Merge tag 'qcom-soc-for-3.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x)        (pmd_huge(_x) || pmd_trans_huge(_x))
48
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
50 {
51         /*
52          * This function also gets called when dealing with HYP page
53          * tables. As HYP doesn't have an associated struct kvm (and
54          * the HYP page tables are fairly static), we don't do
55          * anything there.
56          */
57         if (kvm)
58                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
59 }
60
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
62                                   int min, int max)
63 {
64         void *page;
65
66         BUG_ON(max > KVM_NR_MEM_OBJS);
67         if (cache->nobjs >= min)
68                 return 0;
69         while (cache->nobjs < max) {
70                 page = (void *)__get_free_page(PGALLOC_GFP);
71                 if (!page)
72                         return -ENOMEM;
73                 cache->objects[cache->nobjs++] = page;
74         }
75         return 0;
76 }
77
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
79 {
80         while (mc->nobjs)
81                 free_page((unsigned long)mc->objects[--mc->nobjs]);
82 }
83
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
85 {
86         void *p;
87
88         BUG_ON(!mc || !mc->nobjs);
89         p = mc->objects[--mc->nobjs];
90         return p;
91 }
92
93 static bool page_empty(void *ptr)
94 {
95         struct page *ptr_page = virt_to_page(ptr);
96         return page_count(ptr_page) == 1;
97 }
98
99 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
100 {
101         if (pud_huge(*pud)) {
102                 pud_clear(pud);
103                 kvm_tlb_flush_vmid_ipa(kvm, addr);
104         } else {
105                 pmd_t *pmd_table = pmd_offset(pud, 0);
106                 pud_clear(pud);
107                 kvm_tlb_flush_vmid_ipa(kvm, addr);
108                 pmd_free(NULL, pmd_table);
109         }
110         put_page(virt_to_page(pud));
111 }
112
113 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
114 {
115         if (kvm_pmd_huge(*pmd)) {
116                 pmd_clear(pmd);
117                 kvm_tlb_flush_vmid_ipa(kvm, addr);
118         } else {
119                 pte_t *pte_table = pte_offset_kernel(pmd, 0);
120                 pmd_clear(pmd);
121                 kvm_tlb_flush_vmid_ipa(kvm, addr);
122                 pte_free_kernel(NULL, pte_table);
123         }
124         put_page(virt_to_page(pmd));
125 }
126
127 static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
128 {
129         if (pte_present(*pte)) {
130                 kvm_set_pte(pte, __pte(0));
131                 put_page(virt_to_page(pte));
132                 kvm_tlb_flush_vmid_ipa(kvm, addr);
133         }
134 }
135
136 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
137                         unsigned long long start, u64 size)
138 {
139         pgd_t *pgd;
140         pud_t *pud;
141         pmd_t *pmd;
142         pte_t *pte;
143         unsigned long long addr = start, end = start + size;
144         u64 next;
145
146         while (addr < end) {
147                 pgd = pgdp + pgd_index(addr);
148                 pud = pud_offset(pgd, addr);
149                 pte = NULL;
150                 if (pud_none(*pud)) {
151                         addr = kvm_pud_addr_end(addr, end);
152                         continue;
153                 }
154
155                 if (pud_huge(*pud)) {
156                         /*
157                          * If we are dealing with a huge pud, just clear it and
158                          * move on.
