ARM: ensure membank array is always sorted
[pandora-kernel.git] / arch / arm / mm / init.c
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22
23 #include <asm/mach-types.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
28 #include <asm/fixmap.h>
29
30 #include <asm/mach/arch.h>
31 #include <asm/mach/map.h>
32
33 #include "mm.h"
34
35 static unsigned long phys_initrd_start __initdata = 0;
36 static unsigned long phys_initrd_size __initdata = 0;
37
38 static int __init early_initrd(char *p)
39 {
40         unsigned long start, size;
41         char *endp;
42
43         start = memparse(p, &endp);
44         if (*endp == ',') {
45                 size = memparse(endp + 1, NULL);
46
47                 phys_initrd_start = start;
48                 phys_initrd_size = size;
49         }
50         return 0;
51 }
52 early_param("initrd", early_initrd);
53
54 static int __init parse_tag_initrd(const struct tag *tag)
55 {
56         printk(KERN_WARNING "ATAG_INITRD is deprecated; "
57                 "please update your bootloader.\n");
58         phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
59         phys_initrd_size = tag->u.initrd.size;
60         return 0;
61 }
62
63 __tagtable(ATAG_INITRD, parse_tag_initrd);
64
65 static int __init parse_tag_initrd2(const struct tag *tag)
66 {
67         phys_initrd_start = tag->u.initrd.start;
68         phys_initrd_size = tag->u.initrd.size;
69         return 0;
70 }
71
72 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
73
74 /*
75  * This keeps memory configuration data used by a couple memory
76  * initialization functions, as well as show_mem() for the skipping
77  * of holes in the memory map.  It is populated by arm_add_memory().
78  */
79 struct meminfo meminfo;
80
81 void show_mem(void)
82 {
83         int free = 0, total = 0, reserved = 0;
84         int shared = 0, cached = 0, slab = 0, i;
85         struct meminfo * mi = &meminfo;
86
87         printk("Mem-info:\n");
88         show_free_areas();
89
90         for_each_bank (i, mi) {
91                 struct membank *bank = &mi->bank[i];
92                 unsigned int pfn1, pfn2;
93                 struct page *page, *end;
94
95                 pfn1 = bank_pfn_start(bank);
96                 pfn2 = bank_pfn_end(bank);
97
98                 page = pfn_to_page(pfn1);
99                 end  = pfn_to_page(pfn2 - 1) + 1;
100
101                 do {
102                         total++;
103                         if (PageReserved(page))
104                                 reserved++;
105                         else if (PageSwapCache(page))
106                                 cached++;
107                         else if (PageSlab(page))
108                                 slab++;
109                         else if (!page_count(page))
110                                 free++;
111                         else
112                                 shared += page_count(page) - 1;
113                         page++;
114                 } while (page < end);
115         }
116
117         printk("%d pages of RAM\n", total);
118         printk("%d free pages\n", free);
119         printk("%d reserved pages\n", reserved);
120         printk("%d slab pages\n", slab);
121         printk("%d pages shared\n", shared);
122         printk("%d pages swap cached\n", cached);
123 }
124
125 static void __init find_limits(struct meminfo *mi,
126         unsigned long *min, unsigned long *max_low, unsigned long *max_high)
127 {
128         int i;
129
130         *min = -1UL;
131         *max_low = *max_high = 0;
132
133         for_each_bank (i, mi) {
134                 struct membank *bank = &mi->bank[i];
135                 unsigned long start, end;
136
137                 start = bank_pfn_start(bank);
138                 end = bank_pfn_end(bank);
139
140                 if (*min > start)
141                         *min = start;
142                 if (*max_high < end)
143                         *max_high = end;
144                 if (bank->highmem)
145                         continue;
146                 if (*max_low < end)
147                         *max_low = end;
148         }
149 }
150
151 static void __init arm_bootmem_init(struct meminfo *mi,
152         unsigned long start_pfn, unsigned long end_pfn)
153 {
154         struct memblock_region *reg;
155         unsigned int boot_pages;
156         phys_addr_t bitmap;
157         pg_data_t *pgdat;
158         int i;
159
160         /*
161          * Allocate the bootmem bitmap page.  This must be in a region
162          * of memory which has already been mapped.
