ARM: perf: prepare for moving CPU PMU code into separate file
[pandora-kernel.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11  * code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/of.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/uaccess.h>
24 #include <linux/pm_runtime.h>
25
26 #include <asm/cputype.h>
27 #include <asm/irq.h>
28 #include <asm/irq_regs.h>
29 #include <asm/pmu.h>
30 #include <asm/stacktrace.h>
31
32 /* Set at runtime when we know what CPU type we are. */
33 static struct arm_pmu *cpu_pmu;
34
35 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
36 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
37 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
38
39 /*
40  * Despite the names, these two functions are CPU-specific and are used
41  * by the OProfile/perf code.
42  */
43 const char *perf_pmu_name(void)
44 {
45         if (!cpu_pmu)
46                 return NULL;
47
48         return cpu_pmu->pmu.name;
49 }
50 EXPORT_SYMBOL_GPL(perf_pmu_name);
51
52 int perf_num_counters(void)
53 {
54         int max_events = 0;
55
56         if (cpu_pmu != NULL)
57                 max_events = cpu_pmu->num_events;
58
59         return max_events;
60 }
61 EXPORT_SYMBOL_GPL(perf_num_counters);
62
63 static int
64 armpmu_map_cache_event(const unsigned (*cache_map)
65                                       [PERF_COUNT_HW_CACHE_MAX]
66                                       [PERF_COUNT_HW_CACHE_OP_MAX]
67                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
68                        u64 config)
69 {
70         unsigned int cache_type, cache_op, cache_result, ret;
71
72         cache_type = (config >>  0) & 0xff;
73         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
74                 return -EINVAL;
75
76         cache_op = (config >>  8) & 0xff;
77         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
78                 return -EINVAL;
79
80         cache_result = (config >> 16) & 0xff;
81         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
82                 return -EINVAL;
83
84         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
85
86         if (ret == CACHE_OP_UNSUPPORTED)
87                 return -ENOENT;
88
89         return ret;
90 }
91
92 static int
93 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
94 {
95         int mapping = (*event_map)[config];
96         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
97 }
98
99 static int
100 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
101 {
102         return (int)(config & raw_event_mask);
103 }
104
105 int
106 armpmu_map_event(struct perf_event *event,
107                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
108                  const unsigned (*cache_map)
109                                 [PERF_COUNT_HW_CACHE_MAX]
110                                 [PERF_COUNT_HW_CACHE_OP_MAX]
111                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
112                  u32 raw_event_mask)
113 {
114         u64 config = event->attr.config;
115
116         switch (event->attr.type) {
117         case PERF_TYPE_HARDWARE:
118                 return armpmu_map_hw_event(event_map, config);
119         case PERF_TYPE_HW_CACHE:
120                 return armpmu_map_cache_event(cache_map, config);
121         case PERF_TYPE_RAW:
122                 return armpmu_map_raw_event(raw_event_mask, config);
123         }
124
125         return -ENOENT;
126 }
127
128 int
129 armpmu_event_set_period(struct perf_event *event,
130                         struct hw_perf_event *hwc,
131                         int idx)
132 {
133         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
134         s64 left = local64_read(&hwc->period_left);
135         s64 period = hwc->sample_period;
136         int ret = 0;
137
138         if (unlikely(left <= -period)) {
139                 left = period;
140                 local64_set(&hwc->period_left, left);
141                 hwc->last_period = period;
142                 ret = 1;
143         }
144
145         if (unlikely(left <= 0)) {
146                 left += period;
147                 local64_set(&hwc->period_left, left);
148                 hwc->last_period = period;
149                 ret = 1;
150         }
151
152         if (left > (s64)armpmu->max_period)
153                 left = armpmu->max_period;
154
155         local64_set(&hwc->prev_count, (u64)-left);
156
157         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
158
159         perf_event_update_userpage(event);
160
161         return ret;
162 }
163
164 u64
165 armpmu_event_update(struct perf_event *event,
166                     struct hw_perf_event *hwc,
167                     int idx)
168 {
169         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
170         u64 delta, prev_raw_count, new_raw_count;
171
172 again:
173         prev_raw_count = local64_read(&hwc->prev_count);
174         new_raw_count = armpmu->read_counter(idx);
175
176         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
177                              new_raw_count) != prev_raw_count)
178                 goto again;
179
180         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
181
182         local64_add(delta, &event->count);
183         local64_sub(delta, &hwc->period_left);
184
185         return new_raw_count;
186 }
187
188 static void
189 armpmu_read(struct perf_event *event)
190 {
191         struct hw_perf_event *hwc = &event->hw;
192
193         /* Don't read disabled counters! */
194         if (hwc->idx < 0)
195                 return;
196
197         armpmu_event_update(event, hwc, hwc->idx);
198 }
199
200 static void
201 armpmu_stop(struct perf_event *event, int flags)
202 {
203         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
204         struct hw_perf_event *hwc = &event->hw;
205
206         /*
207          * ARM pmu always has to update the counter, so ignore
208          * PERF_EF_UPDATE, see comments in armpmu_start().
