Pull hotplug into release branch
[pandora-kernel.git] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
37
38 extern void jprobe_inst_return(void);
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47   { M, I, I },                          /* 00 */
48   { M, I, I },                          /* 01 */
49   { M, I, I },                          /* 02 */
50   { M, I, I },                          /* 03 */
51   { M, L, X },                          /* 04 */
52   { M, L, X },                          /* 05 */
53   { u, u, u },                          /* 06 */
54   { u, u, u },                          /* 07 */
55   { M, M, I },                          /* 08 */
56   { M, M, I },                          /* 09 */
57   { M, M, I },                          /* 0A */
58   { M, M, I },                          /* 0B */
59   { M, F, I },                          /* 0C */
60   { M, F, I },                          /* 0D */
61   { M, M, F },                          /* 0E */
62   { M, M, F },                          /* 0F */
63   { M, I, B },                          /* 10 */
64   { M, I, B },                          /* 11 */
65   { M, B, B },                          /* 12 */
66   { M, B, B },                          /* 13 */
67   { u, u, u },                          /* 14 */
68   { u, u, u },                          /* 15 */
69   { B, B, B },                          /* 16 */
70   { B, B, B },                          /* 17 */
71   { M, M, B },                          /* 18 */
72   { M, M, B },                          /* 19 */
73   { u, u, u },                          /* 1A */
74   { u, u, u },                          /* 1B */
75   { M, F, B },                          /* 1C */
76   { M, F, B },                          /* 1D */
77   { u, u, u },                          /* 1E */
78   { u, u, u },                          /* 1F */
79 };
80
81 /*
82  * In this function we check to see if the instruction
83  * is IP relative instruction and update the kprobe
84  * inst flag accordingly
85  */
86 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
87                                               uint major_opcode,
88                                               unsigned long kprobe_inst,
89                                               struct kprobe *p)
90 {
91         p->ainsn.inst_flag = 0;
92         p->ainsn.target_br_reg = 0;
93         p->ainsn.slot = slot;
94
95         /* Check for Break instruction
96          * Bits 37:40 Major opcode to be zero
97          * Bits 27:32 X6 to be zero
98          * Bits 32:35 X3 to be zero
99          */
100         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
101                 /* is a break instruction */
102                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103                 return;
104         }
105
106         if (bundle_encoding[template][slot] == B) {
107                 switch (major_opcode) {
108                   case INDIRECT_CALL_OPCODE:
109                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
110                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
111                         break;
112                   case IP_RELATIVE_PREDICT_OPCODE:
113                   case IP_RELATIVE_BRANCH_OPCODE:
114                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115                         break;
116                   case IP_RELATIVE_CALL_OPCODE:
117                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
119                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
120                         break;
121                 }
122         } else if (bundle_encoding[template][slot] == X) {
123                 switch (major_opcode) {
124                   case LONG_CALL_OPCODE:
125                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
126                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
127                   break;
128                 }
129         }
130         return;
131 }
132
133 /*
134  * In this function we check to see if the instruction
135  * (qp) cmpx.crel.ctype p1,p2=r2,r3
136  * on which we are inserting kprobe is cmp instruction
137  * with ctype as unc.
138  */
139 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
140                                             uint major_opcode,
141                                             unsigned long kprobe_inst)
142 {
143         cmp_inst_t cmp_inst;
144         uint ctype_unc = 0;
145
146         if (!((bundle_encoding[template][slot] == I) ||
147                 (bundle_encoding[template][slot] == M)))
148                 goto out;
149
150         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
151                 (major_opcode == 0xE)))
152                 goto out;
153
154         cmp_inst.l = kprobe_inst;
155         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
156                 /* Integer compare - Register Register (A6 type)*/
157                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
158                                 &&(cmp_inst.f.c == 1))
159                         ctype_unc = 1;
160         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
161                 /* Integer compare - Immediate Register (A8 type)*/
162                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
163                         ctype_unc = 1;
164         }
165 out:
166         return ctype_unc;
167 }
168
169 /*
170  * In this function we check to see if the instruction
171  * on which we are inserting kprobe is supported.