163          */
164         boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
165         bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
166                                 __pfn_to_phys(end_pfn));
167
168         /*
169          * Initialise the bootmem allocator, handing the
170          * memory banks over to bootmem.
171          */
172         node_set_online(0);
173         pgdat = NODE_DATA(0);
174         init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
175
176         for_each_bank(i, mi) {
177                 struct membank *bank = &mi->bank[i];
178                 if (!bank->highmem)
179                         free_bootmem(bank_phys_start(bank), bank_phys_size(bank));
180         }
181
182         /*
183          * Reserve the memblock reserved regions in bootmem.
184          */
185         for_each_memblock(reserved, reg) {
186                 phys_addr_t start = memblock_region_reserved_base_pfn(reg);
187                 phys_addr_t end = memblock_region_reserved_end_pfn(reg);
188                 if (start >= start_pfn && end <= end_pfn)
189                         reserve_bootmem_node(pgdat, __pfn_to_phys(start),
190                                              (end - start) << PAGE_SHIFT,
191                                              BOOTMEM_DEFAULT);
192         }
193 }
194
195 static void __init arm_bootmem_free(struct meminfo *mi, unsigned long min,
196         unsigned long max_low, unsigned long max_high)
197 {
198         unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
199         int i;
200
201         /*
202          * initialise the zones.
203          */
204         memset(zone_size, 0, sizeof(zone_size));
205
206         /*
207          * The memory size has already been determined.  If we need
208          * to do anything fancy with the allocation of this memory
209          * to the zones, now is the time to do it.
210          */
211         zone_size[0] = max_low - min;
212 #ifdef CONFIG_HIGHMEM
213         zone_size[ZONE_HIGHMEM] = max_high - max_low;
214 #endif
215
216         /*
217          * Calculate the size of the holes.
218          *  holes = node_size - sum(bank_sizes)
219          */
220         memcpy(zhole_size, zone_size, sizeof(zhole_size));
221         for_each_bank(i, mi) {
222                 int idx = 0;
223 #ifdef CONFIG_HIGHMEM
224                 if (mi->bank[i].highmem)
225                         idx = ZONE_HIGHMEM;
226 #endif
227                 zhole_size[idx] -= bank_pfn_size(&mi->bank[i]);
228         }
229
230         /*
231          * Adjust the sizes according to any special requirements for
232          * this machine type.
233          */
234         arch_adjust_zones(zone_size, zhole_size);
235
236         free_area_init_node(0, zone_size, min, zhole_size);
237 }
238
239 #ifndef CONFIG_SPARSEMEM
240 int pfn_valid(unsigned long pfn)
241 {
242         return memblock_is_memory(pfn << PAGE_SHIFT);
243 }
244 EXPORT_SYMBOL(pfn_valid);
245
246 static void arm_memory_present(void)
247 {
248 }
249 #else
250 static void arm_memory_present(void)
251 {
252         struct memblock_region *reg;
253
254         for_each_memblock(memory, reg)
255                 memory_present(0, memblock_region_memory_base_pfn(reg),
256                                memblock_region_memory_end_pfn(reg));
257 }
258 #endif
259
260 static int __init meminfo_cmp(const void *_a, const void *_b)
261 {
262         const struct membank *a = _a, *b = _b;
263         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
264         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
265 }
266
267 void __init arm_memblock_init(struct meminfo *mi, struct machine_desc *mdesc)
268 {
269         int i;
270
271         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
272
273         memblock_init();
274         for (i = 0; i < mi->nr_banks; i++)
275                 memblock_add(mi->bank[i].start, mi->bank[i].size);
276
277         /* Register the kernel text, kernel data and initrd with memblock. */
278 #ifdef CONFIG_XIP_KERNEL
279         memblock_reserve(__pa(_sdata), _end - _sdata);
280 #else
281         memblock_reserve(__pa(_stext), _end - _stext);
282 #endif
283 #ifdef CONFIG_BLK_DEV_INITRD
