KVM: ARM: Emulation framework and CP15 emulation
[pandora-kernel.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/opcodes.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
54 static unsigned long hyp_default_vectors;
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u8 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 int kvm_arch_hardware_enable(void *garbage)
62 {
63         return 0;
64 }
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 void kvm_arch_hardware_disable(void *garbage)
72 {
73 }
74
75 int kvm_arch_hardware_setup(void)
76 {
77         return 0;
78 }
79
80 void kvm_arch_hardware_unsetup(void)
81 {
82 }
83
84 void kvm_arch_check_processor_compat(void *rtn)
85 {
86         *(int *)rtn = 0;
87 }
88
89 void kvm_arch_sync_events(struct kvm *kvm)
90 {
91 }
92
93 /**
94  * kvm_arch_init_vm - initializes a VM data structure
95  * @kvm:        pointer to the KVM struct
96  */
97 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
98 {
99         int ret = 0;
100
101         if (type)
102                 return -EINVAL;
103
104         ret = kvm_alloc_stage2_pgd(kvm);
105         if (ret)
106                 goto out_fail_alloc;
107
108         ret = create_hyp_mappings(kvm, kvm + 1);
109         if (ret)
110                 goto out_free_stage2_pgd;
111
112         /* Mark the initial VMID generation invalid */
113         kvm->arch.vmid_gen = 0;
114
115         return ret;
116 out_free_stage2_pgd:
117         kvm_free_stage2_pgd(kvm);
118 out_fail_alloc:
119         return ret;
120 }
121
122 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
123 {
124         return VM_FAULT_SIGBUS;
125 }
126
127 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
128                            struct kvm_memory_slot *dont)
129 {
130 }
131
132 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
133 {
134         return 0;
135 }
136
137 /**
138  * kvm_arch_destroy_vm - destroy the VM data structure
139  * @kvm:        pointer to the KVM struct
140  */
141 void kvm_arch_destroy_vm(struct kvm *kvm)
142 {
143         int i;
144
145         kvm_free_stage2_pgd(kvm);
146
147         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
148                 if (kvm->vcpus[i]) {
149                         kvm_arch_vcpu_free(kvm->vcpus[i]);
150                         kvm->vcpus[i] = NULL;
151                 }
152         }
153 }
154
155 int kvm_dev_ioctl_check_extension(long ext)
156 {
157         int r;
158         switch (ext) {
159         case KVM_CAP_USER_MEMORY:
160         case KVM_CAP_SYNC_MMU:
161         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
162         case KVM_CAP_ONE_REG:
163                 r = 1;
164                 break;
165         case KVM_CAP_COALESCED_MMIO:
166                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
167                 break;
168         case KVM_CAP_NR_VCPUS:
169                 r = num_online_cpus();
170                 break;
171         case KVM_CAP_MAX_VCPUS:
172                 r = KVM_MAX_VCPUS;
173                 break;
174         default:
175                 r = 0;
176                 break;
177         }
178         return r;
179 }
180
181 long kvm_arch_dev_ioctl(struct file *filp,
182                         unsigned int ioctl, unsigned long arg)
183 {
184         return -EINVAL;
185 }
186
187 int kvm_arch_set_memory_region(struct kvm *kvm,
188                                struct kvm_userspace_memory_region *mem,
189                                struct kvm_memory_slot old,
190                                int user_alloc)
191 {
192         return 0;
193 }
194
195 int kvm_arch_prepare_memory_region(struct kvm *kvm,
196                                    struct kvm_memory_slot *memslot,
197                                    struct kvm_memory_slot old,
198                                    struct kvm_userspace_memory_region *mem,
199                                    int user_alloc)
200 {
201         return 0;
202 }
203
204 void kvm_arch_commit_memory_region(struct kvm *kvm,
205                                    struct kvm_userspace_memory_region *mem,
206                                    struct kvm_memory_slot old,
207                                    int user_alloc)
208 {
209 }
210
211 void kvm_arch_flush_shadow_all(struct kvm *kvm)
212 {
213 }
214
215 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
216                                    struct kvm_memory_slot *slot)
217 {
218 }
219
220 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
221 {
222         int err;
223         struct kvm_vcpu *vcpu;
224
225         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
226         if (!vcpu) {
227                 err = -ENOMEM;
228                 goto out;
229         }
230
231         err = kvm_vcpu_init(vcpu, kvm, id);