209          */
210         if (!(hwc->state & PERF_HES_STOPPED)) {
211                 armpmu->disable(hwc, hwc->idx);
212                 armpmu_event_update(event, hwc, hwc->idx);
213                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
214         }
215 }
216
217 static void
218 armpmu_start(struct perf_event *event, int flags)
219 {
220         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
221         struct hw_perf_event *hwc = &event->hw;
222
223         /*
224          * ARM pmu always has to reprogram the period, so ignore
225          * PERF_EF_RELOAD, see the comment below.
226          */
227         if (flags & PERF_EF_RELOAD)
228                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
229
230         hwc->state = 0;
231         /*
232          * Set the period again. Some counters can't be stopped, so when we
233          * were stopped we simply disabled the IRQ source and the counter
234          * may have been left counting. If we don't do this step then we may
235          * get an interrupt too soon or *way* too late if the overflow has
236          * happened since disabling.
237          */
238         armpmu_event_set_period(event, hwc, hwc->idx);
239         armpmu->enable(hwc, hwc->idx);
240 }
241
242 static void
243 armpmu_del(struct perf_event *event, int flags)
244 {
245         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
246         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
247         struct hw_perf_event *hwc = &event->hw;
248         int idx = hwc->idx;
249
250         WARN_ON(idx < 0);
251
252         armpmu_stop(event, PERF_EF_UPDATE);
253         hw_events->events[idx] = NULL;
254         clear_bit(idx, hw_events->used_mask);
255
256         perf_event_update_userpage(event);
257 }
258
259 static int
260 armpmu_add(struct perf_event *event, int flags)
261 {
262         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
263         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
264         struct hw_perf_event *hwc = &event->hw;
265         int idx;
266         int err = 0;
267
268         perf_pmu_disable(event->pmu);
269
270         /* If we don't have a space for the counter then finish early. */
271         idx = armpmu->get_event_idx(hw_events, hwc);
272         if (idx < 0) {
273                 err = idx;
274                 goto out;
275         }
276
277         /*
278          * If there is an event in the counter we are going to use then make
279          * sure it is disabled.
280          */
281         event->hw.idx = idx;
282         armpmu->disable(hwc, idx);
283         hw_events->events[idx] = event;
284
285         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
286         if (flags & PERF_EF_START)
287                 armpmu_start(event, PERF_EF_RELOAD);
288
289         /* Propagate our changes to the userspace mapping. */
290         perf_event_update_userpage(event);
291
292 out:
293         perf_pmu_enable(event->pmu);
294         return err;
295 }
296
297 static int
298 validate_event(struct pmu_hw_events *hw_events,
299                struct perf_event *event)
300 {
301         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
302         struct hw_perf_event fake_event = event->hw;
303         struct pmu *leader_pmu = event->group_leader->pmu;
304
305         if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
306                 return 1;
307
308         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
309 }
310
311 static int
312 validate_group(struct perf_event *event)
313 {
314         struct perf_event *sibling, *leader = event->group_leader;
315         struct pmu_hw_events fake_pmu;
316         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
317
318         /*
319          * Initialise the fake PMU. We only need to populate the
320          * used_mask for the purposes of validation.
