33d284e3f7f5680f9edde1dfd88039af3234b648
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124                                 const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ?: skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks==0)
176                 quickacks=2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags&TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags&TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize)/2;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306                             struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2*tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd/2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp,
474                            jiffies - tp->rcv_rtt_est.time,
475                            1);
476
477 new_measure:
478         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479         tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484         struct tcp_sock *tp = tcp_sk(sk);
485         if (tp->rx_opt.rcv_tsecr &&
486             (TCP_SKB_CB(skb)->end_seq -
487              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         int time;
499         int space;
500
501         if (tp->rcvq_space.time == 0)
502                 goto new_measure;
503
504         time = tcp_time_stamp - tp->rcvq_space.time;
505         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506             tp->rcv_rtt_est.rtt == 0)
507                 return;
508
509         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511         space = max(tp->rcvq_space.space, space);
512
513         if (tp->rcvq_space.space != space) {
514                 int rcvmem;
515
516                 tp->rcvq_space.space = space;
517
518                 if (sysctl_tcp_moderate_rcvbuf &&
519                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520                         int new_clamp = space;
521
522                         /* Receive space grows, normalize in order to
523                          * take into account packet headers and sk_buff
524                          * structure overhead.
525                          */
526                         space /= tp->advmss;
527                         if (!space)
528                                 space = 1;
529                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
530                                   16 + sizeof(struct sk_buff));
531                         while (tcp_win_from_space(rcvmem) < tp->advmss)
532                                 rcvmem += 128;
533                         space *= rcvmem;
534                         space = min(space, sysctl_tcp_rmem[2]);
535                         if (space > sk->sk_rcvbuf) {
536                                 sk->sk_rcvbuf = space;
537
538                                 /* Make the window clamp follow along.  */
539                                 tp->window_clamp = new_clamp;
540                         }
541                 }
542         }
543
544 new_measure:
545         tp->rcvq_space.seq = tp->copied_seq;
546         tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561         struct tcp_sock *tp = tcp_sk(sk);
562         struct inet_connection_sock *icsk = inet_csk(sk);
563         u32 now;
564
565         inet_csk_schedule_ack(sk);
566
567         tcp_measure_rcv_mss(sk, skb);
568
569         tcp_rcv_rtt_measure(tp);
570
571         now = tcp_time_stamp;
572
573         if (!icsk->icsk_ack.ato) {
574                 /* The _first_ data packet received, initialize
575                  * delayed ACK engine.
576                  */
577                 tcp_incr_quickack(sk);
578                 icsk->icsk_ack.ato = TCP_ATO_MIN;
579         } else {
580                 int m = now - icsk->icsk_ack.lrcvtime;
581
582                 if (m <= TCP_ATO_MIN/2) {
583                         /* The fastest case is the first. */
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585                 } else if (m < icsk->icsk_ack.ato) {
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
588                                 icsk->icsk_ack.ato = icsk->icsk_rto;
589                 } else if (m > icsk->icsk_rto) {
590                         /* Too long gap. Apparently sender failed to
591                          * restart window, so that we send ACKs quickly.
592                          */
593                         tcp_incr_quickack(sk);
594                         sk_stream_mem_reclaim(sk);
595                 }
596         }
597         icsk->icsk_ack.lrcvtime = now;
598
599         TCP_ECN_check_ce(tp, skb);
600
601         if (skb->len >= 128)
602                 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607         struct dst_entry *dst = __sk_dst_get(sk);
608         u32 rto_min = TCP_RTO_MIN;
609
610         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611                 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612         return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626         struct tcp_sock *tp = tcp_sk(sk);
627         long m = mrtt; /* RTT */
628
629         /*      The following amusing code comes from Jacobson's
630          *      article in SIGCOMM '88.  Note that rtt and mdev
631          *      are scaled versions of rtt and mean deviation.
632          *      This is designed to be as fast as possible
633          *      m stands for "measurement".
634          *
635          *      On a 1990 paper the rto value is changed to:
636          *      RTO = rtt + 4 * mdev
637          *
638          * Funny. This algorithm seems to be very broken.
639          * These formulae increase RTO, when it should be decreased, increase
640          * too slowly, when it should be increased quickly, decrease too quickly
641          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642          * does not matter how to _calculate_ it. Seems, it was trap
643          * that VJ failed to avoid. 8)
644          */
645         if (m == 0)
646                 m = 1;
647         if (tp->srtt != 0) {
648                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
649                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
650                 if (m < 0) {
651                         m = -m;         /* m is now abs(error) */
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                         /* This is similar to one of Eifel findings.
654                          * Eifel blocks mdev updates when rtt decreases.
655                          * This solution is a bit different: we use finer gain
656                          * for mdev in this case (alpha*beta).
657                          * Like Eifel it also prevents growth of rto,
658                          * but also it limits too fast rto decreases,
659                          * happening in pure Eifel.
660                          */
661                         if (m > 0)
662                                 m >>= 3;
663                 } else {
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                 }
666                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
667                 if (tp->mdev > tp->mdev_max) {
668                         tp->mdev_max = tp->mdev;
669                         if (tp->mdev_max > tp->rttvar)
670                                 tp->rttvar = tp->mdev_max;
671                 }
672                 if (after(tp->snd_una, tp->rtt_seq)) {
673                         if (tp->mdev_max < tp->rttvar)
674                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675                         tp->rtt_seq = tp->snd_nxt;
676                         tp->mdev_max = tcp_rto_min(sk);
677                 }
678         } else {
679                 /* no previous measure. */
680                 tp->srtt = m<<3;        /* take the measured time to be rtt */
681                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
682                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683                 tp->rtt_seq = tp->snd_nxt;
684         }
685 }
686
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692         const struct tcp_sock *tp = tcp_sk(sk);
693         /* Old crap is replaced with new one. 8)
694          *
695          * More seriously:
696          * 1. If rtt variance happened to be less 50msec, it is hallucination.
697          *    It cannot be less due to utterly erratic ACK generation made
698          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699          *    to do with delayed acks, because at cwnd>2 true delack timeout
700          *    is invisible. Actually, Linux-2.4 also generates erratic
701          *    ACKs in some circumstances.
702          */
703         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705         /* 2. Fixups made earlier cannot be right.
706          *    If we do not estimate RTO correctly without them,
707          *    all the algo is pure shit and should be replaced
708          *    with correct one. It is exactly, which we pretend to do.
709          */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727         struct tcp_sock *tp = tcp_sk(sk);
728         struct dst_entry *dst = __sk_dst_get(sk);
729
730         if (sysctl_tcp_nometrics_save)
731                 return;
732
733         dst_confirm(dst);
734
735         if (dst && (dst->flags&DST_HOST)) {
736                 const struct inet_connection_sock *icsk = inet_csk(sk);
737                 int m;
738
739                 if (icsk->icsk_backoff || !tp->srtt) {
740                         /* This session failed to estimate rtt. Why?
741                          * Probably, no packets returned in time.
742                          * Reset our results.
743                          */
744                         if (!(dst_metric_locked(dst, RTAX_RTT)))
745                                 dst->metrics[RTAX_RTT-1] = 0;
746                         return;
747                 }
748
749                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
758                         else
759                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         if (m < 0)
764                                 m = -m;
765
766                         /* Scale deviation to rttvar fixed point */
767                         m >>= 1;
768                         if (m < tp->mdev)
769                                 m = tp->mdev;
770
771                         if (m >= dst_metric(dst, RTAX_RTTVAR))
772                                 dst->metrics[RTAX_RTTVAR-1] = m;
773                         else
774                                 dst->metrics[RTAX_RTTVAR-1] -=
775                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776                 }
777
778                 if (tp->snd_ssthresh >= 0xFFFF) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst->metrics[RTAX_SSTHRESH-1] =
792                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795                 } else {
796                         /* Else slow start did not finish, cwnd is non-sense,
797                            ssthresh may be also invalid.
798                          */
799                         if (!dst_metric_locked(dst, RTAX_CWND))
800                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801                         if (dst->metrics[RTAX_SSTHRESH-1] &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811                 }
812         }
813 }
814
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *      The RFC specifies a window of no more than 4380 bytes
820  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *      is a bit misleading because they use a clamp at 4380 bytes
822  *      rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828         if (!cwnd) {
829                 if (tp->mss_cache > 1460)
830                         cwnd = 2;
831                 else
832                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833         }
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         /* RFC3517 uses different metric in lost marker => reset on change */
867         if (tcp_is_fack(tp))
868                 tp->lost_skb_hint = NULL;
869         tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875         tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882         struct tcp_sock *tp = tcp_sk(sk);
883         struct dst_entry *dst = __sk_dst_get(sk);
884
885         if (dst == NULL)
886                 goto reset;
887
888         dst_confirm(dst);
889
890         if (dst_metric_locked(dst, RTAX_CWND))
891                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892         if (dst_metric(dst, RTAX_SSTHRESH)) {
893                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
896         }
897         if (dst_metric(dst, RTAX_REORDERING) &&
898             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899                 tcp_disable_fack(tp);
900                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901         }
902
903         if (dst_metric(dst, RTAX_RTT) == 0)
904                 goto reset;
905
906         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932         tcp_bound_rto(sk);
933         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934                 goto reset;
935         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936         tp->snd_cwnd_stamp = tcp_time_stamp;
937         return;
938
939 reset:
940         /* Play conservative. If timestamps are not
941          * supported, TCP will fail to recalculate correct
942          * rtt, if initial rto is too small. FORGET ALL AND RESET!
943          */
944         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945                 tp->srtt = 0;
946                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948         }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952                                   const int ts)
953 {
954         struct tcp_sock *tp = tcp_sk(sk);
955         if (metric > tp->reordering) {
956                 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958                 /* This exciting event is worth to be remembered. 8) */
959                 if (ts)
960                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961                 else if (tcp_is_reno(tp))
962                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963                 else if (tcp_is_fack(tp))
964                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965                 else
966                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970                        tp->reordering,
971                        tp->fackets_out,
972                        tp->sacked_out,
973                        tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975                 tcp_disable_fack(tp);
976         }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980  *
981  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982  * Packets in queue with these bits set are counted in variables
983  * sacked_out, retrans_out and lost_out, correspondingly.
984  *
985  * Valid combinations are:
986  * Tag  InFlight        Description
987  * 0    1               - orig segment is in flight.
988  * S    0               - nothing flies, orig reached receiver.
989  * L    0               - nothing flies, orig lost by net.
990  * R    2               - both orig and retransmit are in flight.
991  * L|R  1               - orig is lost, retransmit is in flight.
992  * S|R  1               - orig reached receiver, retrans is still in flight.
993  * (L|S|R is logically valid, it could occur when L|R is sacked,
994  *  but it is equivalent to plain S and code short-curcuits it to S.
995  *  L|S is logically invalid, it would mean -1 packet in flight 8))
996  *
997  * These 6 states form finite state machine, controlled by the following events:
998  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000  * 3. Loss detection event of one of three flavors:
1001  *      A. Scoreboard estimator decided the packet is lost.
1002  *         A'. Reno "three dupacks" marks head of queue lost.
1003  *         A''. Its FACK modfication, head until snd.fack is lost.
1004  *      B. SACK arrives sacking data transmitted after never retransmitted
1005  *         hole was sent out.
1006  *      C. SACK arrives sacking SND.NXT at the moment, when the
1007  *         segment was retransmitted.
1008  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009  *
1010  * It is pleasant to note, that state diagram turns out to be commutative,
1011  * so that we are allowed not to be bothered by order of our actions,
1012  * when multiple events arrive simultaneously. (see the function below).
1013  *
1014  * Reordering detection.
1015  * --------------------
1016  * Reordering metric is maximal distance, which a packet can be displaced
1017  * in packet stream. With SACKs we can estimate it:
1018  *
1019  * 1. SACK fills old hole and the corresponding segment was not
1020  *    ever retransmitted -> reordering. Alas, we cannot use it
1021  *    when segment was retransmitted.
1022  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023  *    for retransmitted and already SACKed segment -> reordering..
1024  * Both of these heuristics are not used in Loss state, when we cannot
1025  * account for retransmits accurately.
1026  *
1027  * SACK block validation.
1028  * ----------------------
1029  *
1030  * SACK block range validation checks that the received SACK block fits to
1031  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032  * Note that SND.UNA is not included to the range though being valid because
1033  * it means that the receiver is rather inconsistent with itself reporting
1034  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035  * perfectly valid, however, in light of RFC2018 which explicitly states
1036  * that "SACK block MUST reflect the newest segment.  Even if the newest
1037  * segment is going to be discarded ...", not that it looks very clever
1038  * in case of head skb. Due to potentional receiver driven attacks, we
1039  * choose to avoid immediate execution of a walk in write queue due to
1040  * reneging and defer head skb's loss recovery to standard loss recovery
1041  * procedure that will eventually trigger (nothing forbids us doing this).
1042  *
1043  * Implements also blockage to start_seq wrap-around. Problem lies in the
1044  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045  * there's no guarantee that it will be before snd_nxt (n). The problem
1046  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047  * wrap (s_w):
1048  *
1049  *         <- outs wnd ->                          <- wrapzone ->
1050  *         u     e      n                         u_w   e_w  s n_w
1051  *         |     |      |                          |     |   |  |
1052  * |<------------+------+----- TCP seqno space --------------+---------->|
1053  * ...-- <2^31 ->|                                           |<--------...
1054  * ...---- >2^31 ------>|                                    |<--------...
1055  *
1056  * Current code wouldn't be vulnerable but it's better still to discard such
1057  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060  * equal to the ideal case (infinite seqno space without wrap caused issues).
1061  *
1062  * With D-SACK the lower bound is extended to cover sequence space below
1063  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064  * again, D-SACK block must not to go across snd_una (for the same reason as
1065  * for the normal SACK blocks, explained above). But there all simplicity
1066  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067  * fully below undo_marker they do not affect behavior in anyway and can
1068  * therefore be safely ignored. In rare cases (which are more or less
1069  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070  * fragmentation and packet reordering past skb's retransmission. To consider
1071  * them correctly, the acceptable range must be extended even more though
1072  * the exact amount is rather hard to quantify. However, tp->max_window can
1073  * be used as an exaggerated estimate.
1074  */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076                                   u32 start_seq, u32 end_seq)
1077 {
1078         /* Too far in future, or reversed (interpretation is ambiguous) */
1079         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080                 return 0;
1081
1082         /* Nasty start_seq wrap-around check (see comments above) */
1083         if (!before(start_seq, tp->snd_nxt))
1084                 return 0;
1085
1086         /* In outstanding window? ...This is valid exit for D-SACKs too.
1087          * start_seq == snd_una is non-sensical (see comments above)
1088          */
1089         if (after(start_seq, tp->snd_una))
1090                 return 1;
1091
1092         if (!is_dsack || !tp->undo_marker)
1093                 return 0;
1094
1095         /* ...Then it's D-SACK, and must reside below snd_una completely */
1096         if (!after(end_seq, tp->snd_una))
1097                 return 0;
1098
1099         if (!before(start_seq, tp->undo_marker))
1100                 return 1;
1101
1102         /* Too old */
1103         if (!after(end_seq, tp->undo_marker))
1104                 return 0;
1105
1106         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107          *   start_seq < undo_marker and end_seq >= undo_marker.
1108          */
1109         return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113  * Event "C". Later note: FACK people cheated me again 8), we have to account
1114  * for reordering! Ugly, but should help.
1115  *
1116  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117  * less than what is now known to be received by the other end (derived from
1118  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119  * retransmitted skbs to avoid some costly processing per ACKs.
1120  */
1121 static int tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123         const struct inet_connection_sock *icsk = inet_csk(sk);
1124         struct tcp_sock *tp = tcp_sk(sk);
1125         struct sk_buff *skb;
1126         int flag = 0;
1127         int cnt = 0;
1128         u32 new_low_seq = tp->snd_nxt;
1129         u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1130
1131         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132             !after(received_upto, tp->lost_retrans_low) ||
1133             icsk->icsk_ca_state != TCP_CA_Recovery)
1134                 return flag;
1135
1136         tcp_for_write_queue(skb, sk) {
1137                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139                 if (skb == tcp_send_head(sk))
1140                         break;
1141                 if (cnt == tp->retrans_out)
1142                         break;
1143                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144                         continue;
1145
1146                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147                         continue;
1148
1149                 if (after(received_upto, ack_seq) &&
1150                     (tcp_is_fack(tp) ||
1151                      !before(received_upto,
1152                              ack_seq + tp->reordering * tp->mss_cache))) {
1153                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154                         tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156                         /* clear lost hint */
1157                         tp->retransmit_skb_hint = NULL;
1158
1159                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160                                 tp->lost_out += tcp_skb_pcount(skb);
1161                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162                                 flag |= FLAG_DATA_SACKED;
1163                                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164                         }
1165                 } else {
1166                         if (before(ack_seq, new_low_seq))
1167                                 new_low_seq = ack_seq;
1168                         cnt += tcp_skb_pcount(skb);
1169                 }
1170         }
1171
1172         if (tp->retrans_out)
1173                 tp->lost_retrans_low = new_low_seq;
1174
1175         return flag;
1176 }
1177
1178 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1179                            struct tcp_sack_block_wire *sp, int num_sacks,
1180                            u32 prior_snd_una)
1181 {
1182         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1183         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1184         int dup_sack = 0;
1185
1186         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187                 dup_sack = 1;
1188                 tcp_dsack_seen(tp);
1189                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1190         } else if (num_sacks > 1) {
1191                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1192                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1193
1194                 if (!after(end_seq_0, end_seq_1) &&
1195                     !before(start_seq_0, start_seq_1)) {
1196                         dup_sack = 1;
1197                         tcp_dsack_seen(tp);
1198                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1199                 }
1200         }
1201
1202         /* D-SACK for already forgotten data... Do dumb counting. */
1203         if (dup_sack &&
1204             !after(end_seq_0, prior_snd_una) &&
1205             after(end_seq_0, tp->undo_marker))
1206                 tp->undo_retrans--;
1207
1208         return dup_sack;
1209 }
1210
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212  * the incoming SACK may not exactly match but we can find smaller MSS
1213  * aligned portion of it that matches. Therefore we might need to fragment
1214  * which may fail and creates some hassle (caller must handle error case
1215  * returns).
