fc75f34ba6097b2ef93158e1e173a55b84fe7e0f
[pandora-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         wait_queue_head_t waitq;                /* a waitq for other context */
296 } mc = {
297         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_ANON,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309         return test_bit(MOVE_CHARGE_TYPE_FILE,
310                                         &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322         MEM_CGROUP_CHARGE_TYPE_MAPPED,
323         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
324         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
325         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
327         NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE      (1UL << PCG_CACHE)
332 #define PCGF_USED       (1UL << PCG_USED)
333 #define PCGF_LOCK       (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT       (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM                    (0)
339 #define _MEMSWAP                (1)
340 #define _OOM_TYPE               (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL             (0)
346
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
355 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370         return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376         struct mem_cgroup *mem = pc->mem_cgroup;
377         int nid = page_cgroup_nid(pc);
378         int zid = page_cgroup_zid(pc);
379
380         if (!mem)
381                 return NULL;
382
383         return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395         int nid = page_to_nid(page);
396         int zid = page_zonenum(page);
397
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403                                 struct mem_cgroup_per_zone *mz,
404                                 struct mem_cgroup_tree_per_zone *mctz,
405                                 unsigned long long new_usage_in_excess)
406 {
407         struct rb_node **p = &mctz->rb_root.rb_node;
408         struct rb_node *parent = NULL;
409         struct mem_cgroup_per_zone *mz_node;
410
411         if (mz->on_tree)
412                 return;
413
414         mz->usage_in_excess = new_usage_in_excess;
415         if (!mz->usage_in_excess)
416                 return;
417         while (*p) {
418                 parent = *p;
419                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420                                         tree_node);
421                 if (mz->usage_in_excess < mz_node->usage_in_excess)
422                         p = &(*p)->rb_left;
423                 /*
424                  * We can't avoid mem cgroups that are over their soft
425                  * limit by the same amount
426                  */
427                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428                         p = &(*p)->rb_right;
429         }
430         rb_link_node(&mz->tree_node, parent, p);
431         rb_insert_color(&mz->tree_node, &mctz->rb_root);
432         mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437                                 struct mem_cgroup_per_zone *mz,
438                                 struct mem_cgroup_tree_per_zone *mctz)
439 {
440         if (!mz->on_tree)
441                 return;
442         rb_erase(&mz->tree_node, &mctz->rb_root);
443         mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448                                 struct mem_cgroup_per_zone *mz,
449                                 struct mem_cgroup_tree_per_zone *mctz)
450 {
451         spin_lock(&mctz->lock);
452         __mem_cgroup_remove_exceeded(mem, mz, mctz);
453         spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459         unsigned long long excess;
460         struct mem_cgroup_per_zone *mz;
461         struct mem_cgroup_tree_per_zone *mctz;
462         int nid = page_to_nid(page);
463         int zid = page_zonenum(page);
464         mctz = soft_limit_tree_from_page(page);
465
466         /*
467          * Necessary to update all ancestors when hierarchy is used.
468          * because their event counter is not touched.
469          */
470         for (; mem; mem = parent_mem_cgroup(mem)) {
471                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472                 excess = res_counter_soft_limit_excess(&mem->res);
473                 /*
474                  * We have to update the tree if mz is on RB-tree or
475                  * mem is over its softlimit.
476                  */
477                 if (excess || mz->on_tree) {
478                         spin_lock(&mctz->lock);
479                         /* if on-tree, remove it */
480                         if (mz->on_tree)
481                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482                         /*
483                          * Insert again. mz->usage_in_excess will be updated.
484                          * If excess is 0, no tree ops.
485                          */
486                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487                         spin_unlock(&mctz->lock);
488                 }
489         }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494         int node, zone;
495         struct mem_cgroup_per_zone *mz;
496         struct mem_cgroup_tree_per_zone *mctz;
497
498         for_each_node_state(node, N_POSSIBLE) {
499                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500                         mz = mem_cgroup_zoneinfo(mem, node, zone);
501                         mctz = soft_limit_tree_node_zone(node, zone);
502                         mem_cgroup_remove_exceeded(mem, mz, mctz);
503                 }
504         }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515         struct rb_node *rightmost = NULL;
516         struct mem_cgroup_per_zone *mz;
517
518 retry:
519         mz = NULL;
520         rightmost = rb_last(&mctz->rb_root);
521         if (!rightmost)
522                 goto done;              /* Nothing to reclaim from */
523
524         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525         /*
526          * Remove the node now but someone else can add it back,
527          * we will to add it back at the end of reclaim to its correct
528          * position in the tree.
529          */
530         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532                 !css_tryget(&mz->mem->css))
533                 goto retry;
534 done:
535         return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541         struct mem_cgroup_per_zone *mz;
542
543         spin_lock(&mctz->lock);
544         mz = __mem_cgroup_largest_soft_limit_node(mctz);
545         spin_unlock(&mctz->lock);
546         return mz;
547 }
548
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569                 enum mem_cgroup_stat_index idx)
570 {
571         int cpu;
572         s64 val = 0;
573
574         get_online_cpus();
575         for_each_online_cpu(cpu)
576                 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578         spin_lock(&mem->pcp_counter_lock);
579         val += mem->nocpu_base.count[idx];
580         spin_unlock(&mem->pcp_counter_lock);
581 #endif
582         put_online_cpus();
583         return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588         s64 ret;
589
590         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592         return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596                                          bool charge)
597 {
598         int val = (charge) ? 1 : -1;
599         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603                                          bool file, int nr_pages)
604 {
605         preempt_disable();
606
607         if (file)
608                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609         else
610                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612         /* pagein of a big page is an event. So, ignore page size */
613         if (nr_pages > 0)
614                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615         else
616                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618         __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620         preempt_enable();
621 }
622
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624                                         enum lru_list idx)
625 {
626         int nid, zid;
627         struct mem_cgroup_per_zone *mz;
628         u64 total = 0;
629
630         for_each_online_node(nid)
631                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
633                         total += MEM_CGROUP_ZSTAT(mz, idx);
634                 }
635         return total;
636 }
637
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639 {
640         s64 val;
641
642         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644         return !(val & ((1 << event_mask_shift) - 1));
645 }
646
647 /*
648  * Check events in order.
