x86/mm: Fix boot crash with DEBUG_PAGE_ALLOC=y and more than 512G RAM
[pandora-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cputype.h>
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 /*
37  * All of this file is extremly similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48 static u32 cache_levels;
49
50 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
51 #define CSSELR_MAX 12
52
53 /* Which cache CCSIDR represents depends on CSSELR value. */
54 static u32 get_ccsidr(u32 csselr)
55 {
56         u32 ccsidr;
57
58         /* Make sure noone else changes CSSELR during this! */
59         local_irq_disable();
60         /* Put value into CSSELR */
61         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
62         isb();
63         /* Read result out of CCSIDR */
64         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
65         local_irq_enable();
66
67         return ccsidr;
68 }
69
70 static void do_dc_cisw(u32 val)
71 {
72         asm volatile("dc cisw, %x0" : : "r" (val));
73         dsb();
74 }
75
76 static void do_dc_csw(u32 val)
77 {
78         asm volatile("dc csw, %x0" : : "r" (val));
79         dsb();
80 }
81
82 /* See note at ARM ARM B1.14.4 */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84                         const struct sys_reg_params *p,
85                         const struct sys_reg_desc *r)
86 {
87         unsigned long val;
88         int cpu;
89
90         if (!p->is_write)
91                 return read_from_write_only(vcpu, p);
92
93         cpu = get_cpu();
94
95         cpumask_setall(&vcpu->arch.require_dcache_flush);
96         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
97
98         /* If we were already preempted, take the long way around */
99         if (cpu != vcpu->arch.last_pcpu) {
100                 flush_cache_all();
101                 goto done;
102         }
103
104         val = *vcpu_reg(vcpu, p->Rt);
105
106         switch (p->CRm) {
107         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108         case 14:                /* DCCISW */
109                 do_dc_cisw(val);
110                 break;
111
112         case 10:                /* DCCSW */
113                 do_dc_csw(val);
114                 break;
115         }
116
117 done:
118         put_cpu();
119
120         return true;
121 }
122
123 /*
124  * We could trap ID_DFR0 and tell the guest we don't support performance
125  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
126  * NAKed, so it will read the PMCR anyway.
127  *
128  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
129  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130  * all PM registers, which doesn't crash the guest kernel at least.
131  */
132 static bool pm_fake(struct kvm_vcpu *vcpu,
133                     const struct sys_reg_params *p,
134                     const struct sys_reg_desc *r)
135 {
136         if (p->is_write)
137                 return ignore_write(vcpu, p);
138         else
139                 return read_zero(vcpu, p);
140 }
141
142 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
143 {
144         u64 amair;
145
146         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
147         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
148 }
149
150 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
151 {
152         /*
153          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
154          */
155         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
156 }
157
158 /*
159  * Architected system registers.