1216  */
1217 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1218                                  u32 start_seq, u32 end_seq)
1219 {
1220         int in_sack, err;
1221         unsigned int pkt_len;
1222
1223         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1224                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1225
1226         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1227             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1228
1229                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1230
1231                 if (!in_sack)
1232                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1233                 else
1234                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1235                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1236                 if (err < 0)
1237                         return err;
1238         }
1239
1240         return in_sack;
1241 }
1242
1243 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1244                            int *reord, int dup_sack, int fack_count)
1245 {
1246         u8 sacked = TCP_SKB_CB(skb)->sacked;
1247         int flag = 0;
1248
1249         /* Account D-SACK for retransmitted packet. */
1250         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1251                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1252                         tp->undo_retrans--;
1253                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1254                     (sacked & TCPCB_SACKED_ACKED))
1255                         *reord = min(fack_count, *reord);
1256         }
1257
1258         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260                 return flag;
1261
1262         if (!(sacked & TCPCB_SACKED_ACKED)) {
1263                 if (sacked & TCPCB_SACKED_RETRANS) {
1264                         /* If the segment is not tagged as lost,
1265                          * we do not clear RETRANS, believing
1266                          * that retransmission is still in flight.
1267                          */
1268                         if (sacked & TCPCB_LOST) {
1269                                 TCP_SKB_CB(skb)->sacked &=
1270                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1271                                 tp->lost_out -= tcp_skb_pcount(skb);
1272                                 tp->retrans_out -= tcp_skb_pcount(skb);
1273
1274                                 /* clear lost hint */
1275                                 tp->retransmit_skb_hint = NULL;
1276                         }
1277                 } else {
1278                         if (!(sacked & TCPCB_RETRANS)) {
1279                                 /* New sack for not retransmitted frame,
1280                                  * which was in hole. It is reordering.
1281                                  */
1282                                 if (before(TCP_SKB_CB(skb)->seq,
1283                                            tcp_highest_sack_seq(tp)))
1284                                         *reord = min(fack_count, *reord);
1285
1286                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1288                                         flag |= FLAG_ONLY_ORIG_SACKED;
1289                         }
1290
1291                         if (sacked & TCPCB_LOST) {
1292                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293                                 tp->lost_out -= tcp_skb_pcount(skb);
1294
1295                                 /* clear lost hint */
1296                                 tp->retransmit_skb_hint = NULL;
1297                         }
1298                 }
1299
1300                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1301                 flag |= FLAG_DATA_SACKED;
1302                 tp->sacked_out += tcp_skb_pcount(skb);
1303
1304                 fack_count += tcp_skb_pcount(skb);
1305
1306                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1308                     before(TCP_SKB_CB(skb)->seq,
1309                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1310                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1311
1312                 if (fack_count > tp->fackets_out)
1313                         tp->fackets_out = fack_count;
1314
1315                 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1316                         tp->highest_sack = skb;
1317
1318         } else {
1319                 if (dup_sack && (sacked & TCPCB_RETRANS))
1320                         *reord = min(fack_count, *reord);
1321         }
1322
1323         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324          * frames and clear it. undo_retrans is decreased above, L|R frames
1325          * are accounted above as well.
1326          */
1327         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1328                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1329                 tp->retrans_out -= tcp_skb_pcount(skb);
1330                 tp->retransmit_skb_hint = NULL;
1331         }
1332
1333         return flag;
1334 }
1335
1336 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1337                                         struct tcp_sack_block *next_dup,
1338                                         u32 start_seq, u32 end_seq,
1339                                         int dup_sack_in, int *fack_count,
1340                                         int *reord, int *flag)
1341 {
1342         struct tcp_sock *tp = tcp_sk(sk);
1343
1344         tcp_for_write_queue_from(skb, sk) {
1345                 int in_sack = 0;
1346                 int dup_sack = dup_sack_in;
1347
1348                 if (skb == tcp_send_head(sk))
1349                         break;
1350
1351                 /* queue is in-order => we can short-circuit the walk early */
1352                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1353                         break;
1354
1355                 if ((next_dup != NULL) &&
1356                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1357                         in_sack = tcp_match_skb_to_sack(sk, skb,
1358                                                         next_dup->start_seq,
1359                                                         next_dup->end_seq);
1360                         if (in_sack > 0)
1361                                 dup_sack = 1;
1362                 }
1363
1364                 if (in_sack <= 0)
1365                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1366                 if (unlikely(in_sack < 0))
1367                         break;
1368
1369                 if (in_sack)
1370                         *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1371
1372                 *fack_count += tcp_skb_pcount(skb);
1373         }
1374         return skb;
1375 }
1376
1377 /* Avoid all extra work that is being done by sacktag while walking in
1378  * a normal way
1379  */
1380 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1381                                         u32 skip_to_seq)
1382 {
1383         tcp_for_write_queue_from(skb, sk) {
1384                 if (skb == tcp_send_head(sk))
1385                         break;
1386
1387                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1388                         break;
1389         }
1390         return skb;
1391 }
1392
1393 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1394                                                 struct sock *sk,
1395                                                 struct tcp_sack_block *next_dup,
1396                                                 u32 skip_to_seq,
1397                                                 int *fack_count, int *reord,
1398                                                 int *flag)
1399 {
1400         if (next_dup == NULL)
1401                 return skb;
1402
1403         if (before(next_dup->start_seq, skip_to_seq)) {
1404                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1405                 tcp_sacktag_walk(skb, sk, NULL,
1406                                  next_dup->start_seq, next_dup->end_seq,
1407                                  1, fack_count, reord, flag);
1408         }
1409
1410         return skb;
1411 }
1412
1413 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1414 {
1415         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1416 }
1417
1418 static int
1419 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1420 {
1421         const struct inet_connection_sock *icsk = inet_csk(sk);
1422         struct tcp_sock *tp = tcp_sk(sk);
1423         unsigned char *ptr = (skb_transport_header(ack_skb) +
1424                               TCP_SKB_CB(ack_skb)->sacked);
1425         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1426         struct tcp_sack_block sp[4];
1427         struct tcp_sack_block *cache;
1428         struct sk_buff *skb;
1429         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1430         int used_sacks;
1431         int reord = tp->packets_out;
1432         int flag = 0;
1433         int found_dup_sack = 0;
1434         int fack_count;
1435         int i, j;
1436         int first_sack_index;
1437
1438         if (!tp->sacked_out) {
1439                 if (WARN_ON(tp->fackets_out))
1440                         tp->fackets_out = 0;
1441                 tp->highest_sack = tcp_write_queue_head(sk);
1442         }
1443
1444         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1445                                          num_sacks, prior_snd_una);
1446         if (found_dup_sack)
1447                 flag |= FLAG_DSACKING_ACK;
1448
1449         /* Eliminate too old ACKs, but take into
1450          * account more or less fresh ones, they can
1451          * contain valid SACK info.
1452          */
1453         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1454                 return 0;
1455
1456         if (!tp->packets_out)
1457                 goto out;
1458
1459         used_sacks = 0;
1460         first_sack_index = 0;
1461         for (i = 0; i < num_sacks; i++) {
1462                 int dup_sack = !i && found_dup_sack;
1463
1464                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1465                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1466
1467                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1468                                             sp[used_sacks].start_seq,
1469                                             sp[used_sacks].end_seq)) {
1470                         if (dup_sack) {
1471                                 if (!tp->undo_marker)
1472                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1473                                 else
1474                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1475                         } else {
1476                                 /* Don't count olds caused by ACK reordering */
1477                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1478                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1479                                         continue;
1480                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1481                         }
1482                         if (i == 0)
1483                                 first_sack_index = -1;
1484                         continue;
1485                 }
1486
1487                 /* Ignore very old stuff early */
1488                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1489                         continue;
1490
1491                 used_sacks++;
1492         }
1493
1494         /* order SACK blocks to allow in order walk of the retrans queue */
1495         for (i = used_sacks - 1; i > 0; i--) {
1496                 for (j = 0; j < i; j++){
1497                         if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1498                                 struct tcp_sack_block tmp;
1499
1500                                 tmp = sp[j];
1501                                 sp[j] = sp[j+1];
1502                                 sp[j+1] = tmp;
1503
1504                                 /* Track where the first SACK block goes to */
1505                                 if (j == first_sack_index)
1506                                         first_sack_index = j+1;
1507                         }
1508                 }
1509         }
1510
1511         skb = tcp_write_queue_head(sk);
1512         fack_count = 0;
1513         i = 0;
1514
1515         if (!tp->sacked_out) {
1516                 /* It's already past, so skip checking against it */
1517                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1518         } else {
1519                 cache = tp->recv_sack_cache;
1520                 /* Skip empty blocks in at head of the cache */
1521                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1522                        !cache->end_seq)
1523                         cache++;
1524         }
1525
1526         while (i < used_sacks) {
1527                 u32 start_seq = sp[i].start_seq;
1528                 u32 end_seq = sp[i].end_seq;
1529                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1530                 struct tcp_sack_block *next_dup = NULL;
1531
1532                 if (found_dup_sack && ((i + 1) == first_sack_index))
1533                         next_dup = &sp[i + 1];
1534
1535                 /* Event "B" in the comment above. */
1536                 if (after(end_seq, tp->high_seq))
1537                         flag |= FLAG_DATA_LOST;
1538
1539                 /* Skip too early cached blocks */
1540                 while (tcp_sack_cache_ok(tp, cache) &&
1541                        !before(start_seq, cache->end_seq))
1542                         cache++;
1543
1544                 /* Can skip some work by looking recv_sack_cache? */
1545                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1546                     after(end_seq, cache->start_seq)) {
1547
1548                         /* Head todo? */
1549                         if (before(start_seq, cache->start_seq)) {
1550                                 skb = tcp_sacktag_skip(skb, sk, start_seq);
1551                                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1552                                                        cache->start_seq, dup_sack,
1553                                                        &fack_count, &reord, &flag);
1554                         }
1555
1556                         /* Rest of the block already fully processed? */
1557                         if (!after(end_seq, cache->end_seq))
1558                                 goto advance_sp;
1559
1560                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1561                                                        &fack_count, &reord, &flag);
1562
1563                         /* ...tail remains todo... */
1564                         if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1565                                 /* ...but better entrypoint exists! */
1566                                 skb = tcp_write_queue_next(sk, tp->highest_sack);
1567                                 fack_count = tp->fackets_out;
1568                                 cache++;
1569                                 goto walk;
1570                         }
1571
1572                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1573                         /* Check overlap against next cached too (past this one already) */
1574                         cache++;
1575                         continue;
1576                 }
1577
1578                 if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
1579                         skb = tcp_write_queue_next(sk, tp->highest_sack);
1580                         fack_count = tp->fackets_out;
1581                 }
1582                 skb = tcp_sacktag_skip(skb, sk, start_seq);
1583
1584 walk:
1585                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1586                                        dup_sack, &fack_count, &reord, &flag);
1587
1588 advance_sp:
1589                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1590                  * due to in-order walk
1591                  */
1592                 if (after(end_seq, tp->frto_highmark))
1593                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1594
1595                 i++;
1596         }
1597
1598         /* Clear the head of the cache sack blocks so we can skip it next time */
1599         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1600                 tp->recv_sack_cache[i].start_seq = 0;
1601                 tp->recv_sack_cache[i].end_seq = 0;
1602         }
1603         for (j = 0; j < used_sacks; j++)
1604                 tp->recv_sack_cache[i++] = sp[j];
1605
1606         flag |= tcp_mark_lost_retrans(sk);
1607
1608         tcp_verify_left_out(tp);
1609
1610         if ((reord < tp->fackets_out) &&
1611             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1612             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1613                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1614
1615 out:
1616
1617 #if FASTRETRANS_DEBUG > 0
1618         BUG_TRAP((int)tp->sacked_out >= 0);
1619         BUG_TRAP((int)tp->lost_out >= 0);
1620         BUG_TRAP((int)tp->retrans_out >= 0);
1621         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1622 #endif
1623         return flag;
1624 }
1625
1626 /* If we receive more dupacks than we expected counting segments
1627  * in assumption of absent reordering, interpret this as reordering.
1628  * The only another reason could be bug in receiver TCP.
1629  */
1630 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1631 {
1632         struct tcp_sock *tp = tcp_sk(sk);
1633         u32 holes;
1634
1635         holes = max(tp->lost_out, 1U);
1636         holes = min(holes, tp->packets_out);
1637
1638         if ((tp->sacked_out + holes) > tp->packets_out) {
1639                 tp->sacked_out = tp->packets_out - holes;
1640                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1641         }
1642 }
1643
1644 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1645
1646 static void tcp_add_reno_sack(struct sock *sk)
1647 {
1648         struct tcp_sock *tp = tcp_sk(sk);
1649         tp->sacked_out++;
1650         tcp_check_reno_reordering(sk, 0);
1651         tcp_verify_left_out(tp);
1652 }
1653
1654 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1655
1656 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1657 {
1658         struct tcp_sock *tp = tcp_sk(sk);
1659
1660         if (acked > 0) {
1661                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1662                 if (acked-1 >= tp->sacked_out)
1663                         tp->sacked_out = 0;
1664                 else
1665                         tp->sacked_out -= acked-1;
1666         }
1667         tcp_check_reno_reordering(sk, acked);
1668         tcp_verify_left_out(tp);
1669 }
1670
1671 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1672 {
1673         tp->sacked_out = 0;
1674 }
1675
1676 /* F-RTO can only be used if TCP has never retransmitted anything other than
1677  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1678  */
1679 int tcp_use_frto(struct sock *sk)
1680 {
1681         const struct tcp_sock *tp = tcp_sk(sk);
1682         struct sk_buff *skb;
1683
1684         if (!sysctl_tcp_frto)
1685                 return 0;
1686
1687         if (IsSackFrto())
1688                 return 1;
1689
1690         /* Avoid expensive walking of rexmit queue if possible */
1691         if (tp->retrans_out > 1)
1692                 return 0;
1693
1694         skb = tcp_write_queue_head(sk);
1695         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1696         tcp_for_write_queue_from(skb, sk) {
1697                 if (skb == tcp_send_head(sk))
1698                         break;
1699                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1700                         return 0;
1701                 /* Short-circuit when first non-SACKed skb has been checked */
1702                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1703                         break;
1704         }
1705         return 1;
1706 }
1707
1708 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1709  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1710  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1711  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1712  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1713  * bits are handled if the Loss state is really to be entered (in
1714  * tcp_enter_frto_loss).
1715  *
1716  * Do like tcp_enter_loss() would; when RTO expires the second time it
1717  * does:
1718  *  "Reduce ssthresh if it has not yet been made inside this window."
1719  */
1720 void tcp_enter_frto(struct sock *sk)
1721 {
1722         const struct inet_connection_sock *icsk = inet_csk(sk);
1723         struct tcp_sock *tp = tcp_sk(sk);
1724         struct sk_buff *skb;
1725
1726         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1727             tp->snd_una == tp->high_seq ||
1728             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1729              !icsk->icsk_retransmits)) {
1730                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1731                 /* Our state is too optimistic in ssthresh() call because cwnd
1732                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1733                  * recovery has not yet completed. Pattern would be this: RTO,
1734                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1735                  * up here twice).
1736                  * RFC4138 should be more specific on what to do, even though
1737                  * RTO is quite unlikely to occur after the first Cumulative ACK
1738                  * due to back-off and complexity of triggering events ...
1739                  */
1740                 if (tp->frto_counter) {
1741                         u32 stored_cwnd;
1742                         stored_cwnd = tp->snd_cwnd;
1743                         tp->snd_cwnd = 2;
1744                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1745                         tp->snd_cwnd = stored_cwnd;
1746                 } else {
1747                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1748                 }
1749                 /* ... in theory, cong.control module could do "any tricks" in
1750                  * ssthresh(), which means that ca_state, lost bits and lost_out
1751                  * counter would have to be faked before the call occurs. We
1752                  * consider that too expensive, unlikely and hacky, so modules
1753                  * using these in ssthresh() must deal these incompatibility
1754                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1755                  */
1756                 tcp_ca_event(sk, CA_EVENT_FRTO);
1757         }
1758
1759         tp->undo_marker = tp->snd_una;
1760         tp->undo_retrans = 0;
1761
1762         skb = tcp_write_queue_head(sk);
1763         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1764                 tp->undo_marker = 0;
1765         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1766                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1767                 tp->retrans_out -= tcp_skb_pcount(skb);
1768         }
1769         tcp_verify_left_out(tp);
1770
1771         /* Too bad if TCP was application limited */
1772         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1773
1774         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1775          * The last condition is necessary at least in tp->frto_counter case.
1776          */
1777         if (IsSackFrto() && (tp->frto_counter ||
1778             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1779             after(tp->high_seq, tp->snd_una)) {
1780                 tp->frto_highmark = tp->high_seq;
1781         } else {
1782                 tp->frto_highmark = tp->snd_nxt;
1783         }
1784         tcp_set_ca_state(sk, TCP_CA_Disorder);
1785         tp->high_seq = tp->snd_nxt;
1786         tp->frto_counter = 1;
1787 }
1788
1789 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1790  * which indicates that we should follow the traditional RTO recovery,
1791  * i.e. mark everything lost and do go-back-N retransmission.
1792  */
1793 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1794 {
1795         struct tcp_sock *tp = tcp_sk(sk);
1796         struct sk_buff *skb;
1797
1798         tp->lost_out = 0;
1799         tp->retrans_out = 0;
1800         if (tcp_is_reno(tp))
1801                 tcp_reset_reno_sack(tp);
1802
1803         tcp_for_write_queue(skb, sk) {
1804                 if (skb == tcp_send_head(sk))
1805                         break;
1806
1807                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1808                 /*
1809                  * Count the retransmission made on RTO correctly (only when
1810                  * waiting for the first ACK and did not get it)...