159                          */
160                         clear_pud_entry(kvm, pud, addr);
161                         addr = kvm_pud_addr_end(addr, end);
162                         continue;
163                 }
164
165                 pmd = pmd_offset(pud, addr);
166                 if (pmd_none(*pmd)) {
167                         addr = kvm_pmd_addr_end(addr, end);
168                         continue;
169                 }
170
171                 if (!kvm_pmd_huge(*pmd)) {
172                         pte = pte_offset_kernel(pmd, addr);
173                         clear_pte_entry(kvm, pte, addr);
174                         next = addr + PAGE_SIZE;
175                 }
176
177                 /*
178                  * If the pmd entry is to be cleared, walk back up the ladder
179                  */
180                 if (kvm_pmd_huge(*pmd) || (pte && page_empty(pte))) {
181                         clear_pmd_entry(kvm, pmd, addr);
182                         next = kvm_pmd_addr_end(addr, end);
183                         if (page_empty(pmd) && !page_empty(pud)) {
184                                 clear_pud_entry(kvm, pud, addr);
185                                 next = kvm_pud_addr_end(addr, end);
186                         }
187                 }
188
189                 addr = next;
190         }
191 }
192
193 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
194                               phys_addr_t addr, phys_addr_t end)
195 {
196         pte_t *pte;
197
198         pte = pte_offset_kernel(pmd, addr);
199         do {
200                 if (!pte_none(*pte)) {
201                         hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
202                         kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
203                 }
204         } while (pte++, addr += PAGE_SIZE, addr != end);
205 }
206
207 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
208                               phys_addr_t addr, phys_addr_t end)
209 {
210         pmd_t *pmd;
211         phys_addr_t next;
212
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = kvm_pmd_addr_end(addr, end);
216                 if (!pmd_none(*pmd)) {
217                         if (kvm_pmd_huge(*pmd)) {
218                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
219                                 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
220                         } else {
221                                 stage2_flush_ptes(kvm, pmd, addr, next);
222                         }
223                 }
224         } while (pmd++, addr = next, addr != end);
225 }
226
227 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
228                               phys_addr_t addr, phys_addr_t end)
229 {
230         pud_t *pud;
231         phys_addr_t next;
232
233         pud = pud_offset(pgd, addr);
234         do {
235                 next = kvm_pud_addr_end(addr, end);
236                 if (!pud_none(*pud)) {
237                         if (pud_huge(*pud)) {
238                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
239                                 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
240                         } else {
241                                 stage2_flush_pmds(kvm, pud, addr, next);
242                         }
243                 }
244         } while (pud++, addr = next, addr != end);
245 }
246
247 static void stage2_flush_memslot(struct kvm *kvm,
248                                  struct kvm_memory_slot *memslot)
249 {
250         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
251         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
252         phys_addr_t next;
253         pgd_t *pgd;
254
255         pgd = kvm->arch.pgd + pgd_index(addr);
256         do {
257                 next = kvm_pgd_addr_end(addr, end);
258                 stage2_flush_puds(kvm, pgd, addr, next);
259         } while (pgd++, addr = next, addr != end);
260 }
261
262 /**
263  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
264  * @kvm: The struct kvm pointer
265  *
266  * Go through the stage 2 page tables and invalidate any cache lines
267  * backing memory already mapped to the VM.
268  */
269 void stage2_flush_vm(struct kvm *kvm)
270 {
271         struct kvm_memslots *slots;
272         struct kvm_memory_slot *memslot;
273         int idx;
274
275         idx = srcu_read_lock(&kvm->srcu);
276         spin_lock(&kvm->mmu_lock);
277
278         slots = kvm_memslots(kvm);
279         kvm_for_each_memslot(memslot, slots)
280                 stage2_flush_memslot(kvm, memslot);
281
282         spin_unlock(&kvm->mmu_lock);
283         srcu_read_unlock(&kvm->srcu, idx);
284 }
285
286 /**
287  * free_boot_hyp_pgd - free HYP boot page tables
288  *
289  * Free the HYP boot page tables. The bounce page is also freed.
290  */
291 void free_boot_hyp_pgd(void)
292 {
293         mutex_lock(&kvm_hyp_pgd_mutex);
294
295         if (boot_hyp_pgd) {
296                 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
297                 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
298                 free_pages((unsigned long)boot_hyp_pgd, pgd_order);
299                 boot_hyp_pgd = NULL;
300         }
301
302         if (hyp_pgd)
303                 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
304
305         free_page((unsigned long)init_bounce_page);
306         init_bounce_page = NULL;
307
308         mutex_unlock(&kvm_hyp_pgd_mutex);
309 }
310
311 /**
312  * free_hyp_pgds - free Hyp-mode page tables
313  *
314  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
315  * therefore contains either mappings in the kernel memory area (above
316  * PAGE_OFFSET), or device mappings in the vmalloc range (from
317  * VMALLOC_START to VMALLOC_END).
