D)] = {
1088         [C(OP_READ)] = {
1089                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1090                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1091         },
1092         [C(OP_WRITE)] = {
1093                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1094                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1095         },
1096         [C(OP_PREFETCH)] = {
1097                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1098                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1099         },
1100 },
1101 [C(L1I)] = {
1102         [C(OP_READ)] = {
1103                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1104                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1105         },
1106         [C(OP_WRITE)] = {
1107                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1108                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1109         },
1110         [C(OP_PREFETCH)] = {
1111                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1112                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1113         },
1114 },
1115 [C(LL)] = {
1116         [C(OP_READ)] = {
1117                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1118                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1119         },
1120         [C(OP_WRITE)] = {
1121                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1122                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1123         },
1124         [C(OP_PREFETCH)] = {
1125                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1126                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1127         },
1128 },
1129 [C(DTLB)] = {
1130         /*
1131          * Only general DTLB misses are counted use the same event for
1132          * read and write.
1133          */
1134         [C(OP_READ)] = {
1135                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1136                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1137         },
1138         [C(OP_WRITE)] = {
1139                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1140                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1141         },
1142         [C(OP_PREFETCH)] = {
1143                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1144                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1145         },
1146 },
1147 [C(ITLB)] = {
1148         [C(OP_READ)] = {
1149                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1150                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1151         },
1152         [C(OP_WRITE)] = {
1153                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1154                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1155         },
1156         [C(OP_PREFETCH)] = {
1157                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1158                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1159         },
1160 },
1161 [C(BPU)] = {
1162         /* Using the same code for *HW_BRANCH* */
1163         [C(OP_READ)] = {
1164                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1165                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1166         },
1167         [C(OP_WRITE)] = {
1168                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1169                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1170         },
1171         [C(OP_PREFETCH)] = {
1172                 [C(RESULT_ACCESS)]      = { UNSUPPORTED_PERF_EVENT_ID },
1173                 [C(RESULT_MISS)]        = { UNSUPPORTED_PERF_EVENT_ID },
1174         },
1175 },
1176 };
1177
1178 #ifdef CONFIG_MIPS_MT_SMP
1179 static void check_and_calc_range(struct perf_event *event,
1180                                  const struct mips_perf_event *pev)
1181 {
1182         struct hw_perf_event *hwc = &event->hw;
1183
1184         if (event->cpu >= 0) {
1185                 if (pev->range > V) {
1186                         /*
1187                          * The user selected an event that is processor
1188                          * wide, while expecting it to be VPE wide.
1189                          */
1190                         hwc->config_base |= M_TC_EN_ALL;
1191                 } else {
1192                         /*
1193                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1194                          * for both CPUs.
1195                          */
1196                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1197                         hwc->config_base |= M_TC_EN_VPE;
1198                 }
1199         } else
1200                 hwc->config_base |= M_TC_EN_ALL;
1201 }
1202 #else
1203 static void check_and_calc_range(struct perf_event *event,
1204                                  const struct mips_perf_event *pev)
1205 {
1206 }
1207 #endif
1208
1209 static int __hw_perf_event_init(struct perf_event *event)
1210 {
1211         struct perf_event_attr *attr = &event->attr;
1212         struct hw_perf_event *hwc = &event->hw;
1213         const struct mips_perf_event *pev;
1214         int err;
1215
1216         /* Returning MIPS event descriptor for generic perf event. */
1217         if (PERF_TYPE_HARDWARE == event->attr.type) {
1218                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1219                         return -EINVAL;
1220                 pev = mipspmu_map_general_event(event->attr.config);
1221         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1222                 pev = mipspmu_map_cache_event(event->attr.config);
1223         } else if (PERF_TYPE_RAW == event->attr.type) {
1224                 /* We are working on the global raw event. */
1225                 mutex_lock(&raw_event_mutex);
1226                 pev = mipspmu.map_raw_event(event->attr.config);
1227         } else {
1228                 /* The event type is not (yet) supported. */
1229                 return -EOPNOTSUPP;
1230         }
1231
1232         if (IS_ERR(pev)) {
1233                 if (PERF_TYPE_RAW == event->attr.type)
1234                         mutex_unlock(&raw_event_mutex);
1235                 return PTR_ERR(pev);
1236         }
1237
1238         /*
1239          * We allow max flexibility on how each individual counter shared
1240          * by the single CPU operates (the mode exclusion and the range).
