[PATCH] kretprobe: kretprobe-booster
[pandora-kernel.git] / arch / i386 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/i386/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28  *              <prasanna@in.ibm.com> added function-return probes.
29  */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 /* insert a jmp code */
45 static inline void set_jmp_op(void *from, void *to)
46 {
47         struct __arch_jmp_op {
48                 char op;
49                 long raddr;
50         } __attribute__((packed)) *jop;
51         jop = (struct __arch_jmp_op *)from;
52         jop->raddr = (long)(to) - ((long)(from) + 5);
53         jop->op = RELATIVEJUMP_INSTRUCTION;
54 }
55
56 /*
57  * returns non-zero if opcodes can be boosted.
58  */
59 static inline int can_boost(kprobe_opcode_t opcode)
60 {
61         switch (opcode & 0xf0 ) {
62         case 0x70:
63                 return 0; /* can't boost conditional jump */
64         case 0x90:
65                 /* can't boost call and pushf */
66                 return opcode != 0x9a && opcode != 0x9c;
67         case 0xc0:
68                 /* can't boost undefined opcodes and soft-interruptions */
69                 return (0xc1 < opcode && opcode < 0xc6) ||
70                         (0xc7 < opcode && opcode < 0xcc) || opcode == 0xcf;
71         case 0xd0:
72                 /* can boost AA* and XLAT */
73                 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
74         case 0xe0:
75                 /* can boost in/out and (may be) jmps */
76                 return (0xe3 < opcode && opcode != 0xe8);
77         case 0xf0:
78                 /* clear and set flags can be boost */
79                 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
80         default:
81                 /* currently, can't boost 2 bytes opcodes */
82                 return opcode != 0x0f;
83         }
84 }
85
86
87 /*
88  * returns non-zero if opcode modifies the interrupt flag.
89  */
90 static inline int is_IF_modifier(kprobe_opcode_t opcode)
91 {
92         switch (opcode) {
93         case 0xfa:              /* cli */
94         case 0xfb:              /* sti */
95         case 0xcf:              /* iret/iretd */
96         case 0x9d:              /* popf/popfd */
97                 return 1;
98         }
99         return 0;
100 }
101
102 int __kprobes arch_prepare_kprobe(struct kprobe *p)
103 {
104         /* insn: must be on special executable page on i386. */
105         p->ainsn.insn = get_insn_slot();
106         if (!p->ainsn.insn)
107                 return -ENOMEM;
108
109         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
110         p->opcode = *p->addr;
111         if (can_boost(p->opcode)) {
112                 p->ainsn.boostable = 0;
113         } else {
114                 p->ainsn.boostable = -1;
115         }
116         return 0;
117 }
118
119 void __kprobes arch_arm_kprobe(struct kprobe *p)
120 {
121         *p->addr = BREAKPOINT_INSTRUCTION;
122         flush_icache_range((unsigned long) p->addr,
123                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
124 }
125
126 void __kprobes arch_disarm_kprobe(struct kprobe *p)
127 {
128         *p->addr = p->opcode;
129         flush_icache_range((unsigned long) p->addr,
130                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
131 }
132
133 void __kprobes arch_remove_kprobe(struct kprobe *p)
134 {
135         mutex_lock(&kprobe_mutex);
136         free_insn_slot(p->ainsn.insn);
137         mutex_unlock(&kprobe_mutex);
138 }
139
140 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
141 {
142         kcb->prev_kprobe.kp = kprobe_running();
143         kcb->prev_kprobe.status = kcb->kprobe_status;
144         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
145         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
146 }
147
148 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
149 {
150         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
151         kcb->kprobe_status = kcb->prev_kprobe.status;
152         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
153         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
154 }
155
156 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
157                                 struct kprobe_ctlblk *kcb)
158 {
159         __get_cpu_var(current_kprobe) = p;
160         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
161                 = (regs->eflags & (TF_MASK | IF_MASK));
162         if (is_IF_modifier(p->opcode))
163                 kcb->kprobe_saved_eflags &= ~IF_MASK;
164 }
165
166 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
167 {
168         regs->eflags |= TF_MASK;
169         regs->eflags &= ~IF_MASK;
170         /*single step inline if the instruction is an int3*/
171         if (p->opcode == BREAKPOINT_INSTRUCTION)
172                 regs->eip = (unsigned long)p->addr;
173         else
174                 regs->eip = (unsigned long)p->ainsn.insn;
175 }
176
177 /* Called with kretprobe_lock held */
178 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
179                                       struct pt_regs *regs)
180 {
181         unsigned long *sara = (unsigned long *)&regs->esp;
182         struct kretprobe_instance *ri;
183
184         if ((ri = get_free_rp_inst(rp)) != NULL) {
185                 ri->rp = rp;
186                 ri->task = current;
187                 ri->ret_addr = (kprobe_opcode_t *) *sara;
188
189                 /* Replace the return addr with trampoline addr */
190                 *sara = (unsigned long) &kretprobe_trampoline;
191
192                 add_rp_inst(ri);
193         } else {
194                 rp->nmissed++;
195         }
196 }
197
198 /*
199  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
200  * remain disabled thorough out this function.