232         if (err)
233                 goto free_vcpu;
234
235         err = create_hyp_mappings(vcpu, vcpu + 1);
236         if (err)
237                 goto vcpu_uninit;
238
239         return vcpu;
240 vcpu_uninit:
241         kvm_vcpu_uninit(vcpu);
242 free_vcpu:
243         kmem_cache_free(kvm_vcpu_cache, vcpu);
244 out:
245         return ERR_PTR(err);
246 }
247
248 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
249 {
250         return 0;
251 }
252
253 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
254 {
255         kvm_mmu_free_memory_caches(vcpu);
256         kmem_cache_free(kvm_vcpu_cache, vcpu);
257 }
258
259 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
260 {
261         kvm_arch_vcpu_free(vcpu);
262 }
263
264 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
265 {
266         return 0;
267 }
268
269 int __attribute_const__ kvm_target_cpu(void)
270 {
271         unsigned long implementor = read_cpuid_implementor();
272         unsigned long part_number = read_cpuid_part_number();
273
274         if (implementor != ARM_CPU_IMP_ARM)
275                 return -EINVAL;
276
277         switch (part_number) {
278         case ARM_CPU_PART_CORTEX_A15:
279                 return KVM_ARM_TARGET_CORTEX_A15;
280         default:
281                 return -EINVAL;
282         }
283 }
284
285 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
286 {
287         /* Force users to call KVM_ARM_VCPU_INIT */
288         vcpu->arch.target = -1;
289         return 0;
290 }
291
292 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
293 {
294 }
295
296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
297 {
298         vcpu->cpu = cpu;
299         vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
300
301         /*
302          * Check whether this vcpu requires the cache to be flushed on
303          * this physical CPU. This is a consequence of doing dcache
304          * operations by set/way on this vcpu. We do it here to be in
305          * a non-preemptible section.
306          */
307         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
308                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
309 }
310
311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
312 {
313 }
314
315 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
316                                         struct kvm_guest_debug *dbg)
317 {
318         return -EINVAL;
319 }
320
321
322 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
323                                     struct kvm_mp_state *mp_state)
324 {
325         return -EINVAL;
326 }
327
328 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
329                                     struct kvm_mp_state *mp_state)
330 {
331         return -EINVAL;
332 }
333
334 /**
335  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
336  * @v:          The VCPU pointer
337  *
338  * If the guest CPU is not waiting for interrupts or an interrupt line is
339  * asserted, the CPU is by definition runnable.
340  */
341 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
342 {
343         return !!v->arch.irq_lines;
344 }
345
346 /* Just ensure a guest exit from a particular CPU */
347 static void exit_vm_noop(void *info)
348 {
349 }
350
351 void force_vm_exit(const cpumask_t *mask)
352 {
353         smp_call_function_many(mask, exit_vm_noop, NULL, true);
354 }
355
356 /**
357  * need_new_vmid_gen - check that the VMID is still valid
358  * @kvm: The VM's VMID to checkt
359  *
360  * return true if there is a new generation of VMIDs being used
361  *
362  * The hardware supports only 256 values with the value zero reserved for the
363  * host, so we check if an assigned value belongs to a previous generation,
364  * which which requires us to assign a new value. If we're the first to use a
365  * VMID for the new generation, we must flush necessary caches and TLBs on all
366  * CPUs.
367  */
368 static bool need_new_vmid_gen(struct kvm *kvm)
369 {
370         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
371 }
372
373 /**
374  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
375  * @kvm The guest that we are about to run
376  *
377  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
378  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
379  * caches and TLBs.
380  */
381 static void update_vttbr(struct kvm *kvm)
382 {
383         phys_addr_t pgd_phys;
384         u64 vmid;
385
386         if (!need_new_vmid_gen(kvm))
387                 return;
388
389         spin_lock(&kvm_vmid_lock);
390
391         /*
392          * We need to re-check the vmid_gen here to ensure that if another vcpu
393          * already allocated a valid vmid for this vm, then this vcpu should
394          * use the same vmid.