321          */
322         memset(fake_used_mask, 0, sizeof(fake_used_mask));
323         fake_pmu.used_mask = fake_used_mask;
324
325         if (!validate_event(&fake_pmu, leader))
326                 return -EINVAL;
327
328         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
329                 if (!validate_event(&fake_pmu, sibling))
330                         return -EINVAL;
331         }
332
333         if (!validate_event(&fake_pmu, event))
334                 return -EINVAL;
335
336         return 0;
337 }
338
339 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
340 {
341         struct arm_pmu *armpmu = (struct arm_pmu *) dev;
342         struct platform_device *plat_device = armpmu->plat_device;
343         struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
344
345         return plat->handle_irq(irq, dev, armpmu->handle_irq);
346 }
347
348 static void
349 armpmu_release_hardware(struct arm_pmu *armpmu)
350 {
351         int i, irq, irqs;
352         struct platform_device *pmu_device = armpmu->plat_device;
353
354         irqs = min(pmu_device->num_resources, num_possible_cpus());
355
356         for (i = 0; i < irqs; ++i) {
357                 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
358                         continue;
359                 irq = platform_get_irq(pmu_device, i);
360                 if (irq >= 0)
361                         free_irq(irq, armpmu);
362         }
363
364         pm_runtime_put_sync(&pmu_device->dev);
365 }
366
367 static int
368 armpmu_reserve_hardware(struct arm_pmu *armpmu)
369 {
370         struct arm_pmu_platdata *plat;
371         irq_handler_t handle_irq;
372         int i, err, irq, irqs;
373         struct platform_device *pmu_device = armpmu->plat_device;
374
375         if (!pmu_device)
376                 return -ENODEV;
377
378         plat = dev_get_platdata(&pmu_device->dev);
379         if (plat && plat->handle_irq)
380                 handle_irq = armpmu_platform_irq;
381         else
382                 handle_irq = armpmu->handle_irq;
383
384         irqs = min(pmu_device->num_resources, num_possible_cpus());
385         if (irqs < 1) {
386                 pr_err("no irqs for PMUs defined\n");
387                 return -ENODEV;
388         }
389
390         pm_runtime_get_sync(&pmu_device->dev);
391
392         for (i = 0; i < irqs; ++i) {
393                 err = 0;
394                 irq = platform_get_irq(pmu_device, i);
395                 if (irq < 0)
396                         continue;
397
398                 /*
399                  * If we have a single PMU interrupt that we can't shift,
400                  * assume that we're running on a uniprocessor machine and
401                  * continue. Otherwise, continue without this interrupt.
402                  */
403                 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
404                         pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
405                                     irq, i);
406                         continue;
407                 }
408
409                 err = request_irq(irq, handle_irq,
410                                   IRQF_DISABLED | IRQF_NOBALANCING,
411                                   "arm-pmu", armpmu);
412                 if (err) {
413                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
414                                 irq);
415                         armpmu_release_hardware(armpmu);
416                         return err;
417                 }
418
419                 cpumask_set_cpu(i, &armpmu->active_irqs);
420         }
421
422         return 0;
423 }
424
425 static void
426 hw_perf_event_destroy(struct perf_event *event)
427 {
428         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
429         atomic_t *active_events  = &armpmu->active_events;
430         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
431
432         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
433                 armpmu_release_hardware(armpmu);
434                 mutex_unlock(pmu_reserve_mutex);
435         }
436 }
437
438 static int
439 event_requires_mode_exclusion(struct perf_event_attr *attr)
440 {
441         return attr->exclude_idle || attr->exclude_user ||
442                attr->exclude_kernel || attr->exclude_hv;
443 }
444
445 static int
446 __hw_perf_event_init(struct perf_event *event)
447 {
448         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
449         struct hw_perf_event *hwc = &event->hw;
450         int mapping, err;
451
452         mapping = armpmu->map_event(event);
453
454         if (mapping < 0) {
455                 pr_debug("event %x:%llx not supported\n", event->attr.type,
456                          event->attr.config);
457                 return mapping;
458         }
459
460         /*
461          * We don't assign an index until we actually place the event onto
462          * hardware. Use -1 to signify that we haven't decided where to put it
463          * yet. For SMP systems, each core has it's own PMU so we can't do any
464          * clever allocation or constraints checking at this point.
465          */
466         hwc->idx                = -1;
467         hwc->config_base        = 0;
468         hwc->config             = 0;
469         hwc->event_base         = 0;
470
471         /*
472          * Check whether we need to exclude the counter from certain modes.