172  * Returns qp value if supported
173  * Returns -EINVAL if unsupported
174  */
175 static int __kprobes unsupported_inst(uint template, uint  slot,
176                                       uint major_opcode,
177                                       unsigned long kprobe_inst,
178                                       unsigned long addr)
179 {
180         int qp;
181
182         qp = kprobe_inst & 0x3f;
183         if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
184                 if (slot == 1 && qp)  {
185                         printk(KERN_WARNING "Kprobes on cmp unc "
186                                         "instruction on slot 1 at <0x%lx> "
187                                         "is not supported\n", addr);
188                         return -EINVAL;
189
190                 }
191                 qp = 0;
192         }
193         else if (bundle_encoding[template][slot] == I) {
194                 if (major_opcode == 0) {
195                         /*
196                          * Check for Integer speculation instruction
197                          * - Bit 33-35 to be equal to 0x1
198                          */
199                         if (((kprobe_inst >> 33) & 0x7) == 1) {
200                                 printk(KERN_WARNING
201                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
202                                                 addr);
203                                 return -EINVAL;
204                         }
205                         /*
206                          * IP relative mov instruction
207                          *  - Bit 27-35 to be equal to 0x30
208                          */
209                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
210                                 printk(KERN_WARNING
211                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
212                                                 addr);
213                                 return -EINVAL;
214
215                         }
216                 }
217                 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
218                                 (kprobe_inst & (0x1UL << 12))) {
219                         /* test bit instructions, tbit,tnat,tf
220                          * bit 33-36 to be equal to 0
221                          * bit 12 to be equal to 1
222                          */
223                         if (slot == 1 && qp) {
224                                 printk(KERN_WARNING "Kprobes on test bit "
225                                                 "instruction on slot at <0x%lx> "
226                                                 "is not supported\n", addr);
227                                 return -EINVAL;
228                         }
229                         qp = 0;
230                 }
231         }
232         else if (bundle_encoding[template][slot] == B) {
233                 if (major_opcode == 7) {
234                         /* IP-Relative Predict major code is 7 */
235                         printk(KERN_WARNING "Kprobes on IP-Relative"
236                                         "Predict is not supported\n");
237                         return -EINVAL;
238                 }
239                 else if (major_opcode == 2) {
240                         /* Indirect Predict, major code is 2
241                          * bit 27-32 to be equal to 10 or 11
242                          */
243                         int x6=(kprobe_inst >> 27) & 0x3F;
244                         if ((x6 == 0x10) || (x6 == 0x11)) {
245                                 printk(KERN_WARNING "Kprobes on "
246                                         "Indirect Predict is not supported\n");
247                                 return -EINVAL;
248                         }
249                 }
250         }
251         /* kernel does not use float instruction, here for safety kprobe
252          * will judge whether it is fcmp/flass/float approximation instruction
253          */
254         else if (unlikely(bundle_encoding[template][slot] == F)) {
255                 if ((major_opcode == 4 || major_opcode == 5) &&
256                                 (kprobe_inst  & (0x1 << 12))) {
257                         /* fcmp/fclass unc instruction */
258                         if (slot == 1 && qp) {
259                                 printk(KERN_WARNING "Kprobes on fcmp/fclass "
260                                         "instruction on slot at <0x%lx> "
261                                         "is not supported\n", addr);
262                                 return -EINVAL;
263
264                         }
265                         qp = 0;
266                 }
267                 if ((major_opcode == 0 || major_opcode == 1) &&
268                         (kprobe_inst & (0x1UL << 33))) {
269                         /* float Approximation instruction */
270                         if (slot == 1 && qp) {
271                                 printk(KERN_WARNING "Kprobes on float Approx "
272                                         "instr at <0x%lx> is not supported\n",
273                                                 addr);
274                                 return -EINVAL;
275                         }
276                         qp = 0;
277                 }
278         }
279         return qp;
280 }
281
282 /*
283  * In this function we override the bundle with
284  * the break instruction at the given slot.