201  */
202 static int __kprobes kprobe_handler(struct pt_regs *regs)
203 {
204         struct kprobe *p;
205         int ret = 0;
206         kprobe_opcode_t *addr = NULL;
207         unsigned long *lp;
208         struct kprobe_ctlblk *kcb;
209 #ifdef CONFIG_PREEMPT
210         unsigned pre_preempt_count = preempt_count();
211 #endif /* CONFIG_PREEMPT */
212
213         /*
214          * We don't want to be preempted for the entire
215          * duration of kprobe processing
216          */
217         preempt_disable();
218         kcb = get_kprobe_ctlblk();
219
220         /* Check if the application is using LDT entry for its code segment and
221          * calculate the address by reading the base address from the LDT entry.
222          */
223         if ((regs->xcs & 4) && (current->mm)) {
224                 lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8)
225                                         + (char *) current->mm->context.ldt);
226                 addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip -
227                                                 sizeof(kprobe_opcode_t));
228         } else {
229                 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
230         }
231         /* Check we're not actually recursing */
232         if (kprobe_running()) {
233                 p = get_kprobe(addr);
234                 if (p) {
235                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
236                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237                                 regs->eflags &= ~TF_MASK;
238                                 regs->eflags |= kcb->kprobe_saved_eflags;
239                                 goto no_kprobe;
240                         }
241                         /* We have reentered the kprobe_handler(), since
242                          * another probe was hit while within the handler.
243                          * We here save the original kprobes variables and
244                          * just single step on the instruction of the new probe
245                          * without calling any user handlers.
246                          */
247                         save_previous_kprobe(kcb);
248                         set_current_kprobe(p, regs, kcb);
249                         kprobes_inc_nmissed_count(p);
250                         prepare_singlestep(p, regs);
251                         kcb->kprobe_status = KPROBE_REENTER;
252                         return 1;
253                 } else {
254                         if (regs->eflags & VM_MASK) {
255                         /* We are in virtual-8086 mode. Return 0 */
256                                 goto no_kprobe;
257                         }
258                         if (*addr != BREAKPOINT_INSTRUCTION) {
259                         /* The breakpoint instruction was removed by
260                          * another cpu right after we hit, no further
261                          * handling of this interrupt is appropriate
262                          */
263                                 regs->eip -= sizeof(kprobe_opcode_t);
264                                 ret = 1;
265                                 goto no_kprobe;
266                         }
267                         p = __get_cpu_var(current_kprobe);
268                         if (p->break_handler && p->break_handler(p, regs)) {
269                                 goto ss_probe;
270                         }
271                 }
272                 goto no_kprobe;
273         }
274
275         p = get_kprobe(addr);
276         if (!p) {
277                 if (regs->eflags & VM_MASK) {
278                         /* We are in virtual-8086 mode. Return 0 */
279                         goto no_kprobe;
280                 }
281
282                 if (*addr != BREAKPOINT_INSTRUCTION) {
283                         /*
284                          * The breakpoint instruction was removed right
285                          * after we hit it.  Another cpu has removed
286                          * either a probepoint or a debugger breakpoint
287                          * at this address.  In either case, no further
288                          * handling of this interrupt is appropriate.