1811                  */
1812                 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1813                         /* For some reason this R-bit might get cleared? */
1814                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1815                                 tp->retrans_out += tcp_skb_pcount(skb);
1816                         /* ...enter this if branch just for the first segment */
1817                         flag |= FLAG_DATA_ACKED;
1818                 } else {
1819                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1820                                 tp->undo_marker = 0;
1821                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1822                 }
1823
1824                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1825                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1826                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1827                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1828                         tp->lost_out += tcp_skb_pcount(skb);
1829                 }
1830         }
1831         tcp_verify_left_out(tp);
1832
1833         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1834         tp->snd_cwnd_cnt = 0;
1835         tp->snd_cwnd_stamp = tcp_time_stamp;
1836         tp->frto_counter = 0;
1837         tp->bytes_acked = 0;
1838
1839         tp->reordering = min_t(unsigned int, tp->reordering,
1840                                              sysctl_tcp_reordering);
1841         tcp_set_ca_state(sk, TCP_CA_Loss);
1842         tp->high_seq = tp->frto_highmark;
1843         TCP_ECN_queue_cwr(tp);
1844
1845         tcp_clear_retrans_hints_partial(tp);
1846 }
1847
1848 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1849 {
1850         tp->retrans_out = 0;
1851         tp->lost_out = 0;
1852
1853         tp->undo_marker = 0;
1854         tp->undo_retrans = 0;
1855 }
1856
1857 void tcp_clear_retrans(struct tcp_sock *tp)
1858 {
1859         tcp_clear_retrans_partial(tp);
1860
1861         tp->fackets_out = 0;
1862         tp->sacked_out = 0;
1863 }
1864
1865 /* Enter Loss state. If "how" is not zero, forget all SACK information
1866  * and reset tags completely, otherwise preserve SACKs. If receiver
1867  * dropped its ofo queue, we will know this due to reneging detection.
1868  */
1869 void tcp_enter_loss(struct sock *sk, int how)
1870 {
1871         const struct inet_connection_sock *icsk = inet_csk(sk);
1872         struct tcp_sock *tp = tcp_sk(sk);
1873         struct sk_buff *skb;
1874
1875         /* Reduce ssthresh if it has not yet been made inside this window. */
1876         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1877             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1878                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1879                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1880                 tcp_ca_event(sk, CA_EVENT_LOSS);
1881         }
1882         tp->snd_cwnd       = 1;
1883         tp->snd_cwnd_cnt   = 0;
1884         tp->snd_cwnd_stamp = tcp_time_stamp;
1885
1886         tp->bytes_acked = 0;
1887         tcp_clear_retrans_partial(tp);
1888
1889         if (tcp_is_reno(tp))
1890                 tcp_reset_reno_sack(tp);
1891
1892         if (!how) {
1893                 /* Push undo marker, if it was plain RTO and nothing
1894                  * was retransmitted. */
1895                 tp->undo_marker = tp->snd_una;
1896                 tcp_clear_retrans_hints_partial(tp);
1897         } else {
1898                 tp->sacked_out = 0;
1899                 tp->fackets_out = 0;
1900                 tcp_clear_all_retrans_hints(tp);
1901         }
1902
1903         tcp_for_write_queue(skb, sk) {
1904                 if (skb == tcp_send_head(sk))
1905                         break;
1906
1907                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1908                         tp->undo_marker = 0;
1909                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1910                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1911                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1912                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1913                         tp->lost_out += tcp_skb_pcount(skb);
1914                 }
1915         }
1916         tcp_verify_left_out(tp);
1917
1918         tp->reordering = min_t(unsigned int, tp->reordering,
1919                                              sysctl_tcp_reordering);
1920         tcp_set_ca_state(sk, TCP_CA_Loss);
1921         tp->high_seq = tp->snd_nxt;
1922         TCP_ECN_queue_cwr(tp);
1923         /* Abort F-RTO algorithm if one is in progress */
1924         tp->frto_counter = 0;
1925 }
1926
1927 static int tcp_check_sack_reneging(struct sock *sk)
1928 {
1929         struct sk_buff *skb;
1930
1931         /* If ACK arrived pointing to a remembered SACK,
1932          * it means that our remembered SACKs do not reflect
1933          * real state of receiver i.e.
1934          * receiver _host_ is heavily congested (or buggy).
1935          * Do processing similar to RTO timeout.
1936          */
1937         if ((skb = tcp_write_queue_head(sk)) != NULL &&
1938             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1939                 struct inet_connection_sock *icsk = inet_csk(sk);
1940                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1941
1942                 tcp_enter_loss(sk, 1);
1943                 icsk->icsk_retransmits++;
1944                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1945                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1946                                           icsk->icsk_rto, TCP_RTO_MAX);
1947                 return 1;
1948         }
1949         return 0;
1950 }
1951
1952 static inline int tcp_fackets_out(struct tcp_sock *tp)
1953 {
1954         return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1955 }
1956
1957 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1958  * counter when SACK is enabled (without SACK, sacked_out is used for
1959  * that purpose).
1960  *
1961  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1962  * segments up to the highest received SACK block so far and holes in
1963  * between them.
1964  *
1965  * With reordering, holes may still be in flight, so RFC3517 recovery
1966  * uses pure sacked_out (total number of SACKed segments) even though
1967  * it violates the RFC that uses duplicate ACKs, often these are equal
1968  * but when e.g. out-of-window ACKs or packet duplication occurs,
1969  * they differ. Since neither occurs due to loss, TCP should really
1970  * ignore them.
1971  */
1972 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1973 {
1974         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1975 }
1976
1977 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1978 {
1979         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1980 }
1981
1982 static inline int tcp_head_timedout(struct sock *sk)
1983 {
1984         struct tcp_sock *tp = tcp_sk(sk);
1985
1986         return tp->packets_out &&
1987                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1988 }
1989
1990 /* Linux NewReno/SACK/FACK/ECN state machine.
1991  * --------------------------------------
1992  *
1993  * "Open"       Normal state, no dubious events, fast path.
1994  * "Disorder"   In all the respects it is "Open",
1995  *              but requires a bit more attention. It is entered when
1996  *              we see some SACKs or dupacks. It is split of "Open"
1997  *              mainly to move some processing from fast path to slow one.
1998  * "CWR"        CWND was reduced due to some Congestion Notification event.
1999  *              It can be ECN, ICMP source quench, local device congestion.
2000  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2001  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2002  *
2003  * tcp_fastretrans_alert() is entered:
2004  * - each incoming ACK, if state is not "Open"
2005  * - when arrived ACK is unusual, namely:
2006  *      * SACK
2007  *      * Duplicate ACK.
2008  *      * ECN ECE.
2009  *
2010  * Counting packets in flight is pretty simple.
2011  *
2012  *      in_flight = packets_out - left_out + retrans_out
2013  *
2014  *      packets_out is SND.NXT-SND.UNA counted in packets.
2015  *
2016  *      retrans_out is number of retransmitted segments.
2017  *
2018  *      left_out is number of segments left network, but not ACKed yet.
2019  *
2020  *              left_out = sacked_out + lost_out
2021  *
2022  *     sacked_out: Packets, which arrived to receiver out of order
2023  *                 and hence not ACKed. With SACKs this number is simply
2024  *                 amount of SACKed data. Even without SACKs
2025  *                 it is easy to give pretty reliable estimate of this number,
2026  *                 counting duplicate ACKs.
2027  *
2028  *       lost_out: Packets lost by network. TCP has no explicit
2029  *                 "loss notification" feedback from network (for now).
2030  *                 It means that this number can be only _guessed_.
2031  *                 Actually, it is the heuristics to predict lossage that
2032  *                 distinguishes different algorithms.
2033  *
2034  *      F.e. after RTO, when all the queue is considered as lost,
2035  *      lost_out = packets_out and in_flight = retrans_out.
2036  *
2037  *              Essentially, we have now two algorithms counting
2038  *              lost packets.
2039  *
2040  *              FACK: It is the simplest heuristics. As soon as we decided
2041  *              that something is lost, we decide that _all_ not SACKed
2042  *              packets until the most forward SACK are lost. I.e.
2043  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2044  *              It is absolutely correct estimate, if network does not reorder
2045  *              packets. And it loses any connection to reality when reordering
2046  *              takes place. We use FACK by default until reordering
2047  *              is suspected on the path to this destination.
2048  *
2049  *              NewReno: when Recovery is entered, we assume that one segment
2050  *              is lost (classic Reno). While we are in Recovery and
2051  *              a partial ACK arrives, we assume that one more packet
2052  *              is lost (NewReno). This heuristics are the same in NewReno
2053  *              and SACK.
2054  *
2055  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2056  *  deflation etc. CWND is real congestion window, never inflated, changes
2057  *  only according to classic VJ rules.
2058  *
2059  * Really tricky (and requiring careful tuning) part of algorithm
2060  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2061  * The first determines the moment _when_ we should reduce CWND and,
2062  * hence, slow down forward transmission. In fact, it determines the moment
2063  * when we decide that hole is caused by loss, rather than by a reorder.
2064  *
2065  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2066  * holes, caused by lost packets.
2067  *
2068  * And the most logically complicated part of algorithm is undo
2069  * heuristics. We detect false retransmits due to both too early
2070  * fast retransmit (reordering) and underestimated RTO, analyzing
2071  * timestamps and D-SACKs. When we detect that some segments were
2072  * retransmitted by mistake and CWND reduction was wrong, we undo
2073  * window reduction and abort recovery phase. This logic is hidden
2074  * inside several functions named tcp_try_undo_<something>.
2075  */
2076
2077 /* This function decides, when we should leave Disordered state
2078  * and enter Recovery phase, reducing congestion window.
2079  *
2080  * Main question: may we further continue forward transmission
2081  * with the same cwnd?
2082  */
2083 static int tcp_time_to_recover(struct sock *sk)
2084 {
2085         struct tcp_sock *tp = tcp_sk(sk);
2086         __u32 packets_out;
2087
2088         /* Do not perform any recovery during F-RTO algorithm */
2089         if (tp->frto_counter)
2090                 return 0;
2091
2092         /* Trick#1: The loss is proven. */
2093         if (tp->lost_out)
2094                 return 1;
2095
2096         /* Not-A-Trick#2 : Classic rule... */
2097         if (tcp_dupack_heurestics(tp) > tp->reordering)
2098                 return 1;
2099
2100         /* Trick#3 : when we use RFC2988 timer restart, fast
2101          * retransmit can be triggered by timeout of queue head.
2102          */
2103         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2104                 return 1;
2105
2106         /* Trick#4: It is still not OK... But will it be useful to delay
2107          * recovery more?
2108          */
2109         packets_out = tp->packets_out;
2110         if (packets_out <= tp->reordering &&
2111             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2112             !tcp_may_send_now(sk)) {
2113                 /* We have nothing to send. This connection is limited
2114                  * either by receiver window or by application.
2115                  */
2116                 return 1;
2117         }
2118
2119         return 0;
2120 }
2121
2122 /* RFC: This is from the original, I doubt that this is necessary at all:
2123  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2124  * retransmitted past LOST markings in the first place? I'm not fully sure
2125  * about undo and end of connection cases, which can cause R without L?
2126  */
2127 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2128                                        struct sk_buff *skb)
2129 {
2130         if ((tp->retransmit_skb_hint != NULL) &&
2131             before(TCP_SKB_CB(skb)->seq,
2132             TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2133                 tp->retransmit_skb_hint = NULL;
2134 }
2135
2136 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2137  * is against sacked "cnt", otherwise it's against facked "cnt"
2138  */
2139 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2140 {
2141         struct tcp_sock *tp = tcp_sk(sk);
2142         struct sk_buff *skb;
2143         int cnt;
2144
2145         BUG_TRAP(packets <= tp->packets_out);
2146         if (tp->lost_skb_hint) {
2147                 skb = tp->lost_skb_hint;
2148                 cnt = tp->lost_cnt_hint;
2149         } else {
2150                 skb = tcp_write_queue_head(sk);
2151                 cnt = 0;
2152         }
2153
2154         tcp_for_write_queue_from(skb, sk) {
2155                 if (skb == tcp_send_head(sk))
2156                         break;
2157                 /* TODO: do this better */
2158                 /* this is not the most efficient way to do this... */
2159                 tp->lost_skb_hint = skb;
2160                 tp->lost_cnt_hint = cnt;
2161
2162                 if (tcp_is_fack(tp) ||
2163                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2164                         cnt += tcp_skb_pcount(skb);
2165
2166                 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2167                      after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2168                         break;
2169                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2170                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2171                         tp->lost_out += tcp_skb_pcount(skb);
2172                         tcp_verify_retransmit_hint(tp, skb);
2173                 }
2174         }
2175         tcp_verify_left_out(tp);
2176 }
2177
2178 /* Account newly detected lost packet(s) */
2179
2180 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2181 {
2182         struct tcp_sock *tp = tcp_sk(sk);
2183
2184         if (tcp_is_reno(tp)) {
2185                 tcp_mark_head_lost(sk, 1, fast_rexmit);
2186         } else if (tcp_is_fack(tp)) {
2187                 int lost = tp->fackets_out - tp->reordering;
2188                 if (lost <= 0)
2189                         lost = 1;
2190                 tcp_mark_head_lost(sk, lost, fast_rexmit);
2191         } else {
2192                 int sacked_upto = tp->sacked_out - tp->reordering;
2193                 if (sacked_upto < 0)
2194                         sacked_upto = 0;
2195                 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2196         }
2197
2198         /* New heuristics: it is possible only after we switched
2199          * to restart timer each time when something is ACKed.
2200          * Hence, we can detect timed out packets during fast
2201          * retransmit without falling to slow start.
2202          */
2203         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2204                 struct sk_buff *skb;
2205
2206                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2207                         : tcp_write_queue_head(sk);
2208
2209                 tcp_for_write_queue_from(skb, sk) {
2210                         if (skb == tcp_send_head(sk))
2211                                 break;
2212                         if (!tcp_skb_timedout(sk, skb))
2213                                 break;
2214
2215                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2216                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2217                                 tp->lost_out += tcp_skb_pcount(skb);
2218                                 tcp_verify_retransmit_hint(tp, skb);
2219                         }
2220                 }
2221
2222                 tp->scoreboard_skb_hint = skb;
2223
2224                 tcp_verify_left_out(tp);
2225         }
2226 }
2227
2228 /* CWND moderation, preventing bursts due to too big ACKs
2229  * in dubious situations.
2230  */
2231 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2232 {
2233         tp->snd_cwnd = min(tp->snd_cwnd,
2234                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2235         tp->snd_cwnd_stamp = tcp_time_stamp;
2236 }
2237
2238 /* Lower bound on congestion window is slow start threshold
2239  * unless congestion avoidance choice decides to overide it.
2240  */
2241 static inline u32 tcp_cwnd_min(const struct sock *sk)
2242 {
2243         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2244
2245         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2246 }
2247
2248 /* Decrease cwnd each second ack. */
2249 static void tcp_cwnd_down(struct sock *sk, int flag)
2250 {
2251         struct tcp_sock *tp = tcp_sk(sk);
2252         int decr = tp->snd_cwnd_cnt + 1;
2253
2254         if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2255             (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2256                 tp->snd_cwnd_cnt = decr&1;
2257                 decr >>= 1;
2258
2259                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2260                         tp->snd_cwnd -= decr;
2261
2262                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2263                 tp->snd_cwnd_stamp = tcp_time_stamp;
2264         }
2265 }
2266
2267 /* Nothing was retransmitted or returned timestamp is less
2268  * than timestamp of the first retransmission.
2269  */
2270 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2271 {
2272         return !tp->retrans_stamp ||
2273                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2274                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2275 }
2276
2277 /* Undo procedures. */
2278
2279 #if FASTRETRANS_DEBUG > 1
2280 static void DBGUNDO(struct sock *sk, const char *msg)
2281 {
2282         struct tcp_sock *tp = tcp_sk(sk);
2283         struct inet_sock *inet = inet_sk(sk);
2284
2285         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2286                msg,
2287                NIPQUAD(inet->daddr), ntohs(inet->dport),
2288                tp->snd_cwnd, tcp_left_out(tp),
2289                tp->snd_ssthresh, tp->prior_ssthresh,
2290                tp->packets_out);
2291 }
2292 #else
2293 #define DBGUNDO(x...) do { } while (0)
2294 #endif
2295
2296 static void tcp_undo_cwr(struct sock *sk, const int undo)
2297 {
2298         struct tcp_sock *tp = tcp_sk(sk);
2299
2300         if (tp->prior_ssthresh) {
2301                 const struct inet_connection_sock *icsk = inet_csk(sk);
2302
2303                 if (icsk->icsk_ca_ops->undo_cwnd)
2304                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2305                 else
2306                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2307
2308                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2309                         tp->snd_ssthresh = tp->prior_ssthresh;
2310                         TCP_ECN_withdraw_cwr(tp);
2311                 }
2312         } else {
2313                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2314         }
2315         tcp_moderate_cwnd(tp);
2316         tp->snd_cwnd_stamp = tcp_time_stamp;
2317
2318         /* There is something screwy going on with the retrans hints after
2319            an undo */
2320         tcp_clear_all_retrans_hints(tp);
2321 }
2322
2323 static inline int tcp_may_undo(struct tcp_sock *tp)
2324 {
2325         return tp->undo_marker &&
2326                 (!tp->undo_retrans || tcp_packet_delayed(tp));
2327 }
2328
2329 /* People celebrate: "We love our President!" */
2330 static int tcp_try_undo_recovery(struct sock *sk)
2331 {
2332         struct tcp_sock *tp = tcp_sk(sk);
2333
2334         if (tcp_may_undo(tp)) {
2335                 /* Happy end! We did not retransmit anything
2336                  * or our original transmission succeeded.
2337                  */
2338                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2339                 tcp_undo_cwr(sk, 1);
2340                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2341                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2342                 else
2343                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2344                 tp->undo_marker = 0;
2345         }
2346         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2347                 /* Hold old state until something *above* high_seq
2348                  * is ACKed. For Reno it is MUST to prevent false
2349                  * fast retransmits (RFC2582). SACK TCP is safe. */
2350                 tcp_moderate_cwnd(tp);
2351                 return 1;
2352         }
2353         tcp_set_ca_state(sk, TCP_CA_Open);
2354         return 0;
2355 }
2356
2357 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2358 static void tcp_try_undo_dsack(struct sock *sk)
2359 {
2360         struct tcp_sock *tp = tcp_sk(sk);
2361
2362         if (tp->undo_marker && !tp->undo_retrans) {
2363                 DBGUNDO(sk, "D-SACK");
2364                 tcp_undo_cwr(sk, 1);
2365                 tp->undo_marker = 0;
2366                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2367         }
2368 }
2369
2370 /* Undo during fast recovery after partial ACK. */
2371
2372 static int tcp_try_undo_partial(struct sock *sk, int acked)
2373 {
2374         struct tcp_sock *tp = tcp_sk(sk);
2375         /* Partial ACK arrived. Force Hoe's retransmit. */
2376         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2377
2378         if (tcp_may_undo(tp)) {
2379                 /* Plain luck! Hole if filled with delayed
2380                  * packet, rather than with a retransmit.