649  *
650  */
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652 {
653         /* threshold event is triggered in finer grain than soft limit */
654         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655                 mem_cgroup_threshold(mem);
656                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657                         mem_cgroup_update_tree(mem, page);
658         }
659 }
660
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662 {
663         return container_of(cgroup_subsys_state(cont,
664                                 mem_cgroup_subsys_id), struct mem_cgroup,
665                                 css);
666 }
667
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669 {
670         /*
671          * mm_update_next_owner() may clear mm->owner to NULL
672          * if it races with swapoff, page migration, etc.
673          * So this can be called with p == NULL.
674          */
675         if (unlikely(!p))
676                 return NULL;
677
678         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679                                 struct mem_cgroup, css);
680 }
681
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683 {
684         struct mem_cgroup *mem = NULL;
685
686         if (!mm)
687                 return NULL;
688         /*
689          * Because we have no locks, mm->owner's may be being moved to other
690          * cgroup. We use css_tryget() here even if this looks
691          * pessimistic (rather than adding locks here).
692          */
693         rcu_read_lock();
694         do {
695                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696                 if (unlikely(!mem))
697                         break;
698         } while (!css_tryget(&mem->css));
699         rcu_read_unlock();
700         return mem;
701 }
702
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705 {
706         struct cgroup_subsys_state *css;
707         int found;
708
709         if (!mem) /* ROOT cgroup has the smallest ID */
710                 return root_mem_cgroup; /*css_put/get against root is ignored*/
711         if (!mem->use_hierarchy) {
712                 if (css_tryget(&mem->css))
713                         return mem;
714                 return NULL;
715         }
716         rcu_read_lock();
717         /*
718          * searching a memory cgroup which has the smallest ID under given
719          * ROOT cgroup. (ID >= 1)
720          */
721         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722         if (css && css_tryget(css))
723                 mem = container_of(css, struct mem_cgroup, css);
724         else
725                 mem = NULL;
726         rcu_read_unlock();
727         return mem;
728 }
729
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731                                         struct mem_cgroup *root,
732                                         bool cond)
733 {
734         int nextid = css_id(&iter->css) + 1;
735         int found;
736         int hierarchy_used;
737         struct cgroup_subsys_state *css;
738
739         hierarchy_used = iter->use_hierarchy;
740
741         css_put(&iter->css);
742         /* If no ROOT, walk all, ignore hierarchy */
743         if (!cond || (root && !hierarchy_used))
744                 return NULL;
745
746         if (!root)
747                 root = root_mem_cgroup;
748
749         do {
750                 iter = NULL;
751                 rcu_read_lock();
752
753                 css = css_get_next(&mem_cgroup_subsys, nextid,
754                                 &root->css, &found);
755                 if (css && css_tryget(css))
756                         iter = container_of(css, struct mem_cgroup, css);
757                 rcu_read_unlock();
758                 /* If css is NULL, no more cgroups will be found */
759                 nextid = found + 1;
760         } while (css && !iter);
761
762         return iter;
763 }
764 /*
765  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766  * be careful that "break" loop is not allowed. We have reference count.
767  * Instead of that modify "cond" to be false and "continue" to exit the loop.
768  */
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770         for (iter = mem_cgroup_start_loop(root);\
771              iter != NULL;\
772              iter = mem_cgroup_get_next(iter, root, cond))
773
774 #define for_each_mem_cgroup_tree(iter, root) \
775         for_each_mem_cgroup_tree_cond(iter, root, true)
776
777 #define for_each_mem_cgroup_all(iter) \
778         for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782 {
783         return (mem == root_mem_cgroup);
784 }
785
786 /*
787  * Following LRU functions are allowed to be used without PCG_LOCK.
788  * Operations are called by routine of global LRU independently from memcg.
789  * What we have to take care of here is validness of pc->mem_cgroup.
790  *
791  * Changes to pc->mem_cgroup happens when
792  * 1. charge
793  * 2. moving account
794  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795  * It is added to LRU before charge.
796  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797  * When moving account, the page is not on LRU. It's isolated.
798  */
799
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801 {
802         struct page_cgroup *pc;
803         struct mem_cgroup_per_zone *mz;
804
805         if (mem_cgroup_disabled())
806                 return;
807         pc = lookup_page_cgroup(page);
808         /* can happen while we handle swapcache. */
809         if (!TestClearPageCgroupAcctLRU(pc))
810                 return;
811         VM_BUG_ON(!pc->mem_cgroup);
812         /*
813          * We don't check PCG_USED bit. It's cleared when the "page" is finally
814          * removed from global LRU.
815          */
816         mz = page_cgroup_zoneinfo(pc);
817         /* huge page split is done under lru_lock. so, we have no races. */
818         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819         if (mem_cgroup_is_root(pc->mem_cgroup))
820                 return;
821         VM_BUG_ON(list_empty(&pc->lru));
822         list_del_init(&pc->lru);
823 }
824
825 void mem_cgroup_del_lru(struct page *page)
826 {
827         mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832         struct mem_cgroup_per_zone *mz;
833         struct page_cgroup *pc;
834
835         if (mem_cgroup_disabled())
836                 return;
837
838         pc = lookup_page_cgroup(page);
839         /* unused or root page is not rotated. */
840         if (!PageCgroupUsed(pc))
841                 return;
842         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843         smp_rmb();
844         if (mem_cgroup_is_root(pc->mem_cgroup))
845                 return;
846         mz = page_cgroup_zoneinfo(pc);
847         list_move(&pc->lru, &mz->lists[lru]);
848 }
849
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851 {
852         struct page_cgroup *pc;
853         struct mem_cgroup_per_zone *mz;
854
855         if (mem_cgroup_disabled())
856                 return;
857         pc = lookup_page_cgroup(page);
858         VM_BUG_ON(PageCgroupAcctLRU(pc));
859         if (!PageCgroupUsed(pc))
860                 return;
861         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862         smp_rmb();
863         mz = page_cgroup_zoneinfo(pc);
864         /* huge page split is done under lru_lock. so, we have no races. */
865         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866         SetPageCgroupAcctLRU(pc);
867         if (mem_cgroup_is_root(pc->mem_cgroup))
868                 return;
869         list_add(&pc->lru, &mz->lists[lru]);
870 }
871
872 /*
873  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874  * lru because the page may.be reused after it's fully uncharged (because of
875  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876  * it again. This function is only used to charge SwapCache. It's done under
877  * lock_page and expected that zone->lru_lock is never held.