289                          * Back up over the (now missing) int3 and run
290                          * the original instruction.
291                          */
292                         regs->eip -= sizeof(kprobe_opcode_t);
293                         ret = 1;
294                 }
295                 /* Not one of ours: let kernel handle it */
296                 goto no_kprobe;
297         }
298
299         set_current_kprobe(p, regs, kcb);
300         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
301
302         if (p->pre_handler && p->pre_handler(p, regs))
303                 /* handler has already set things up, so skip ss setup */
304                 return 1;
305
306         if (p->ainsn.boostable == 1 &&
307 #ifdef CONFIG_PREEMPT
308             !(pre_preempt_count) && /*
309                                        * This enables booster when the direct
310                                        * execution path aren't preempted.
311                                        */
312 #endif /* CONFIG_PREEMPT */
313             !p->post_handler && !p->break_handler ) {
314                 /* Boost up -- we can execute copied instructions directly */
315                 reset_current_kprobe();
316                 regs->eip = (unsigned long)p->ainsn.insn;
317                 preempt_enable_no_resched();
318                 return 1;
319         }
320
321 ss_probe:
322         prepare_singlestep(p, regs);
323         kcb->kprobe_status = KPROBE_HIT_SS;
324         return 1;
325
326 no_kprobe:
327         preempt_enable_no_resched();
328         return ret;
329 }
330
331 /*
332  * For function-return probes, init_kprobes() establishes a probepoint
333  * here. When a retprobed function returns, this probe is hit and
334  * trampoline_probe_handler() runs, calling the kretprobe's handler.
335  */
336  void __kprobes kretprobe_trampoline_holder(void)
337  {
338         asm volatile ( ".global kretprobe_trampoline\n"
339                         "kretprobe_trampoline: \n"
340                         "       pushf\n"
341                         /* skip cs, eip, orig_eax, es, ds */
342                         "       subl $20, %esp\n"
343                         "       pushl %eax\n"
344                         "       pushl %ebp\n"
345                         "       pushl %edi\n"
346                         "       pushl %esi\n"
347                         "       pushl %edx\n"
348                         "       pushl %ecx\n"
349                         "       pushl %ebx\n"
350                         "       movl %esp, %eax\n"
351                         "       call trampoline_handler\n"
352                         /* move eflags to cs */
353                         "       movl 48(%esp), %edx\n"
354                         "       movl %edx, 44(%esp)\n"
355                         /* save true return address on eflags */
356                         "       movl %eax, 48(%esp)\n"
357                         "       popl %ebx\n"
358                         "       popl %ecx\n"
359                         "       popl %edx\n"
360                         "       popl %esi\n"
361                         "       popl %edi\n"
362                         "       popl %ebp\n"
363                         "       popl %eax\n"
364                         /* skip eip, orig_eax, es, ds */
365                         "       addl $16, %esp\n"
366                         "       popf\n"
367                         "       ret\n");
368 }
369
370 /*
371  * Called from kretprobe_trampoline
372  */
373 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
374 {
375         struct kretprobe_instance *ri = NULL;
376         struct hlist_head *head;
377         struct hlist_node *node, *tmp;
378         unsigned long flags, orig_ret_address = 0;
379         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
380
381         spin_lock_irqsave(&kretprobe_lock, flags);
382         head = kretprobe_inst_table_head(current);
383
384         /*
385          * It is possible to have multiple instances associated with a given
386          * task either because an multiple functions in the call path
387          * have a return probe installed on them, and/or more then one return
388          * return probe was registered for a target function.