2381                  */
2382                 if (tp->retrans_out == 0)
2383                         tp->retrans_stamp = 0;
2384
2385                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2386
2387                 DBGUNDO(sk, "Hoe");
2388                 tcp_undo_cwr(sk, 0);
2389                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2390
2391                 /* So... Do not make Hoe's retransmit yet.
2392                  * If the first packet was delayed, the rest
2393                  * ones are most probably delayed as well.
2394                  */
2395                 failed = 0;
2396         }
2397         return failed;
2398 }
2399
2400 /* Undo during loss recovery after partial ACK. */
2401 static int tcp_try_undo_loss(struct sock *sk)
2402 {
2403         struct tcp_sock *tp = tcp_sk(sk);
2404
2405         if (tcp_may_undo(tp)) {
2406                 struct sk_buff *skb;
2407                 tcp_for_write_queue(skb, sk) {
2408                         if (skb == tcp_send_head(sk))
2409                                 break;
2410                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2411                 }
2412
2413                 tcp_clear_all_retrans_hints(tp);
2414
2415                 DBGUNDO(sk, "partial loss");
2416                 tp->lost_out = 0;
2417                 tcp_undo_cwr(sk, 1);
2418                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2419                 inet_csk(sk)->icsk_retransmits = 0;
2420                 tp->undo_marker = 0;
2421                 if (tcp_is_sack(tp))
2422                         tcp_set_ca_state(sk, TCP_CA_Open);
2423                 return 1;
2424         }
2425         return 0;
2426 }
2427
2428 static inline void tcp_complete_cwr(struct sock *sk)
2429 {
2430         struct tcp_sock *tp = tcp_sk(sk);
2431         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2432         tp->snd_cwnd_stamp = tcp_time_stamp;
2433         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2434 }
2435
2436 static void tcp_try_to_open(struct sock *sk, int flag)
2437 {
2438         struct tcp_sock *tp = tcp_sk(sk);
2439
2440         tcp_verify_left_out(tp);
2441
2442         if (tp->retrans_out == 0)
2443                 tp->retrans_stamp = 0;
2444
2445         if (flag&FLAG_ECE)
2446                 tcp_enter_cwr(sk, 1);
2447
2448         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2449                 int state = TCP_CA_Open;
2450
2451                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2452                         state = TCP_CA_Disorder;
2453
2454                 if (inet_csk(sk)->icsk_ca_state != state) {
2455                         tcp_set_ca_state(sk, state);
2456                         tp->high_seq = tp->snd_nxt;
2457                 }
2458                 tcp_moderate_cwnd(tp);
2459         } else {
2460                 tcp_cwnd_down(sk, flag);
2461         }
2462 }
2463
2464 static void tcp_mtup_probe_failed(struct sock *sk)
2465 {
2466         struct inet_connection_sock *icsk = inet_csk(sk);
2467
2468         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2469         icsk->icsk_mtup.probe_size = 0;
2470 }
2471
2472 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2473 {
2474         struct tcp_sock *tp = tcp_sk(sk);
2475         struct inet_connection_sock *icsk = inet_csk(sk);
2476
2477         /* FIXME: breaks with very large cwnd */
2478         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2479         tp->snd_cwnd = tp->snd_cwnd *
2480                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2481                        icsk->icsk_mtup.probe_size;
2482         tp->snd_cwnd_cnt = 0;
2483         tp->snd_cwnd_stamp = tcp_time_stamp;
2484         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2485
2486         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2487         icsk->icsk_mtup.probe_size = 0;
2488         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2489 }
2490
2491
2492 /* Process an event, which can update packets-in-flight not trivially.
2493  * Main goal of this function is to calculate new estimate for left_out,
2494  * taking into account both packets sitting in receiver's buffer and
2495  * packets lost by network.
2496  *
2497  * Besides that it does CWND reduction, when packet loss is detected
2498  * and changes state of machine.
2499  *
2500  * It does _not_ decide what to send, it is made in function
2501  * tcp_xmit_retransmit_queue().
2502  */
2503 static void
2504 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2505 {
2506         struct inet_connection_sock *icsk = inet_csk(sk);
2507         struct tcp_sock *tp = tcp_sk(sk);
2508         int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2509         int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2510                                     (tcp_fackets_out(tp) > tp->reordering));
2511         int fast_rexmit = 0;
2512
2513         /* Some technical things:
2514          * 1. Reno does not count dupacks (sacked_out) automatically. */
2515         if (!tp->packets_out)
2516                 tp->sacked_out = 0;
2517
2518         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2519                 tp->fackets_out = 0;
2520
2521         /* Now state machine starts.
2522          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2523         if (flag&FLAG_ECE)
2524                 tp->prior_ssthresh = 0;
2525
2526         /* B. In all the states check for reneging SACKs. */
2527         if (tp->sacked_out && tcp_check_sack_reneging(sk))
2528                 return;
2529
2530         /* C. Process data loss notification, provided it is valid. */
2531         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2532             before(tp->snd_una, tp->high_seq) &&
2533             icsk->icsk_ca_state != TCP_CA_Open &&
2534             tp->fackets_out > tp->reordering) {
2535                 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2536                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2537         }
2538
2539         /* D. Check consistency of the current state. */
2540         tcp_verify_left_out(tp);
2541
2542         /* E. Check state exit conditions. State can be terminated
2543          *    when high_seq is ACKed. */
2544         if (icsk->icsk_ca_state == TCP_CA_Open) {
2545                 BUG_TRAP(tp->retrans_out == 0);
2546                 tp->retrans_stamp = 0;
2547         } else if (!before(tp->snd_una, tp->high_seq)) {
2548                 switch (icsk->icsk_ca_state) {
2549                 case TCP_CA_Loss:
2550                         icsk->icsk_retransmits = 0;
2551                         if (tcp_try_undo_recovery(sk))
2552                                 return;
2553                         break;
2554
2555                 case TCP_CA_CWR:
2556                         /* CWR is to be held something *above* high_seq
2557                          * is ACKed for CWR bit to reach receiver. */
2558                         if (tp->snd_una != tp->high_seq) {
2559                                 tcp_complete_cwr(sk);
2560                                 tcp_set_ca_state(sk, TCP_CA_Open);
2561                         }
2562                         break;
2563
2564                 case TCP_CA_Disorder:
2565                         tcp_try_undo_dsack(sk);
2566                         if (!tp->undo_marker ||
2567                             /* For SACK case do not Open to allow to undo
2568                              * catching for all duplicate ACKs. */
2569                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2570                                 tp->undo_marker = 0;
2571                                 tcp_set_ca_state(sk, TCP_CA_Open);
2572                         }
2573                         break;
2574
2575                 case TCP_CA_Recovery:
2576                         if (tcp_is_reno(tp))
2577                                 tcp_reset_reno_sack(tp);
2578                         if (tcp_try_undo_recovery(sk))
2579                                 return;
2580                         tcp_complete_cwr(sk);
2581                         break;
2582                 }
2583         }
2584
2585         /* F. Process state. */
2586         switch (icsk->icsk_ca_state) {
2587         case TCP_CA_Recovery:
2588                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2589                         if (tcp_is_reno(tp) && is_dupack)
2590                                 tcp_add_reno_sack(sk);
2591                 } else
2592                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2593                 break;
2594         case TCP_CA_Loss:
2595                 if (flag&FLAG_DATA_ACKED)
2596                         icsk->icsk_retransmits = 0;
2597                 if (!tcp_try_undo_loss(sk)) {
2598                         tcp_moderate_cwnd(tp);
2599                         tcp_xmit_retransmit_queue(sk);
2600                         return;
2601                 }
2602                 if (icsk->icsk_ca_state != TCP_CA_Open)
2603                         return;
2604                 /* Loss is undone; fall through to processing in Open state. */
2605         default:
2606                 if (tcp_is_reno(tp)) {
2607                         if (flag & FLAG_SND_UNA_ADVANCED)
2608                                 tcp_reset_reno_sack(tp);
2609                         if (is_dupack)
2610                                 tcp_add_reno_sack(sk);
2611                 }
2612
2613                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2614                         tcp_try_undo_dsack(sk);
2615
2616                 if (!tcp_time_to_recover(sk)) {
2617                         tcp_try_to_open(sk, flag);
2618                         return;
2619                 }
2620
2621                 /* MTU probe failure: don't reduce cwnd */
2622                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2623                     icsk->icsk_mtup.probe_size &&
2624                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2625                         tcp_mtup_probe_failed(sk);
2626                         /* Restores the reduction we did in tcp_mtup_probe() */
2627                         tp->snd_cwnd++;
2628                         tcp_simple_retransmit(sk);
2629                         return;
2630                 }
2631
2632                 /* Otherwise enter Recovery state */
2633
2634                 if (tcp_is_reno(tp))
2635                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2636                 else
2637                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2638
2639                 tp->high_seq = tp->snd_nxt;
2640                 tp->prior_ssthresh = 0;
2641                 tp->undo_marker = tp->snd_una;
2642                 tp->undo_retrans = tp->retrans_out;
2643
2644                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2645                         if (!(flag&FLAG_ECE))
2646                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2647                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2648                         TCP_ECN_queue_cwr(tp);
2649                 }
2650
2651                 tp->bytes_acked = 0;
2652                 tp->snd_cwnd_cnt = 0;
2653                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2654                 fast_rexmit = 1;
2655         }
2656
2657         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2658                 tcp_update_scoreboard(sk, fast_rexmit);
2659         tcp_cwnd_down(sk, flag);
2660         tcp_xmit_retransmit_queue(sk);
2661 }
2662
2663 /* Read draft-ietf-tcplw-high-performance before mucking
2664  * with this code. (Supersedes RFC1323)
2665  */
2666 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2667 {
2668         /* RTTM Rule: A TSecr value received in a segment is used to
2669          * update the averaged RTT measurement only if the segment
2670          * acknowledges some new data, i.e., only if it advances the
2671          * left edge of the send window.
2672          *
2673          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2674          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2675          *
2676          * Changed: reset backoff as soon as we see the first valid sample.
2677          * If we do not, we get strongly overestimated rto. With timestamps
2678          * samples are accepted even from very old segments: f.e., when rtt=1
2679          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2680          * answer arrives rto becomes 120 seconds! If at least one of segments
2681          * in window is lost... Voila.                          --ANK (010210)
2682          */
2683         struct tcp_sock *tp = tcp_sk(sk);
2684         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2685         tcp_rtt_estimator(sk, seq_rtt);
2686         tcp_set_rto(sk);
2687         inet_csk(sk)->icsk_backoff = 0;
2688         tcp_bound_rto(sk);
2689 }
2690
2691 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2692 {
2693         /* We don't have a timestamp. Can only use
2694          * packets that are not retransmitted to determine
2695          * rtt estimates. Also, we must not reset the
2696          * backoff for rto until we get a non-retransmitted
2697          * packet. This allows us to deal with a situation
2698          * where the network delay has increased suddenly.
2699          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2700          */
2701
2702         if (flag & FLAG_RETRANS_DATA_ACKED)
2703                 return;
2704
2705         tcp_rtt_estimator(sk, seq_rtt);
2706         tcp_set_rto(sk);
2707         inet_csk(sk)->icsk_backoff = 0;
2708         tcp_bound_rto(sk);
2709 }
2710
2711 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2712                                       const s32 seq_rtt)
2713 {
2714         const struct tcp_sock *tp = tcp_sk(sk);
2715         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2716         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2717                 tcp_ack_saw_tstamp(sk, flag);
2718         else if (seq_rtt >= 0)
2719                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2720 }
2721
2722 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2723                            u32 in_flight, int good)
2724 {
2725         const struct inet_connection_sock *icsk = inet_csk(sk);
2726         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2727         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2728 }
2729
2730 /* Restart timer after forward progress on connection.
2731  * RFC2988 recommends to restart timer to now+rto.
2732  */
2733 static void tcp_rearm_rto(struct sock *sk)
2734 {
2735         struct tcp_sock *tp = tcp_sk(sk);
2736
2737         if (!tp->packets_out) {
2738                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2739         } else {
2740                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2741         }
2742 }
2743
2744 /* If we get here, the whole TSO packet has not been acked. */
2745 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2746 {
2747         struct tcp_sock *tp = tcp_sk(sk);
2748         u32 packets_acked;
2749
2750         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2751
2752         packets_acked = tcp_skb_pcount(skb);
2753         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2754                 return 0;
2755         packets_acked -= tcp_skb_pcount(skb);
2756
2757         if (packets_acked) {
2758                 BUG_ON(tcp_skb_pcount(skb) == 0);
2759                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2760         }
2761
2762         return packets_acked;
2763 }
2764
2765 /* Remove acknowledged frames from the retransmission queue. If our packet
2766  * is before the ack sequence we can discard it as it's confirmed to have
2767  * arrived at the other end.
2768  */
2769 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2770                                int prior_fackets)
2771 {
2772         struct tcp_sock *tp = tcp_sk(sk);
2773         const struct inet_connection_sock *icsk = inet_csk(sk);
2774         struct sk_buff *skb;
2775         u32 now = tcp_time_stamp;
2776         int fully_acked = 1;
2777         int flag = 0;
2778         int prior_packets = tp->packets_out;
2779         u32 cnt = 0;
2780         u32 reord = tp->packets_out;
2781         s32 seq_rtt = -1;
2782         s32 ca_seq_rtt = -1;
2783         ktime_t last_ackt = net_invalid_timestamp();
2784
2785         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2786                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2787                 u32 end_seq;
2788                 u32 packets_acked;
2789                 u8 sacked = scb->sacked;
2790
2791                 /* Determine how many packets and what bytes were acked, tso and else */
2792                 if (after(scb->end_seq, tp->snd_una)) {
2793                         if (tcp_skb_pcount(skb) == 1 ||
2794                             !after(tp->snd_una, scb->seq))
2795                                 break;
2796
2797                         packets_acked = tcp_tso_acked(sk, skb);
2798                         if (!packets_acked)
2799                                 break;
2800
2801                         fully_acked = 0;
2802                         end_seq = tp->snd_una;
2803                 } else {
2804                         packets_acked = tcp_skb_pcount(skb);
2805                         end_seq = scb->end_seq;
2806                 }
2807
2808                 /* MTU probing checks */
2809                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2810                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2811                         tcp_mtup_probe_success(sk, skb);
2812                 }
2813
2814                 if (sacked) {
2815                         if (sacked & TCPCB_RETRANS) {
2816                                 if (sacked & TCPCB_SACKED_RETRANS)
2817                                         tp->retrans_out -= packets_acked;
2818                                 flag |= FLAG_RETRANS_DATA_ACKED;
2819                                 ca_seq_rtt = -1;
2820                                 seq_rtt = -1;
2821                                 if ((flag & FLAG_DATA_ACKED) ||
2822                                     (packets_acked > 1))
2823                                         flag |= FLAG_NONHEAD_RETRANS_ACKED;
2824                         } else {
2825                                 ca_seq_rtt = now - scb->when;
2826                                 last_ackt = skb->tstamp;
2827                                 if (seq_rtt < 0) {
2828                                         seq_rtt = ca_seq_rtt;
2829                                 }
2830                                 if (!(sacked & TCPCB_SACKED_ACKED))
2831                                         reord = min(cnt, reord);
2832                         }
2833
2834                         if (sacked & TCPCB_SACKED_ACKED)
2835                                 tp->sacked_out -= packets_acked;
2836                         if (sacked & TCPCB_LOST)
2837                                 tp->lost_out -= packets_acked;
2838
2839                         if ((sacked & TCPCB_URG) && tp->urg_mode &&
2840                             !before(end_seq, tp->snd_up))
2841                                 tp->urg_mode = 0;
2842                 } else {
2843                         ca_seq_rtt = now - scb->when;
2844                         last_ackt = skb->tstamp;
2845                         if (seq_rtt < 0) {
2846                                 seq_rtt = ca_seq_rtt;
2847                         }
2848                         reord = min(cnt, reord);
2849                 }
2850                 tp->packets_out -= packets_acked;
2851                 cnt += packets_acked;
2852
2853                 /* Initial outgoing SYN's get put onto the write_queue
2854                  * just like anything else we transmit.  It is not
2855                  * true data, and if we misinform our callers that
2856                  * this ACK acks real data, we will erroneously exit
2857                  * connection startup slow start one packet too
2858                  * quickly.  This is severely frowned upon behavior.
2859                  */
2860                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2861                         flag |= FLAG_DATA_ACKED;
2862                 } else {
2863                         flag |= FLAG_SYN_ACKED;
2864                         tp->retrans_stamp = 0;
2865                 }
2866
2867                 if (!fully_acked)
2868                         break;
2869
2870                 tcp_unlink_write_queue(skb, sk);
2871                 sk_stream_free_skb(sk, skb);
2872                 tcp_clear_all_retrans_hints(tp);
2873         }
2874
2875         if (flag & FLAG_ACKED) {
2876                 u32 pkts_acked = prior_packets - tp->packets_out;
2877                 const struct tcp_congestion_ops *ca_ops
2878                         = inet_csk(sk)->icsk_ca_ops;
2879
2880                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2881                 tcp_rearm_rto(sk);
2882
2883                 if (tcp_is_reno(tp)) {
2884                         tcp_remove_reno_sacks(sk, pkts_acked);
2885                 } else {
2886                         /* Non-retransmitted hole got filled? That's reordering */
2887                         if (reord < prior_fackets)
2888                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2889                 }
2890
2891                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2892
2893                 if (ca_ops->pkts_acked) {
2894                         s32 rtt_us = -1;
2895
2896                         /* Is the ACK triggering packet unambiguous? */
2897                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2898                                 /* High resolution needed and available? */
2899                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2900                                     !ktime_equal(last_ackt,
2901                                                  net_invalid_timestamp()))
2902                                         rtt_us = ktime_us_delta(ktime_get_real(),
2903                                                                 last_ackt);
2904                                 else if (ca_seq_rtt > 0)
2905                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2906                         }
2907
2908                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2909                 }
2910         }
2911
2912 #if FASTRETRANS_DEBUG > 0
2913         BUG_TRAP((int)tp->sacked_out >= 0);
2914         BUG_TRAP((int)tp->lost_out >= 0);
2915         BUG_TRAP((int)tp->retrans_out >= 0);
2916         if (!tp->packets_out && tcp_is_sack(tp)) {
2917                 icsk = inet_csk(sk);
2918                 if (tp->lost_out) {
2919                         printk(KERN_DEBUG "Leak l=%u %d\n",
2920                                tp->lost_out, icsk->icsk_ca_state);
2921                         tp->lost_out = 0;
2922                 }
2923                 if (tp->sacked_out) {
2924                         printk(KERN_DEBUG "Leak s=%u %d\n",
2925                                tp->sacked_out, icsk->icsk_ca_state);
2926                         tp->sacked_out = 0;
2927                 }
2928                 if (tp->retrans_out) {
2929                         printk(KERN_DEBUG "Leak r=%u %d\n",
2930                                tp->retrans_out, icsk->icsk_ca_state);
2931                         tp->retrans_out = 0;
2932                 }
2933         }
2934 #endif
2935         *seq_rtt_p = seq_rtt;
2936         return flag;
2937 }
2938
2939 static void tcp_ack_probe(struct sock *sk)
2940 {
2941         const struct tcp_sock *tp = tcp_sk(sk);
2942         struct inet_connection_sock *icsk = inet_csk(sk);
2943
2944         /* Was it a usable window open? */
2945
2946         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2947                    tp->snd_una + tp->snd_wnd)) {
2948                 icsk->icsk_backoff = 0;
2949                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2950                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2951                  * This function is not for random using!