1241          */
1242         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1243
1244         /* Calculate range bits and validate it. */
1245         if (num_possible_cpus() > 1)
1246                 check_and_calc_range(event, pev);
1247
1248         hwc->event_base = mipspmu_perf_event_encode(pev);
1249         if (PERF_TYPE_RAW == event->attr.type)
1250                 mutex_unlock(&raw_event_mutex);
1251
1252         if (!attr->exclude_user)
1253                 hwc->config_base |= M_PERFCTL_USER;
1254         if (!attr->exclude_kernel) {
1255                 hwc->config_base |= M_PERFCTL_KERNEL;
1256                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1257                 hwc->config_base |= M_PERFCTL_EXL;
1258         }
1259         if (!attr->exclude_hv)
1260                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1261
1262         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1263         /*
1264          * The event can belong to another cpu. We do not assign a local
1265          * counter for it for now.
1266          */
1267         hwc->idx = -1;
1268         hwc->config = 0;
1269
1270         if (!hwc->sample_period) {
1271                 hwc->sample_period  = mipspmu.max_period;
1272                 hwc->last_period    = hwc->sample_period;
1273                 local64_set(&hwc->period_left, hwc->sample_period);
1274         }
1275
1276         err = 0;
1277         if (event->group_leader != event) {
1278                 err = validate_group(event);
1279                 if (err)
1280                         return -EINVAL;
1281         }
1282
1283         event->destroy = hw_perf_event_destroy;
1284         return err;
1285 }
1286
1287 static void pause_local_counters(void)
1288 {
1289         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290         int ctr = mipspmu.num_counters;
1291         unsigned long flags;
1292
1293         local_irq_save(flags);
1294         do {
1295                 ctr--;
1296                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1297                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1298                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1299         } while (ctr > 0);
1300         local_irq_restore(flags);
1301 }
1302
1303 static void resume_local_counters(void)
1304 {
1305         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1306         int ctr = mipspmu.num_counters;
1307
1308         do {
1309                 ctr--;
1310                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1311         } while (ctr > 0);
1312 }
1313
1314 static int mipsxx_pmu_handle_shared_irq(void)
1315 {
1316         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1317         struct perf_sample_data data;
1318         unsigned int counters = mipspmu.num_counters;
1319         u64 counter;
1320         int handled = IRQ_NONE;
1321         struct pt_regs *regs;
1322
1323         if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1324                 return handled;
1325         /*
1326          * First we pause the local counters, so that when we are locked
1327          * here, the counters are all paused. When it gets locked due to
1328          * perf_disable(), the timer interrupt handler will be delayed.
1329          *
1330          * See also mipsxx_pmu_start().
1331          */
1332         pause_local_counters();
1333 #ifdef CONFIG_MIPS_MT_SMP
1334         read_lock(&pmuint_rwlock);
1335 #endif
1336
1337         regs = get_irq_regs();
1338
1339         perf_sample_data_init(&data, 0);
1340
1341         switch (counters) {
1342 #define HANDLE_COUNTER(n)                                               \
1343         case n + 1:                                                     \
1344                 if (test_bit(n, cpuc->used_mask)) {                     \
1345                         counter = mipspmu.read_counter(n);              \
1346                         if (counter & mipspmu.overflow) {               \
1347                                 handle_associated_event(cpuc, n, &data, regs); \
1348                                 handled = IRQ_HANDLED;                  \
1349                         }                                               \
1350                 }
1351         HANDLE_COUNTER(3)
1352         HANDLE_COUNTER(2)
1353         HANDLE_COUNTER(1)
1354         HANDLE_COUNTER(0)
1355         }
1356
1357         /*
1358          * Do all the work for the pending perf events. We can do this
1359          * in here because the performance counter interrupt is a regular
1360          * interrupt, not NMI.