284         if (phys_initrd_size) {
285                 memblock_reserve(phys_initrd_start, phys_initrd_size);
286
287                 /* Now convert initrd to virtual addresses */
288                 initrd_start = __phys_to_virt(phys_initrd_start);
289                 initrd_end = initrd_start + phys_initrd_size;
290         }
291 #endif
292
293         arm_mm_memblock_reserve();
294
295         /* reserve any platform specific memblock areas */
296         if (mdesc->reserve)
297                 mdesc->reserve();
298
299         memblock_analyze();
300         memblock_dump_all();
301 }
302
303 void __init bootmem_init(void)
304 {
305         struct meminfo *mi = &meminfo;
306         unsigned long min, max_low, max_high;
307
308         max_low = max_high = 0;
309
310         find_limits(mi, &min, &max_low, &max_high);
311
312         arm_bootmem_init(mi, min, max_low);
313
314         /*
315          * Sparsemem tries to allocate bootmem in memory_present(),
316          * so must be done after the fixed reservations
317          */
318         arm_memory_present();
319
320         /*
321          * sparse_init() needs the bootmem allocator up and running.
322          */
323         sparse_init();
324
325         /*
326          * Now free the memory - free_area_init_node needs
327          * the sparse mem_map arrays initialized by sparse_init()
328          * for memmap_init_zone(), otherwise all PFNs are invalid.
329          */
330         arm_bootmem_free(mi, min, max_low, max_high);
331
332         high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
333
334         /*
335          * This doesn't seem to be used by the Linux memory manager any
336          * more, but is used by ll_rw_block.  If we can get rid of it, we
337          * also get rid of some of the stuff above as well.
338          *
339          * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
340          * the system, not the maximum PFN.
341          */
342         max_low_pfn = max_low - PHYS_PFN_OFFSET;
343         max_pfn = max_high - PHYS_PFN_OFFSET;
344 }
345
346 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
347 {
348         unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
349
350         for (; pfn < end; pfn++) {
351                 struct page *page = pfn_to_page(pfn);
352                 ClearPageReserved(page);
353                 init_page_count(page);
354                 __free_page(page);
355                 pages++;
356         }
357
358         if (size && s)
359                 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
360
361         return pages;
362 }
363
364 static inline void
365 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
366 {
367         struct page *start_pg, *end_pg;
368         unsigned long pg, pgend;
369
370         /*
371          * Convert start_pfn/end_pfn to a struct page pointer.
372          */
373         start_pg = pfn_to_page(start_pfn - 1) + 1;
374         end_pg = pfn_to_page(end_pfn);
375
376         /*
377          * Convert to physical addresses, and
378          * round start upwards and end downwards.
379          */
380         pg = PAGE_ALIGN(__pa(start_pg));
381         pgend = __pa(end_pg) & PAGE_MASK;
382
383         /*
384          * If there are free pages between these,
385          * free the section of the memmap array.
386          */
387         if (pg < pgend)
388                 free_bootmem(pg, pgend - pg);
389 }
390
391 /*
392  * The mem_map array can get very big.  Free the unused area of the memory map.
393  */
394 static void __init free_unused_memmap(struct meminfo *mi)
395 {
396         unsigned long bank_start, prev_bank_end = 0;
397         unsigned int i;
398
399         /*
400          * This relies on each bank being in address order.
401          * The banks are sorted previously in bootmem_init().
402          */
403         for_each_bank(i, mi) {
404                 struct membank *bank = &mi->bank[i];
405
406                 bank_start = bank_pfn_start(bank);
407
408                 /*
409                  * If we had a previous bank, and there is a space
410                  * between the current bank and the previous, free it.