2952                  */
2953         } else {
2954                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2955                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2956                                           TCP_RTO_MAX);
2957         }
2958 }
2959
2960 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2961 {
2962         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2963                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2964 }
2965
2966 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2967 {
2968         const struct tcp_sock *tp = tcp_sk(sk);
2969         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2970                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2971 }
2972
2973 /* Check that window update is acceptable.
2974  * The function assumes that snd_una<=ack<=snd_next.
2975  */
2976 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2977                                         const u32 ack_seq, const u32 nwin)
2978 {
2979         return (after(ack, tp->snd_una) ||
2980                 after(ack_seq, tp->snd_wl1) ||
2981                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2982 }
2983
2984 /* Update our send window.
2985  *
2986  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2987  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2988  */
2989 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2990                                  u32 ack_seq)
2991 {
2992         struct tcp_sock *tp = tcp_sk(sk);
2993         int flag = 0;
2994         u32 nwin = ntohs(tcp_hdr(skb)->window);
2995
2996         if (likely(!tcp_hdr(skb)->syn))
2997                 nwin <<= tp->rx_opt.snd_wscale;
2998
2999         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3000                 flag |= FLAG_WIN_UPDATE;
3001                 tcp_update_wl(tp, ack, ack_seq);
3002
3003                 if (tp->snd_wnd != nwin) {
3004                         tp->snd_wnd = nwin;
3005
3006                         /* Note, it is the only place, where
3007                          * fast path is recovered for sending TCP.
3008                          */
3009                         tp->pred_flags = 0;
3010                         tcp_fast_path_check(sk);
3011
3012                         if (nwin > tp->max_window) {
3013                                 tp->max_window = nwin;
3014                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3015                         }
3016                 }
3017         }
3018
3019         tp->snd_una = ack;
3020
3021         return flag;
3022 }
3023
3024 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3025  * continue in congestion avoidance.
3026  */
3027 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3028 {
3029         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3030         tp->snd_cwnd_cnt = 0;
3031         tp->bytes_acked = 0;
3032         TCP_ECN_queue_cwr(tp);
3033         tcp_moderate_cwnd(tp);
3034 }
3035
3036 /* A conservative spurious RTO response algorithm: reduce cwnd using
3037  * rate halving and continue in congestion avoidance.
3038  */
3039 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3040 {
3041         tcp_enter_cwr(sk, 0);
3042 }
3043
3044 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3045 {
3046         if (flag&FLAG_ECE)
3047                 tcp_ratehalving_spur_to_response(sk);
3048         else
3049                 tcp_undo_cwr(sk, 1);
3050 }
3051
3052 /* F-RTO spurious RTO detection algorithm (RFC4138)
3053  *
3054  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3055  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3056  * window (but not to or beyond highest sequence sent before RTO):
3057  *   On First ACK,  send two new segments out.
3058  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3059  *                  algorithm is not part of the F-RTO detection algorithm
3060  *                  given in RFC4138 but can be selected separately).
3061  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3062  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3063  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3064  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3065  *
3066  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3067  * original window even after we transmit two new data segments.
3068  *
3069  * SACK version:
3070  *   on first step, wait until first cumulative ACK arrives, then move to
3071  *   the second step. In second step, the next ACK decides.
3072  *
3073  * F-RTO is implemented (mainly) in four functions:
3074  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3075  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3076  *     called when tcp_use_frto() showed green light
3077  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3078  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3079  *     to prove that the RTO is indeed spurious. It transfers the control
3080  *     from F-RTO to the conventional RTO recovery
3081  */
3082 static int tcp_process_frto(struct sock *sk, int flag)
3083 {
3084         struct tcp_sock *tp = tcp_sk(sk);
3085
3086         tcp_verify_left_out(tp);
3087
3088         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3089         if (flag&FLAG_DATA_ACKED)
3090                 inet_csk(sk)->icsk_retransmits = 0;
3091
3092         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3093             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3094                 tp->undo_marker = 0;
3095
3096         if (!before(tp->snd_una, tp->frto_highmark)) {
3097                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3098                 return 1;
3099         }
3100
3101         if (!IsSackFrto() || tcp_is_reno(tp)) {
3102                 /* RFC4138 shortcoming in step 2; should also have case c):
3103                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3104                  * data, winupdate
3105                  */
3106                 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3107                         return 1;
3108
3109                 if (!(flag&FLAG_DATA_ACKED)) {
3110                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3111                                             flag);
3112                         return 1;
3113                 }
3114         } else {
3115                 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3116                         /* Prevent sending of new data. */
3117                         tp->snd_cwnd = min(tp->snd_cwnd,
3118                                            tcp_packets_in_flight(tp));
3119                         return 1;
3120                 }
3121
3122                 if ((tp->frto_counter >= 2) &&
3123                     (!(flag&FLAG_FORWARD_PROGRESS) ||
3124                      ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3125                         /* RFC4138 shortcoming (see comment above) */
3126                         if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3127                                 return 1;
3128
3129                         tcp_enter_frto_loss(sk, 3, flag);
3130                         return 1;
3131                 }
3132         }
3133
3134         if (tp->frto_counter == 1) {
3135                 /* tcp_may_send_now needs to see updated state */
3136                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3137                 tp->frto_counter = 2;
3138
3139                 if (!tcp_may_send_now(sk))
3140                         tcp_enter_frto_loss(sk, 2, flag);
3141
3142                 return 1;
3143         } else {
3144                 switch (sysctl_tcp_frto_response) {
3145                 case 2:
3146                         tcp_undo_spur_to_response(sk, flag);
3147                         break;
3148                 case 1:
3149                         tcp_conservative_spur_to_response(tp);
3150                         break;
3151                 default:
3152                         tcp_ratehalving_spur_to_response(sk);
3153                         break;
3154                 }
3155                 tp->frto_counter = 0;
3156                 tp->undo_marker = 0;
3157                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3158         }
3159         return 0;
3160 }
3161
3162 /* This routine deals with incoming acks, but not outgoing ones. */
3163 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3164 {
3165         struct inet_connection_sock *icsk = inet_csk(sk);
3166         struct tcp_sock *tp = tcp_sk(sk);
3167         u32 prior_snd_una = tp->snd_una;
3168         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3169         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3170         u32 prior_in_flight;
3171         u32 prior_fackets;
3172         s32 seq_rtt;
3173         int prior_packets;
3174         int frto_cwnd = 0;
3175
3176         /* If the ack is newer than sent or older than previous acks
3177          * then we can probably ignore it.
3178          */
3179         if (after(ack, tp->snd_nxt))
3180                 goto uninteresting_ack;
3181
3182         if (before(ack, prior_snd_una))
3183                 goto old_ack;
3184
3185         if (after(ack, prior_snd_una))
3186                 flag |= FLAG_SND_UNA_ADVANCED;
3187
3188         if (sysctl_tcp_abc) {
3189                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3190                         tp->bytes_acked += ack - prior_snd_una;
3191                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3192                         /* we assume just one segment left network */
3193                         tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3194         }
3195
3196         prior_fackets = tp->fackets_out;
3197         prior_in_flight = tcp_packets_in_flight(tp);
3198
3199         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3200                 /* Window is constant, pure forward advance.
3201                  * No more checks are required.
3202                  * Note, we use the fact that SND.UNA>=SND.WL2.
3203                  */
3204                 tcp_update_wl(tp, ack, ack_seq);
3205                 tp->snd_una = ack;
3206                 flag |= FLAG_WIN_UPDATE;
3207
3208                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3209
3210                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3211         } else {
3212                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3213                         flag |= FLAG_DATA;
3214                 else
3215                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3216
3217                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3218
3219                 if (TCP_SKB_CB(skb)->sacked)
3220                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3221
3222                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3223                         flag |= FLAG_ECE;
3224
3225                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3226         }
3227
3228         /* We passed data and got it acked, remove any soft error
3229          * log. Something worked...
3230          */
3231         sk->sk_err_soft = 0;
3232         tp->rcv_tstamp = tcp_time_stamp;
3233         prior_packets = tp->packets_out;
3234         if (!prior_packets)
3235                 goto no_queue;
3236
3237         /* See if we can take anything off of the retransmit queue. */
3238         flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3239
3240         if (tp->frto_counter)
3241                 frto_cwnd = tcp_process_frto(sk, flag);
3242         /* Guarantee sacktag reordering detection against wrap-arounds */
3243         if (before(tp->frto_highmark, tp->snd_una))
3244                 tp->frto_highmark = 0;
3245
3246         if (tcp_ack_is_dubious(sk, flag)) {
3247                 /* Advance CWND, if state allows this. */
3248                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3249                     tcp_may_raise_cwnd(sk, flag))
3250                         tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3251                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3252         } else {
3253                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3254                         tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3255         }
3256
3257         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3258                 dst_confirm(sk->sk_dst_cache);
3259
3260         return 1;
3261
3262 no_queue:
3263         icsk->icsk_probes_out = 0;
3264
3265         /* If this ack opens up a zero window, clear backoff.  It was
3266          * being used to time the probes, and is probably far higher than
3267          * it needs to be for normal retransmission.
3268          */
3269         if (tcp_send_head(sk))
3270                 tcp_ack_probe(sk);
3271         return 1;
3272
3273 old_ack:
3274         if (TCP_SKB_CB(skb)->sacked)
3275                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3276
3277 uninteresting_ack:
3278         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3279         return 0;
3280 }
3281
3282
3283 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3284  * But, this can also be called on packets in the established flow when
3285  * the fast version below fails.
3286  */
3287 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3288 {
3289         unsigned char *ptr;
3290         struct tcphdr *th = tcp_hdr(skb);
3291         int length=(th->doff*4)-sizeof(struct tcphdr);
3292
3293         ptr = (unsigned char *)(th + 1);
3294         opt_rx->saw_tstamp = 0;
3295
3296         while (length > 0) {
3297                 int opcode=*ptr++;
3298                 int opsize;
3299
3300                 switch (opcode) {
3301                         case TCPOPT_EOL:
3302                                 return;
3303                         case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3304                                 length--;
3305                                 continue;
3306                         default:
3307                                 opsize=*ptr++;
3308                                 if (opsize < 2) /* "silly options" */
3309                                         return;
3310                                 if (opsize > length)
3311                                         return; /* don't parse partial options */
3312                                 switch (opcode) {
3313                                 case TCPOPT_MSS:
3314                                         if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3315                                                 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3316                                                 if (in_mss) {
3317                                                         if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3318                                                                 in_mss = opt_rx->user_mss;
3319                                                         opt_rx->mss_clamp = in_mss;
3320                                                 }
3321                                         }
3322                                         break;
3323                                 case TCPOPT_WINDOW:
3324                                         if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3325                                                 if (sysctl_tcp_window_scaling) {
3326                                                         __u8 snd_wscale = *(__u8 *) ptr;
3327                                                         opt_rx->wscale_ok = 1;
3328                                                         if (snd_wscale > 14) {
3329                                                                 if (net_ratelimit())
3330                                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3331                                                                                "scaling value %d >14 received.\n",
3332                                                                                snd_wscale);
3333                                                                 snd_wscale = 14;
3334                                                         }
3335                                                         opt_rx->snd_wscale = snd_wscale;
3336                                                 }
3337                                         break;
3338                                 case TCPOPT_TIMESTAMP:
3339                                         if (opsize==TCPOLEN_TIMESTAMP) {
3340                                                 if ((estab && opt_rx->tstamp_ok) ||
3341                                                     (!estab && sysctl_tcp_timestamps)) {
3342                                                         opt_rx->saw_tstamp = 1;
3343                                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3344                                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3345                                                 }
3346                                         }
3347                                         break;
3348                                 case TCPOPT_SACK_PERM:
3349                                         if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3350                                                 if (sysctl_tcp_sack) {
3351                                                         opt_rx->sack_ok = 1;
3352                                                         tcp_sack_reset(opt_rx);
3353                                                 }
3354                                         }
3355                                         break;
3356
3357                                 case TCPOPT_SACK:
3358                                         if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3359                                            !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3360                                            opt_rx->sack_ok) {
3361                                                 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3362                                         }
3363                                         break;
3364 #ifdef CONFIG_TCP_MD5SIG
3365                                 case TCPOPT_MD5SIG:
3366                                         /*
3367                                          * The MD5 Hash has already been
3368                                          * checked (see tcp_v{4,6}_do_rcv()).
3369                                          */
3370                                         break;
3371 #endif
3372                                 }
3373
3374                                 ptr+=opsize-2;
3375                                 length-=opsize;
3376                 }
3377         }
3378 }
3379
3380 /* Fast parse options. This hopes to only see timestamps.
3381  * If it is wrong it falls back on tcp_parse_options().
3382  */
3383 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3384                                   struct tcp_sock *tp)
3385 {
3386         if (th->doff == sizeof(struct tcphdr)>>2) {
3387                 tp->rx_opt.saw_tstamp = 0;
3388                 return 0;
3389         } else if (tp->rx_opt.tstamp_ok &&
3390                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3391                 __be32 *ptr = (__be32 *)(th + 1);
3392                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3393                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3394                         tp->rx_opt.saw_tstamp = 1;
3395                         ++ptr;
3396                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3397                         ++ptr;
3398                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3399                         return 1;
3400                 }
3401         }
3402         tcp_parse_options(skb, &tp->rx_opt, 1);
3403         return 1;
3404 }
3405
3406 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3407 {
3408         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3409         tp->rx_opt.ts_recent_stamp = get_seconds();
3410 }
3411
3412 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3413 {
3414         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3415                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3416                  * extra check below makes sure this can only happen
3417                  * for pure ACK frames.  -DaveM
3418                  *
3419                  * Not only, also it occurs for expired timestamps.
3420                  */
3421
3422                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3423                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3424                         tcp_store_ts_recent(tp);
3425         }
3426 }
3427
3428 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3429  *
3430  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3431  * it can pass through stack. So, the following predicate verifies that
3432  * this segment is not used for anything but congestion avoidance or
3433  * fast retransmit. Moreover, we even are able to eliminate most of such
3434  * second order effects, if we apply some small "replay" window (~RTO)
3435  * to timestamp space.
3436  *
3437  * All these measures still do not guarantee that we reject wrapped ACKs
3438  * on networks with high bandwidth, when sequence space is recycled fastly,
3439  * but it guarantees that such events will be very rare and do not affect
3440  * connection seriously. This doesn't look nice, but alas, PAWS is really
3441  * buggy extension.
3442  *
3443  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3444  * states that events when retransmit arrives after original data are rare.
3445  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3446  * the biggest problem on large power networks even with minor reordering.
3447  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3448  * up to bandwidth of 18Gigabit/sec. 8) ]
3449  */
3450
3451 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3452 {
3453         struct tcp_sock *tp = tcp_sk(sk);
3454         struct tcphdr *th = tcp_hdr(skb);
3455         u32 seq = TCP_SKB_CB(skb)->seq;
3456         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3457
3458         return (/* 1. Pure ACK with correct sequence number. */
3459                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3460
3461                 /* 2. ... and duplicate ACK. */
3462                 ack == tp->snd_una &&
3463
3464                 /* 3. ... and does not update window. */
3465                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3466
3467                 /* 4. ... and sits in replay window. */
3468                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3469 }
3470
3471 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3472 {
3473         const struct tcp_sock *tp = tcp_sk(sk);
3474         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3475                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3476                 !tcp_disordered_ack(sk, skb));
3477 }
3478
3479 /* Check segment sequence number for validity.
3480  *
3481  * Segment controls are considered valid, if the segment
3482  * fits to the window after truncation to the window. Acceptability
3483  * of data (and SYN, FIN, of course) is checked separately.
3484  * See tcp_data_queue(), for example.
3485  *
3486  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3487  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3488  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3489  * (borrowed from freebsd)
3490  */
3491
3492 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3493 {
3494         return  !before(end_seq, tp->rcv_wup) &&
3495                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3496 }
3497
3498 /* When we get a reset we do this. */
3499 static void tcp_reset(struct sock *sk)
3500 {
3501         /* We want the right error as BSD sees it (and indeed as we do). */
3502         switch (sk->sk_state) {
3503                 case TCP_SYN_SENT:
3504                         sk->sk_err = ECONNREFUSED;
3505                         break;
3506                 case TCP_CLOSE_WAIT:
3507                         sk->sk_err = EPIPE;
3508                         break;
3509                 case TCP_CLOSE:
3510                         return;
3511                 default:
3512                         sk->sk_err = ECONNRESET;
3513         }
3514
3515         if (!sock_flag(sk, SOCK_DEAD))
3516                 sk->sk_error_report(sk);
3517
3518         tcp_done(sk);
3519 }
3520
3521 /*
3522  *      Process the FIN bit. This now behaves as it is supposed to work
3523  *      and the FIN takes effect when it is validly part of sequence
3524  *      space. Not before when we get holes.
3525  *
3526  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3527  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3528  *      TIME-WAIT)
3529  *
3530  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3531  *      close and we go into CLOSING (and later onto TIME-WAIT)
3532  *
3533  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3534  */
3535 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3536 {
3537         struct tcp_sock *tp = tcp_sk(sk);
3538
3539         inet_csk_schedule_ack(sk);
3540
3541         sk->sk_shutdown |= RCV_SHUTDOWN;
3542         sock_set_flag(sk, SOCK_DONE);
3543
3544         switch (sk->sk_state) {
3545                 case TCP_SYN_RECV:
3546                 case TCP_ESTABLISHED:
3547                         /* Move to CLOSE_WAIT */
3548                         tcp_set_state(sk, TCP_CLOSE_WAIT);
3549                         inet_csk(sk)->icsk_ack.pingpong = 1;
3550                         break;
3551
3552                 case TCP_CLOSE_WAIT:
3553                 case TCP_CLOSING:
3554                         /* Received a retransmission of the FIN, do
3555                          * nothing.