1361          */
1362         if (handled == IRQ_HANDLED)
1363                 irq_work_run();
1364
1365 #ifdef CONFIG_MIPS_MT_SMP
1366         read_unlock(&pmuint_rwlock);
1367 #endif
1368         resume_local_counters();
1369         return handled;
1370 }
1371
1372 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1373 {
1374         return mipsxx_pmu_handle_shared_irq();
1375 }
1376
1377 /* 24K */
1378 #define IS_UNSUPPORTED_24K_EVENT(r, b)                                  \
1379         ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||          \
1380          (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||           \
1381          (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||           \
1382          (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||         \
1383          ((b) >= 68 && (b) <= 127))
1384 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1385         ((b) == 0 || (b) == 1 || (b) == 11)
1386
1387 /* 34K */
1388 #define IS_UNSUPPORTED_34K_EVENT(r, b)                                  \
1389         ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||           \
1390          (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||         \
1391          ((b) >= 68 && (b) <= 127))
1392 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1393         ((b) == 0 || (b) == 1 || (b) == 11)
1394 #ifdef CONFIG_MIPS_MT_SMP
1395 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1396         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1397          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1398          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1399          ((b) >= 64 && (b) <= 67))
1400 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1401 #endif
1402
1403 /* 74K */
1404 #define IS_UNSUPPORTED_74K_EVENT(r, b)                                  \
1405         ((r) == 5 || ((r) >= 135 && (r) <= 137) ||                      \
1406          ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||          \
1407          (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||          \
1408          (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||           \
1409          (b) == 61 || (r) == 62 || (r) == 191 ||                        \
1410          ((b) >= 64 && (b) <= 127))
1411 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1412         ((b) == 0 || (b) == 1)
1413
1414 /* 1004K */
1415 #define IS_UNSUPPORTED_1004K_EVENT(r, b)                                \
1416         ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||           \
1417          (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
1418 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1419         ((b) == 0 || (b) == 1 || (b) == 11)
1420 #ifdef CONFIG_MIPS_MT_SMP
1421 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1422         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1423          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1424          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1425          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1426          ((b) >= 64 && (b) <= 67))
1427 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1428 #endif
1429
1430 /*
1431  * User can use 0-255 raw events, where 0-127 for the events of even
1432  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1433  * indicate the parity. So, for example, when user wants to take the
1434  * Event Num of 15 for odd counters (by referring to the user manual),
1435  * then 128 needs to be added to 15 as the input for the event config,
1436  * i.e., 143 (0x8F) to be used.
1437  */
1438 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1439 {
1440         unsigned int raw_id = config & 0xff;
1441         unsigned int base_id = raw_id & 0x7f;
1442
1443         switch (current_cpu_type()) {
1444         case CPU_24K:
1445                 if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
1446                         return ERR_PTR(-EOPNOTSUPP);
1447                 raw_event.event_id = base_id;
1448                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1449                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1450                 else
1451                         raw_event.cntr_mask =
1452                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1453 #ifdef CONFIG_MIPS_MT_SMP
1454                 /*
1455                  * This is actually doing nothing. Non-multithreading
1456                  * CPUs will not check and calculate the range.
1457                  */
1458                 raw_event.range = P;
1459 #endif
1460                 break;
1461         case CPU_34K:
1462                 if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
1463                         return ERR_PTR(-EOPNOTSUPP);
1464                 raw_event.event_id = base_id;
1465                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1466                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1467                 else
1468                         raw_event.cntr_mask =
1469                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1470 #ifdef CONFIG_MIPS_MT_SMP
1471                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1472                         raw_event.range = P;
1473                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1474                         raw_event.range = V;
1475                 else
1476                         raw_event.range = T;
1477 #endif
1478                 break;
1479         case CPU_74K:
1480                 if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
1481                         return ERR_PTR(-EOPNOTSUPP);
1482                 raw_event.event_id = base_id;
1483                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1484                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1485                 else
1486                         raw_event.cntr_mask =
1487                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1488 #ifdef CONFIG_MIPS_MT_SMP
1489                 raw_event.range = P;
1490 #endif