389          *
390          * We can handle this because:
391          *     - instances are always inserted at the head of the list
392          *     - when multiple return probes are registered for the same
393          *       function, the first instance's ret_addr will point to the
394          *       real return address, and all the rest will point to
395          *       kretprobe_trampoline
396          */
397         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
398                 if (ri->task != current)
399                         /* another task is sharing our hash bucket */
400                         continue;
401
402                 if (ri->rp && ri->rp->handler){
403                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
404                         ri->rp->handler(ri, regs);
405                         __get_cpu_var(current_kprobe) = NULL;
406                 }
407
408                 orig_ret_address = (unsigned long)ri->ret_addr;
409                 recycle_rp_inst(ri);
410
411                 if (orig_ret_address != trampoline_address)
412                         /*
413                          * This is the real return address. Any other
414                          * instances associated with this task are for
415                          * other calls deeper on the call stack
416                          */
417                         break;
418         }
419
420         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
421
422         spin_unlock_irqrestore(&kretprobe_lock, flags);
423
424         return (void*)orig_ret_address;
425 }
426
427 /*
428  * Called after single-stepping.  p->addr is the address of the
429  * instruction whose first byte has been replaced by the "int 3"
430  * instruction.  To avoid the SMP problems that can occur when we
431  * temporarily put back the original opcode to single-step, we
432  * single-stepped a copy of the instruction.  The address of this
433  * copy is p->ainsn.insn.
434  *
435  * This function prepares to return from the post-single-step
436  * interrupt.  We have to fix up the stack as follows:
437  *
438  * 0) Except in the case of absolute or indirect jump or call instructions,
439  * the new eip is relative to the copied instruction.  We need to make
440  * it relative to the original instruction.
441  *
442  * 1) If the single-stepped instruction was pushfl, then the TF and IF
443  * flags are set in the just-pushed eflags, and may need to be cleared.
444  *
445  * 2) If the single-stepped instruction was a call, the return address
446  * that is atop the stack is the address following the copied instruction.
447  * We need to make it the address following the original instruction.
448  *
449  * This function also checks instruction size for preparing direct execution.
450  */
451 static void __kprobes resume_execution(struct kprobe *p,
452                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
453 {
454         unsigned long *tos = (unsigned long *)&regs->esp;
455         unsigned long copy_eip = (unsigned long)p->ainsn.insn;
456         unsigned long orig_eip = (unsigned long)p->addr;
457
458         regs->eflags &= ~TF_MASK;
459         switch (p->ainsn.insn[0]) {
460         case 0x9c:              /* pushfl */
461                 *tos &= ~(TF_MASK | IF_MASK);
462                 *tos |= kcb->kprobe_old_eflags;
463                 break;
464         case 0xc3:              /* ret/lret */
465         case 0xcb:
466         case 0xc2:
467         case 0xca:
468         case 0xea:              /* jmp absolute -- eip is correct */
469                 /* eip is already adjusted, no more changes required */
470                 p->ainsn.boostable = 1;
471                 goto no_change;
472         case 0xe8:              /* call relative - Fix return addr */
473                 *tos = orig_eip + (*tos - copy_eip);
474                 break;
475         case 0xff:
476                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
477                         /* call absolute, indirect */
478                         /*
479                          * Fix return addr; eip is correct.
480                          * But this is not boostable
481                          */
482                         *tos = orig_eip + (*tos - copy_eip);
483                         goto no_change;
484                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
485                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
486                         /* eip is correct. And this is boostable */
487                         p->ainsn.boostable = 1;
488                         goto no_change;
489                 }
490         default:
491                 break;
492         }
493
494         if (p->ainsn.boostable == 0) {
495                 if ((regs->eip > copy_eip) &&
496                     (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
497                         /*
498                          * These instructions can be executed directly if it
499                          * jumps back to correct address.
500                          */
501                         set_jmp_op((void *)regs->eip,
502                                    (void *)orig_eip + (regs->eip - copy_eip));
503                         p->ainsn.boostable = 1;
504                 } else {
505                         p->ainsn.boostable = -1;
506                 }
507         }
508
509         regs->eip = orig_eip + (regs->eip - copy_eip);
510
511 no_change:
512         return;
513 }
514
515 /*
516  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
517  * remain disabled thoroughout this function.
518  */
519 static inline int post_kprobe_handler(struct pt_regs *regs)
520 {
521         struct kprobe *cur = kprobe_running();
522         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523
524         if (!cur)
525                 return 0;
526
527         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
528                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
529                 cur->post_handler(cur, regs, 0);
530         }
531
532         resume_execution(cur, regs, kcb);
533         regs->eflags |= kcb->kprobe_saved_eflags;
534
535         /*Restore back the original saved kprobes variables and continue. */
536         if (kcb->kprobe_status == KPROBE_REENTER) {
537                 restore_previous_kprobe(kcb);
538                 goto out;
539         }
540         reset_current_kprobe();
541 out:
542         preempt_enable_no_resched();
543
544         /*
545          * if somebody else is singlestepping across a probe point, eflags
546          * will have TF set, in which case, continue the remaining processing
547          * of do_debug, as if this is not a probe hit.