3556                          */
3557                         break;
3558                 case TCP_LAST_ACK:
3559                         /* RFC793: Remain in the LAST-ACK state. */
3560                         break;
3561
3562                 case TCP_FIN_WAIT1:
3563                         /* This case occurs when a simultaneous close
3564                          * happens, we must ack the received FIN and
3565                          * enter the CLOSING state.
3566                          */
3567                         tcp_send_ack(sk);
3568                         tcp_set_state(sk, TCP_CLOSING);
3569                         break;
3570                 case TCP_FIN_WAIT2:
3571                         /* Received a FIN -- send ACK and enter TIME_WAIT. */
3572                         tcp_send_ack(sk);
3573                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3574                         break;
3575                 default:
3576                         /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3577                          * cases we should never reach this piece of code.
3578                          */
3579                         printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3580                                __FUNCTION__, sk->sk_state);
3581                         break;
3582         }
3583
3584         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3585          * Probably, we should reset in this case. For now drop them.
3586          */
3587         __skb_queue_purge(&tp->out_of_order_queue);
3588         if (tcp_is_sack(tp))
3589                 tcp_sack_reset(&tp->rx_opt);
3590         sk_stream_mem_reclaim(sk);
3591
3592         if (!sock_flag(sk, SOCK_DEAD)) {
3593                 sk->sk_state_change(sk);
3594
3595                 /* Do not send POLL_HUP for half duplex close. */
3596                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3597                     sk->sk_state == TCP_CLOSE)
3598                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3599                 else
3600                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3601         }
3602 }
3603
3604 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3605 {
3606         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3607                 if (before(seq, sp->start_seq))
3608                         sp->start_seq = seq;
3609                 if (after(end_seq, sp->end_seq))
3610                         sp->end_seq = end_seq;
3611                 return 1;
3612         }
3613         return 0;
3614 }
3615
3616 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3617 {
3618         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3619                 if (before(seq, tp->rcv_nxt))
3620                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3621                 else
3622                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3623
3624                 tp->rx_opt.dsack = 1;
3625                 tp->duplicate_sack[0].start_seq = seq;
3626                 tp->duplicate_sack[0].end_seq = end_seq;
3627                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3628         }
3629 }
3630
3631 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3632 {
3633         if (!tp->rx_opt.dsack)
3634                 tcp_dsack_set(tp, seq, end_seq);
3635         else
3636                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3637 }
3638
3639 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3640 {
3641         struct tcp_sock *tp = tcp_sk(sk);
3642
3643         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3644             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3645                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3646                 tcp_enter_quickack_mode(sk);
3647
3648                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3649                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3650
3651                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3652                                 end_seq = tp->rcv_nxt;
3653                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3654                 }
3655         }
3656
3657         tcp_send_ack(sk);
3658 }
3659
3660 /* These routines update the SACK block as out-of-order packets arrive or
3661  * in-order packets close up the sequence space.
3662  */
3663 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3664 {
3665         int this_sack;
3666         struct tcp_sack_block *sp = &tp->selective_acks[0];
3667         struct tcp_sack_block *swalk = sp+1;
3668
3669         /* See if the recent change to the first SACK eats into
3670          * or hits the sequence space of other SACK blocks, if so coalesce.
3671          */
3672         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3673                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3674                         int i;
3675
3676                         /* Zap SWALK, by moving every further SACK up by one slot.
3677                          * Decrease num_sacks.
3678                          */
3679                         tp->rx_opt.num_sacks--;
3680                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3681                         for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3682                                 sp[i] = sp[i+1];
3683                         continue;
3684                 }
3685                 this_sack++, swalk++;
3686         }
3687 }
3688
3689 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3690 {
3691         __u32 tmp;
3692
3693         tmp = sack1->start_seq;
3694         sack1->start_seq = sack2->start_seq;
3695         sack2->start_seq = tmp;
3696
3697         tmp = sack1->end_seq;
3698         sack1->end_seq = sack2->end_seq;
3699         sack2->end_seq = tmp;
3700 }
3701
3702 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3703 {
3704         struct tcp_sock *tp = tcp_sk(sk);
3705         struct tcp_sack_block *sp = &tp->selective_acks[0];
3706         int cur_sacks = tp->rx_opt.num_sacks;
3707         int this_sack;
3708
3709         if (!cur_sacks)
3710                 goto new_sack;
3711
3712         for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3713                 if (tcp_sack_extend(sp, seq, end_seq)) {
3714                         /* Rotate this_sack to the first one. */
3715                         for (; this_sack>0; this_sack--, sp--)
3716                                 tcp_sack_swap(sp, sp-1);
3717                         if (cur_sacks > 1)
3718                                 tcp_sack_maybe_coalesce(tp);
3719                         return;
3720                 }
3721         }
3722
3723         /* Could not find an adjacent existing SACK, build a new one,
3724          * put it at the front, and shift everyone else down.  We
3725          * always know there is at least one SACK present already here.
3726          *
3727          * If the sack array is full, forget about the last one.
3728          */
3729         if (this_sack >= 4) {
3730                 this_sack--;
3731                 tp->rx_opt.num_sacks--;
3732                 sp--;
3733         }
3734         for (; this_sack > 0; this_sack--, sp--)
3735                 *sp = *(sp-1);
3736
3737 new_sack:
3738         /* Build the new head SACK, and we're done. */
3739         sp->start_seq = seq;
3740         sp->end_seq = end_seq;
3741         tp->rx_opt.num_sacks++;
3742         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3743 }
3744
3745 /* RCV.NXT advances, some SACKs should be eaten. */
3746
3747 static void tcp_sack_remove(struct tcp_sock *tp)
3748 {
3749         struct tcp_sack_block *sp = &tp->selective_acks[0];
3750         int num_sacks = tp->rx_opt.num_sacks;
3751         int this_sack;
3752
3753         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3754         if (skb_queue_empty(&tp->out_of_order_queue)) {
3755                 tp->rx_opt.num_sacks = 0;
3756                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3757                 return;
3758         }
3759
3760         for (this_sack = 0; this_sack < num_sacks; ) {
3761                 /* Check if the start of the sack is covered by RCV.NXT. */
3762                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3763                         int i;
3764
3765                         /* RCV.NXT must cover all the block! */
3766                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3767
3768                         /* Zap this SACK, by moving forward any other SACKS. */
3769                         for (i=this_sack+1; i < num_sacks; i++)
3770                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3771                         num_sacks--;
3772                         continue;
3773                 }
3774                 this_sack++;
3775                 sp++;
3776         }
3777         if (num_sacks != tp->rx_opt.num_sacks) {
3778                 tp->rx_opt.num_sacks = num_sacks;
3779                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3780         }
3781 }
3782
3783 /* This one checks to see if we can put data from the
3784  * out_of_order queue into the receive_queue.
3785  */
3786 static void tcp_ofo_queue(struct sock *sk)
3787 {
3788         struct tcp_sock *tp = tcp_sk(sk);
3789         __u32 dsack_high = tp->rcv_nxt;
3790         struct sk_buff *skb;
3791
3792         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3793                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3794                         break;
3795
3796                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3797                         __u32 dsack = dsack_high;
3798                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3799                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3800                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3801                 }
3802
3803                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3804                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3805                         __skb_unlink(skb, &tp->out_of_order_queue);
3806                         __kfree_skb(skb);
3807                         continue;
3808                 }
3809                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3810                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3811                            TCP_SKB_CB(skb)->end_seq);
3812
3813                 __skb_unlink(skb, &tp->out_of_order_queue);
3814                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3815                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3816                 if (tcp_hdr(skb)->fin)
3817                         tcp_fin(skb, sk, tcp_hdr(skb));
3818         }
3819 }
3820
3821 static int tcp_prune_queue(struct sock *sk);
3822
3823 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3824 {
3825         struct tcphdr *th = tcp_hdr(skb);
3826         struct tcp_sock *tp = tcp_sk(sk);
3827         int eaten = -1;
3828
3829         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3830                 goto drop;
3831
3832         __skb_pull(skb, th->doff*4);
3833
3834         TCP_ECN_accept_cwr(tp, skb);
3835
3836         if (tp->rx_opt.dsack) {
3837                 tp->rx_opt.dsack = 0;
3838                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3839                                                     4 - tp->rx_opt.tstamp_ok);
3840         }
3841
3842         /*  Queue data for delivery to the user.
3843          *  Packets in sequence go to the receive queue.
3844          *  Out of sequence packets to the out_of_order_queue.
3845          */
3846         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3847                 if (tcp_receive_window(tp) == 0)
3848                         goto out_of_window;
3849
3850                 /* Ok. In sequence. In window. */
3851                 if (tp->ucopy.task == current &&
3852                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3853                     sock_owned_by_user(sk) && !tp->urg_data) {
3854                         int chunk = min_t(unsigned int, skb->len,
3855                                                         tp->ucopy.len);
3856
3857                         __set_current_state(TASK_RUNNING);
3858
3859                         local_bh_enable();
3860                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3861                                 tp->ucopy.len -= chunk;
3862                                 tp->copied_seq += chunk;
3863                                 eaten = (chunk == skb->len && !th->fin);
3864                                 tcp_rcv_space_adjust(sk);
3865                         }
3866                         local_bh_disable();
3867                 }
3868
3869                 if (eaten <= 0) {
3870 queue_and_out:
3871                         if (eaten < 0 &&
3872                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3873                              !sk_stream_rmem_schedule(sk, skb))) {
3874                                 if (tcp_prune_queue(sk) < 0 ||
3875                                     !sk_stream_rmem_schedule(sk, skb))
3876                                         goto drop;
3877                         }
3878                         sk_stream_set_owner_r(skb, sk);
3879                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3880                 }
3881                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3882                 if (skb->len)
3883                         tcp_event_data_recv(sk, skb);
3884                 if (th->fin)
3885                         tcp_fin(skb, sk, th);
3886
3887                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3888                         tcp_ofo_queue(sk);
3889
3890                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3891                          * gap in queue is filled.
3892                          */
3893                         if (skb_queue_empty(&tp->out_of_order_queue))
3894                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3895                 }
3896
3897                 if (tp->rx_opt.num_sacks)
3898                         tcp_sack_remove(tp);
3899
3900                 tcp_fast_path_check(sk);
3901
3902                 if (eaten > 0)
3903                         __kfree_skb(skb);
3904                 else if (!sock_flag(sk, SOCK_DEAD))
3905                         sk->sk_data_ready(sk, 0);
3906                 return;
3907         }
3908
3909         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3910                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3911                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3912                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3913
3914 out_of_window:
3915                 tcp_enter_quickack_mode(sk);
3916                 inet_csk_schedule_ack(sk);
3917 drop:
3918                 __kfree_skb(skb);
3919                 return;
3920         }
3921
3922         /* Out of window. F.e. zero window probe. */
3923         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3924                 goto out_of_window;
3925
3926         tcp_enter_quickack_mode(sk);
3927
3928         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3929                 /* Partial packet, seq < rcv_next < end_seq */
3930                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3931                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3932                            TCP_SKB_CB(skb)->end_seq);
3933
3934                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3935
3936                 /* If window is closed, drop tail of packet. But after
3937                  * remembering D-SACK for its head made in previous line.
3938                  */
3939                 if (!tcp_receive_window(tp))
3940                         goto out_of_window;
3941                 goto queue_and_out;
3942         }
3943
3944         TCP_ECN_check_ce(tp, skb);
3945
3946         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3947             !sk_stream_rmem_schedule(sk, skb)) {
3948                 if (tcp_prune_queue(sk) < 0 ||
3949                     !sk_stream_rmem_schedule(sk, skb))
3950                         goto drop;
3951         }
3952
3953         /* Disable header prediction. */
3954         tp->pred_flags = 0;
3955         inet_csk_schedule_ack(sk);
3956
3957         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3958                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3959
3960         sk_stream_set_owner_r(skb, sk);
3961
3962         if (!skb_peek(&tp->out_of_order_queue)) {
3963                 /* Initial out of order segment, build 1 SACK. */
3964                 if (tcp_is_sack(tp)) {
3965                         tp->rx_opt.num_sacks = 1;
3966                         tp->rx_opt.dsack     = 0;
3967                         tp->rx_opt.eff_sacks = 1;
3968                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3969                         tp->selective_acks[0].end_seq =
3970                                                 TCP_SKB_CB(skb)->end_seq;
3971                 }
3972                 __skb_queue_head(&tp->out_of_order_queue,skb);
3973         } else {
3974                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3975                 u32 seq = TCP_SKB_CB(skb)->seq;
3976                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3977
3978                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3979                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3980
3981                         if (!tp->rx_opt.num_sacks ||
3982                             tp->selective_acks[0].end_seq != seq)
3983                                 goto add_sack;
3984
3985                         /* Common case: data arrive in order after hole. */
3986                         tp->selective_acks[0].end_seq = end_seq;
3987                         return;
3988                 }
3989
3990                 /* Find place to insert this segment. */
3991                 do {
3992                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3993                                 break;
3994                 } while ((skb1 = skb1->prev) !=
3995                          (struct sk_buff*)&tp->out_of_order_queue);
3996
3997                 /* Do skb overlap to previous one? */
3998                 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3999                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4000                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4001                                 /* All the bits are present. Drop. */
4002                                 __kfree_skb(skb);
4003                                 tcp_dsack_set(tp, seq, end_seq);
4004                                 goto add_sack;
4005                         }
4006                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4007                                 /* Partial overlap. */
4008                                 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
4009                         } else {
4010                                 skb1 = skb1->prev;
4011                         }
4012                 }
4013                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4014
4015                 /* And clean segments covered by new one as whole. */
4016                 while ((skb1 = skb->next) !=
4017                        (struct sk_buff*)&tp->out_of_order_queue &&
4018                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4019                        if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4020                                tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4021                                break;
4022                        }
4023                        __skb_unlink(skb1, &tp->out_of_order_queue);
4024                        tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4025                        __kfree_skb(skb1);
4026                 }
4027
4028 add_sack:
4029                 if (tcp_is_sack(tp))
4030                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4031         }
4032 }
4033
4034 /* Collapse contiguous sequence of skbs head..tail with
4035  * sequence numbers start..end.
4036  * Segments with FIN/SYN are not collapsed (only because this
4037  * simplifies code)
4038  */
4039 static void
4040 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4041              struct sk_buff *head, struct sk_buff *tail,
4042              u32 start, u32 end)
4043 {
4044         struct sk_buff *skb;
4045
4046         /* First, check that queue is collapsible and find
4047          * the point where collapsing can be useful. */
4048         for (skb = head; skb != tail; ) {
4049                 /* No new bits? It is possible on ofo queue. */
4050                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4051                         struct sk_buff *next = skb->next;
4052                         __skb_unlink(skb, list);
4053                         __kfree_skb(skb);
4054                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4055                         skb = next;
4056                         continue;
4057                 }
4058
4059                 /* The first skb to collapse is:
4060                  * - not SYN/FIN and
4061                  * - bloated or contains data before "start" or
4062                  *   overlaps to the next one.
4063                  */
4064                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4065                     (tcp_win_from_space(skb->truesize) > skb->len ||
4066                      before(TCP_SKB_CB(skb)->seq, start) ||
4067                      (skb->next != tail &&
4068                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4069                         break;
4070
4071                 /* Decided to skip this, advance start seq. */
4072                 start = TCP_SKB_CB(skb)->end_seq;
4073                 skb = skb->next;
4074         }
4075         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4076                 return;
4077
4078         while (before(start, end)) {
4079                 struct sk_buff *nskb;
4080                 unsigned int header = skb_headroom(skb);
4081                 int copy = SKB_MAX_ORDER(header, 0);
4082
4083                 /* Too big header? This can happen with IPv6. */
4084                 if (copy < 0)
4085                         return;
4086                 if (end-start < copy)
4087                         copy = end-start;
4088                 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4089                 if (!nskb)
4090                         return;
4091
4092                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4093                 skb_set_network_header(nskb, (skb_network_header(skb) -
4094                                               skb->head));
4095                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4096                                                 skb->head));
4097                 skb_reserve(nskb, header);
4098                 memcpy(nskb->head, skb->head, header);
4099                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4100                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4101                 __skb_insert(nskb, skb->prev, skb, list);
4102                 sk_stream_set_owner_r(nskb, sk);
4103
4104                 /* Copy data, releasing collapsed skbs. */
4105                 while (copy > 0) {
4106                         int offset = start - TCP_SKB_CB(skb)->seq;
4107                         int size = TCP_SKB_CB(skb)->end_seq - start;
4108
4109                         BUG_ON(offset < 0);
4110                         if (size > 0) {
4111                                 size = min(copy, size);
4112                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4113                                         BUG();
4114                                 TCP_SKB_CB(nskb)->end_seq += size;
4115                                 copy -= size;
4116                                 start += size;
4117                         }
4118                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4119                                 struct sk_buff *next = skb->next;
4120                                 __skb_unlink(skb, list);
4121                                 __kfree_skb(skb);
4122                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4123                                 skb = next;
4124                                 if (skb == tail ||
4125                                     tcp_hdr(skb)->syn ||
4126                                     tcp_hdr(skb)->fin)
4127                                         return;
4128                         }
4129                 }
4130         }
4131 }
4132
4133 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4134  * and tcp_collapse() them until all the queue is collapsed.
4135  */
4136 static void tcp_collapse_ofo_queue(struct sock *sk)
4137 {
4138         struct tcp_sock *tp = tcp_sk(sk);
4139         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4140         struct sk_buff *head;
4141         u32 start, end;
4142
4143         if (skb == NULL)
4144                 return;
4145
4146         start = TCP_SKB_CB(skb)->seq;
4147         end = TCP_SKB_CB(skb)->end_seq;
4148         head = skb;
4149
4150         for (;;) {
4151                 skb = skb->next;
4152
4153                 /* Segment is terminated when we see gap or when
4154                  * we are at the end of all the queue. */
4155                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4156                     after(TCP_SKB_CB(skb)->seq, end) ||
4157                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4158                         tcp_collapse(sk, &tp->out_of_order_queue,
4159                                      head, skb, start, end);
4160                         head = skb;
4161                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4162                                 break;
4163                         /* Start new segment */
4164                         start = TCP_SKB_CB(skb)->seq;
4165                         end = TCP_SKB_CB(skb)->end_seq;
4166                 } else {
4167                         if (before(TCP_SKB_CB(skb)->seq, start))
4168                                 start = TCP_SKB_CB(skb)->seq;
4169                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4170                                 end = TCP_SKB_CB(skb)->end_seq;
4171                 }
4172         }
4173 }
4174
4175 /* Reduce allocated memory if we can, trying to get
4176  * the socket within its memory limits again.