160  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
161  */
162 static const struct sys_reg_desc sys_reg_descs[] = {
163         /* DC ISW */
164         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
165           access_dcsw },
166         /* DC CSW */
167         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
168           access_dcsw },
169         /* DC CISW */
170         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
171           access_dcsw },
172
173         /* TEECR32_EL1 */
174         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175           NULL, reset_val, TEECR32_EL1, 0 },
176         /* TEEHBR32_EL1 */
177         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178           NULL, reset_val, TEEHBR32_EL1, 0 },
179         /* DBGVCR32_EL2 */
180         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181           NULL, reset_val, DBGVCR32_EL2, 0 },
182
183         /* MPIDR_EL1 */
184         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185           NULL, reset_mpidr, MPIDR_EL1 },
186         /* SCTLR_EL1 */
187         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188           NULL, reset_val, SCTLR_EL1, 0x00C50078 },
189         /* CPACR_EL1 */
190         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191           NULL, reset_val, CPACR_EL1, 0 },
192         /* TTBR0_EL1 */
193         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194           NULL, reset_unknown, TTBR0_EL1 },
195         /* TTBR1_EL1 */
196         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197           NULL, reset_unknown, TTBR1_EL1 },
198         /* TCR_EL1 */
199         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200           NULL, reset_val, TCR_EL1, 0 },
201
202         /* AFSR0_EL1 */
203         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204           NULL, reset_unknown, AFSR0_EL1 },
205         /* AFSR1_EL1 */
206         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207           NULL, reset_unknown, AFSR1_EL1 },
208         /* ESR_EL1 */
209         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210           NULL, reset_unknown, ESR_EL1 },
211         /* FAR_EL1 */
212         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213           NULL, reset_unknown, FAR_EL1 },
214
215         /* PMINTENSET_EL1 */
216         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
217           pm_fake },
218         /* PMINTENCLR_EL1 */
219         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
220           pm_fake },
221
222         /* MAIR_EL1 */
223         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
224           NULL, reset_unknown, MAIR_EL1 },
225         /* AMAIR_EL1 */
226         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
227           NULL, reset_amair_el1, AMAIR_EL1 },
228
229         /* VBAR_EL1 */
230         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
231           NULL, reset_val, VBAR_EL1, 0 },
232         /* CONTEXTIDR_EL1 */
233         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
234           NULL, reset_val, CONTEXTIDR_EL1, 0 },
235         /* TPIDR_EL1 */
236         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
237           NULL, reset_unknown, TPIDR_EL1 },
238
239         /* CNTKCTL_EL1 */
240         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
241           NULL, reset_val, CNTKCTL_EL1, 0},
242
243         /* CSSELR_EL1 */
244         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
245           NULL, reset_unknown, CSSELR_EL1 },
246
247         /* PMCR_EL0 */
248         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
249           pm_fake },
250         /* PMCNTENSET_EL0 */
251         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
252           pm_fake },
253         /* PMCNTENCLR_EL0 */
254         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
255           pm_fake },
256         /* PMOVSCLR_EL0 */
257         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
258           pm_fake },
259         /* PMSWINC_EL0 */
260         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
261           pm_fake },
262         /* PMSELR_EL0 */
263         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
264           pm_fake },
265         /* PMCEID0_EL0 */
266         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
267           pm_fake },
268         /* PMCEID1_EL0 */
269         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
270           pm_fake },
271         /* PMCCNTR_EL0 */
272         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
273           pm_fake },
274         /* PMXEVTYPER_EL0 */
275         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
276           pm_fake },
277         /* PMXEVCNTR_EL0 */
278         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
279           pm_fake },
280         /* PMUSERENR_EL0 */
281         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
282           pm_fake },
283         /* PMOVSSET_EL0 */
284         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
285           pm_fake },
286
287         /* TPIDR_EL0 */
288         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
289           NULL, reset_unknown, TPIDR_EL0 },
290         /* TPIDRRO_EL0 */
291         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
292           NULL, reset_unknown, TPIDRRO_EL0 },
293
294         /* DACR32_EL2 */
295         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
296           NULL, reset_unknown, DACR32_EL2 },
297         /* IFSR32_EL2 */
298         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