318  *
319  * boot_hyp_pgd should only map two pages for the init code.
320  */
321 void free_hyp_pgds(void)
322 {
323         unsigned long addr;
324
325         free_boot_hyp_pgd();
326
327         mutex_lock(&kvm_hyp_pgd_mutex);
328
329         if (hyp_pgd) {
330                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
331                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
332                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
333                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
334
335                 free_pages((unsigned long)hyp_pgd, pgd_order);
336                 hyp_pgd = NULL;
337         }
338
339         mutex_unlock(&kvm_hyp_pgd_mutex);
340 }
341
342 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
343                                     unsigned long end, unsigned long pfn,
344                                     pgprot_t prot)
345 {
346         pte_t *pte;
347         unsigned long addr;
348
349         addr = start;
350         do {
351                 pte = pte_offset_kernel(pmd, addr);
352                 kvm_set_pte(pte, pfn_pte(pfn, prot));
353                 get_page(virt_to_page(pte));
354                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
355                 pfn++;
356         } while (addr += PAGE_SIZE, addr != end);
357 }
358
359 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
360                                    unsigned long end, unsigned long pfn,
361                                    pgprot_t prot)
362 {
363         pmd_t *pmd;
364         pte_t *pte;
365         unsigned long addr, next;
366
367         addr = start;
368         do {
369                 pmd = pmd_offset(pud, addr);
370
371                 BUG_ON(pmd_sect(*pmd));
372
373                 if (pmd_none(*pmd)) {
374                         pte = pte_alloc_one_kernel(NULL, addr);
375                         if (!pte) {
376                                 kvm_err("Cannot allocate Hyp pte\n");
377                                 return -ENOMEM;
378                         }
379                         pmd_populate_kernel(NULL, pmd, pte);
380                         get_page(virt_to_page(pmd));
381                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
382                 }
383
384                 next = pmd_addr_end(addr, end);
385
386                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
387                 pfn += (next - addr) >> PAGE_SHIFT;
388         } while (addr = next, addr != end);
389
390         return 0;
391 }
392
393 static int __create_hyp_mappings(pgd_t *pgdp,
394                                  unsigned long start, unsigned long end,
395                                  unsigned long pfn, pgprot_t prot)
396 {
397         pgd_t *pgd;
398         pud_t *pud;
399         pmd_t *pmd;
400         unsigned long addr, next;
401         int err = 0;
402
403         mutex_lock(&kvm_hyp_pgd_mutex);
404         addr = start & PAGE_MASK;
405         end = PAGE_ALIGN(end);
406         do {
407                 pgd = pgdp + pgd_index(addr);
408                 pud = pud_offset(pgd, addr);
409
410                 if (pud_none_or_clear_bad(pud)) {
411                         pmd = pmd_alloc_one(NULL, addr);
412                         if (!pmd) {
413                                 kvm_err("Cannot allocate Hyp pmd\n");
414                                 err = -ENOMEM;
415                                 goto out;
416                         }
417                         pud_populate(NULL, pud, pmd);
418                         get_page(virt_to_page(pud));
419                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
420                 }
421
422                 next = pgd_addr_end(addr, end);
423                 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
424                 if (err)
425                         goto out;
426                 pfn += (next - addr) >> PAGE_SHIFT;
427         } while (addr = next, addr != end);
428 out:
429         mutex_unlock(&kvm_hyp_pgd_mutex);
430         return err;
431 }
432
433 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
434 {
435         if (!is_vmalloc_addr(kaddr)) {
436                 BUG_ON(!virt_addr_valid(kaddr));
437                 return __pa(kaddr);
438         } else {
439                 return page_to_phys(vmalloc_to_page(kaddr)) +
440                        offset_in_page(kaddr);
441         }
442 }
443
444 /**
445  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
446  * @from:       The virtual kernel start address of the range
447  * @to:         The virtual kernel end address of the range (exclusive)
448  *
449  * The same virtual address as the kernel virtual address is also used
450  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
451  * physical pages.