878  */
879 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880 {
881         unsigned long flags;
882         struct zone *zone = page_zone(page);
883         struct page_cgroup *pc = lookup_page_cgroup(page);
884
885         spin_lock_irqsave(&zone->lru_lock, flags);
886         /*
887          * Forget old LRU when this page_cgroup is *not* used. This Used bit
888          * is guarded by lock_page() because the page is SwapCache.
889          */
890         if (!PageCgroupUsed(pc))
891                 mem_cgroup_del_lru_list(page, page_lru(page));
892         spin_unlock_irqrestore(&zone->lru_lock, flags);
893 }
894
895 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896 {
897         unsigned long flags;
898         struct zone *zone = page_zone(page);
899         struct page_cgroup *pc = lookup_page_cgroup(page);
900
901         spin_lock_irqsave(&zone->lru_lock, flags);
902         /* link when the page is linked to LRU but page_cgroup isn't */
903         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904                 mem_cgroup_add_lru_list(page, page_lru(page));
905         spin_unlock_irqrestore(&zone->lru_lock, flags);
906 }
907
908
909 void mem_cgroup_move_lists(struct page *page,
910                            enum lru_list from, enum lru_list to)
911 {
912         if (mem_cgroup_disabled())
913                 return;
914         mem_cgroup_del_lru_list(page, from);
915         mem_cgroup_add_lru_list(page, to);
916 }
917
918 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919 {
920         int ret;
921         struct mem_cgroup *curr = NULL;
922         struct task_struct *p;
923
924         p = find_lock_task_mm(task);
925         if (!p)
926                 return 0;
927         curr = try_get_mem_cgroup_from_mm(p->mm);
928         task_unlock(p);
929         if (!curr)
930                 return 0;
931         /*
932          * We should check use_hierarchy of "mem" not "curr". Because checking
933          * use_hierarchy of "curr" here make this function true if hierarchy is
934          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935          * hierarchy(even if use_hierarchy is disabled in "mem").
936          */
937         if (mem->use_hierarchy)
938                 ret = css_is_ancestor(&curr->css, &mem->css);
939         else
940                 ret = (curr == mem);
941         css_put(&curr->css);
942         return ret;
943 }
944
945 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 {
947         unsigned long active;
948         unsigned long inactive;
949         unsigned long gb;
950         unsigned long inactive_ratio;
951
952         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955         gb = (inactive + active) >> (30 - PAGE_SHIFT);
956         if (gb)
957                 inactive_ratio = int_sqrt(10 * gb);
958         else
959                 inactive_ratio = 1;
960
961         if (present_pages) {
962                 present_pages[0] = inactive;
963                 present_pages[1] = active;
964         }
965
966         return inactive_ratio;
967 }
968
969 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970 {
971         unsigned long active;
972         unsigned long inactive;
973         unsigned long present_pages[2];
974         unsigned long inactive_ratio;
975
976         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978         inactive = present_pages[0];
979         active = present_pages[1];
980
981         if (inactive * inactive_ratio < active)
982                 return 1;
983
984         return 0;
985 }
986
987 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988 {
989         unsigned long active;
990         unsigned long inactive;
991
992         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995         return (active > inactive);
996 }
997
998 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999                                        struct zone *zone,
1000                                        enum lru_list lru)
1001 {
1002         int nid = zone_to_nid(zone);
1003         int zid = zone_idx(zone);
1004         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006         return MEM_CGROUP_ZSTAT(mz, lru);
1007 }
1008
1009 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010                                                       struct zone *zone)
1011 {
1012         int nid = zone_to_nid(zone);
1013         int zid = zone_idx(zone);
1014         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016         return &mz->reclaim_stat;
1017 }
1018
1019 struct zone_reclaim_stat *
1020 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021 {
1022         struct page_cgroup *pc;
1023         struct mem_cgroup_per_zone *mz;
1024
1025         if (mem_cgroup_disabled())
1026                 return NULL;
1027
1028         pc = lookup_page_cgroup(page);
1029         if (!PageCgroupUsed(pc))
1030                 return NULL;
1031         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032         smp_rmb();
1033         mz = page_cgroup_zoneinfo(pc);
1034         if (!mz)
1035                 return NULL;
1036
1037         return &mz->reclaim_stat;
1038 }
1039
1040 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041                                         struct list_head *dst,
1042                                         unsigned long *scanned, int order,
1043                                         int mode, struct zone *z,
1044                                         struct mem_cgroup *mem_cont,
1045                                         int active, int file)
1046 {
1047         unsigned long nr_taken = 0;
1048         struct page *page;
1049         unsigned long scan;
1050         LIST_HEAD(pc_list);
1051         struct list_head *src;
1052         struct page_cgroup *pc, *tmp;
1053         int nid = zone_to_nid(z);
1054         int zid = zone_idx(z);
1055         struct mem_cgroup_per_zone *mz;
1056         int lru = LRU_FILE * file + active;
1057         int ret;
1058
1059         BUG_ON(!mem_cont);
1060         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061         src = &mz->lists[lru];
1062
1063         scan = 0;
1064         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065                 if (scan >= nr_to_scan)
1066                         break;
1067
1068                 page = pc->page;
1069                 if (unlikely(!PageCgroupUsed(pc)))
1070                         continue;
1071                 if (unlikely(!PageLRU(page)))
1072                         continue;
1073
1074                 scan++;
1075                 ret = __isolate_lru_page(page, mode, file);
1076                 switch (ret) {
1077                 case 0:
1078                         list_move(&page->lru, dst);
1079                         mem_cgroup_del_lru(page);
1080                         nr_taken += hpage_nr_pages(page);
1081                         break;
1082                 case -EBUSY:
1083                         /* we don't affect global LRU but rotate in our LRU */
1084                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1085                         break;
1086                 default:
1087                         break;
1088                 }
1089         }
1090
1091         *scanned = scan;
1092
1093         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094                                       0, 0, 0, mode);
1095
1096         return nr_taken;
1097 }
1098
1099 #define mem_cgroup_from_res_counter(counter, member)    \
1100         container_of(counter, struct mem_cgroup, member)
1101
1102 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103 {
1104         if (do_swap_account) {
1105                 if (res_counter_check_under_limit(&mem->res) &&
1106                         res_counter_check_under_limit(&mem->memsw))
1107                         return true;
1108         } else
1109                 if (res_counter_check_under_limit(&mem->res))
1110                         return true;
1111         return false;
1112 }
1113
1114 /**
1115  * mem_cgroup_check_margin - check if the memory cgroup allows charging
1116  * @mem: memory cgroup to check
1117  * @bytes: the number of bytes the caller intends to charge
1118  *
1119  * Returns a boolean value on whether @mem can be charged @bytes or
1120  * whether this would exceed the limit.