395          */
396         if (!need_new_vmid_gen(kvm)) {
397                 spin_unlock(&kvm_vmid_lock);
398                 return;
399         }
400
401         /* First user of a new VMID generation? */
402         if (unlikely(kvm_next_vmid == 0)) {
403                 atomic64_inc(&kvm_vmid_gen);
404                 kvm_next_vmid = 1;
405
406                 /*
407                  * On SMP we know no other CPUs can use this CPU's or each
408                  * other's VMID after force_vm_exit returns since the
409                  * kvm_vmid_lock blocks them from reentry to the guest.
410                  */
411                 force_vm_exit(cpu_all_mask);
412                 /*
413                  * Now broadcast TLB + ICACHE invalidation over the inner
414                  * shareable domain to make sure all data structures are
415                  * clean.
416                  */
417                 kvm_call_hyp(__kvm_flush_vm_context);
418         }
419
420         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
421         kvm->arch.vmid = kvm_next_vmid;
422         kvm_next_vmid++;
423
424         /* update vttbr to be used with the new vmid */
425         pgd_phys = virt_to_phys(kvm->arch.pgd);
426         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
427         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
428         kvm->arch.vttbr |= vmid;
429
430         spin_unlock(&kvm_vmid_lock);
431 }
432
433 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
434 {
435         /* SVC called from Hyp mode should never get here */
436         kvm_debug("SVC called from Hyp mode shouldn't go here\n");
437         BUG();
438         return -EINVAL; /* Squash warning */
439 }
440
441 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
442 {
443         trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
444                       vcpu->arch.hsr & HSR_HVC_IMM_MASK);
445
446         kvm_inject_undefined(vcpu);
447         return 1;
448 }
449
450 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
451 {
452         /* We don't support SMC; don't do that. */
453         kvm_debug("smc: at %08x", *vcpu_pc(vcpu));
454         kvm_inject_undefined(vcpu);
455         return 1;
456 }
457
458 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
459 {
460         /* The hypervisor should never cause aborts */
461         kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
462                 vcpu->arch.hxfar, vcpu->arch.hsr);
463         return -EFAULT;
464 }
465
466 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
467 {
468         /* This is either an error in the ws. code or an external abort */
469         kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
470                 vcpu->arch.hxfar, vcpu->arch.hsr);
471         return -EFAULT;
472 }
473
474 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
475 static exit_handle_fn arm_exit_handlers[] = {
476         [HSR_EC_WFI]            = kvm_handle_wfi,
477         [HSR_EC_CP15_32]        = kvm_handle_cp15_32,
478         [HSR_EC_CP15_64]        = kvm_handle_cp15_64,
479         [HSR_EC_CP14_MR]        = kvm_handle_cp14_access,
480         [HSR_EC_CP14_LS]        = kvm_handle_cp14_load_store,
481         [HSR_EC_CP14_64]        = kvm_handle_cp14_access,
482         [HSR_EC_CP_0_13]        = kvm_handle_cp_0_13_access,
483         [HSR_EC_CP10_ID]        = kvm_handle_cp10_id,
484         [HSR_EC_SVC_HYP]        = handle_svc_hyp,
485         [HSR_EC_HVC]            = handle_hvc,
486         [HSR_EC_SMC]            = handle_smc,
487         [HSR_EC_IABT]           = kvm_handle_guest_abort,
488         [HSR_EC_IABT_HYP]       = handle_pabt_hyp,
489         [HSR_EC_DABT]           = kvm_handle_guest_abort,
490         [HSR_EC_DABT_HYP]       = handle_dabt_hyp,
491 };
492
493 /*
494  * A conditional instruction is allowed to trap, even though it
495  * wouldn't be executed.  So let's re-implement the hardware, in
496  * software!
497  */
498 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
499 {
500         unsigned long cpsr, cond, insn;
501
502         /*
503          * Exception Code 0 can only happen if we set HCR.TGE to 1, to
504          * catch undefined instructions, and then we won't get past
505          * the arm_exit_handlers test anyway.
506          */
507         BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
508
509         /* Top two bits non-zero?  Unconditional. */
510         if (vcpu->arch.hsr >> 30)
511                 return true;
512
513         cpsr = *vcpu_cpsr(vcpu);
514
515         /* Is condition field valid? */
516         if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
517                 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
518         else {
519                 /* This can happen in Thumb mode: examine IT state. */
520                 unsigned long it;
521
522                 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
523
524                 /* it == 0 => unconditional. */
525                 if (it == 0)
526                         return true;
527
528                 /* The cond for this insn works out as the top 4 bits. */
529                 cond = (it >> 4);
530         }
531
532         /* Shift makes it look like an ARM-mode instruction */
533         insn = cond << 28;
534         return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
535 }
536
537 /*
538  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
539  * proper exit to QEMU.