285  */
286 static void __kprobes prepare_break_inst(uint template, uint  slot,
287                                          uint major_opcode,
288                                          unsigned long kprobe_inst,
289                                          struct kprobe *p,
290                                          int qp)
291 {
292         unsigned long break_inst = BREAK_INST;
293         bundle_t *bundle = &p->opcode.bundle;
294
295         /*
296          * Copy the original kprobe_inst qualifying predicate(qp)
297          * to the break instruction
298          */
299         break_inst |= qp;
300
301         switch (slot) {
302           case 0:
303                 bundle->quad0.slot0 = break_inst;
304                 break;
305           case 1:
306                 bundle->quad0.slot1_p0 = break_inst;
307                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
308                 break;
309           case 2:
310                 bundle->quad1.slot2 = break_inst;
311                 break;
312         }
313
314         /*
315          * Update the instruction flag, so that we can
316          * emulate the instruction properly after we
317          * single step on original instruction
318          */
319         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
320 }
321
322 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
323                 unsigned long *kprobe_inst, uint *major_opcode)
324 {
325         unsigned long kprobe_inst_p0, kprobe_inst_p1;
326         unsigned int template;
327
328         template = bundle->quad0.template;
329
330         switch (slot) {
331           case 0:
332                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
333                 *kprobe_inst = bundle->quad0.slot0;
334                   break;
335           case 1:
336                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
337                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
338                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
339                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
340                 break;
341           case 2:
342                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
343                 *kprobe_inst = bundle->quad1.slot2;
344                 break;
345         }
346 }
347
348 /* Returns non-zero if the addr is in the Interrupt Vector Table */
349 static int __kprobes in_ivt_functions(unsigned long addr)
350 {
351         return (addr >= (unsigned long)__start_ivt_text
352                 && addr < (unsigned long)__end_ivt_text);
353 }
354
355 static int __kprobes valid_kprobe_addr(int template, int slot,
356                                        unsigned long addr)
357 {
358         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
359                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
360                                 "at 0x%lx\n", addr);
361                 return -EINVAL;
362         }
363
364         if (in_ivt_functions(addr)) {
365                 printk(KERN_WARNING "Kprobes can't be inserted inside "
366                                 "IVT functions at 0x%lx\n", addr);
367                 return -EINVAL;
368         }
369
370         return 0;
371 }
372
373 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
374 {
375         unsigned int i;
376         i = atomic_add_return(1, &kcb->prev_kprobe_index);
377         kcb->prev_kprobe[i-1].kp = kprobe_running();
378         kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
379 }
380
381 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
382 {
383         unsigned int i;
384         i = atomic_sub_return(1, &kcb->prev_kprobe_index);
385         __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp;
386         kcb->kprobe_status = kcb->prev_kprobe[i].status;
387 }
388
389 static void __kprobes set_current_kprobe(struct kprobe *p,
390                         struct kprobe_ctlblk *kcb)
391 {
392         __get_cpu_var(current_kprobe) = p;
393 }
394
395 static void kretprobe_trampoline(void)
396 {
397 }
398
399 /*
400  * At this point the target function has been tricked into
401  * returning into our trampoline.  Lookup the associated instance
402  * and then:
403  *    - call the handler function
404  *    - cleanup by marking the instance as unused
405  *    - long jump back to the original return address
406  */
407 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
408 {
409         struct kretprobe_instance *ri = NULL;
410         struct hlist_head *head, empty_rp;
411         struct hlist_node *node, *tmp;
412         unsigned long flags, orig_ret_address = 0;
413         unsigned long trampoline_address =
414                 ((struct fnptr *)kretprobe_trampoline)->ip;
415
416         INIT_HLIST_HEAD(&empty_rp);
417         spin_lock_irqsave(&kretprobe_lock, flags);
418         head = kretprobe_inst_table_head(current);
419
420         /*
421          * It is possible to have multiple instances associated with a given
422          * task either because an multiple functions in the call path
423          * have a return probe installed on them, and/or more then one return
424          * return probe was registered for a target function.