299           NULL, reset_unknown, IFSR32_EL2 },
300         /* FPEXC32_EL2 */
301         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
302           NULL, reset_val, FPEXC32_EL2, 0x70 },
303 };
304
305 /* Trapped cp15 registers */
306 static const struct sys_reg_desc cp15_regs[] = {
307         /*
308          * DC{C,I,CI}SW operations:
309          */
310         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
311         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
312         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
313         { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
314         { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
315         { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
316         { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
317         { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
318         { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
319         { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
320         { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
321         { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
322         { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
323         { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
324         { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
325         { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
326 };
327
328 /* Target specific emulation tables */
329 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
330
331 void kvm_register_target_sys_reg_table(unsigned int target,
332                                        struct kvm_sys_reg_target_table *table)
333 {
334         target_tables[target] = table;
335 }
336
337 /* Get specific register table for this target. */
338 static const struct sys_reg_desc *get_target_table(unsigned target,
339                                                    bool mode_is_64,
340                                                    size_t *num)
341 {
342         struct kvm_sys_reg_target_table *table;
343
344         table = target_tables[target];
345         if (mode_is_64) {
346                 *num = table->table64.num;
347                 return table->table64.table;
348         } else {
349                 *num = table->table32.num;
350                 return table->table32.table;
351         }
352 }
353
354 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
355                                          const struct sys_reg_desc table[],
356                                          unsigned int num)
357 {
358         unsigned int i;
359
360         for (i = 0; i < num; i++) {
361                 const struct sys_reg_desc *r = &table[i];
362
363                 if (params->Op0 != r->Op0)
364                         continue;
365                 if (params->Op1 != r->Op1)
366                         continue;
367                 if (params->CRn != r->CRn)
368                         continue;
369                 if (params->CRm != r->CRm)
370                         continue;
371                 if (params->Op2 != r->Op2)
372                         continue;
373
374                 return r;
375         }
376         return NULL;
377 }
378
379 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
380 {
381         kvm_inject_undefined(vcpu);
382         return 1;
383 }
384
385 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
386 {
387         kvm_inject_undefined(vcpu);
388         return 1;
389 }
390
391 static void emulate_cp15(struct kvm_vcpu *vcpu,
392                          const struct sys_reg_params *params)
393 {
394         size_t num;
395         const struct sys_reg_desc *table, *r;
396
397         table = get_target_table(vcpu->arch.target, false, &num);
398
399         /* Search target-specific then generic table. */
400         r = find_reg(params, table, num);
401         if (!r)
402                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
403
404         if (likely(r)) {
405                 /*
406                  * Not having an accessor means that we have
407                  * configured a trap that we don't know how to
408                  * handle. This certainly qualifies as a gross bug
409                  * that should be fixed right away.
410                  */
411                 BUG_ON(!r->access);
412
413                 if (likely(r->access(vcpu, params, r))) {
414                         /* Skip instruction, since it was emulated */
415                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
416                         return;
417                 }
418                 /* If access function fails, it should complain. */
419         }
420
421         kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
422         print_sys_reg_instr(params);
423         kvm_inject_undefined(vcpu);
424 }
425
426 /**
427  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
428  * @vcpu: The VCPU pointer
429  * @run:  The kvm_run struct
430  */
431 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
432 {
433         struct sys_reg_params params;
434         u32 hsr = kvm_vcpu_get_hsr(vcpu);
435         int Rt2 = (hsr >> 10) & 0xf;
436
437         params.CRm = (hsr >> 1) & 0xf;
438         params.Rt = (hsr >> 5) & 0xf;
439         params.is_write = ((hsr & 1) == 0);
440
441         params.Op0 = 0;
442         params.Op1 = (hsr >> 16) & 0xf;
443         params.Op2 = 0;
444         params.CRn = 0;
445
446         /*
447          * Massive hack here. Store Rt2 in the top 32bits so we only
448          * have one register to deal with. As we use the same trap
449          * backends between AArch32 and AArch64, we get away with it.