473          */
474         if ((!armpmu->set_event_filter ||
475              armpmu->set_event_filter(hwc, &event->attr)) &&
476              event_requires_mode_exclusion(&event->attr)) {
477                 pr_debug("ARM performance counters do not support "
478                          "mode exclusion\n");
479                 return -EOPNOTSUPP;
480         }
481
482         /*
483          * Store the event encoding into the config_base field.
484          */
485         hwc->config_base            |= (unsigned long)mapping;
486
487         if (!hwc->sample_period) {
488                 /*
489                  * For non-sampling runs, limit the sample_period to half
490                  * of the counter width. That way, the new counter value
491                  * is far less likely to overtake the previous one unless
492                  * you have some serious IRQ latency issues.
493                  */
494                 hwc->sample_period  = armpmu->max_period >> 1;
495                 hwc->last_period    = hwc->sample_period;
496                 local64_set(&hwc->period_left, hwc->sample_period);
497         }
498
499         err = 0;
500         if (event->group_leader != event) {
501                 err = validate_group(event);
502                 if (err)
503                         return -EINVAL;
504         }
505
506         return err;
507 }
508
509 static int armpmu_event_init(struct perf_event *event)
510 {
511         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
512         int err = 0;
513         atomic_t *active_events = &armpmu->active_events;
514
515         /* does not support taken branch sampling */
516         if (has_branch_stack(event))
517                 return -EOPNOTSUPP;
518
519         if (armpmu->map_event(event) == -ENOENT)
520                 return -ENOENT;
521
522         event->destroy = hw_perf_event_destroy;
523
524         if (!atomic_inc_not_zero(active_events)) {
525                 mutex_lock(&armpmu->reserve_mutex);
526                 if (atomic_read(active_events) == 0)
527                         err = armpmu_reserve_hardware(armpmu);
528
529                 if (!err)
530                         atomic_inc(active_events);
531                 mutex_unlock(&armpmu->reserve_mutex);
532         }
533
534         if (err)
535                 return err;
536
537         err = __hw_perf_event_init(event);
538         if (err)
539                 hw_perf_event_destroy(event);
540
541         return err;
542 }
543
544 static void armpmu_enable(struct pmu *pmu)
545 {
546         struct arm_pmu *armpmu = to_arm_pmu(pmu);
547         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
548         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
549
550         if (enabled)
551                 armpmu->start();
552 }
553
554 static void armpmu_disable(struct pmu *pmu)
555 {
556         struct arm_pmu *armpmu = to_arm_pmu(pmu);
557         armpmu->stop();
558 }
559
560 #ifdef CONFIG_PM_RUNTIME
561 static int armpmu_runtime_resume(struct device *dev)
562 {
563         struct arm_pmu_platdata *plat = dev_get_platdata(dev);
564
565         if (plat && plat->runtime_resume)
566                 return plat->runtime_resume(dev);
567
568         return 0;
569 }
570
571 static int armpmu_runtime_suspend(struct device *dev)
572 {
573         struct arm_pmu_platdata *plat = dev_get_platdata(dev);
574
575         if (plat && plat->runtime_suspend)
576                 return plat->runtime_suspend(dev);
577
578         return 0;
579 }
580 #endif
581
582 const struct dev_pm_ops armpmu_dev_pm_ops = {
583         SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
584 };
585
586 static void __init armpmu_init(struct arm_pmu *armpmu)
587 {
588         atomic_set(&armpmu->active_events, 0);
589         mutex_init(&armpmu->reserve_mutex);
590
591         armpmu->pmu = (struct pmu) {
592                 .pmu_enable     = armpmu_enable,
593                 .pmu_disable    = armpmu_disable,
594                 .event_init     = armpmu_event_init,
595                 .add            = armpmu_add,
596                 .del            = armpmu_del,
597                 .start          = armpmu_start,
598                 .stop           = armpmu_stop,
599                 .read           = armpmu_read,
600         };
601 }
602
603 int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
604 {
605         armpmu_init(armpmu);
606         pr_info("enabled with %s PMU driver, %d counters available\n",
607                         armpmu->name, armpmu->num_events);
608         return perf_pmu_register(&armpmu->pmu, name, type);
609 }
610
611 /* Include the PMU-specific implementations. */
612 #include "perf_event_xscale.c"
613 #include "perf_event_v6.c"
614 #include "perf_event_v7.c"
615
616 static struct pmu_hw_events *cpu_pmu_get_cpu_events(void)
617 {
618         return &__get_cpu_var(cpu_hw_events);
619 }
620
621 static void __devinit cpu_pmu_init(struct arm_pmu *cpu_pmu)
622 {
623         int cpu;
624         for_each_possible_cpu(cpu) {
625                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
626                 events->events = per_cpu(hw_events, cpu);
627                 events->used_mask = per_cpu(used_mask, cpu);
628                 raw_spin_lock_init(&events->pmu_lock);
629         }
630         cpu_pmu->get_hw_events = cpu_pmu_get_cpu_events;
631
632         /* Ensure the PMU has sane values out of reset. */
633         if (cpu_pmu && cpu_pmu->reset)
634                 on_each_cpu(cpu_pmu->reset, NULL, 1);
635 }
636
637 /*
638  * PMU hardware loses all context when a CPU goes offline.