1121  */
1122 static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1123 {
1124         if (!res_counter_check_margin(&mem->res, bytes))
1125                 return false;
1126         if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1127                 return false;
1128         return true;
1129 }
1130
1131 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1132 {
1133         struct cgroup *cgrp = memcg->css.cgroup;
1134         unsigned int swappiness;
1135
1136         /* root ? */
1137         if (cgrp->parent == NULL)
1138                 return vm_swappiness;
1139
1140         spin_lock(&memcg->reclaim_param_lock);
1141         swappiness = memcg->swappiness;
1142         spin_unlock(&memcg->reclaim_param_lock);
1143
1144         return swappiness;
1145 }
1146
1147 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1148 {
1149         int cpu;
1150
1151         get_online_cpus();
1152         spin_lock(&mem->pcp_counter_lock);
1153         for_each_online_cpu(cpu)
1154                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1155         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1156         spin_unlock(&mem->pcp_counter_lock);
1157         put_online_cpus();
1158
1159         synchronize_rcu();
1160 }
1161
1162 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1163 {
1164         int cpu;
1165
1166         if (!mem)
1167                 return;
1168         get_online_cpus();
1169         spin_lock(&mem->pcp_counter_lock);
1170         for_each_online_cpu(cpu)
1171                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1172         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1173         spin_unlock(&mem->pcp_counter_lock);
1174         put_online_cpus();
1175 }
1176 /*
1177  * 2 routines for checking "mem" is under move_account() or not.
1178  *
1179  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1180  *                        for avoiding race in accounting. If true,
1181  *                        pc->mem_cgroup may be overwritten.
1182  *
1183  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1184  *                        under hierarchy of moving cgroups. This is for
1185  *                        waiting at hith-memory prressure caused by "move".
1186  */
1187
1188 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1189 {
1190         VM_BUG_ON(!rcu_read_lock_held());
1191         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1192 }
1193
1194 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1195 {
1196         struct mem_cgroup *from;
1197         struct mem_cgroup *to;
1198         bool ret = false;
1199         /*
1200          * Unlike task_move routines, we access mc.to, mc.from not under
1201          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1202          */
1203         spin_lock(&mc.lock);
1204         from = mc.from;
1205         to = mc.to;
1206         if (!from)
1207                 goto unlock;
1208         if (from == mem || to == mem
1209             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1210             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1211                 ret = true;
1212 unlock:
1213         spin_unlock(&mc.lock);
1214         return ret;
1215 }
1216
1217 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1218 {
1219         if (mc.moving_task && current != mc.moving_task) {
1220                 if (mem_cgroup_under_move(mem)) {
1221                         DEFINE_WAIT(wait);
1222                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1223                         /* moving charge context might have finished. */
1224                         if (mc.moving_task)
1225                                 schedule();
1226                         finish_wait(&mc.waitq, &wait);
1227                         return true;
1228                 }
1229         }
1230         return false;
1231 }
1232
1233 /**
1234  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1235  * @memcg: The memory cgroup that went over limit
1236  * @p: Task that is going to be killed
1237  *
1238  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1239  * enabled
1240  */
1241 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1242 {
1243         struct cgroup *task_cgrp;
1244         struct cgroup *mem_cgrp;
1245         /*
1246          * Need a buffer in BSS, can't rely on allocations. The code relies
1247          * on the assumption that OOM is serialized for memory controller.
1248          * If this assumption is broken, revisit this code.
1249          */
1250         static char memcg_name[PATH_MAX];
1251         int ret;
1252
1253         if (!memcg || !p)
1254                 return;
1255
1256
1257         rcu_read_lock();
1258
1259         mem_cgrp = memcg->css.cgroup;
1260         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1261
1262         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1263         if (ret < 0) {
1264                 /*
1265                  * Unfortunately, we are unable to convert to a useful name
1266                  * But we'll still print out the usage information
1267                  */
1268                 rcu_read_unlock();
1269                 goto done;
1270         }
1271         rcu_read_unlock();
1272
1273         printk(KERN_INFO "Task in %s killed", memcg_name);
1274
1275         rcu_read_lock();
1276         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1277         if (ret < 0) {
1278                 rcu_read_unlock();
1279                 goto done;
1280         }
1281         rcu_read_unlock();
1282
1283         /*
1284          * Continues from above, so we don't need an KERN_ level
1285          */
1286         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1287 done:
1288
1289         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1290                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1291                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1292                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1293         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1294                 "failcnt %llu\n",
1295                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1296                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1297                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1298 }
1299
1300 /*
1301  * This function returns the number of memcg under hierarchy tree. Returns
1302  * 1(self count) if no children.
1303  */
1304 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1305 {
1306         int num = 0;
1307         struct mem_cgroup *iter;
1308
1309         for_each_mem_cgroup_tree(iter, mem)
1310                 num++;
1311         return num;
1312 }
1313
1314 /*
1315  * Return the memory (and swap, if configured) limit for a memcg.