425          *
426          * We can handle this because:
427          *     - instances are always inserted at the head of the list
428          *     - when multiple return probes are registered for the same
429          *       function, the first instance's ret_addr will point to the
430          *       real return address, and all the rest will point to
431          *       kretprobe_trampoline
432          */
433         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
434                 if (ri->task != current)
435                         /* another task is sharing our hash bucket */
436                         continue;
437
438                 orig_ret_address = (unsigned long)ri->ret_addr;
439                 if (orig_ret_address != trampoline_address)
440                         /*
441                          * This is the real return address. Any other
442                          * instances associated with this task are for
443                          * other calls deeper on the call stack
444                          */
445                         break;
446         }
447
448         regs->cr_iip = orig_ret_address;
449
450         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
451                 if (ri->task != current)
452                         /* another task is sharing our hash bucket */
453                         continue;
454
455                 if (ri->rp && ri->rp->handler)
456                         ri->rp->handler(ri, regs);
457
458                 orig_ret_address = (unsigned long)ri->ret_addr;
459                 recycle_rp_inst(ri, &empty_rp);
460
461                 if (orig_ret_address != trampoline_address)
462                         /*
463                          * This is the real return address. Any other
464                          * instances associated with this task are for
465                          * other calls deeper on the call stack
466                          */
467                         break;
468         }
469
470         kretprobe_assert(ri, orig_ret_address, trampoline_address);
471
472         reset_current_kprobe();
473         spin_unlock_irqrestore(&kretprobe_lock, flags);
474         preempt_enable_no_resched();
475
476         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
477                 hlist_del(&ri->hlist);
478                 kfree(ri);
479         }
480         /*
481          * By returning a non-zero value, we are telling
482          * kprobe_handler() that we don't want the post_handler
483          * to run (and have re-enabled preemption)
484          */
485         return 1;
486 }
487
488 /* Called with kretprobe_lock held */
489 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
490                                       struct pt_regs *regs)
491 {
492         ri->ret_addr = (kprobe_opcode_t *)regs->b0;
493
494         /* Replace the return addr with trampoline addr */
495         regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
496 }
497
498 int __kprobes arch_prepare_kprobe(struct kprobe *p)
499 {
500         unsigned long addr = (unsigned long) p->addr;
501         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
502         unsigned long kprobe_inst=0;
503         unsigned int slot = addr & 0xf, template, major_opcode = 0;
504         bundle_t *bundle;
505         int qp;
506
507         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
508         template = bundle->quad0.template;
509
510         if(valid_kprobe_addr(template, slot, addr))
511                 return -EINVAL;
512
513         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
514         if (slot == 1 && bundle_encoding[template][1] == L)
515                 slot++;
516
517         /* Get kprobe_inst and major_opcode from the bundle */
518         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
519
520         qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
521         if (qp < 0)
522                 return -EINVAL;
523
524         p->ainsn.insn = get_insn_slot();
525         if (!p->ainsn.insn)
526                 return -ENOMEM;
527         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
528         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
529
530         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
531
532         return 0;
533 }
534
535 void __kprobes arch_arm_kprobe(struct kprobe *p)
536 {
537         unsigned long arm_addr;
538         bundle_t *src, *dest;
539
540         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
541         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
542         src = &p->opcode.bundle;
543
544         flush_icache_range((unsigned long)p->ainsn.insn,
545                         (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
546         switch (p->ainsn.slot) {
547                 case 0:
548                         dest->quad0.slot0 = src->quad0.slot0;
549                         break;
550                 case 1:
551                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
552                         break;
553                 case 2:
554                         dest->quad1.slot2 = src->quad1.slot2;
555                         break;
556         }
557         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
558 }
559
560 void __kprobes arch_disarm_kprobe(struct kprobe *p)
561 {
562         unsigned long arm_addr;
563         bundle_t *src, *dest;
564
565         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
566         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
567         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
568         src = &p->ainsn.insn->bundle;
569         switch (p->ainsn.slot) {
570                 case 0:
571                         dest->quad0.slot0 = src->quad0.slot0;
572                         break;
573                 case 1:
574                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
575                         break;
576                 case 2:
577                         dest->quad1.slot2 = src->quad1.slot2;
578                         break;
579         }
580         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
581 }
582
583 void __kprobes arch_remove_kprobe(struct kprobe *p)
584 {
585         mutex_lock(&kprobe_mutex);
586         free_insn_slot(p->ainsn.insn, 0);
587         mutex_unlock(&kprobe_mutex);
588 }
589 /*
590  * We are resuming execution after a single step fault, so the pt_regs
591  * structure reflects the register state after we executed the instruction
592  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
593  * the ip to point back to the original stack address. To set the IP address
594  * to original stack address, handle the case where we need to fixup the
595  * relative IP address and/or fixup branch register.