639  * When a CPU is hotplugged back in, since some hardware registers are
640  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
641  * junk values out of them.
642  */
643 static int __cpuinit cpu_pmu_notify(struct notifier_block *b,
644                                     unsigned long action, void *hcpu)
645 {
646         if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
647                 return NOTIFY_DONE;
648
649         if (cpu_pmu && cpu_pmu->reset)
650                 cpu_pmu->reset(NULL);
651
652         return NOTIFY_OK;
653 }
654
655 static struct notifier_block __cpuinitdata cpu_pmu_hotplug_notifier = {
656         .notifier_call = cpu_pmu_notify,
657 };
658
659 /*
660  * PMU platform driver and devicetree bindings.
661  */
662 static struct of_device_id __devinitdata cpu_pmu_of_device_ids[] = {
663         {.compatible = "arm,cortex-a15-pmu",    .data = armv7_a15_pmu_init},
664         {.compatible = "arm,cortex-a9-pmu",     .data = armv7_a9_pmu_init},
665         {.compatible = "arm,cortex-a8-pmu",     .data = armv7_a8_pmu_init},
666         {.compatible = "arm,cortex-a7-pmu",     .data = armv7_a7_pmu_init},
667         {.compatible = "arm,cortex-a5-pmu",     .data = armv7_a5_pmu_init},
668         {.compatible = "arm,arm11mpcore-pmu",   .data = armv6mpcore_pmu_init},
669         {.compatible = "arm,arm1176-pmu",       .data = armv6pmu_init},
670         {.compatible = "arm,arm1136-pmu",       .data = armv6pmu_init},
671         {},
672 };
673
674 static struct platform_device_id __devinitdata cpu_pmu_plat_device_ids[] = {
675         {.name = "arm-pmu"},
676         {},
677 };
678
679 /*
680  * CPU PMU identification and probing.
681  */
682 static struct arm_pmu *__devinit probe_current_pmu(void)
683 {
684         struct arm_pmu *pmu = NULL;
685         int cpu = get_cpu();
686         unsigned long cpuid = read_cpuid_id();
687         unsigned long implementor = (cpuid & 0xFF000000) >> 24;
688         unsigned long part_number = (cpuid & 0xFFF0);
689
690         pr_info("probing PMU on CPU %d\n", cpu);
691
692         /* ARM Ltd CPUs. */
693         if (0x41 == implementor) {
694                 switch (part_number) {
695                 case 0xB360:    /* ARM1136 */
696                 case 0xB560:    /* ARM1156 */
697                 case 0xB760:    /* ARM1176 */
698                         pmu = armv6pmu_init();
699                         break;
700                 case 0xB020:    /* ARM11mpcore */
701                         pmu = armv6mpcore_pmu_init();
702                         break;
703                 case 0xC080:    /* Cortex-A8 */
704                         pmu = armv7_a8_pmu_init();
705                         break;
706                 case 0xC090:    /* Cortex-A9 */
707                         pmu = armv7_a9_pmu_init();
708                         break;
709                 case 0xC050:    /* Cortex-A5 */
710                         pmu = armv7_a5_pmu_init();
711                         break;
712                 case 0xC0F0:    /* Cortex-A15 */
713                         pmu = armv7_a15_pmu_init();
714                         break;
715                 case 0xC070:    /* Cortex-A7 */
716                         pmu = armv7_a7_pmu_init();
717                         break;
718                 }
719         /* Intel CPUs [xscale]. */
720         } else if (0x69 == implementor) {
721                 part_number = (cpuid >> 13) & 0x7;
722                 switch (part_number) {
723                 case 1:
724                         pmu = xscale1pmu_init();
725                         break;
726                 case 2:
727                         pmu = xscale2pmu_init();
728                         break;
729                 }
730         }
731
732         put_cpu();
733         return pmu;
734 }
735
736 static int __devinit cpu_pmu_device_probe(struct platform_device *pdev)
737 {
738         const struct of_device_id *of_id;