452  */
453 int create_hyp_mappings(void *from, void *to)
454 {
455         phys_addr_t phys_addr;
456         unsigned long virt_addr;
457         unsigned long start = KERN_TO_HYP((unsigned long)from);
458         unsigned long end = KERN_TO_HYP((unsigned long)to);
459
460         start = start & PAGE_MASK;
461         end = PAGE_ALIGN(end);
462
463         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
464                 int err;
465
466                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
467                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
468                                             virt_addr + PAGE_SIZE,
469                                             __phys_to_pfn(phys_addr),
470                                             PAGE_HYP);
471                 if (err)
472                         return err;
473         }
474
475         return 0;
476 }
477
478 /**
479  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
480  * @from:       The kernel start VA of the range
481  * @to:         The kernel end VA of the range (exclusive)
482  * @phys_addr:  The physical start address which gets mapped
483  *
484  * The resulting HYP VA is the same as the kernel VA, modulo
485  * HYP_PAGE_OFFSET.
486  */
487 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
488 {
489         unsigned long start = KERN_TO_HYP((unsigned long)from);
490         unsigned long end = KERN_TO_HYP((unsigned long)to);
491
492         /* Check for a valid kernel IO mapping */
493         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
494                 return -EINVAL;
495
496         return __create_hyp_mappings(hyp_pgd, start, end,
497                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
498 }
499
500 /**
501  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
502  * @kvm:        The KVM struct pointer for the VM.
503  *
504  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
505  * support either full 40-bit input addresses or limited to 32-bit input
506  * addresses). Clears the allocated pages.
507  *
508  * Note we don't need locking here as this is only called when the VM is
509  * created, which can only be done once.
510  */
511 int kvm_alloc_stage2_pgd(struct kvm *kvm)
512 {
513         pgd_t *pgd;
514
515         if (kvm->arch.pgd != NULL) {
516                 kvm_err("kvm_arch already initialized?\n");
517                 return -EINVAL;
518         }
519
520         pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
521         if (!pgd)
522                 return -ENOMEM;
523
524         memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
525         kvm_clean_pgd(pgd);
526         kvm->arch.pgd = pgd;
527
528         return 0;
529 }
530
531 /**
532  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
533  * @kvm:   The VM pointer
534  * @start: The intermediate physical base address of the range to unmap
535  * @size:  The size of the area to unmap
536  *
537  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
538  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
539  * destroying the VM), otherwise another faulting VCPU may come in and mess
540  * with things behind our backs.
541  */
542 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
543 {
544         unmap_range(kvm, kvm->arch.pgd, start, size);
545 }
546
547 /**
548  * kvm_free_stage2_pgd - free all stage-2 tables
549  * @kvm:        The KVM struct pointer for the VM.
550  *
551  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
552  * underlying level-2 and level-3 tables before freeing the actual level-1 table
553  * and setting the struct pointer to NULL.
554  *
555  * Note we don't need locking here as this is only called when the VM is
556  * destroyed, which can only be done once.
557  */
558 void kvm_free_stage2_pgd(struct kvm *kvm)
559 {
560         if (kvm->arch.pgd == NULL)
561                 return;
562
563         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
564         free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
565         kvm->arch.pgd = NULL;
566 }
567
568 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
569                              phys_addr_t addr)
570 {
571         pgd_t *pgd;
572         pud_t *pud;
573         pmd_t *pmd;
574
575         pgd = kvm->arch.pgd + pgd_index(addr);
576         pud = pud_offset(pgd, addr);
577         if (pud_none(*pud)) {
578                 if (!cache)
579                         return NULL;
580                 pmd = mmu_memory_cache_alloc(cache);
581                 pud_populate(NULL, pud, pmd);
582                 get_page(virt_to_page(pud));
583         }
584
585         return pmd_offset(pud, addr);
586 }
587
588 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
589                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
590 {
591         pmd_t *pmd, old_pmd;
592
593         pmd = stage2_get_pmd(kvm, cache, addr);
594         VM_BUG_ON(!pmd);
595
596         /*
597          * Mapping in huge pages should only happen through a fault.  If a
598          * page is merged into a transparent huge page, the individual
599          * subpages of that huge page should be unmapped through MMU
600          * notifiers before we get here.