596  */
597 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
598 {
599         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
600         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
601         unsigned long template;
602         int slot = ((unsigned long)p->addr & 0xf);
603
604         template = p->ainsn.insn->bundle.quad0.template;
605
606         if (slot == 1 && bundle_encoding[template][1] == L)
607                 slot = 2;
608
609         if (p->ainsn.inst_flag) {
610
611                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
612                         /* Fix relative IP address */
613                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
614                                         resume_addr;
615                 }
616
617                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
618                 /*
619                  * Fix target branch register, software convention is
620                  * to use either b0 or b6 or b7, so just checking
621                  * only those registers
622                  */
623                         switch (p->ainsn.target_br_reg) {
624                         case 0:
625                                 if ((regs->b0 == bundle_addr) ||
626                                         (regs->b0 == bundle_addr + 0x10)) {
627                                         regs->b0 = (regs->b0 - bundle_addr) +
628                                                 resume_addr;
629                                 }
630                                 break;
631                         case 6:
632                                 if ((regs->b6 == bundle_addr) ||
633                                         (regs->b6 == bundle_addr + 0x10)) {
634                                         regs->b6 = (regs->b6 - bundle_addr) +
635                                                 resume_addr;
636                                 }
637                                 break;
638                         case 7:
639                                 if ((regs->b7 == bundle_addr) ||
640                                         (regs->b7 == bundle_addr + 0x10)) {
641                                         regs->b7 = (regs->b7 - bundle_addr) +
642                                                 resume_addr;
643                                 }
644                                 break;
645                         } /* end switch */
646                 }
647                 goto turn_ss_off;
648         }
649
650         if (slot == 2) {
651                 if (regs->cr_iip == bundle_addr + 0x10) {
652                         regs->cr_iip = resume_addr + 0x10;
653                 }
654         } else {
655                 if (regs->cr_iip == bundle_addr) {
656                         regs->cr_iip = resume_addr;
657                 }
658         }
659
660 turn_ss_off:
661         /* Turn off Single Step bit */
662         ia64_psr(regs)->ss = 0;
663 }
664
665 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
666 {
667         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
668         unsigned long slot = (unsigned long)p->addr & 0xf;
669
670         /* single step inline if break instruction */
671         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
672                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
673         else
674                 regs->cr_iip = bundle_addr & ~0xFULL;
675
676         if (slot > 2)
677                 slot = 0;
678
679         ia64_psr(regs)->ri = slot;
680
681         /* turn on single stepping */
682         ia64_psr(regs)->ss = 1;
683 }
684
685 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
686 {
687         unsigned int slot = ia64_psr(regs)->ri;
688         unsigned int template, major_opcode;
689         unsigned long kprobe_inst;
690         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
691         bundle_t bundle;
692
693         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
694         template = bundle.quad0.template;
695
696         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
697         if (slot == 1 && bundle_encoding[template][1] == L)
698                 slot++;
699
700         /* Get Kprobe probe instruction at given slot*/
701         get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
702
703         /* For break instruction,
704          * Bits 37:40 Major opcode to be zero
705          * Bits 27:32 X6 to be zero
706          * Bits 32:35 X3 to be zero
707          */
708         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
709                 /* Not a break instruction */
710                 return 0;
711         }
712
713         /* Is a break instruction */
714         return 1;
715 }
716
717 static int __kprobes pre_kprobes_handler(struct die_args *args)
718 {
719         struct kprobe *p;
720         int ret = 0;
721         struct pt_regs *regs = args->regs;
722         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
723         struct kprobe_ctlblk *kcb;
724
725         /*
726          * We don't want to be preempted for the entire
727          * duration of kprobe processing
728          */
729         preempt_disable();
730         kcb = get_kprobe_ctlblk();
731
732         /* Handle recursion cases */
733         if (kprobe_running()) {
734                 p = get_kprobe(addr);
735                 if (p) {
736                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
737                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
738                                 ia64_psr(regs)->ss = 0;
739                                 goto no_kprobe;
740                         }
741                         /* We have reentered the pre_kprobe_handler(), since
742                          * another probe was hit while within the handler.
743                          * We here save the original kprobes variables and
744                          * just single step on the instruction of the new probe
745                          * without calling any user handlers.