4177  *
4178  * Return less than zero if we should start dropping frames
4179  * until the socket owning process reads some of the data
4180  * to stabilize the situation.
4181  */
4182 static int tcp_prune_queue(struct sock *sk)
4183 {
4184         struct tcp_sock *tp = tcp_sk(sk);
4185
4186         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4187
4188         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4189
4190         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4191                 tcp_clamp_window(sk);
4192         else if (tcp_memory_pressure)
4193                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4194
4195         tcp_collapse_ofo_queue(sk);
4196         tcp_collapse(sk, &sk->sk_receive_queue,
4197                      sk->sk_receive_queue.next,
4198                      (struct sk_buff*)&sk->sk_receive_queue,
4199                      tp->copied_seq, tp->rcv_nxt);
4200         sk_stream_mem_reclaim(sk);
4201
4202         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4203                 return 0;
4204
4205         /* Collapsing did not help, destructive actions follow.
4206          * This must not ever occur. */
4207
4208         /* First, purge the out_of_order queue. */
4209         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4210                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4211                 __skb_queue_purge(&tp->out_of_order_queue);
4212
4213                 /* Reset SACK state.  A conforming SACK implementation will
4214                  * do the same at a timeout based retransmit.  When a connection
4215                  * is in a sad state like this, we care only about integrity
4216                  * of the connection not performance.
4217                  */
4218                 if (tcp_is_sack(tp))
4219                         tcp_sack_reset(&tp->rx_opt);
4220                 sk_stream_mem_reclaim(sk);
4221         }
4222
4223         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4224                 return 0;
4225
4226         /* If we are really being abused, tell the caller to silently
4227          * drop receive data on the floor.  It will get retransmitted
4228          * and hopefully then we'll have sufficient space.
4229          */
4230         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4231
4232         /* Massive buffer overcommit. */
4233         tp->pred_flags = 0;
4234         return -1;
4235 }
4236
4237
4238 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4239  * As additional protections, we do not touch cwnd in retransmission phases,
4240  * and if application hit its sndbuf limit recently.
4241  */
4242 void tcp_cwnd_application_limited(struct sock *sk)
4243 {
4244         struct tcp_sock *tp = tcp_sk(sk);
4245
4246         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4247             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4248                 /* Limited by application or receiver window. */
4249                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4250                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4251                 if (win_used < tp->snd_cwnd) {
4252                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4253                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4254                 }
4255                 tp->snd_cwnd_used = 0;
4256         }
4257         tp->snd_cwnd_stamp = tcp_time_stamp;
4258 }
4259
4260 static int tcp_should_expand_sndbuf(struct sock *sk)
4261 {
4262         struct tcp_sock *tp = tcp_sk(sk);
4263
4264         /* If the user specified a specific send buffer setting, do
4265          * not modify it.
4266          */
4267         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4268                 return 0;
4269
4270         /* If we are under global TCP memory pressure, do not expand.  */
4271         if (tcp_memory_pressure)
4272                 return 0;
4273
4274         /* If we are under soft global TCP memory pressure, do not expand.  */
4275         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4276                 return 0;
4277
4278         /* If we filled the congestion window, do not expand.  */
4279         if (tp->packets_out >= tp->snd_cwnd)
4280                 return 0;
4281
4282         return 1;
4283 }
4284
4285 /* When incoming ACK allowed to free some skb from write_queue,
4286  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4287  * on the exit from tcp input handler.
4288  *
4289  * PROBLEM: sndbuf expansion does not work well with largesend.
4290  */
4291 static void tcp_new_space(struct sock *sk)
4292 {
4293         struct tcp_sock *tp = tcp_sk(sk);
4294
4295         if (tcp_should_expand_sndbuf(sk)) {
4296                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4297                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4298                     demanded = max_t(unsigned int, tp->snd_cwnd,
4299                                                    tp->reordering + 1);
4300                 sndmem *= 2*demanded;
4301                 if (sndmem > sk->sk_sndbuf)
4302                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4303                 tp->snd_cwnd_stamp = tcp_time_stamp;
4304         }
4305
4306         sk->sk_write_space(sk);
4307 }
4308
4309 static void tcp_check_space(struct sock *sk)
4310 {
4311         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4312                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4313                 if (sk->sk_socket &&
4314                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4315                         tcp_new_space(sk);
4316         }
4317 }
4318
4319 static inline void tcp_data_snd_check(struct sock *sk)
4320 {
4321         tcp_push_pending_frames(sk);
4322         tcp_check_space(sk);
4323 }
4324
4325 /*
4326  * Check if sending an ack is needed.
4327  */
4328 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4329 {
4330         struct tcp_sock *tp = tcp_sk(sk);
4331
4332             /* More than one full frame received... */
4333         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4334              /* ... and right edge of window advances far enough.
4335               * (tcp_recvmsg() will send ACK otherwise). Or...
4336               */
4337              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4338             /* We ACK each frame or... */
4339             tcp_in_quickack_mode(sk) ||
4340             /* We have out of order data. */
4341             (ofo_possible &&
4342              skb_peek(&tp->out_of_order_queue))) {
4343                 /* Then ack it now */
4344                 tcp_send_ack(sk);
4345         } else {
4346                 /* Else, send delayed ack. */
4347                 tcp_send_delayed_ack(sk);
4348         }
4349 }
4350
4351 static inline void tcp_ack_snd_check(struct sock *sk)
4352 {
4353         if (!inet_csk_ack_scheduled(sk)) {
4354                 /* We sent a data segment already. */
4355                 return;
4356         }
4357         __tcp_ack_snd_check(sk, 1);
4358 }
4359
4360 /*
4361  *      This routine is only called when we have urgent data
4362  *      signaled. Its the 'slow' part of tcp_urg. It could be
4363  *      moved inline now as tcp_urg is only called from one
4364  *      place. We handle URGent data wrong. We have to - as
4365  *      BSD still doesn't use the correction from RFC961.
4366  *      For 1003.1g we should support a new option TCP_STDURG to permit
4367  *      either form (or just set the sysctl tcp_stdurg).
4368  */
4369
4370 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4371 {
4372         struct tcp_sock *tp = tcp_sk(sk);
4373         u32 ptr = ntohs(th->urg_ptr);
4374
4375         if (ptr && !sysctl_tcp_stdurg)
4376                 ptr--;
4377         ptr += ntohl(th->seq);
4378
4379         /* Ignore urgent data that we've already seen and read. */
4380         if (after(tp->copied_seq, ptr))
4381                 return;
4382
4383         /* Do not replay urg ptr.
4384          *
4385          * NOTE: interesting situation not covered by specs.
4386          * Misbehaving sender may send urg ptr, pointing to segment,
4387          * which we already have in ofo queue. We are not able to fetch
4388          * such data and will stay in TCP_URG_NOTYET until will be eaten
4389          * by recvmsg(). Seems, we are not obliged to handle such wicked
4390          * situations. But it is worth to think about possibility of some
4391          * DoSes using some hypothetical application level deadlock.
4392          */
4393         if (before(ptr, tp->rcv_nxt))
4394                 return;
4395
4396         /* Do we already have a newer (or duplicate) urgent pointer? */
4397         if (tp->urg_data && !after(ptr, tp->urg_seq))
4398                 return;
4399
4400         /* Tell the world about our new urgent pointer. */
4401         sk_send_sigurg(sk);
4402
4403         /* We may be adding urgent data when the last byte read was
4404          * urgent. To do this requires some care. We cannot just ignore
4405          * tp->copied_seq since we would read the last urgent byte again
4406          * as data, nor can we alter copied_seq until this data arrives
4407          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4408          *
4409          * NOTE. Double Dutch. Rendering to plain English: author of comment
4410          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4411          * and expect that both A and B disappear from stream. This is _wrong_.
4412          * Though this happens in BSD with high probability, this is occasional.
4413          * Any application relying on this is buggy. Note also, that fix "works"
4414          * only in this artificial test. Insert some normal data between A and B and we will
4415          * decline of BSD again. Verdict: it is better to remove to trap
4416          * buggy users.
4417          */
4418         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4419             !sock_flag(sk, SOCK_URGINLINE) &&
4420             tp->copied_seq != tp->rcv_nxt) {
4421                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4422                 tp->copied_seq++;
4423                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4424                         __skb_unlink(skb, &sk->sk_receive_queue);
4425                         __kfree_skb(skb);
4426                 }
4427         }
4428
4429         tp->urg_data   = TCP_URG_NOTYET;
4430         tp->urg_seq    = ptr;
4431
4432         /* Disable header prediction. */
4433         tp->pred_flags = 0;
4434 }
4435
4436 /* This is the 'fast' part of urgent handling. */
4437 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4438 {
4439         struct tcp_sock *tp = tcp_sk(sk);
4440
4441         /* Check if we get a new urgent pointer - normally not. */
4442         if (th->urg)
4443                 tcp_check_urg(sk,th);
4444
4445         /* Do we wait for any urgent data? - normally not... */
4446         if (tp->urg_data == TCP_URG_NOTYET) {
4447                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4448                           th->syn;
4449
4450                 /* Is the urgent pointer pointing into this packet? */
4451                 if (ptr < skb->len) {
4452                         u8 tmp;
4453                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4454                                 BUG();
4455                         tp->urg_data = TCP_URG_VALID | tmp;
4456                         if (!sock_flag(sk, SOCK_DEAD))
4457                                 sk->sk_data_ready(sk, 0);
4458                 }
4459         }
4460 }
4461
4462 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4463 {
4464         struct tcp_sock *tp = tcp_sk(sk);
4465         int chunk = skb->len - hlen;
4466         int err;
4467
4468         local_bh_enable();
4469         if (skb_csum_unnecessary(skb))
4470                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4471         else
4472                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4473                                                        tp->ucopy.iov);
4474
4475         if (!err) {
4476                 tp->ucopy.len -= chunk;
4477                 tp->copied_seq += chunk;
4478                 tcp_rcv_space_adjust(sk);
4479         }
4480
4481         local_bh_disable();
4482         return err;
4483 }
4484
4485 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4486 {
4487         __sum16 result;
4488
4489         if (sock_owned_by_user(sk)) {
4490                 local_bh_enable();
4491                 result = __tcp_checksum_complete(skb);
4492                 local_bh_disable();
4493         } else {
4494                 result = __tcp_checksum_complete(skb);
4495         }
4496         return result;
4497 }
4498
4499 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4500 {
4501         return !skb_csum_unnecessary(skb) &&
4502                 __tcp_checksum_complete_user(sk, skb);
4503 }
4504
4505 #ifdef CONFIG_NET_DMA
4506 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4507 {
4508         struct tcp_sock *tp = tcp_sk(sk);
4509         int chunk = skb->len - hlen;
4510         int dma_cookie;
4511         int copied_early = 0;
4512
4513         if (tp->ucopy.wakeup)
4514                 return 0;
4515
4516         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4517                 tp->ucopy.dma_chan = get_softnet_dma();
4518
4519         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4520
4521                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4522                         skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4523
4524                 if (dma_cookie < 0)
4525                         goto out;
4526
4527                 tp->ucopy.dma_cookie = dma_cookie;
4528                 copied_early = 1;
4529
4530                 tp->ucopy.len -= chunk;
4531                 tp->copied_seq += chunk;
4532                 tcp_rcv_space_adjust(sk);
4533
4534                 if ((tp->ucopy.len == 0) ||
4535                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4536                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4537                         tp->ucopy.wakeup = 1;
4538                         sk->sk_data_ready(sk, 0);
4539                 }
4540         } else if (chunk > 0) {
4541                 tp->ucopy.wakeup = 1;
4542                 sk->sk_data_ready(sk, 0);
4543         }
4544 out:
4545         return copied_early;
4546 }
4547 #endif /* CONFIG_NET_DMA */
4548
4549 /*
4550  *      TCP receive function for the ESTABLISHED state.
4551  *
4552  *      It is split into a fast path and a slow path. The fast path is
4553  *      disabled when:
4554  *      - A zero window was announced from us - zero window probing
4555  *        is only handled properly in the slow path.
4556  *      - Out of order segments arrived.
4557  *      - Urgent data is expected.
4558  *      - There is no buffer space left
4559  *      - Unexpected TCP flags/window values/header lengths are received
4560  *        (detected by checking the TCP header against pred_flags)
4561  *      - Data is sent in both directions. Fast path only supports pure senders
4562  *        or pure receivers (this means either the sequence number or the ack
4563  *        value must stay constant)
4564  *      - Unexpected TCP option.
4565  *
4566  *      When these conditions are not satisfied it drops into a standard
4567  *      receive procedure patterned after RFC793 to handle all cases.
4568  *      The first three cases are guaranteed by proper pred_flags setting,
4569  *      the rest is checked inline. Fast processing is turned on in
4570  *      tcp_data_queue when everything is OK.
4571  */
4572 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4573                         struct tcphdr *th, unsigned len)
4574 {
4575         struct tcp_sock *tp = tcp_sk(sk);
4576
4577         /*
4578          *      Header prediction.
4579          *      The code loosely follows the one in the famous
4580          *      "30 instruction TCP receive" Van Jacobson mail.
4581          *
4582          *      Van's trick is to deposit buffers into socket queue
4583          *      on a device interrupt, to call tcp_recv function
4584          *      on the receive process context and checksum and copy
4585          *      the buffer to user space. smart...
4586          *
4587          *      Our current scheme is not silly either but we take the
4588          *      extra cost of the net_bh soft interrupt processing...
4589          *      We do checksum and copy also but from device to kernel.
4590          */
4591
4592         tp->rx_opt.saw_tstamp = 0;
4593
4594         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4595          *      if header_prediction is to be made
4596          *      'S' will always be tp->tcp_header_len >> 2
4597          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4598          *  turn it off (when there are holes in the receive
4599          *       space for instance)
4600          *      PSH flag is ignored.
4601          */
4602
4603         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4604                 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605                 int tcp_header_len = tp->tcp_header_len;
4606
4607                 /* Timestamp header prediction: tcp_header_len
4608                  * is automatically equal to th->doff*4 due to pred_flags
4609                  * match.
4610                  */
4611
4612                 /* Check timestamp */
4613                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4614                         __be32 *ptr = (__be32 *)(th + 1);
4615
4616                         /* No? Slow path! */
4617                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4618                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4619                                 goto slow_path;
4620
4621                         tp->rx_opt.saw_tstamp = 1;
4622                         ++ptr;
4623                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4624                         ++ptr;
4625                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4626
4627                         /* If PAWS failed, check it more carefully in slow path */
4628                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4629                                 goto slow_path;
4630
4631                         /* DO NOT update ts_recent here, if checksum fails
4632                          * and timestamp was corrupted part, it will result
4633                          * in a hung connection since we will drop all
4634                          * future packets due to the PAWS test.
4635                          */
4636                 }
4637
4638                 if (len <= tcp_header_len) {
4639                         /* Bulk data transfer: sender */
4640                         if (len == tcp_header_len) {
4641                                 /* Predicted packet is in window by definition.
4642                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4643                                  * Hence, check seq<=rcv_wup reduces to:
4644                                  */
4645                                 if (tcp_header_len ==
4646                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4647                                     tp->rcv_nxt == tp->rcv_wup)
4648                                         tcp_store_ts_recent(tp);
4649
4650                                 /* We know that such packets are checksummed
4651                                  * on entry.
4652                                  */
4653                                 tcp_ack(sk, skb, 0);
4654                                 __kfree_skb(skb);
4655                                 tcp_data_snd_check(sk);
4656                                 return 0;
4657                         } else { /* Header too small */
4658                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4659                                 goto discard;
4660                         }
4661                 } else {
4662                         int eaten = 0;
4663                         int copied_early = 0;
4664
4665                         if (tp->copied_seq == tp->rcv_nxt &&
4666                             len - tcp_header_len <= tp->ucopy.len) {
4667 #ifdef CONFIG_NET_DMA
4668                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4669                                         copied_early = 1;
4670                                         eaten = 1;
4671                                 }
4672 #endif
4673                                 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4674                                         __set_current_state(TASK_RUNNING);
4675
4676                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4677                                                 eaten = 1;
4678                                 }
4679                                 if (eaten) {
4680                                         /* Predicted packet is in window by definition.
4681                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4682                                          * Hence, check seq<=rcv_wup reduces to:
4683                                          */
4684                                         if (tcp_header_len ==
4685                                             (sizeof(struct tcphdr) +
4686                                              TCPOLEN_TSTAMP_ALIGNED) &&
4687                                             tp->rcv_nxt == tp->rcv_wup)
4688                                                 tcp_store_ts_recent(tp);
4689
4690                                         tcp_rcv_rtt_measure_ts(sk, skb);
4691
4692                                         __skb_pull(skb, tcp_header_len);
4693                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4694                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4695                                 }
4696                                 if (copied_early)
4697                                         tcp_cleanup_rbuf(sk, skb->len);
4698                         }
4699                         if (!eaten) {
4700                                 if (tcp_checksum_complete_user(sk, skb))
4701                                         goto csum_error;
4702
4703                                 /* Predicted packet is in window by definition.
4704                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4705                                  * Hence, check seq<=rcv_wup reduces to:
4706                                  */
4707                                 if (tcp_header_len ==
4708                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4709                                     tp->rcv_nxt == tp->rcv_wup)
4710                                         tcp_store_ts_recent(tp);
4711
4712                                 tcp_rcv_rtt_measure_ts(sk, skb);
4713
4714                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4715                                         goto step5;
4716
4717                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4718
4719                                 /* Bulk data transfer: receiver */
4720                                 __skb_pull(skb,tcp_header_len);
4721                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4722                                 sk_stream_set_owner_r(skb, sk);
4723                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4724                         }
4725
4726                         tcp_event_data_recv(sk, skb);
4727
4728                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4729                                 /* Well, only one small jumplet in fast path... */
4730                                 tcp_ack(sk, skb, FLAG_DATA);
4731                                 tcp_data_snd_check(sk);
4732                                 if (!inet_csk_ack_scheduled(sk))
4733                                         goto no_ack;
4734                         }
4735
4736                         __tcp_ack_snd_check(sk, 0);
4737 no_ack:
4738 #ifdef CONFIG_NET_DMA
4739                         if (copied_early)
4740                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4741                         else
4742 #endif
4743                         if (eaten)
4744                                 __kfree_skb(skb);
4745                         else
4746                                 sk->sk_data_ready(sk, 0);
4747                         return 0;
4748                 }
4749         }
4750
4751 slow_path:
4752         if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4753                 goto csum_error;
4754
4755         /*
4756          * RFC1323: H1. Apply PAWS check first.