601          *
602          * Merging of CompoundPages is not supported; they should become
603          * splitting first, unmapped, merged, and mapped back in on-demand.
604          */
605         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
606
607         old_pmd = *pmd;
608         kvm_set_pmd(pmd, *new_pmd);
609         if (pmd_present(old_pmd))
610                 kvm_tlb_flush_vmid_ipa(kvm, addr);
611         else
612                 get_page(virt_to_page(pmd));
613         return 0;
614 }
615
616 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
617                           phys_addr_t addr, const pte_t *new_pte, bool iomap)
618 {
619         pmd_t *pmd;
620         pte_t *pte, old_pte;
621
622         /* Create stage-2 page table mapping - Level 1 */
623         pmd = stage2_get_pmd(kvm, cache, addr);
624         if (!pmd) {
625                 /*
626                  * Ignore calls from kvm_set_spte_hva for unallocated
627                  * address ranges.
628                  */
629                 return 0;
630         }
631
632         /* Create stage-2 page mappings - Level 2 */
633         if (pmd_none(*pmd)) {
634                 if (!cache)
635                         return 0; /* ignore calls from kvm_set_spte_hva */
636                 pte = mmu_memory_cache_alloc(cache);
637                 kvm_clean_pte(pte);
638                 pmd_populate_kernel(NULL, pmd, pte);
639                 get_page(virt_to_page(pmd));
640         }
641
642         pte = pte_offset_kernel(pmd, addr);
643
644         if (iomap && pte_present(*pte))
645                 return -EFAULT;
646
647         /* Create 2nd stage page table mapping - Level 3 */
648         old_pte = *pte;
649         kvm_set_pte(pte, *new_pte);
650         if (pte_present(old_pte))
651                 kvm_tlb_flush_vmid_ipa(kvm, addr);
652         else
653                 get_page(virt_to_page(pte));
654
655         return 0;
656 }
657
658 /**
659  * kvm_phys_addr_ioremap - map a device range to guest IPA
660  *
661  * @kvm:        The KVM pointer
662  * @guest_ipa:  The IPA at which to insert the mapping
663  * @pa:         The physical address of the device
664  * @size:       The size of the mapping
665  */
666 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
667                           phys_addr_t pa, unsigned long size)
668 {
669         phys_addr_t addr, end;
670         int ret = 0;
671         unsigned long pfn;
672         struct kvm_mmu_memory_cache cache = { 0, };
673
674         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
675         pfn = __phys_to_pfn(pa);
676
677         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
678                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
679
680                 ret = mmu_topup_memory_cache(&cache, 2, 2);
681                 if (ret)
682                         goto out;
683                 spin_lock(&kvm->mmu_lock);
684                 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
685                 spin_unlock(&kvm->mmu_lock);
686                 if (ret)
687                         goto out;
688
689                 pfn++;
690         }
691
692 out:
693         mmu_free_memory_cache(&cache);
694         return ret;
695 }
696
697 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
698 {
699         pfn_t pfn = *pfnp;
700         gfn_t gfn = *ipap >> PAGE_SHIFT;
701
702         if (PageTransCompound(pfn_to_page(pfn))) {
703                 unsigned long mask;
704                 /*
705                  * The address we faulted on is backed by a transparent huge
706                  * page.  However, because we map the compound huge page and
707                  * not the individual tail page, we need to transfer the
708                  * refcount to the head page.  We have to be careful that the
709                  * THP doesn't start to split while we are adjusting the
710                  * refcounts.