1316  */
1317 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1318 {
1319         u64 limit;
1320         u64 memsw;
1321
1322         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1323         limit += total_swap_pages << PAGE_SHIFT;
1324
1325         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1326         /*
1327          * If memsw is finite and limits the amount of swap space available
1328          * to this memcg, return that limit.
1329          */
1330         return min(limit, memsw);
1331 }
1332
1333 /*
1334  * Visit the first child (need not be the first child as per the ordering
1335  * of the cgroup list, since we track last_scanned_child) of @mem and use
1336  * that to reclaim free pages from.
1337  */
1338 static struct mem_cgroup *
1339 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1340 {
1341         struct mem_cgroup *ret = NULL;
1342         struct cgroup_subsys_state *css;
1343         int nextid, found;
1344
1345         if (!root_mem->use_hierarchy) {
1346                 css_get(&root_mem->css);
1347                 ret = root_mem;
1348         }
1349
1350         while (!ret) {
1351                 rcu_read_lock();
1352                 nextid = root_mem->last_scanned_child + 1;
1353                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1354                                    &found);
1355                 if (css && css_tryget(css))
1356                         ret = container_of(css, struct mem_cgroup, css);
1357
1358                 rcu_read_unlock();
1359                 /* Updates scanning parameter */
1360                 spin_lock(&root_mem->reclaim_param_lock);
1361                 if (!css) {
1362                         /* this means start scan from ID:1 */
1363                         root_mem->last_scanned_child = 0;
1364                 } else
1365                         root_mem->last_scanned_child = found;
1366                 spin_unlock(&root_mem->reclaim_param_lock);
1367         }
1368
1369         return ret;
1370 }
1371
1372 /*
1373  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1374  * we reclaimed from, so that we don't end up penalizing one child extensively
1375  * based on its position in the children list.
1376  *
1377  * root_mem is the original ancestor that we've been reclaim from.
1378  *
1379  * We give up and return to the caller when we visit root_mem twice.
1380  * (other groups can be removed while we're walking....)
1381  *
1382  * If shrink==true, for avoiding to free too much, this returns immedieately.
1383  */
1384 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1385                                                 struct zone *zone,
1386                                                 gfp_t gfp_mask,
1387                                                 unsigned long reclaim_options)
1388 {
1389         struct mem_cgroup *victim;
1390         int ret, total = 0;
1391         int loop = 0;
1392         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1393         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1394         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1395         unsigned long excess = mem_cgroup_get_excess(root_mem);
1396
1397         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1398         if (root_mem->memsw_is_minimum)
1399                 noswap = true;
1400
1401         while (1) {
1402                 victim = mem_cgroup_select_victim(root_mem);
1403                 if (victim == root_mem) {
1404                         loop++;
1405                         if (loop >= 1)
1406                                 drain_all_stock_async();
1407                         if (loop >= 2) {
1408                                 /*
1409                                  * If we have not been able to reclaim
1410                                  * anything, it might because there are
1411                                  * no reclaimable pages under this hierarchy
1412                                  */
1413                                 if (!check_soft || !total) {
1414                                         css_put(&victim->css);
1415                                         break;
1416                                 }
1417                                 /*
1418                                  * We want to do more targetted reclaim.
1419                                  * excess >> 2 is not to excessive so as to
1420                                  * reclaim too much, nor too less that we keep
1421                                  * coming back to reclaim from this cgroup
1422                                  */
1423                                 if (total >= (excess >> 2) ||
1424                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1425                                         css_put(&victim->css);
1426                                         break;
1427                                 }
1428                         }
1429                 }
1430                 if (!mem_cgroup_local_usage(victim)) {
1431                         /* this cgroup's local usage == 0 */
1432                         css_put(&victim->css);
1433                         continue;
1434                 }
1435                 /* we use swappiness of local cgroup */
1436                 if (check_soft)
1437                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1438                                 noswap, get_swappiness(victim), zone);
1439                 else
1440                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1441                                                 noswap, get_swappiness(victim));
1442                 css_put(&victim->css);
1443                 /*
1444                  * At shrinking usage, we can't check we should stop here or
1445                  * reclaim more. It's depends on callers. last_scanned_child
1446                  * will work enough for keeping fairness under tree.
1447                  */
1448                 if (shrink)
1449                         return ret;
1450                 total += ret;
1451                 if (check_soft) {
1452                         if (res_counter_check_under_soft_limit(&root_mem->res))
1453                                 return total;
1454                 } else if (mem_cgroup_check_under_limit(root_mem))
1455                         return 1 + total;
1456         }
1457         return total;
1458 }
1459
1460 /*
1461  * Check OOM-Killer is already running under our hierarchy.
1462  * If someone is running, return false.
1463  */
1464 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1465 {
1466         int x, lock_count = 0;
1467         struct mem_cgroup *iter;
1468
1469         for_each_mem_cgroup_tree(iter, mem) {
1470                 x = atomic_inc_return(&iter->oom_lock);
1471                 lock_count = max(x, lock_count);
1472         }
1473
1474         if (lock_count == 1)
1475                 return true;
1476         return false;
1477 }
1478
1479 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1480 {
1481         struct mem_cgroup *iter;
1482
1483         /*
1484          * When a new child is created while the hierarchy is under oom,
1485          * mem_cgroup_oom_lock() may not be called. We have to use
1486          * atomic_add_unless() here.
1487          */
1488         for_each_mem_cgroup_tree(iter, mem)
1489                 atomic_add_unless(&iter->oom_lock, -1, 0);
1490         return 0;
1491 }
1492
1493
1494 static DEFINE_MUTEX(memcg_oom_mutex);
1495 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1496
1497 struct oom_wait_info {
1498         struct mem_cgroup *mem;
1499         wait_queue_t    wait;
1500 };
1501
1502 static int memcg_oom_wake_function(wait_queue_t *wait,
1503         unsigned mode, int sync, void *arg)
1504 {
1505         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1506         struct oom_wait_info *oom_wait_info;
1507
1508         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1509
1510         if (oom_wait_info->mem == wake_mem)
1511                 goto wakeup;
1512         /* if no hierarchy, no match */
1513         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1514                 return 0;
1515         /*
1516          * Both of oom_wait_info->mem and wake_mem are stable under us.