739         struct arm_pmu *(*init_fn)(void);
740         struct device_node *node = pdev->dev.of_node;
741
742         if (cpu_pmu) {
743                 pr_info("attempt to register multiple PMU devices!");
744                 return -ENOSPC;
745         }
746
747         if (node && (of_id = of_match_node(cpu_pmu_of_device_ids, pdev->dev.of_node))) {
748                 init_fn = of_id->data;
749                 cpu_pmu = init_fn();
750         } else {
751                 cpu_pmu = probe_current_pmu();
752         }
753
754         if (!cpu_pmu)
755                 return -ENODEV;
756
757         cpu_pmu->plat_device = pdev;
758         cpu_pmu_init(cpu_pmu);
759         register_cpu_notifier(&cpu_pmu_hotplug_notifier);
760         armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
761
762         return 0;
763 }
764
765 static struct platform_driver cpu_pmu_driver = {
766         .driver         = {
767                 .name   = "arm-pmu",
768                 .pm     = &armpmu_dev_pm_ops,
769                 .of_match_table = cpu_pmu_of_device_ids,
770         },
771         .probe          = cpu_pmu_device_probe,
772         .id_table       = cpu_pmu_plat_device_ids,
773 };
774
775 static int __init register_pmu_driver(void)
776 {
777         return platform_driver_register(&cpu_pmu_driver);
778 }
779 device_initcall(register_pmu_driver);
780
781 /*
782  * Callchain handling code.
783  */
784
785 /*
786  * The registers we're interested in are at the end of the variable
787  * length saved register structure. The fp points at the end of this
788  * structure so the address of this struct is:
789  * (struct frame_tail *)(xxx->fp)-1
790  *
791  * This code has been adapted from the ARM OProfile support.
792  */
793 struct frame_tail {
794         struct frame_tail __user *fp;
795         unsigned long sp;
796         unsigned long lr;
797 } __attribute__((packed));
798
799 /*
800  * Get the return address for a single stackframe and return a pointer to the
801  * next frame tail.
802  */
803 static struct frame_tail __user *
804 user_backtrace(struct frame_tail __user *tail,
805                struct perf_callchain_entry *entry)
806 {
807         struct frame_tail buftail;
808
809         /* Also check accessibility of one struct frame_tail beyond */
810         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
811                 return NULL;
812         if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
813                 return NULL;
814
815         perf_callchain_store(entry, buftail.lr);
816
817         /*
818          * Frame pointers should strictly progress back up the stack
819          * (towards higher addresses).
820          */
821         if (tail + 1 >= buftail.fp)
822                 return NULL;
823
824         return buftail.fp - 1;
825 }
826
827 void
828 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
829 {
830         struct frame_tail __user *tail;
831
832
833         tail = (struct frame_tail __user *)regs->ARM_fp - 1;
834
835         while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
836                tail && !((unsigned long)tail & 0x3))
837                 tail = user_backtrace(tail, entry);
838 }
839
840 /*
841  * Gets called by walk_stackframe() for every stackframe. This will be called
842  * whist unwinding the stackframe and is like a subroutine return so we use
843  * the PC.
844  */
845 static int
846 callchain_trace(struct stackframe *fr,
847                 void *data)
848 {
849         struct perf_callchain_entry *entry = data;
850         perf_callchain_store(entry, fr->pc);
851         return 0;
852 }
853
854 void
855 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
856 {
857         struct stackframe fr;
858
859         fr.fp = regs->ARM_fp;
860         fr.sp = regs->ARM_sp;
861         fr.lr = regs->ARM_lr;
862         fr.pc = regs->ARM_pc;
863         walk_stackframe(&fr, callchain_trace, entry);
864 }