711                  *
712                  * We are sure this doesn't happen, because mmu_notifier_retry
713                  * was successful and we are holding the mmu_lock, so if this
714                  * THP is trying to split, it will be blocked in the mmu
715                  * notifier before touching any of the pages, specifically
716                  * before being able to call __split_huge_page_refcount().
717                  *
718                  * We can therefore safely transfer the refcount from PG_tail
719                  * to PG_head and switch the pfn from a tail page to the head
720                  * page accordingly.
721                  */
722                 mask = PTRS_PER_PMD - 1;
723                 VM_BUG_ON((gfn & mask) != (pfn & mask));
724                 if (pfn & mask) {
725                         *ipap &= PMD_MASK;
726                         kvm_release_pfn_clean(pfn);
727                         pfn &= ~mask;
728                         kvm_get_pfn(pfn);
729                         *pfnp = pfn;
730                 }
731
732                 return true;
733         }
734
735         return false;
736 }
737
738 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
739                           struct kvm_memory_slot *memslot,
740                           unsigned long fault_status)
741 {
742         int ret;
743         bool write_fault, writable, hugetlb = false, force_pte = false;
744         unsigned long mmu_seq;
745         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
746         unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
747         struct kvm *kvm = vcpu->kvm;
748         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
749         struct vm_area_struct *vma;
750         pfn_t pfn;
751
752         write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
753         if (fault_status == FSC_PERM && !write_fault) {
754                 kvm_err("Unexpected L2 read permission error\n");
755                 return -EFAULT;
756         }
757
758         /* Let's check if we will get back a huge page backed by hugetlbfs */
759         down_read(&current->mm->mmap_sem);
760         vma = find_vma_intersection(current->mm, hva, hva + 1);
761         if (is_vm_hugetlb_page(vma)) {
762                 hugetlb = true;
763                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
764         } else {
765                 /*
766                  * Pages belonging to memslots that don't have the same
767                  * alignment for userspace and IPA cannot be mapped using
768                  * block descriptors even if the pages belong to a THP for
769                  * the process, because the stage-2 block descriptor will
770                  * cover more than a single THP and we loose atomicity for
771                  * unmapping, updates, and splits of the THP or other pages
772                  * in the stage-2 block range.
773                  */
774                 if ((memslot->userspace_addr & ~PMD_MASK) !=
775                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
776                         force_pte = true;
777         }
778         up_read(&current->mm->mmap_sem);
779
780         /* We need minimum second+third level pages */
781         ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
782         if (ret)
783                 return ret;
784
785         mmu_seq = vcpu->kvm->mmu_notifier_seq;
786         /*
787          * Ensure the read of mmu_notifier_seq happens before we call
788          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
789          * the page we just got a reference to gets unmapped before we have a
790          * chance to grab the mmu_lock, which ensure that if the page gets
791          * unmapped afterwards, the call to kvm_unmap_hva will take it away
792          * from us again properly. This smp_rmb() interacts with the smp_wmb()
793          * in kvm_mmu_notifier_invalidate_<page|range_end>.
794          */
795         smp_rmb();
796
797         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
798         if (is_error_pfn(pfn))
799                 return -EFAULT;
800
801         spin_lock(&kvm->mmu_lock);
802         if (mmu_notifier_retry(kvm, mmu_seq))
803                 goto out_unlock;
804         if (!hugetlb && !force_pte)
805                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
806
807         if (hugetlb) {
808                 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
809                 new_pmd = pmd_mkhuge(new_pmd);
810                 if (writable) {
811                         kvm_set_s2pmd_writable(&new_pmd);
812                         kvm_set_pfn_dirty(pfn);
813                 }
814                 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
815                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
816         } else {
817                 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
818                 if (writable) {
819                         kvm_set_s2pte_writable(&new_pte);
820                         kvm_set_pfn_dirty(pfn);
821                 }
822                 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
823                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
824         }
825
826
827 out_unlock:
828         spin_unlock(&kvm->mmu_lock);
829         kvm_release_pfn_clean(pfn);
830         return ret;
831 }
832
833 /**
834  * kvm_handle_guest_abort - handles all 2nd stage aborts
835  * @vcpu:       the VCPU pointer
836  * @run:        the kvm_run structure
837  *
838  * Any abort that gets to the host is almost guaranteed to be caused by a
839  * missing second stage translation table entry, which can mean that either the
840  * guest simply needs more memory and we must allocate an appropriate page or it
841  * can mean that the guest tried to access I/O memory, which is emulated by user
842  * space. The distinction is based on the IPA causing the fault and whether this
843  * memory region has been registered as standard RAM by user space.