1517          * Then we can use css_is_ancestor without taking care of RCU.
1518          */
1519         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1520             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1521                 return 0;
1522
1523 wakeup:
1524         return autoremove_wake_function(wait, mode, sync, arg);
1525 }
1526
1527 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1528 {
1529         /* for filtering, pass "mem" as argument. */
1530         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1531 }
1532
1533 static void memcg_oom_recover(struct mem_cgroup *mem)
1534 {
1535         if (mem && atomic_read(&mem->oom_lock))
1536                 memcg_wakeup_oom(mem);
1537 }
1538
1539 /*
1540  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1541  */
1542 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1543 {
1544         struct oom_wait_info owait;
1545         bool locked, need_to_kill;
1546
1547         owait.mem = mem;
1548         owait.wait.flags = 0;
1549         owait.wait.func = memcg_oom_wake_function;
1550         owait.wait.private = current;
1551         INIT_LIST_HEAD(&owait.wait.task_list);
1552         need_to_kill = true;
1553         /* At first, try to OOM lock hierarchy under mem.*/
1554         mutex_lock(&memcg_oom_mutex);
1555         locked = mem_cgroup_oom_lock(mem);
1556         /*
1557          * Even if signal_pending(), we can't quit charge() loop without
1558          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1559          * under OOM is always welcomed, use TASK_KILLABLE here.
1560          */
1561         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1562         if (!locked || mem->oom_kill_disable)
1563                 need_to_kill = false;
1564         if (locked)
1565                 mem_cgroup_oom_notify(mem);
1566         mutex_unlock(&memcg_oom_mutex);
1567
1568         if (need_to_kill) {
1569                 finish_wait(&memcg_oom_waitq, &owait.wait);
1570                 mem_cgroup_out_of_memory(mem, mask);
1571         } else {
1572                 schedule();
1573                 finish_wait(&memcg_oom_waitq, &owait.wait);
1574         }
1575         mutex_lock(&memcg_oom_mutex);
1576         mem_cgroup_oom_unlock(mem);
1577         memcg_wakeup_oom(mem);
1578         mutex_unlock(&memcg_oom_mutex);
1579
1580         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1581                 return false;
1582         /* Give chance to dying process */
1583         schedule_timeout(1);
1584         return true;
1585 }
1586
1587 /*
1588  * Currently used to update mapped file statistics, but the routine can be
1589  * generalized to update other statistics as well.
1590  *
1591  * Notes: Race condition
1592  *
1593  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1594  * it tends to be costly. But considering some conditions, we doesn't need
1595  * to do so _always_.
1596  *
1597  * Considering "charge", lock_page_cgroup() is not required because all
1598  * file-stat operations happen after a page is attached to radix-tree. There
1599  * are no race with "charge".
1600  *
1601  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1602  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1603  * if there are race with "uncharge". Statistics itself is properly handled
1604  * by flags.
1605  *
1606  * Considering "move", this is an only case we see a race. To make the race
1607  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1608  * possibility of race condition. If there is, we take a lock.
1609  */
1610
1611 void mem_cgroup_update_page_stat(struct page *page,
1612                                  enum mem_cgroup_page_stat_item idx, int val)
1613 {
1614         struct mem_cgroup *mem;
1615         struct page_cgroup *pc = lookup_page_cgroup(page);
1616         bool need_unlock = false;
1617         unsigned long uninitialized_var(flags);
1618
1619         if (unlikely(!pc))
1620                 return;
1621
1622         rcu_read_lock();
1623         mem = pc->mem_cgroup;
1624         if (unlikely(!mem || !PageCgroupUsed(pc)))
1625                 goto out;
1626         /* pc->mem_cgroup is unstable ? */
1627         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1628                 /* take a lock against to access pc->mem_cgroup */
1629                 move_lock_page_cgroup(pc, &flags);
1630                 need_unlock = true;
1631                 mem = pc->mem_cgroup;
1632                 if (!mem || !PageCgroupUsed(pc))
1633                         goto out;
1634         }
1635
1636         switch (idx) {
1637         case MEMCG_NR_FILE_MAPPED:
1638                 if (val > 0)
1639                         SetPageCgroupFileMapped(pc);
1640                 else if (!page_mapped(page))
1641                         ClearPageCgroupFileMapped(pc);
1642                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1643                 break;
1644         default:
1645                 BUG();
1646         }
1647
1648         this_cpu_add(mem->stat->count[idx], val);
1649
1650 out:
1651         if (unlikely(need_unlock))
1652                 move_unlock_page_cgroup(pc, &flags);
1653         rcu_read_unlock();
1654         return;
1655 }
1656 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1657
1658 /*
1659  * size of first charge trial. "32" comes from vmscan.c's magic value.
1660  * TODO: maybe necessary to use big numbers in big irons.
1661  */
1662 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1663 struct memcg_stock_pcp {
1664         struct mem_cgroup *cached; /* this never be root cgroup */
1665         int charge;
1666         struct work_struct work;
1667 };
1668 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1669 static atomic_t memcg_drain_count;
1670
1671 /*
1672  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1673  * from local stock and true is returned. If the stock is 0 or charges from a
1674  * cgroup which is not current target, returns false. This stock will be
1675  * refilled.
1676  */
1677 static bool consume_stock(struct mem_cgroup *mem)
1678 {
1679         struct memcg_stock_pcp *stock;
1680         bool ret = true;
1681
1682         stock = &get_cpu_var(memcg_stock);
1683         if (mem == stock->cached && stock->charge)
1684                 stock->charge -= PAGE_SIZE;
1685         else /* need to call res_counter_charge */
1686                 ret = false;
1687         put_cpu_var(memcg_stock);
1688         return ret;
1689 }
1690
1691 /*
1692  * Returns stocks cached in percpu to res_counter and reset cached information.