548          */
549         if (regs->eflags & TF_MASK)
550                 return 0;
551
552         return 1;
553 }
554
555 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
556 {
557         struct kprobe *cur = kprobe_running();
558         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
559
560         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
561                 return 1;
562
563         if (kcb->kprobe_status & KPROBE_HIT_SS) {
564                 resume_execution(cur, regs, kcb);
565                 regs->eflags |= kcb->kprobe_old_eflags;
566
567                 reset_current_kprobe();
568                 preempt_enable_no_resched();
569         }
570         return 0;
571 }
572
573 /*
574  * Wrapper routine to for handling exceptions.
575  */
576 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
577                                        unsigned long val, void *data)
578 {
579         struct die_args *args = (struct die_args *)data;
580         int ret = NOTIFY_DONE;
581
582         switch (val) {
583         case DIE_INT3:
584                 if (kprobe_handler(args->regs))
585                         ret = NOTIFY_STOP;
586                 break;
587         case DIE_DEBUG:
588                 if (post_kprobe_handler(args->regs))
589                         ret = NOTIFY_STOP;
590                 break;
591         case DIE_GPF:
592         case DIE_PAGE_FAULT:
593                 /* kprobe_running() needs smp_processor_id() */
594                 preempt_disable();
595                 if (kprobe_running() &&
596                     kprobe_fault_handler(args->regs, args->trapnr))
597                         ret = NOTIFY_STOP;
598                 preempt_enable();
599                 break;
600         default:
601                 break;
602         }
603         return ret;
604 }
605
606 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
607 {
608         struct jprobe *jp = container_of(p, struct jprobe, kp);
609         unsigned long addr;
610         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
611
612         kcb->jprobe_saved_regs = *regs;
613         kcb->jprobe_saved_esp = &regs->esp;
614         addr = (unsigned long)(kcb->jprobe_saved_esp);
615
616         /*
617          * TBD: As Linus pointed out, gcc assumes that the callee
618          * owns the argument space and could overwrite it, e.g.
619          * tailcall optimization. So, to be absolutely safe
620          * we also save and restore enough stack bytes to cover
621          * the argument area.
622          */
623         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
624                         MIN_STACK_SIZE(addr));
625         regs->eflags &= ~IF_MASK;
626         regs->eip = (unsigned long)(jp->entry);
627         return 1;
628 }
629
630 void __kprobes jprobe_return(void)
631 {
632         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
633
634         asm volatile ("       xchgl   %%ebx,%%esp     \n"
635                       "       int3                      \n"
636                       "       .globl jprobe_return_end  \n"
637                       "       jprobe_return_end:        \n"
638                       "       nop                       \n"::"b"
639                       (kcb->jprobe_saved_esp):"memory");
640 }
641
642 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
643 {
644         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
645         u8 *addr = (u8 *) (regs->eip - 1);
646         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
647         struct jprobe *jp = container_of(p, struct jprobe, kp);
648
649         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
650                 if (&regs->esp != kcb->jprobe_saved_esp) {
651                         struct pt_regs *saved_regs =
652                             container_of(kcb->jprobe_saved_esp,
653                                             struct pt_regs, esp);
654                         printk("current esp %p does not match saved esp %p\n",
655                                &regs->esp, kcb->jprobe_saved_esp);
656                         printk("Saved registers for jprobe %p\n", jp);
657                         show_registers(saved_regs);
658                         printk("Current registers\n");
659                         show_registers(regs);
660                         BUG();
661                 }
662                 *regs = kcb->jprobe_saved_regs;
663                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
664                        MIN_STACK_SIZE(stack_addr));
665                 preempt_enable_no_resched();
666                 return 1;
667         }
668         return 0;
669 }
670
671 int __init arch_init_kprobes(void)
672 {
673         return 0;
674 }