540  */
541 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
542                        int exception_index)
543 {
544         unsigned long hsr_ec;
545
546         switch (exception_index) {
547         case ARM_EXCEPTION_IRQ:
548                 return 1;
549         case ARM_EXCEPTION_UNDEFINED:
550                 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
551                         vcpu->arch.hyp_pc);
552                 BUG();
553                 panic("KVM: Hypervisor undefined exception!\n");
554         case ARM_EXCEPTION_DATA_ABORT:
555         case ARM_EXCEPTION_PREF_ABORT:
556         case ARM_EXCEPTION_HVC:
557                 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
558
559                 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
560                     || !arm_exit_handlers[hsr_ec]) {
561                         kvm_err("Unkown exception class: %#08lx, "
562                                 "hsr: %#08x\n", hsr_ec,
563                                 (unsigned int)vcpu->arch.hsr);
564                         BUG();
565                 }
566
567                 /*
568                  * See ARM ARM B1.14.1: "Hyp traps on instructions
569                  * that fail their condition code check"
570                  */
571                 if (!kvm_condition_valid(vcpu)) {
572                         bool is_wide = vcpu->arch.hsr & HSR_IL;
573                         kvm_skip_instr(vcpu, is_wide);
574                         return 1;
575                 }
576
577                 return arm_exit_handlers[hsr_ec](vcpu, run);
578         default:
579                 kvm_pr_unimpl("Unsupported exception type: %d",
580                               exception_index);
581                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
582                 return 0;
583         }
584 }
585
586 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
587 {
588         if (likely(vcpu->arch.has_run_once))
589                 return 0;
590
591         vcpu->arch.has_run_once = true;
592         return 0;
593 }
594
595 /**
596  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
597  * @vcpu:       The VCPU pointer
598  * @run:        The kvm_run structure pointer used for userspace state exchange
599  *
600  * This function is called through the VCPU_RUN ioctl called from user space. It
601  * will execute VM code in a loop until the time slice for the process is used
602  * or some emulation is needed from user space in which case the function will
603  * return with return value 0 and with the kvm_run structure filled in with the
604  * required data for the requested emulation.
605  */
606 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
607 {
608         int ret;
609         sigset_t sigsaved;
610
611         /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
612         if (unlikely(vcpu->arch.target < 0))
613                 return -ENOEXEC;
614
615         ret = kvm_vcpu_first_run_init(vcpu);
616         if (ret)
617                 return ret;
618
619         if (vcpu->sigset_active)
620                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
621
622         ret = 1;
623         run->exit_reason = KVM_EXIT_UNKNOWN;
624         while (ret > 0) {
625                 /*
626                  * Check conditions before entering the guest
627                  */
628                 cond_resched();
629
630                 update_vttbr(vcpu->kvm);
631
632                 local_irq_disable();
633
634                 /*
635                  * Re-check atomic conditions
636                  */
637                 if (signal_pending(current)) {
638                         ret = -EINTR;
639                         run->exit_reason = KVM_EXIT_INTR;
640                 }
641
642                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
643                         local_irq_enable();
644                         continue;
645                 }
646
647                 /**************************************************************
648                  * Enter the guest
649                  */
650                 trace_kvm_entry(*vcpu_pc(vcpu));
651                 kvm_guest_enter();
652                 vcpu->mode = IN_GUEST_MODE;
653
654                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
655
656                 vcpu->mode = OUTSIDE_GUEST_MODE;
657                 vcpu->arch.last_pcpu = smp_processor_id();
658                 kvm_guest_exit();
659                 trace_kvm_exit(*vcpu_pc(vcpu));
660                 /*
661                  * We may have taken a host interrupt in HYP mode (ie
662                  * while executing the guest). This interrupt is still
663                  * pending, as we haven't serviced it yet!
664                  *
665                  * We're now back in SVC mode, with interrupts
666                  * disabled.  Enabling the interrupts now will have
667                  * the effect of taking the interrupt again, in SVC
668                  * mode this time.