450          */
451         if (params.is_write) {
452                 u64 val = *vcpu_reg(vcpu, params.Rt);
453                 val &= 0xffffffff;
454                 val |= *vcpu_reg(vcpu, Rt2) << 32;
455                 *vcpu_reg(vcpu, params.Rt) = val;
456         }
457
458         emulate_cp15(vcpu, &params);
459
460         /* Do the opposite hack for the read side */
461         if (!params.is_write) {
462                 u64 val = *vcpu_reg(vcpu, params.Rt);
463                 val >>= 32;
464                 *vcpu_reg(vcpu, Rt2) = val;
465         }
466
467         return 1;
468 }
469
470 /**
471  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
472  * @vcpu: The VCPU pointer
473  * @run:  The kvm_run struct
474  */
475 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
476 {
477         struct sys_reg_params params;
478         u32 hsr = kvm_vcpu_get_hsr(vcpu);
479
480         params.CRm = (hsr >> 1) & 0xf;
481         params.Rt  = (hsr >> 5) & 0xf;
482         params.is_write = ((hsr & 1) == 0);
483         params.CRn = (hsr >> 10) & 0xf;
484         params.Op0 = 0;
485         params.Op1 = (hsr >> 14) & 0x7;
486         params.Op2 = (hsr >> 17) & 0x7;
487
488         emulate_cp15(vcpu, &params);
489         return 1;
490 }
491
492 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
493                            const struct sys_reg_params *params)
494 {
495         size_t num;
496         const struct sys_reg_desc *table, *r;
497
498         table = get_target_table(vcpu->arch.target, true, &num);
499
500         /* Search target-specific then generic table. */
501         r = find_reg(params, table, num);
502         if (!r)
503                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
504
505         if (likely(r)) {
506                 /*
507                  * Not having an accessor means that we have
508                  * configured a trap that we don't know how to
509                  * handle. This certainly qualifies as a gross bug
510                  * that should be fixed right away.
511                  */
512                 BUG_ON(!r->access);
513
514                 if (likely(r->access(vcpu, params, r))) {
515                         /* Skip instruction, since it was emulated */
516                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
517                         return 1;
518                 }
519                 /* If access function fails, it should complain. */
520         } else {
521                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
522                         *vcpu_pc(vcpu));
523                 print_sys_reg_instr(params);
524         }
525         kvm_inject_undefined(vcpu);
526         return 1;
527 }
528
529 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
530                               const struct sys_reg_desc *table, size_t num)
531 {
532         unsigned long i;
533
534         for (i = 0; i < num; i++)
535                 if (table[i].reset)
536                         table[i].reset(vcpu, &table[i]);
537 }
538
539 /**
540  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
541  * @vcpu: The VCPU pointer
542  * @run:  The kvm_run struct
543  */
544 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
545 {
546         struct sys_reg_params params;
547         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
548
549         params.Op0 = (esr >> 20) & 3;
550         params.Op1 = (esr >> 14) & 0x7;
551         params.CRn = (esr >> 10) & 0xf;
552         params.CRm = (esr >> 1) & 0xf;
553         params.Op2 = (esr >> 17) & 0x7;
554         params.Rt = (esr >> 5) & 0x1f;
555         params.is_write = !(esr & 1);
556
557         return emulate_sys_reg(vcpu, &params);
558 }
559
560 /******************************************************************************
561  * Userspace API
562  *****************************************************************************/
563
564 static bool index_to_params(u64 id, struct sys_reg_params *params)
565 {
566         switch (id & KVM_REG_SIZE_MASK) {
567         case KVM_REG_SIZE_U64:
568                 /* Any unused index bits means it's not valid. */
569                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
570                               | KVM_REG_ARM_COPROC_MASK
571                               | KVM_REG_ARM64_SYSREG_OP0_MASK
572                               | KVM_REG_ARM64_SYSREG_OP1_MASK
573                               | KVM_REG_ARM64_SYSREG_CRN_MASK
574                               | KVM_REG_ARM64_SYSREG_CRM_MASK
575                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
576                         return false;
577                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
578                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
579                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
580                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
581                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
582                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
583                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
584                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
585                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
586                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
587                 return true;
588         default:
589                 return false;
590         }
591 }
592
593 /* Decode an index value, and find the sys_reg_desc entry. */
594 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
595                                                     u64 id)
596 {
597         size_t num;
598         const struct sys_reg_desc *table, *r;
599         struct sys_reg_params params;
600
601         /* We only do sys_reg for now. */
602         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
603                 return NULL;
604
605         if (!index_to_params(id, &params))
606                 return NULL;
607
608         table = get_target_table(vcpu->arch.target, true, &num);
609         r = find_reg(&params, table, num);
610         if (!r)
611                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
612
613         /* Not saved in the sys_reg array? */
614         if (r && !r->reg)
615                 r = NULL;
616
617         return r;
618 }
619
620 /*
621  * These are the invariant sys_reg registers: we let the guest see the
622  * host versions of these, so they're part of the guest state.