1693  */
1694 static void drain_stock(struct memcg_stock_pcp *stock)
1695 {
1696         struct mem_cgroup *old = stock->cached;
1697
1698         if (stock->charge) {
1699                 res_counter_uncharge(&old->res, stock->charge);
1700                 if (do_swap_account)
1701                         res_counter_uncharge(&old->memsw, stock->charge);
1702         }
1703         stock->cached = NULL;
1704         stock->charge = 0;
1705 }
1706
1707 /*
1708  * This must be called under preempt disabled or must be called by
1709  * a thread which is pinned to local cpu.
1710  */
1711 static void drain_local_stock(struct work_struct *dummy)
1712 {
1713         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1714         drain_stock(stock);
1715 }
1716
1717 /*
1718  * Cache charges(val) which is from res_counter, to local per_cpu area.
1719  * This will be consumed by consume_stock() function, later.
1720  */
1721 static void refill_stock(struct mem_cgroup *mem, int val)
1722 {
1723         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1724
1725         if (stock->cached != mem) { /* reset if necessary */
1726                 drain_stock(stock);
1727                 stock->cached = mem;
1728         }
1729         stock->charge += val;
1730         put_cpu_var(memcg_stock);
1731 }
1732
1733 /*
1734  * Tries to drain stocked charges in other cpus. This function is asynchronous
1735  * and just put a work per cpu for draining localy on each cpu. Caller can
1736  * expects some charges will be back to res_counter later but cannot wait for
1737  * it.
1738  */
1739 static void drain_all_stock_async(void)
1740 {
1741         int cpu;
1742         /* This function is for scheduling "drain" in asynchronous way.
1743          * The result of "drain" is not directly handled by callers. Then,
1744          * if someone is calling drain, we don't have to call drain more.
1745          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1746          * there is a race. We just do loose check here.
1747          */
1748         if (atomic_read(&memcg_drain_count))
1749                 return;
1750         /* Notify other cpus that system-wide "drain" is running */
1751         atomic_inc(&memcg_drain_count);
1752         get_online_cpus();
1753         for_each_online_cpu(cpu) {
1754                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1755                 schedule_work_on(cpu, &stock->work);
1756         }
1757         put_online_cpus();
1758         atomic_dec(&memcg_drain_count);
1759         /* We don't wait for flush_work */
1760 }
1761
1762 /* This is a synchronous drain interface. */
1763 static void drain_all_stock_sync(void)
1764 {
1765         /* called when force_empty is called */
1766         atomic_inc(&memcg_drain_count);
1767         schedule_on_each_cpu(drain_local_stock);
1768         atomic_dec(&memcg_drain_count);
1769 }
1770
1771 /*
1772  * This function drains percpu counter value from DEAD cpu and
1773  * move it to local cpu. Note that this function can be preempted.
1774  */
1775 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1776 {
1777         int i;
1778
1779         spin_lock(&mem->pcp_counter_lock);
1780         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1781                 s64 x = per_cpu(mem->stat->count[i], cpu);
1782
1783                 per_cpu(mem->stat->count[i], cpu) = 0;
1784                 mem->nocpu_base.count[i] += x;
1785         }
1786         /* need to clear ON_MOVE value, works as a kind of lock. */
1787         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1788         spin_unlock(&mem->pcp_counter_lock);
1789 }
1790
1791 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1792 {
1793         int idx = MEM_CGROUP_ON_MOVE;
1794
1795         spin_lock(&mem->pcp_counter_lock);
1796         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1797         spin_unlock(&mem->pcp_counter_lock);
1798 }
1799
1800 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1801                                         unsigned long action,
1802                                         void *hcpu)
1803 {
1804         int cpu = (unsigned long)hcpu;
1805         struct memcg_stock_pcp *stock;
1806         struct mem_cgroup *iter;
1807
1808         if ((action == CPU_ONLINE)) {
1809                 for_each_mem_cgroup_all(iter)
1810                         synchronize_mem_cgroup_on_move(iter, cpu);
1811                 return NOTIFY_OK;
1812         }
1813
1814         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1815                 return NOTIFY_OK;
1816
1817         for_each_mem_cgroup_all(iter)
1818                 mem_cgroup_drain_pcp_counter(iter, cpu);
1819
1820         stock = &per_cpu(memcg_stock, cpu);
1821         drain_stock(stock);
1822         return NOTIFY_OK;
1823 }
1824
1825
1826 /* See __mem_cgroup_try_charge() for details */
1827 enum {
1828         CHARGE_OK,              /* success */
1829         CHARGE_RETRY,           /* need to retry but retry is not bad */
1830         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1831         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1832         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1833 };
1834
1835 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1836                                 int csize, bool oom_check)
1837 {
1838         struct mem_cgroup *mem_over_limit;
1839         struct res_counter *fail_res;
1840         unsigned long flags = 0;
1841         int ret;
1842
1843         ret = res_counter_charge(&mem->res, csize, &fail_res);
1844
1845         if (likely(!ret)) {
1846                 if (!do_swap_account)
1847                         return CHARGE_OK;
1848                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1849                 if (likely(!ret))
1850                         return CHARGE_OK;
1851
1852                 res_counter_uncharge(&mem->res, csize);
1853                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1854                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1855         } else
1856                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1857         /*
1858          * csize can be either a huge page (HPAGE_SIZE), a batch of
1859          * regular pages (CHARGE_SIZE), or a single regular page
1860          * (PAGE_SIZE).
1861          *
1862          * Never reclaim on behalf of optional batching, retry with a
1863          * single page instead.
1864          */
1865         if (csize == CHARGE_SIZE)
1866                 return CHARGE_RETRY;
1867
1868         if (!(gfp_mask & __GFP_WAIT))
1869                 return CHARGE_WOULDBLOCK;
1870
1871         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1872                                               gfp_mask, flags);
1873         if (mem_cgroup_check_margin(mem_over_limit, csize))
1874                 return CHARGE_RETRY;
1875         /*
1876          * Even though the limit is exceeded at this point, reclaim
1877          * may have been able to free some pages.  Retry the charge
1878          * before killing the task.
1879          *
1880          * Only for regular pages, though: huge pages are rather
1881          * unlikely to succeed so close to the limit, and we fall back
1882          * to regular pages anyway in case of failure.