669                  */
670                 local_irq_enable();
671
672                 /*
673                  * Back from guest
674                  *************************************************************/
675
676                 ret = handle_exit(vcpu, run, ret);
677         }
678
679         if (vcpu->sigset_active)
680                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
681         return ret;
682 }
683
684 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
685 {
686         int bit_index;
687         bool set;
688         unsigned long *ptr;
689
690         if (number == KVM_ARM_IRQ_CPU_IRQ)
691                 bit_index = __ffs(HCR_VI);
692         else /* KVM_ARM_IRQ_CPU_FIQ */
693                 bit_index = __ffs(HCR_VF);
694
695         ptr = (unsigned long *)&vcpu->arch.irq_lines;
696         if (level)
697                 set = test_and_set_bit(bit_index, ptr);
698         else
699                 set = test_and_clear_bit(bit_index, ptr);
700
701         /*
702          * If we didn't change anything, no need to wake up or kick other CPUs
703          */
704         if (set == level)
705                 return 0;
706
707         /*
708          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
709          * trigger a world-switch round on the running physical CPU to set the
710          * virtual IRQ/FIQ fields in the HCR appropriately.
711          */
712         kvm_vcpu_kick(vcpu);
713
714         return 0;
715 }
716
717 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
718 {
719         u32 irq = irq_level->irq;
720         unsigned int irq_type, vcpu_idx, irq_num;
721         int nrcpus = atomic_read(&kvm->online_vcpus);
722         struct kvm_vcpu *vcpu = NULL;
723         bool level = irq_level->level;
724
725         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
726         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
727         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
728
729         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
730
731         if (irq_type != KVM_ARM_IRQ_TYPE_CPU)
732                 return -EINVAL;
733
734         if (vcpu_idx >= nrcpus)
735                 return -EINVAL;
736
737         vcpu = kvm_get_vcpu(kvm, vcpu_idx);
738         if (!vcpu)
739                 return -EINVAL;
740
741         if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
742                 return -EINVAL;
743
744         return vcpu_interrupt_line(vcpu, irq_num, level);
745 }
746
747 long kvm_arch_vcpu_ioctl(struct file *filp,
748                          unsigned int ioctl, unsigned long arg)
749 {
750         struct kvm_vcpu *vcpu = filp->private_data;
751         void __user *argp = (void __user *)arg;
752
753         switch (ioctl) {
754         case KVM_ARM_VCPU_INIT: {
755                 struct kvm_vcpu_init init;
756
757                 if (copy_from_user(&init, argp, sizeof(init)))
758                         return -EFAULT;
759
760                 return kvm_vcpu_set_target(vcpu, &init);
761
762         }
763         case KVM_SET_ONE_REG:
764         case KVM_GET_ONE_REG: {
765                 struct kvm_one_reg reg;
766                 if (copy_from_user(&reg, argp, sizeof(reg)))
767                         return -EFAULT;
768                 if (ioctl == KVM_SET_ONE_REG)
769                         return kvm_arm_set_reg(vcpu, &reg);
770                 else
771                         return kvm_arm_get_reg(vcpu, &reg);
772         }
773         case KVM_GET_REG_LIST: {
774                 struct kvm_reg_list __user *user_list = argp;
775                 struct kvm_reg_list reg_list;
776                 unsigned n;
777
778                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
779                         return -EFAULT;
780                 n = reg_list.n;
781                 reg_list.n = kvm_arm_num_regs(vcpu);
782                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
783                         return -EFAULT;
784                 if (n < reg_list.n)
785                         return -E2BIG;
786                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
787         }
788         default:
789                 return -EINVAL;
790         }
791 }
792
793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
794 {
795         return -EINVAL;
796 }
797
798 long kvm_arch_vm_ioctl(struct file *filp,
799                        unsigned int ioctl, unsigned long arg)
800 {
801         return -EINVAL;
802 }
803
804 static void cpu_init_hyp_mode(void *vector)
805 {
806         unsigned long long pgd_ptr;
807         unsigned long pgd_low, pgd_high;
808         unsigned long hyp_stack_ptr;
809         unsigned long stack_page;
810         unsigned long vector_ptr;
811
812         /* Switch from the HYP stub to our own HYP init vector */
813         __hyp_set_vectors((unsigned long)vector);
814
815         pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
816         pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
817         pgd_high = (pgd_ptr >> 32ULL);
818         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
819         hyp_stack_ptr = stack_page + PAGE_SIZE;
820         vector_ptr = (unsigned long)__kvm_hyp_vector;
821
822         /*
823          * Call initialization code, and switch to the full blown
824          * HYP code. The init code doesn't need to preserve these registers as
825          * r1-r3 and r12 are already callee save according to the AAPCS.