623  *
624  * A future CPU may provide a mechanism to present different values to
625  * the guest, or a future kvm may trap them.
626  */
627
628 #define FUNCTION_INVARIANT(reg)                                         \
629         static void get_##reg(struct kvm_vcpu *v,                       \
630                               const struct sys_reg_desc *r)             \
631         {                                                               \
632                 u64 val;                                                \
633                                                                         \
634                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
635                              : "=r" (val));                             \
636                 ((struct sys_reg_desc *)r)->val = val;                  \
637         }
638
639 FUNCTION_INVARIANT(midr_el1)
640 FUNCTION_INVARIANT(ctr_el0)
641 FUNCTION_INVARIANT(revidr_el1)
642 FUNCTION_INVARIANT(id_pfr0_el1)
643 FUNCTION_INVARIANT(id_pfr1_el1)
644 FUNCTION_INVARIANT(id_dfr0_el1)
645 FUNCTION_INVARIANT(id_afr0_el1)
646 FUNCTION_INVARIANT(id_mmfr0_el1)
647 FUNCTION_INVARIANT(id_mmfr1_el1)
648 FUNCTION_INVARIANT(id_mmfr2_el1)
649 FUNCTION_INVARIANT(id_mmfr3_el1)
650 FUNCTION_INVARIANT(id_isar0_el1)
651 FUNCTION_INVARIANT(id_isar1_el1)
652 FUNCTION_INVARIANT(id_isar2_el1)
653 FUNCTION_INVARIANT(id_isar3_el1)
654 FUNCTION_INVARIANT(id_isar4_el1)
655 FUNCTION_INVARIANT(id_isar5_el1)
656 FUNCTION_INVARIANT(clidr_el1)
657 FUNCTION_INVARIANT(aidr_el1)
658
659 /* ->val is filled in by kvm_sys_reg_table_init() */
660 static struct sys_reg_desc invariant_sys_regs[] = {
661         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
662           NULL, get_midr_el1 },
663         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
664           NULL, get_revidr_el1 },
665         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
666           NULL, get_id_pfr0_el1 },
667         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
668           NULL, get_id_pfr1_el1 },
669         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
670           NULL, get_id_dfr0_el1 },
671         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
672           NULL, get_id_afr0_el1 },
673         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
674           NULL, get_id_mmfr0_el1 },
675         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
676           NULL, get_id_mmfr1_el1 },
677         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
678           NULL, get_id_mmfr2_el1 },
679         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
680           NULL, get_id_mmfr3_el1 },
681         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
682           NULL, get_id_isar0_el1 },
683         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
684           NULL, get_id_isar1_el1 },
685         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
686           NULL, get_id_isar2_el1 },
687         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
688           NULL, get_id_isar3_el1 },
689         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
690           NULL, get_id_isar4_el1 },
691         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
692           NULL, get_id_isar5_el1 },
693         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
694           NULL, get_clidr_el1 },
695         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
696           NULL, get_aidr_el1 },
697         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
698           NULL, get_ctr_el0 },
699 };
700
701 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
702 {
703         /* This Just Works because we are little endian. */
704         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
705                 return -EFAULT;
706         return 0;
707 }
708
709 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
710 {
711         /* This Just Works because we are little endian. */
712         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
713                 return -EFAULT;
714         return 0;
715 }
716
717 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
718 {
719         struct sys_reg_params params;
720         const struct sys_reg_desc *r;
721
722         if (!index_to_params(id, &params))
723                 return -ENOENT;
724
725         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
726         if (!r)
727                 return -ENOENT;
728
729         return reg_to_user(uaddr, &r->val, id);
730 }
731
732 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
733 {
734         struct sys_reg_params params;
735         const struct sys_reg_desc *r;
736         int err;
737         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
738
739         if (!index_to_params(id, &params))
740                 return -ENOENT;
741         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
742         if (!r)
743                 return -ENOENT;
744
745         err = reg_from_user(&val, uaddr, id);
746         if (err)
747                 return err;
748
749         /* This is what we mean by invariant: you can't change it. */
750         if (r->val != val)
751                 return -EINVAL;
752
753         return 0;
754 }
755
756 static bool is_valid_cache(u32 val)
757 {
758         u32 level, ctype;
759