746                          */
747                         save_previous_kprobe(kcb);
748                         set_current_kprobe(p, kcb);
749                         kprobes_inc_nmissed_count(p);
750                         prepare_ss(p, regs);
751                         kcb->kprobe_status = KPROBE_REENTER;
752                         return 1;
753                 } else if (args->err == __IA64_BREAK_JPROBE) {
754                         /*
755                          * jprobe instrumented function just completed
756                          */
757                         p = __get_cpu_var(current_kprobe);
758                         if (p->break_handler && p->break_handler(p, regs)) {
759                                 goto ss_probe;
760                         }
761                 } else if (!is_ia64_break_inst(regs)) {
762                         /* The breakpoint instruction was removed by
763                          * another cpu right after we hit, no further
764                          * handling of this interrupt is appropriate
765                          */
766                         ret = 1;
767                         goto no_kprobe;
768                 } else {
769                         /* Not our break */
770                         goto no_kprobe;
771                 }
772         }
773
774         p = get_kprobe(addr);
775         if (!p) {
776                 if (!is_ia64_break_inst(regs)) {
777                         /*
778                          * The breakpoint instruction was removed right
779                          * after we hit it.  Another cpu has removed
780                          * either a probepoint or a debugger breakpoint
781                          * at this address.  In either case, no further
782                          * handling of this interrupt is appropriate.
783                          */
784                         ret = 1;
785
786                 }
787
788                 /* Not one of our break, let kernel handle it */
789                 goto no_kprobe;
790         }
791
792         set_current_kprobe(p, kcb);
793         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
794
795         if (p->pre_handler && p->pre_handler(p, regs))
796                 /*
797                  * Our pre-handler is specifically requesting that we just
798                  * do a return.  This is used for both the jprobe pre-handler
799                  * and the kretprobe trampoline
800                  */
801                 return 1;
802
803 ss_probe:
804         prepare_ss(p, regs);
805         kcb->kprobe_status = KPROBE_HIT_SS;
806         return 1;
807
808 no_kprobe:
809         preempt_enable_no_resched();
810         return ret;
811 }
812
813 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
814 {
815         struct kprobe *cur = kprobe_running();
816         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
817
818         if (!cur)
819                 return 0;
820
821         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
822                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
823                 cur->post_handler(cur, regs, 0);
824         }
825
826         resume_execution(cur, regs);
827
828         /*Restore back the original saved kprobes variables and continue. */
829         if (kcb->kprobe_status == KPROBE_REENTER) {
830                 restore_previous_kprobe(kcb);
831                 goto out;
832         }
833         reset_current_kprobe();
834
835 out:
836         preempt_enable_no_resched();
837         return 1;
838 }
839
840 int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
841 {
842         struct kprobe *cur = kprobe_running();
843         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
844
845
846         switch(kcb->kprobe_status) {
847         case KPROBE_HIT_SS:
848         case KPROBE_REENTER:
849                 /*
850                  * We are here because the instruction being single
851                  * stepped caused a page fault. We reset the current
852                  * kprobe and the instruction pointer points back to
853                  * the probe address and allow the page fault handler
854                  * to continue as a normal page fault.
855                  */
856                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
857                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
858                 if (kcb->kprobe_status == KPROBE_REENTER)
859                         restore_previous_kprobe(kcb);
860                 else
861                         reset_current_kprobe();
862                 preempt_enable_no_resched();
863                 break;
864         case KPROBE_HIT_ACTIVE:
865         case KPROBE_HIT_SSDONE:
866                 /*
867                  * We increment the nmissed count for accounting,
868                  * we can also use npre/npostfault count for accouting
869                  * these specific fault cases.
870                  */
871                 kprobes_inc_nmissed_count(cur);
872
873                 /*
874                  * We come here because instructions in the pre/post
875                  * handler caused the page_fault, this could happen
876                  * if handler tries to access user space by
877                  * copy_from_user(), get_user() etc. Let the
878                  * user-specified handler try to fix it first.
879                  */
880                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
881                         return 1;
882                 /*
883                  * In case the user-specified fault handler returned
884                  * zero, try to fix up.
885                  */
886                 if (ia64_done_with_exception(regs))
887                         return 1;
888
889                 /*
890                  * Let ia64_do_page_fault() fix it.