826          * Note that we slightly misuse the prototype by casing the pgd_low to
827          * a void *.
828          */
829         kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
830 }
831
832 /**
833  * Inits Hyp-mode on all online CPUs
834  */
835 static int init_hyp_mode(void)
836 {
837         phys_addr_t init_phys_addr;
838         int cpu;
839         int err = 0;
840
841         /*
842          * Allocate Hyp PGD and setup Hyp identity mapping
843          */
844         err = kvm_mmu_init();
845         if (err)
846                 goto out_err;
847
848         /*
849          * It is probably enough to obtain the default on one
850          * CPU. It's unlikely to be different on the others.
851          */
852         hyp_default_vectors = __hyp_get_vectors();
853
854         /*
855          * Allocate stack pages for Hypervisor-mode
856          */
857         for_each_possible_cpu(cpu) {
858                 unsigned long stack_page;
859
860                 stack_page = __get_free_page(GFP_KERNEL);
861                 if (!stack_page) {
862                         err = -ENOMEM;
863                         goto out_free_stack_pages;
864                 }
865
866                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
867         }
868
869         /*
870          * Execute the init code on each CPU.
871          *
872          * Note: The stack is not mapped yet, so don't do anything else than
873          * initializing the hypervisor mode on each CPU using a local stack
874          * space for temporary storage.
875          */
876         init_phys_addr = virt_to_phys(__kvm_hyp_init);
877         for_each_online_cpu(cpu) {
878                 smp_call_function_single(cpu, cpu_init_hyp_mode,
879                                          (void *)(long)init_phys_addr, 1);
880         }
881
882         /*
883          * Unmap the identity mapping
884          */
885         kvm_clear_hyp_idmap();
886
887         /*
888          * Map the Hyp-code called directly from the host
889          */
890         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
891         if (err) {
892                 kvm_err("Cannot map world-switch code\n");
893                 goto out_free_mappings;
894         }
895
896         /*
897          * Map the Hyp stack pages
898          */
899         for_each_possible_cpu(cpu) {
900                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
901                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
902
903                 if (err) {
904                         kvm_err("Cannot map hyp stack\n");
905                         goto out_free_mappings;
906                 }
907         }
908
909         /*
910          * Map the host VFP structures
911          */
912         kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
913         if (!kvm_host_vfp_state) {
914                 err = -ENOMEM;
915                 kvm_err("Cannot allocate host VFP state\n");
916                 goto out_free_mappings;
917         }
918
919         for_each_possible_cpu(cpu) {
920                 struct vfp_hard_struct *vfp;
921
922                 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
923                 err = create_hyp_mappings(vfp, vfp + 1);
924
925                 if (err) {
926                         kvm_err("Cannot map host VFP state: %d\n", err);
927                         goto out_free_vfp;
928                 }
929         }
930
931         kvm_info("Hyp mode initialized successfully\n");
932         return 0;
933 out_free_vfp:
934         free_percpu(kvm_host_vfp_state);
935 out_free_mappings:
936         free_hyp_pmds();
937 out_free_stack_pages:
938         for_each_possible_cpu(cpu)
939                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
940 out_err:
941         kvm_err("error initializing Hyp mode: %d\n", err);
942         return err;
943 }
944
945 /**
946  * Initialize Hyp-mode and memory mappings on all CPUs.
947  */
948 int kvm_arch_init(void *opaque)
949 {
950         int err;
951
952         if (!is_hyp_mode_available()) {
953                 kvm_err("HYP mode not available\n");
954                 return -ENODEV;
955         }
956
957         if (kvm_target_cpu() < 0) {
958                 kvm_err("Target CPU not supported!\n");
959                 return -ENODEV;
960         }
961
962         err = init_hyp_mode();
963         if (err)
964                 goto out_err;
965
966         kvm_coproc_table_init();
967         return 0;
968 out_err:
969         return err;
970 }
971
972 /* NOP: Compiling as a module not supported */
973 void kvm_arch_exit(void)
974 {
975 }
976
977 static int arm_init(void)
978 {
979         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
980         return rc;
981 }
982
983 module_init(arm_init);