760         if (val >= CSSELR_MAX)
761                 return -ENOENT;
762
763         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
764         level = (val >> 1);
765         ctype = (cache_levels >> (level * 3)) & 7;
766
767         switch (ctype) {
768         case 0: /* No cache */
769                 return false;
770         case 1: /* Instruction cache only */
771                 return (val & 1);
772         case 2: /* Data cache only */
773         case 4: /* Unified cache */
774                 return !(val & 1);
775         case 3: /* Separate instruction and data caches */
776                 return true;
777         default: /* Reserved: we can't know instruction or data. */
778                 return false;
779         }
780 }
781
782 static int demux_c15_get(u64 id, void __user *uaddr)
783 {
784         u32 val;
785         u32 __user *uval = uaddr;
786
787         /* Fail if we have unknown bits set. */
788         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
789                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
790                 return -ENOENT;
791
792         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
793         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
794                 if (KVM_REG_SIZE(id) != 4)
795                         return -ENOENT;
796                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
797                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
798                 if (!is_valid_cache(val))
799                         return -ENOENT;
800
801                 return put_user(get_ccsidr(val), uval);
802         default:
803                 return -ENOENT;
804         }
805 }
806
807 static int demux_c15_set(u64 id, void __user *uaddr)
808 {
809         u32 val, newval;
810         u32 __user *uval = uaddr;
811
812         /* Fail if we have unknown bits set. */
813         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
814                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
815                 return -ENOENT;
816
817         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
818         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
819                 if (KVM_REG_SIZE(id) != 4)
820                         return -ENOENT;
821                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
822                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
823                 if (!is_valid_cache(val))
824                         return -ENOENT;
825
826                 if (get_user(newval, uval))
827                         return -EFAULT;
828
829                 /* This is also invariant: you can't change it. */
830                 if (newval != get_ccsidr(val))
831                         return -EINVAL;
832                 return 0;
833         default:
834                 return -ENOENT;
835         }
836 }
837
838 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
839 {
840         const struct sys_reg_desc *r;
841         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
842
843         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
844                 return demux_c15_get(reg->id, uaddr);
845
846         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
847                 return -ENOENT;
848
849         r = index_to_sys_reg_desc(vcpu, reg->id);
850         if (!r)
851                 return get_invariant_sys_reg(reg->id, uaddr);
852
853         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
854 }
855
856 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
857 {
858         const struct sys_reg_desc *r;
859         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
860
861         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
862                 return demux_c15_set(reg->id, uaddr);
863
864         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
865                 return -ENOENT;
866
867         r = index_to_sys_reg_desc(vcpu, reg->id);
868         if (!r)
869                 return set_invariant_sys_reg(reg->id, uaddr);
870
871         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
872 }
873
874 static unsigned int num_demux_regs(void)
875 {
876         unsigned int i, count = 0;
877
878         for (i = 0; i < CSSELR_MAX; i++)
879                 if (is_valid_cache(i))
880                         count++;
881
882         return count;
883 }
884
885 static int write_demux_regids(u64 __user *uindices)
886 {
887         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
888         unsigned int i;
889
890         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
891         for (i = 0; i < CSSELR_MAX; i++) {
892                 if (!is_valid_cache(i))
893                         continue;
894                 if (put_user(val | i, uindices))
895                         return -EFAULT;
896                 uindices++;
897         }
898         return 0;
899 }
900
901 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
902 {
903         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
904                 KVM_REG_ARM64_SYSREG |
905                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
906                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
907                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
908                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