4757          */
4758         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4759             tcp_paws_discard(sk, skb)) {
4760                 if (!th->rst) {
4761                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4762                         tcp_send_dupack(sk, skb);
4763                         goto discard;
4764                 }
4765                 /* Resets are accepted even if PAWS failed.
4766
4767                    ts_recent update must be made after we are sure
4768                    that the packet is in window.
4769                  */
4770         }
4771
4772         /*
4773          *      Standard slow path.
4774          */
4775
4776         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4777                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4778                  * (RST) segments are validated by checking their SEQ-fields."
4779                  * And page 69: "If an incoming segment is not acceptable,
4780                  * an acknowledgment should be sent in reply (unless the RST bit
4781                  * is set, if so drop the segment and return)".
4782                  */
4783                 if (!th->rst)
4784                         tcp_send_dupack(sk, skb);
4785                 goto discard;
4786         }
4787
4788         if (th->rst) {
4789                 tcp_reset(sk);
4790                 goto discard;
4791         }
4792
4793         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4794
4795         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4796                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4797                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4798                 tcp_reset(sk);
4799                 return 1;
4800         }
4801
4802 step5:
4803         if (th->ack)
4804                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4805
4806         tcp_rcv_rtt_measure_ts(sk, skb);
4807
4808         /* Process urgent data. */
4809         tcp_urg(sk, skb, th);
4810
4811         /* step 7: process the segment text */
4812         tcp_data_queue(sk, skb);
4813
4814         tcp_data_snd_check(sk);
4815         tcp_ack_snd_check(sk);
4816         return 0;
4817
4818 csum_error:
4819         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4820
4821 discard:
4822         __kfree_skb(skb);
4823         return 0;
4824 }
4825
4826 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4827                                          struct tcphdr *th, unsigned len)
4828 {
4829         struct tcp_sock *tp = tcp_sk(sk);
4830         struct inet_connection_sock *icsk = inet_csk(sk);
4831         int saved_clamp = tp->rx_opt.mss_clamp;
4832
4833         tcp_parse_options(skb, &tp->rx_opt, 0);
4834
4835         if (th->ack) {
4836                 /* rfc793:
4837                  * "If the state is SYN-SENT then
4838                  *    first check the ACK bit
4839                  *      If the ACK bit is set
4840                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4841                  *        a reset (unless the RST bit is set, if so drop
4842                  *        the segment and return)"
4843                  *
4844                  *  We do not send data with SYN, so that RFC-correct
4845                  *  test reduces to:
4846                  */
4847                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4848                         goto reset_and_undo;
4849
4850                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4851                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4852                              tcp_time_stamp)) {
4853                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4854                         goto reset_and_undo;
4855                 }
4856
4857                 /* Now ACK is acceptable.
4858                  *
4859                  * "If the RST bit is set
4860                  *    If the ACK was acceptable then signal the user "error:
4861                  *    connection reset", drop the segment, enter CLOSED state,
4862                  *    delete TCB, and return."
4863                  */
4864
4865                 if (th->rst) {
4866                         tcp_reset(sk);
4867                         goto discard;
4868                 }
4869
4870                 /* rfc793:
4871                  *   "fifth, if neither of the SYN or RST bits is set then
4872                  *    drop the segment and return."
4873                  *
4874                  *    See note below!
4875                  *                                        --ANK(990513)
4876                  */
4877                 if (!th->syn)
4878                         goto discard_and_undo;
4879
4880                 /* rfc793:
4881                  *   "If the SYN bit is on ...
4882                  *    are acceptable then ...
4883                  *    (our SYN has been ACKed), change the connection
4884                  *    state to ESTABLISHED..."
4885                  */
4886
4887                 TCP_ECN_rcv_synack(tp, th);
4888
4889                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4890                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4891
4892                 /* Ok.. it's good. Set up sequence numbers and
4893                  * move to established.
4894                  */
4895                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4896                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4897
4898                 /* RFC1323: The window in SYN & SYN/ACK segments is
4899                  * never scaled.
4900                  */
4901                 tp->snd_wnd = ntohs(th->window);
4902                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4903
4904                 if (!tp->rx_opt.wscale_ok) {
4905                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4906                         tp->window_clamp = min(tp->window_clamp, 65535U);
4907                 }
4908
4909                 if (tp->rx_opt.saw_tstamp) {
4910                         tp->rx_opt.tstamp_ok       = 1;
4911                         tp->tcp_header_len =
4912                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4913                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
4914                         tcp_store_ts_recent(tp);
4915                 } else {
4916                         tp->tcp_header_len = sizeof(struct tcphdr);
4917                 }
4918
4919                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4920                         tcp_enable_fack(tp);
4921
4922                 tcp_mtup_init(sk);
4923                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4924                 tcp_initialize_rcv_mss(sk);
4925
4926                 /* Remember, tcp_poll() does not lock socket!
4927                  * Change state from SYN-SENT only after copied_seq
4928                  * is initialized. */
4929                 tp->copied_seq = tp->rcv_nxt;
4930                 smp_mb();
4931                 tcp_set_state(sk, TCP_ESTABLISHED);
4932
4933                 security_inet_conn_established(sk, skb);
4934
4935                 /* Make sure socket is routed, for correct metrics.  */
4936                 icsk->icsk_af_ops->rebuild_header(sk);
4937
4938                 tcp_init_metrics(sk);
4939
4940                 tcp_init_congestion_control(sk);
4941
4942                 /* Prevent spurious tcp_cwnd_restart() on first data
4943                  * packet.
4944                  */
4945                 tp->lsndtime = tcp_time_stamp;
4946
4947                 tcp_init_buffer_space(sk);
4948
4949                 if (sock_flag(sk, SOCK_KEEPOPEN))
4950                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4951
4952                 if (!tp->rx_opt.snd_wscale)
4953                         __tcp_fast_path_on(tp, tp->snd_wnd);
4954                 else
4955                         tp->pred_flags = 0;
4956
4957                 if (!sock_flag(sk, SOCK_DEAD)) {
4958                         sk->sk_state_change(sk);
4959                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4960                 }
4961
4962                 if (sk->sk_write_pending ||
4963                     icsk->icsk_accept_queue.rskq_defer_accept ||
4964                     icsk->icsk_ack.pingpong) {
4965                         /* Save one ACK. Data will be ready after
4966                          * several ticks, if write_pending is set.
4967                          *
4968                          * It may be deleted, but with this feature tcpdumps
4969                          * look so _wonderfully_ clever, that I was not able
4970                          * to stand against the temptation 8)     --ANK
4971                          */
4972                         inet_csk_schedule_ack(sk);
4973                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4974                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
4975                         tcp_incr_quickack(sk);
4976                         tcp_enter_quickack_mode(sk);
4977                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4978                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
4979
4980 discard:
4981                         __kfree_skb(skb);
4982                         return 0;
4983                 } else {
4984                         tcp_send_ack(sk);
4985                 }
4986                 return -1;
4987         }
4988
4989         /* No ACK in the segment */
4990
4991         if (th->rst) {
4992                 /* rfc793:
4993                  * "If the RST bit is set
4994                  *
4995                  *      Otherwise (no ACK) drop the segment and return."
4996                  */
4997
4998                 goto discard_and_undo;
4999         }
5000
5001         /* PAWS check. */
5002         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
5003                 goto discard_and_undo;
5004
5005         if (th->syn) {
5006                 /* We see SYN without ACK. It is attempt of
5007                  * simultaneous connect with crossed SYNs.
5008                  * Particularly, it can be connect to self.
5009                  */
5010                 tcp_set_state(sk, TCP_SYN_RECV);
5011
5012                 if (tp->rx_opt.saw_tstamp) {
5013                         tp->rx_opt.tstamp_ok = 1;
5014                         tcp_store_ts_recent(tp);
5015                         tp->tcp_header_len =
5016                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5017                 } else {
5018                         tp->tcp_header_len = sizeof(struct tcphdr);
5019                 }
5020
5021                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5022                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5023
5024                 /* RFC1323: The window in SYN & SYN/ACK segments is
5025                  * never scaled.
5026                  */
5027                 tp->snd_wnd    = ntohs(th->window);
5028                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5029                 tp->max_window = tp->snd_wnd;
5030
5031                 TCP_ECN_rcv_syn(tp, th);
5032
5033                 tcp_mtup_init(sk);
5034                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5035                 tcp_initialize_rcv_mss(sk);
5036
5037
5038                 tcp_send_synack(sk);
5039 #if 0
5040                 /* Note, we could accept data and URG from this segment.
5041                  * There are no obstacles to make this.
5042                  *
5043                  * However, if we ignore data in ACKless segments sometimes,
5044                  * we have no reasons to accept it sometimes.
5045                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5046                  * is not flawless. So, discard packet for sanity.
5047                  * Uncomment this return to process the data.
5048                  */
5049                 return -1;
5050 #else
5051                 goto discard;
5052 #endif
5053         }
5054         /* "fifth, if neither of the SYN or RST bits is set then
5055          * drop the segment and return."
5056          */
5057
5058 discard_and_undo:
5059         tcp_clear_options(&tp->rx_opt);
5060         tp->rx_opt.mss_clamp = saved_clamp;
5061         goto discard;
5062
5063 reset_and_undo:
5064         tcp_clear_options(&tp->rx_opt);
5065         tp->rx_opt.mss_clamp = saved_clamp;
5066         return 1;
5067 }
5068
5069
5070 /*
5071  *      This function implements the receiving procedure of RFC 793 for
5072  *      all states except ESTABLISHED and TIME_WAIT.
5073  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5074  *      address independent.
5075  */
5076
5077 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5078                           struct tcphdr *th, unsigned len)
5079 {
5080         struct tcp_sock *tp = tcp_sk(sk);
5081         struct inet_connection_sock *icsk = inet_csk(sk);
5082         int queued = 0;
5083
5084         tp->rx_opt.saw_tstamp = 0;
5085
5086         switch (sk->sk_state) {
5087         case TCP_CLOSE:
5088                 goto discard;
5089
5090         case TCP_LISTEN:
5091                 if (th->ack)
5092                         return 1;
5093
5094                 if (th->rst)
5095                         goto discard;
5096
5097                 if (th->syn) {
5098                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5099                                 return 1;
5100
5101                         /* Now we have several options: In theory there is
5102                          * nothing else in the frame. KA9Q has an option to
5103                          * send data with the syn, BSD accepts data with the
5104                          * syn up to the [to be] advertised window and
5105                          * Solaris 2.1 gives you a protocol error. For now
5106                          * we just ignore it, that fits the spec precisely
5107                          * and avoids incompatibilities. It would be nice in
5108                          * future to drop through and process the data.
5109                          *
5110                          * Now that TTCP is starting to be used we ought to
5111                          * queue this data.
5112                          * But, this leaves one open to an easy denial of
5113                          * service attack, and SYN cookies can't defend
5114                          * against this problem. So, we drop the data
5115                          * in the interest of security over speed unless
5116                          * it's still in use.
5117                          */
5118                         kfree_skb(skb);
5119                         return 0;
5120                 }
5121                 goto discard;
5122
5123         case TCP_SYN_SENT:
5124                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5125                 if (queued >= 0)
5126                         return queued;
5127
5128                 /* Do step6 onward by hand. */
5129                 tcp_urg(sk, skb, th);
5130                 __kfree_skb(skb);
5131                 tcp_data_snd_check(sk);
5132                 return 0;
5133         }
5134
5135         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5136             tcp_paws_discard(sk, skb)) {
5137                 if (!th->rst) {
5138                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5139                         tcp_send_dupack(sk, skb);
5140                         goto discard;
5141                 }
5142                 /* Reset is accepted even if it did not pass PAWS. */
5143         }
5144
5145         /* step 1: check sequence number */
5146         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5147                 if (!th->rst)
5148                         tcp_send_dupack(sk, skb);
5149                 goto discard;
5150         }
5151
5152         /* step 2: check RST bit */
5153         if (th->rst) {
5154                 tcp_reset(sk);
5155                 goto discard;
5156         }
5157
5158         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5159
5160         /* step 3: check security and precedence [ignored] */
5161
5162         /*      step 4:
5163          *
5164          *      Check for a SYN in window.
5165          */
5166         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5167                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5168                 tcp_reset(sk);
5169                 return 1;
5170         }
5171
5172         /* step 5: check the ACK field */
5173         if (th->ack) {
5174                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5175
5176                 switch (sk->sk_state) {
5177                 case TCP_SYN_RECV:
5178                         if (acceptable) {
5179                                 tp->copied_seq = tp->rcv_nxt;
5180                                 smp_mb();
5181                                 tcp_set_state(sk, TCP_ESTABLISHED);
5182                                 sk->sk_state_change(sk);
5183
5184                                 /* Note, that this wakeup is only for marginal
5185                                  * crossed SYN case. Passively open sockets
5186                                  * are not waked up, because sk->sk_sleep ==
5187                                  * NULL and sk->sk_socket == NULL.
5188                                  */
5189                                 if (sk->sk_socket)
5190                                         sk_wake_async(sk,
5191                                                         SOCK_WAKE_IO, POLL_OUT);
5192
5193                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5194                                 tp->snd_wnd = ntohs(th->window) <<
5195                                               tp->rx_opt.snd_wscale;
5196                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5197                                             TCP_SKB_CB(skb)->seq);
5198
5199                                 /* tcp_ack considers this ACK as duplicate
5200                                  * and does not calculate rtt.
5201                                  * Fix it at least with timestamps.
5202                                  */
5203                                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5204                                     !tp->srtt)
5205                                         tcp_ack_saw_tstamp(sk, 0);
5206
5207                                 if (tp->rx_opt.tstamp_ok)
5208                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5209
5210                                 /* Make sure socket is routed, for
5211                                  * correct metrics.
5212                                  */
5213                                 icsk->icsk_af_ops->rebuild_header(sk);
5214
5215                                 tcp_init_metrics(sk);
5216
5217                                 tcp_init_congestion_control(sk);
5218
5219                                 /* Prevent spurious tcp_cwnd_restart() on
5220                                  * first data packet.
5221                                  */
5222                                 tp->lsndtime = tcp_time_stamp;
5223
5224                                 tcp_mtup_init(sk);
5225                                 tcp_initialize_rcv_mss(sk);
5226                                 tcp_init_buffer_space(sk);
5227                                 tcp_fast_path_on(tp);
5228                         } else {
5229                                 return 1;
5230                         }
5231                         break;
5232
5233                 case TCP_FIN_WAIT1:
5234                         if (tp->snd_una == tp->write_seq) {
5235                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5236                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5237                                 dst_confirm(sk->sk_dst_cache);
5238
5239                                 if (!sock_flag(sk, SOCK_DEAD))
5240                                         /* Wake up lingering close() */
5241                                         sk->sk_state_change(sk);
5242                                 else {
5243                                         int tmo;
5244
5245                                         if (tp->linger2 < 0 ||
5246                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5247                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5248                                                 tcp_done(sk);
5249                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5250                                                 return 1;
5251                                         }
5252
5253                                         tmo = tcp_fin_time(sk);
5254                                         if (tmo > TCP_TIMEWAIT_LEN) {
5255                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5256                                         } else if (th->fin || sock_owned_by_user(sk)) {
5257                                                 /* Bad case. We could lose such FIN otherwise.
5258                                                  * It is not a big problem, but it looks confusing
5259                                                  * and not so rare event. We still can lose it now,
5260                                                  * if it spins in bh_lock_sock(), but it is really
5261                                                  * marginal case.
5262                                                  */
5263                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5264                                         } else {
5265                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5266                                                 goto discard;
5267                                         }
5268                                 }
5269                         }
5270                         break;
5271
5272                 case TCP_CLOSING:
5273                         if (tp->snd_una == tp->write_seq) {
5274                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5275                                 goto discard;
5276                         }
5277                         break;
5278
5279                 case TCP_LAST_ACK:
5280                         if (tp->snd_una == tp->write_seq) {
5281                                 tcp_update_metrics(sk);
5282                                 tcp_done(sk);
5283                                 goto discard;
5284                         }
5285                         break;
5286                 }
5287         } else
5288                 goto discard;
5289
5290         /* step 6: check the URG bit */
5291         tcp_urg(sk, skb, th);
5292
5293         /* step 7: process the segment text */
5294         switch (sk->sk_state) {
5295         case TCP_CLOSE_WAIT:
5296         case TCP_CLOSING:
5297         case TCP_LAST_ACK:
5298                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5299                         break;
5300         case TCP_FIN_WAIT1:
5301         case TCP_FIN_WAIT2:
5302                 /* RFC 793 says to queue data in these states,
5303                  * RFC 1122 says we MUST send a reset.
5304                  * BSD 4.4 also does reset.
5305                  */
5306                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5307                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5308                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5309                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5310                                 tcp_reset(sk);
5311                                 return 1;
5312                         }
5313                 }
5314                 /* Fall through */
5315         case TCP_ESTABLISHED:
5316                 tcp_data_queue(sk, skb);
5317                 queued = 1;
5318                 break;
5319         }
5320
5321         /* tcp_data could move socket to TIME-WAIT */
5322         if (sk->sk_state != TCP_CLOSE) {
5323                 tcp_data_snd_check(sk);
5324                 tcp_ack_snd_check(sk);
5325         }
5326
5327         if (!queued) {
5328 discard:
5329                 __kfree_skb(skb);
5330         }
5331         return 0;
5332 }
5333
5334 EXPORT_SYMBOL(sysctl_tcp_ecn);
5335 EXPORT_SYMBOL(sysctl_tcp_reordering);
5336 EXPORT_SYMBOL(tcp_parse_options);
5337 EXPORT_SYMBOL(tcp_rcv_established);
5338 EXPORT_SYMBOL(tcp_rcv_state_process);
5339 EXPORT_SYMBOL(tcp_initialize_rcv_mss);