844  */
845 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
846 {
847         unsigned long fault_status;
848         phys_addr_t fault_ipa;
849         struct kvm_memory_slot *memslot;
850         bool is_iabt;
851         gfn_t gfn;
852         int ret, idx;
853
854         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
855         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
856
857         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
858                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
859
860         /* Check the stage-2 fault is trans. fault or write fault */
861         fault_status = kvm_vcpu_trap_get_fault(vcpu);
862         if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
863                 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
864                         kvm_vcpu_trap_get_class(vcpu), fault_status);
865                 return -EFAULT;
866         }
867
868         idx = srcu_read_lock(&vcpu->kvm->srcu);
869
870         gfn = fault_ipa >> PAGE_SHIFT;
871         if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
872                 if (is_iabt) {
873                         /* Prefetch Abort on I/O address */
874                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
875                         ret = 1;
876                         goto out_unlock;
877                 }
878
879                 if (fault_status != FSC_FAULT) {
880                         kvm_err("Unsupported fault status on io memory: %#lx\n",
881                                 fault_status);
882                         ret = -EFAULT;
883                         goto out_unlock;
884                 }
885
886                 /*
887                  * The IPA is reported as [MAX:12], so we need to
888                  * complement it with the bottom 12 bits from the
889                  * faulting VA. This is always 12 bits, irrespective
890                  * of the page size.
891                  */
892                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
893                 ret = io_mem_abort(vcpu, run, fault_ipa);
894                 goto out_unlock;
895         }
896
897         memslot = gfn_to_memslot(vcpu->kvm, gfn);
898
899         ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
900         if (ret == 0)
901                 ret = 1;
902 out_unlock:
903         srcu_read_unlock(&vcpu->kvm->srcu, idx);
904         return ret;
905 }
906
907 static void handle_hva_to_gpa(struct kvm *kvm,
908                               unsigned long start,
909                               unsigned long end,
910                               void (*handler)(struct kvm *kvm,
911                                               gpa_t gpa, void *data),
912                               void *data)
913 {
914         struct kvm_memslots *slots;
915         struct kvm_memory_slot *memslot;
916
917         slots = kvm_memslots(kvm);
918
919         /* we only care about the pages that the guest sees */
920         kvm_for_each_memslot(memslot, slots) {
921                 unsigned long hva_start, hva_end;
922                 gfn_t gfn, gfn_end;
923
924                 hva_start = max(start, memslot->userspace_addr);
925                 hva_end = min(end, memslot->userspace_addr +
926                                         (memslot->npages << PAGE_SHIFT));
927                 if (hva_start >= hva_end)
928                         continue;
929
930                 /*
931                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
932                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
933                  */
934                 gfn = hva_to_gfn_memslot(hva_start, memslot);
935                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
936
937                 for (; gfn < gfn_end; ++gfn) {
938                         gpa_t gpa = gfn << PAGE_SHIFT;
939                         handler(kvm, gpa, data);
940                 }
941         }
942 }
943
944 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
945 {
946         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
947 }
948
949 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
950 {
951         unsigned long end = hva + PAGE_SIZE;
952
953         if (!kvm->arch.pgd)
954                 return 0;
955
956         trace_kvm_unmap_hva(hva);
957         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
958         return 0;
959 }
960
961 int kvm_unmap_hva_range(struct kvm *kvm,
962                         unsigned long start, unsigned long end)
963 {
964         if (!kvm->arch.pgd)
965                 return 0;
966
967         trace_kvm_unmap_hva_range(start, end);
968         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
969         return 0;
970 }
971
972 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