909                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
910 }
911
912 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
913 {
914         if (!*uind)
915                 return true;
916
917         if (put_user(sys_reg_to_index(reg), *uind))
918                 return false;
919
920         (*uind)++;
921         return true;
922 }
923
924 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
925 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
926 {
927         const struct sys_reg_desc *i1, *i2, *end1, *end2;
928         unsigned int total = 0;
929         size_t num;
930
931         /* We check for duplicates here, to allow arch-specific overrides. */
932         i1 = get_target_table(vcpu->arch.target, true, &num);
933         end1 = i1 + num;
934         i2 = sys_reg_descs;
935         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
936
937         BUG_ON(i1 == end1 || i2 == end2);
938
939         /* Walk carefully, as both tables may refer to the same register. */
940         while (i1 || i2) {
941                 int cmp = cmp_sys_reg(i1, i2);
942                 /* target-specific overrides generic entry. */
943                 if (cmp <= 0) {
944                         /* Ignore registers we trap but don't save. */
945                         if (i1->reg) {
946                                 if (!copy_reg_to_user(i1, &uind))
947                                         return -EFAULT;
948                                 total++;
949                         }
950                 } else {
951                         /* Ignore registers we trap but don't save. */
952                         if (i2->reg) {
953                                 if (!copy_reg_to_user(i2, &uind))
954                                         return -EFAULT;
955                                 total++;
956                         }
957                 }
958
959                 if (cmp <= 0 && ++i1 == end1)
960                         i1 = NULL;
961                 if (cmp >= 0 && ++i2 == end2)
962                         i2 = NULL;
963         }
964         return total;
965 }
966
967 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
968 {
969         return ARRAY_SIZE(invariant_sys_regs)
970                 + num_demux_regs()
971                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
972 }
973
974 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
975 {
976         unsigned int i;
977         int err;
978
979         /* Then give them all the invariant registers' indices. */
980         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
981                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
982                         return -EFAULT;
983                 uindices++;
984         }
985
986         err = walk_sys_regs(vcpu, uindices);
987         if (err < 0)
988                 return err;
989         uindices += err;
990
991         return write_demux_regids(uindices);
992 }
993
994 void kvm_sys_reg_table_init(void)
995 {
996         unsigned int i;
997         struct sys_reg_desc clidr;
998
999         /* Make sure tables are unique and in order. */
1000         for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1001                 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1002
1003         /* We abuse the reset function to overwrite the table itself. */
1004         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1005                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1006
1007         /*
1008          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1009          *
1010          *   If software reads the Cache Type fields from Ctype1
1011          *   upwards, once it has seen a value of 0b000, no caches
1012          *   exist at further-out levels of the hierarchy. So, for
1013          *   example, if Ctype3 is the first Cache Type field with a
1014          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1015          *   ignored.
1016          */
1017         get_clidr_el1(NULL, &clidr); /* Ugly... */
1018         cache_levels = clidr.val;
1019         for (i = 0; i < 7; i++)
1020                 if (((cache_levels >> (i*3)) & 7) == 0)
1021                         break;
1022         /* Clear all higher bits. */
1023         cache_levels &= (1 << (i*3))-1;
1024 }
1025
1026 /**
1027  * kvm_reset_sys_regs - sets system registers to reset value
1028  * @vcpu: The VCPU pointer
1029  *
1030  * This function finds the right table above and sets the registers on the
1031  * virtual CPU struct to their architecturally defined reset values.
1032  */
1033 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1034 {
1035         size_t num;
1036         const struct sys_reg_desc *table;
1037
1038         /* Catch someone adding a register without putting in reset entry. */
1039         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1040
1041         /* Generic chip reset first (so target could override). */
1042         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1043
1044         table = get_target_table(vcpu->arch.target, true, &num);
1045         reset_sys_reg_descs(vcpu, table, num);
1046
1047         for (num = 1; num < NR_SYS_REGS; num++)
1048                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1049                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1050 }