891                  */
892                 break;
893         default:
894                 break;
895         }
896
897         return 0;
898 }
899
900 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
901                                        unsigned long val, void *data)
902 {
903         struct die_args *args = (struct die_args *)data;
904         int ret = NOTIFY_DONE;
905
906         if (args->regs && user_mode(args->regs))
907                 return ret;
908
909         switch(val) {
910         case DIE_BREAK:
911                 /* err is break number from ia64_bad_break() */
912                 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
913                         || args->err == __IA64_BREAK_JPROBE
914                         || args->err == 0)
915                         if (pre_kprobes_handler(args))
916                                 ret = NOTIFY_STOP;
917                 break;
918         case DIE_FAULT:
919                 /* err is vector number from ia64_fault() */
920                 if (args->err == 36)
921                         if (post_kprobes_handler(args->regs))
922                                 ret = NOTIFY_STOP;
923                 break;
924         default:
925                 break;
926         }
927         return ret;
928 }
929
930 struct param_bsp_cfm {
931         unsigned long ip;
932         unsigned long *bsp;
933         unsigned long cfm;
934 };
935
936 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
937 {
938         unsigned long ip;
939         struct param_bsp_cfm *lp = arg;
940
941         do {
942                 unw_get_ip(info, &ip);
943                 if (ip == 0)
944                         break;
945                 if (ip == lp->ip) {
946                         unw_get_bsp(info, (unsigned long*)&lp->bsp);
947                         unw_get_cfm(info, (unsigned long*)&lp->cfm);
948                         return;
949                 }
950         } while (unw_unwind(info) >= 0);
951         lp->bsp = NULL;
952         lp->cfm = 0;
953         return;
954 }
955
956 unsigned long arch_deref_entry_point(void *entry)
957 {
958         return ((struct fnptr *)entry)->ip;
959 }
960
961 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
962 {
963         struct jprobe *jp = container_of(p, struct jprobe, kp);
964         unsigned long addr = arch_deref_entry_point(jp->entry);
965         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
966         struct param_bsp_cfm pa;
967         int bytes;
968
969         /*
970          * Callee owns the argument space and could overwrite it, eg
971          * tail call optimization. So to be absolutely safe
972          * we save the argument space before transferring the control
973          * to instrumented jprobe function which runs in
974          * the process context
975          */
976         pa.ip = regs->cr_iip;
977         unw_init_running(ia64_get_bsp_cfm, &pa);
978         bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
979                                 - (char *)pa.bsp;
980         memcpy( kcb->jprobes_saved_stacked_regs,
981                 pa.bsp,
982                 bytes );
983         kcb->bsp = pa.bsp;
984         kcb->cfm = pa.cfm;
985
986         /* save architectural state */
987         kcb->jprobe_saved_regs = *regs;
988
989         /* after rfi, execute the jprobe instrumented function */
990         regs->cr_iip = addr & ~0xFULL;
991         ia64_psr(regs)->ri = addr & 0xf;
992         regs->r1 = ((struct fnptr *)(jp->entry))->gp;
993
994         /*
995          * fix the return address to our jprobe_inst_return() function
996          * in the jprobes.S file
997          */
998         regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
999
1000         return 1;
1001 }
1002
1003 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1004 {
1005         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1006         int bytes;
1007
1008         /* restoring architectural state */
1009         *regs = kcb->jprobe_saved_regs;
1010
1011         /* restoring the original argument space */
1012         flush_register_stack();
1013         bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1014                                 - (char *)kcb->bsp;
1015         memcpy( kcb->bsp,
1016                 kcb->jprobes_saved_stacked_regs,
1017                 bytes );
1018         invalidate_stacked_regs();
1019
1020         preempt_enable_no_resched();
1021         return 1;
1022 }
1023
1024 static struct kprobe trampoline_p = {
1025         .pre_handler = trampoline_probe_handler
1026 };
1027
1028 int __init arch_init_kprobes(void)
1029 {
1030         trampoline_p.addr =
1031                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1032         return register_kprobe(&trampoline_p);
1033 }
1034
1035 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1036 {
1037         if (p->addr ==
1038                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1039                 return 1;
1040
1041         return 0;
1042 }