411                  */
412                 if (prev_bank_end && prev_bank_end < bank_start)
413                         free_memmap(prev_bank_end, bank_start);
414
415                 /*
416                  * Align up here since the VM subsystem insists that the
417                  * memmap entries are valid from the bank end aligned to
418                  * MAX_ORDER_NR_PAGES.
419                  */
420                 prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
421         }
422 }
423
424 /*
425  * mem_init() marks the free areas in the mem_map and tells us how much
426  * memory is free.  This is done after various parts of the system have
427  * claimed their memory after the kernel image.
428  */
429 void __init mem_init(void)
430 {
431         unsigned long reserved_pages, free_pages;
432         int i;
433 #ifdef CONFIG_HAVE_TCM
434         /* These pointers are filled in on TCM detection */
435         extern u32 dtcm_end;
436         extern u32 itcm_end;
437 #endif
438
439         max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
440
441         /* this will put all unused low memory onto the freelists */
442         free_unused_memmap(&meminfo);
443
444         totalram_pages += free_all_bootmem();
445
446 #ifdef CONFIG_SA1111
447         /* now that our DMA memory is actually so designated, we can free it */
448         totalram_pages += free_area(PHYS_PFN_OFFSET,
449                                     __phys_to_pfn(__pa(swapper_pg_dir)), NULL);
450 #endif
451
452 #ifdef CONFIG_HIGHMEM
453         /* set highmem page free */
454         for_each_bank (i, &meminfo) {
455                 unsigned long start = bank_pfn_start(&meminfo.bank[i]);
456                 unsigned long end = bank_pfn_end(&meminfo.bank[i]);
457                 if (start >= max_low_pfn + PHYS_PFN_OFFSET)
458                         totalhigh_pages += free_area(start, end, NULL);
459         }
460         totalram_pages += totalhigh_pages;
461 #endif
462
463         reserved_pages = free_pages = 0;
464
465         for_each_bank(i, &meminfo) {
466                 struct membank *bank = &meminfo.bank[i];
467                 unsigned int pfn1, pfn2;
468                 struct page *page, *end;
469
470                 pfn1 = bank_pfn_start(bank);
471                 pfn2 = bank_pfn_end(bank);
472
473                 page = pfn_to_page(pfn1);
474                 end  = pfn_to_page(pfn2 - 1) + 1;
475
476                 do {
477                         if (PageReserved(page))
478                                 reserved_pages++;
479                         else if (!page_count(page))
480                                 free_pages++;
481                         page++;
482                 } while (page < end);
483         }
484
485         /*
486          * Since our memory may not be contiguous, calculate the
487          * real number of pages we have in this system
488          */
489         printk(KERN_INFO "Memory:");
490         num_physpages = 0;
491         for (i = 0; i < meminfo.nr_banks; i++) {
492                 num_physpages += bank_pfn_size(&meminfo.bank[i]);
493                 printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
494         }
495         printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
496
497         printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
498                 nr_free_pages() << (PAGE_SHIFT-10),
499                 free_pages << (PAGE_SHIFT-10),
500                 reserved_pages << (PAGE_SHIFT-10),
501                 totalhigh_pages << (PAGE_SHIFT-10));
502
503 #define MLK(b, t) b, t, ((t) - (b)) >> 10
504 #define MLM(b, t) b, t, ((t) - (b)) >> 20
505 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
506
507         printk(KERN_NOTICE "Virtual kernel memory layout:\n"
508                         "    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
509 #ifdef CONFIG_HAVE_TCM
510                         "    DTCM    : 0x%08lx - 0x%08lx   (%4ld kB)\n"
511                         "    ITCM    : 0x%08lx - 0x%08lx   (%4ld kB)\n"
512 #endif
513                         "    fixmap  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