1491                 break;
1492         case CPU_1004K:
1493                 if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
1494                         return ERR_PTR(-EOPNOTSUPP);
1495                 raw_event.event_id = base_id;
1496                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1497                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1498                 else
1499                         raw_event.cntr_mask =
1500                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1501 #ifdef CONFIG_MIPS_MT_SMP
1502                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1503                         raw_event.range = P;
1504                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1505                         raw_event.range = V;
1506                 else
1507                         raw_event.range = T;
1508 #endif
1509                 break;
1510         }
1511
1512         return &raw_event;
1513 }
1514
1515 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1516 {
1517         unsigned int raw_id = config & 0xff;
1518         unsigned int base_id = raw_id & 0x7f;
1519
1520
1521         raw_event.cntr_mask = CNTR_ALL;
1522         raw_event.event_id = base_id;
1523
1524         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1525                 if (base_id > 0x42)
1526                         return ERR_PTR(-EOPNOTSUPP);
1527         } else {
1528                 if (base_id > 0x3a)
1529                         return ERR_PTR(-EOPNOTSUPP);
1530         }
1531
1532         switch (base_id) {
1533         case 0x00:
1534         case 0x0f:
1535         case 0x1e:
1536         case 0x1f:
1537         case 0x2f:
1538         case 0x34:
1539         case 0x3b ... 0x3f:
1540                 return ERR_PTR(-EOPNOTSUPP);
1541         default:
1542                 break;
1543         }
1544
1545         return &raw_event;
1546 }
1547
1548 static int __init
1549 init_hw_perf_events(void)
1550 {
1551         int counters, irq;
1552         int counter_bits;
1553
1554         pr_info("Performance counters: ");
1555
1556         counters = n_counters();
1557         if (counters == 0) {
1558                 pr_cont("No available PMU.\n");
1559                 return -ENODEV;
1560         }
1561
1562 #ifdef CONFIG_MIPS_MT_SMP
1563         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1564         if (!cpu_has_mipsmt_pertccounters)
1565                 counters = counters_total_to_per_cpu(counters);
1566 #endif
1567
1568 #ifdef MSC01E_INT_BASE
1569         if (cpu_has_veic) {
1570                 /*
1571                  * Using platform specific interrupt controller defines.
1572                  */
1573                 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1574         } else {
1575 #endif
1576                 if (cp0_perfcount_irq >= 0)
1577                         irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1578                 else
1579                         irq = -1;
1580 #ifdef MSC01E_INT_BASE
1581         }
1582 #endif
1583
1584         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1585
1586         switch (current_cpu_type()) {
1587         case CPU_24K:
1588                 mipspmu.name = "mips/24K";
1589                 mipspmu.general_event_map = &mipsxxcore_event_map;
1590                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1591                 break;
1592         case CPU_34K:
1593                 mipspmu.name = "mips/34K";
1594                 mipspmu.general_event_map = &mipsxxcore_event_map;
1595                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1596                 break;
1597         case CPU_74K:
1598                 mipspmu.name = "mips/74K";
1599                 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1600                 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1601                 break;
1602         case CPU_1004K:
1603                 mipspmu.name = "mips/1004K";
1604                 mipspmu.general_event_map = &mipsxxcore_event_map;
1605                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1606                 break;
1607         case CPU_CAVIUM_OCTEON:
1608         case CPU_CAVIUM_OCTEON_PLUS:
1609         case CPU_CAVIUM_OCTEON2:
1610                 mipspmu.name = "octeon";
1611                 mipspmu.general_event_map = &octeon_event_map;
1612                 mipspmu.cache_event_map = &octeon_cache_map;
1613                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1614                 break;
1615         default:
1616                 pr_cont("Either hardware does not support performance "
1617                         "counters, or not yet implemented.\n");
1618                 return -ENODEV;
1619         }
1620
1621         mipspmu.num_counters = counters;
1622         mipspmu.irq = irq;
1623
1624         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1625                 mipspmu.max_period = (1ULL << 63) - 1;
1626                 mipspmu.valid_count = (1ULL << 63) - 1;
1627                 mipspmu.overflow = 1ULL << 63;
1628                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1629                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1630                 counter_bits = 64;
1631         } else {
1632                 mipspmu.max_period = (1ULL << 31) - 1;
1633                 mipspmu.valid_count = (1ULL << 31) - 1;
1634                 mipspmu.overflow = 1ULL << 31;
1635                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1636                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1637                 counter_bits = 32;
1638         }
1639
1640         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1641
1642         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1643                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1644                 irq < 0 ? " (share with timer interrupt)" : "");
1645
1646         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1647
1648         return 0;
1649 }
1650 early_initcall(init_hw_perf_events);