973 {
974         pte_t *pte = (pte_t *)data;
975
976         stage2_set_pte(kvm, NULL, gpa, pte, false);
977 }
978
979
980 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
981 {
982         unsigned long end = hva + PAGE_SIZE;
983         pte_t stage2_pte;
984
985         if (!kvm->arch.pgd)
986                 return;
987
988         trace_kvm_set_spte_hva(hva);
989         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
990         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
991 }
992
993 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
994 {
995         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
996 }
997
998 phys_addr_t kvm_mmu_get_httbr(void)
999 {
1000         return virt_to_phys(hyp_pgd);
1001 }
1002
1003 phys_addr_t kvm_mmu_get_boot_httbr(void)
1004 {
1005         return virt_to_phys(boot_hyp_pgd);
1006 }
1007
1008 phys_addr_t kvm_get_idmap_vector(void)
1009 {
1010         return hyp_idmap_vector;
1011 }
1012
1013 int kvm_mmu_init(void)
1014 {
1015         int err;
1016
1017         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1018         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1019         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1020
1021         if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1022                 /*
1023                  * Our init code is crossing a page boundary. Allocate
1024                  * a bounce page, copy the code over and use that.
1025                  */
1026                 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1027                 phys_addr_t phys_base;
1028
1029                 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1030                 if (!init_bounce_page) {
1031                         kvm_err("Couldn't allocate HYP init bounce page\n");
1032                         err = -ENOMEM;
1033                         goto out;
1034                 }
1035
1036                 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1037                 /*
1038                  * Warning: the code we just copied to the bounce page
1039                  * must be flushed to the point of coherency.
1040                  * Otherwise, the data may be sitting in L2, and HYP
1041                  * mode won't be able to observe it as it runs with
1042                  * caches off at that point.
1043                  */
1044                 kvm_flush_dcache_to_poc(init_bounce_page, len);
1045
1046                 phys_base = kvm_virt_to_phys(init_bounce_page);
1047                 hyp_idmap_vector += phys_base - hyp_idmap_start;
1048                 hyp_idmap_start = phys_base;
1049                 hyp_idmap_end = phys_base + len;
1050
1051                 kvm_info("Using HYP init bounce page @%lx\n",
1052                          (unsigned long)phys_base);
1053         }
1054
1055         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1056         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1057
1058         if (!hyp_pgd || !boot_hyp_pgd) {
1059                 kvm_err("Hyp mode PGD not allocated\n");
1060                 err = -ENOMEM;
1061                 goto out;
1062         }
1063
1064         /* Create the idmap in the boot page tables */
1065         err =   __create_hyp_mappings(boot_hyp_pgd,
1066                                       hyp_idmap_start, hyp_idmap_end,
1067                                       __phys_to_pfn(hyp_idmap_start),
1068                                       PAGE_HYP);
1069
1070         if (err) {
1071                 kvm_err("Failed to idmap %lx-%lx\n",
1072                         hyp_idmap_start, hyp_idmap_end);
1073                 goto out;
1074         }
1075
1076         /* Map the very same page at the trampoline VA */
1077         err =   __create_hyp_mappings(boot_hyp_pgd,
1078                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1079                                       __phys_to_pfn(hyp_idmap_start),
1080                                       PAGE_HYP);
1081         if (err) {
1082                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1083                         TRAMPOLINE_VA);
1084                 goto out;
1085         }
1086
1087         /* Map the same page again into the runtime page tables */
1088         err =   __create_hyp_mappings(hyp_pgd,
1089                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1090                                       __phys_to_pfn(hyp_idmap_start),
1091                                       PAGE_HYP);
1092         if (err) {
1093                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1094                         TRAMPOLINE_VA);
1095                 goto out;
1096         }
1097
1098         return 0;
1099 out:
1100         free_hyp_pgds();
1101         return err;
1102 }