514 #ifdef CONFIG_MMU
515                         "    DMA     : 0x%08lx - 0x%08lx   (%4ld MB)\n"
516 #endif
517                         "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
518                         "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
519 #ifdef CONFIG_HIGHMEM
520                         "    pkmap   : 0x%08lx - 0x%08lx   (%4ld MB)\n"
521 #endif
522                         "    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
523                         "      .init : 0x%p" " - 0x%p" "   (%4d kB)\n"
524                         "      .text : 0x%p" " - 0x%p" "   (%4d kB)\n"
525                         "      .data : 0x%p" " - 0x%p" "   (%4d kB)\n",
526
527                         MLK(UL(CONFIG_VECTORS_BASE), UL(CONFIG_VECTORS_BASE) +
528                                 (PAGE_SIZE)),
529 #ifdef CONFIG_HAVE_TCM
530                         MLK(DTCM_OFFSET, (unsigned long) dtcm_end),
531                         MLK(ITCM_OFFSET, (unsigned long) itcm_end),
532 #endif
533                         MLK(FIXADDR_START, FIXADDR_TOP),
534 #ifdef CONFIG_MMU
535                         MLM(CONSISTENT_BASE, CONSISTENT_END),
536 #endif
537                         MLM(VMALLOC_START, VMALLOC_END),
538                         MLM(PAGE_OFFSET, (unsigned long)high_memory),
539 #ifdef CONFIG_HIGHMEM
540                         MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) *
541                                 (PAGE_SIZE)),
542 #endif
543                         MLM(MODULES_VADDR, MODULES_END),
544
545                         MLK_ROUNDUP(__init_begin, __init_end),
546                         MLK_ROUNDUP(_text, _etext),
547                         MLK_ROUNDUP(_sdata, _edata));
548
549 #undef MLK
550 #undef MLM
551 #undef MLK_ROUNDUP
552
553         /*
554          * Check boundaries twice: Some fundamental inconsistencies can
555          * be detected at build time already.
556          */
557 #ifdef CONFIG_MMU
558         BUILD_BUG_ON(VMALLOC_END                        > CONSISTENT_BASE);
559         BUG_ON(VMALLOC_END                              > CONSISTENT_BASE);
560
561         BUILD_BUG_ON(TASK_SIZE                          > MODULES_VADDR);
562         BUG_ON(TASK_SIZE                                > MODULES_VADDR);
563 #endif
564
565 #ifdef CONFIG_HIGHMEM
566         BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET);
567         BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE      > PAGE_OFFSET);
568 #endif
569
570         if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
571                 extern int sysctl_overcommit_memory;
572                 /*
573                  * On a machine this small we won't get
574                  * anywhere without overcommit, so turn
575                  * it on by default.
576                  */
577                 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
578         }
579 }
580
581 void free_initmem(void)
582 {
583 #ifdef CONFIG_HAVE_TCM
584         extern char __tcm_start, __tcm_end;
585
586         totalram_pages += free_area(__phys_to_pfn(__pa(&__tcm_start)),
587                                     __phys_to_pfn(__pa(&__tcm_end)),
588                                     "TCM link");
589 #endif
590
591         if (!machine_is_integrator() && !machine_is_cintegrator())
592                 totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
593                                             __phys_to_pfn(__pa(__init_end)),
594                                             "init");
595 }
596
597 #ifdef CONFIG_BLK_DEV_INITRD
598
599 static int keep_initrd;
600
601 void free_initrd_mem(unsigned long start, unsigned long end)
602 {
603         if (!keep_initrd)
604                 totalram_pages += free_area(__phys_to_pfn(__pa(start)),
605                                             __phys_to_pfn(__pa(end)),
606                                             "initrd");
607 }
608
609 static int __init keepinitrd_setup(char *__unused)
610 {
611         keep_initrd = 1;
612         return 1;
613 }
614
615 __setup("keepinitrd", keepinitrd_setup);
616 #endif