1883          */
1884         if (csize == PAGE_SIZE && ret)
1885                 return CHARGE_RETRY;
1886
1887         /*
1888          * At task move, charge accounts can be doubly counted. So, it's
1889          * better to wait until the end of task_move if something is going on.
1890          */
1891         if (mem_cgroup_wait_acct_move(mem_over_limit))
1892                 return CHARGE_RETRY;
1893
1894         /* If we don't need to call oom-killer at el, return immediately */
1895         if (!oom_check)
1896                 return CHARGE_NOMEM;
1897         /* check OOM */
1898         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1899                 return CHARGE_OOM_DIE;
1900
1901         return CHARGE_RETRY;
1902 }
1903
1904 /*
1905  * Unlike exported interface, "oom" parameter is added. if oom==true,
1906  * oom-killer can be invoked.
1907  */
1908 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1909                                    gfp_t gfp_mask,
1910                                    struct mem_cgroup **memcg, bool oom,
1911                                    int page_size)
1912 {
1913         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1914         struct mem_cgroup *mem = NULL;
1915         int ret;
1916         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1917
1918         /*
1919          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1920          * in system level. So, allow to go ahead dying process in addition to
1921          * MEMDIE process.
1922          */
1923         if (unlikely(test_thread_flag(TIF_MEMDIE)
1924                      || fatal_signal_pending(current)))
1925                 goto bypass;
1926
1927         /*
1928          * We always charge the cgroup the mm_struct belongs to.
1929          * The mm_struct's mem_cgroup changes on task migration if the
1930          * thread group leader migrates. It's possible that mm is not
1931          * set, if so charge the init_mm (happens for pagecache usage).
1932          */
1933         if (!*memcg && !mm)
1934                 goto bypass;
1935 again:
1936         if (*memcg) { /* css should be a valid one */
1937                 mem = *memcg;
1938                 VM_BUG_ON(css_is_removed(&mem->css));
1939                 if (mem_cgroup_is_root(mem))
1940                         goto done;
1941                 if (page_size == PAGE_SIZE && consume_stock(mem))
1942                         goto done;
1943                 css_get(&mem->css);
1944         } else {
1945                 struct task_struct *p;
1946
1947                 rcu_read_lock();
1948                 p = rcu_dereference(mm->owner);
1949                 /*
1950                  * Because we don't have task_lock(), "p" can exit.
1951                  * In that case, "mem" can point to root or p can be NULL with
1952                  * race with swapoff. Then, we have small risk of mis-accouning.
1953                  * But such kind of mis-account by race always happens because
1954                  * we don't have cgroup_mutex(). It's overkill and we allo that
1955                  * small race, here.
1956                  * (*) swapoff at el will charge against mm-struct not against
1957                  * task-struct. So, mm->owner can be NULL.
1958                  */
1959                 mem = mem_cgroup_from_task(p);
1960                 if (!mem || mem_cgroup_is_root(mem)) {
1961                         rcu_read_unlock();
1962                         goto done;
1963                 }
1964                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1965                         /*
1966                          * It seems dagerous to access memcg without css_get().
1967                          * But considering how consume_stok works, it's not
1968                          * necessary. If consume_stock success, some charges
1969                          * from this memcg are cached on this cpu. So, we
1970                          * don't need to call css_get()/css_tryget() before
1971                          * calling consume_stock().
1972                          */
1973                         rcu_read_unlock();
1974                         goto done;
1975                 }
1976                 /* after here, we may be blocked. we need to get refcnt */
1977                 if (!css_tryget(&mem->css)) {
1978                         rcu_read_unlock();
1979                         goto again;
1980                 }
1981                 rcu_read_unlock();
1982         }
1983
1984         do {
1985                 bool oom_check;
1986
1987                 /* If killed, bypass charge */
1988                 if (fatal_signal_pending(current)) {
1989                         css_put(&mem->css);
1990                         goto bypass;
1991                 }
1992
1993                 oom_check = false;
1994                 if (oom && !nr_oom_retries) {
1995                         oom_check = true;
1996                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1997                 }
1998
1999                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2000
2001                 switch (ret) {
2002                 case CHARGE_OK:
2003                         break;
2004                 case CHARGE_RETRY: /* not in OOM situation but retry */
2005                         csize = page_size;
2006                         css_put(&mem->css);
2007                         mem = NULL;
2008                         goto again;
2009                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2010                         css_put(&mem->css);
2011                         goto nomem;
2012                 case CHARGE_NOMEM: /* OOM routine works */
2013                         if (!oom) {
2014                                 css_put(&mem->css);
2015                                 goto nomem;
2016                         }
2017                         /* If oom, we never return -ENOMEM */
2018                         nr_oom_retries--;
2019                         break;
2020                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2021                         css_put(&mem->css);
2022                         goto bypass;
2023                 }
2024         } while (ret != CHARGE_OK);
2025
2026         if (csize > page_size)
2027                 refill_stock(mem, csize - page_size);
2028         css_put(&mem->css);
2029 done:
2030         *memcg = mem;
2031         return 0;
2032 nomem:
2033         *memcg = NULL;
2034         return -ENOMEM;
2035 bypass:
2036         *memcg = NULL;
2037         return 0;
2038 }
2039
2040 /*
2041  * Somemtimes we have to undo a charge we got by try_charge().
2042  * This function is for that and do uncharge, put css's refcnt.
2043  * gotten by try_charge().
2044  */
2045 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2046                                                         unsigned long count)
2047 {
2048         if (!mem_cgroup_is_root(mem)) {
2049                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2050                 if (do_swap_account)
2051                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2052         }
2053 }
2054
2055 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2056                                      int page_size)
2057 {
2058         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2059 }
2060
2061 /*
2062  * A helper function to get mem_cgroup from ID. must be called under
2063  * rcu_read_lock(). The caller must check css_is_removed() or some if
2064  * it's concern. (dropping refcnt from swap can be called against removed
2065  * memcg.)
2066  */
2067 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2068 {
2069         struct cgroup_subsys_state *css;
2070
2071         /* ID 0 is unused ID */
2072         if (!id)
2073                 return NULL;
2074         css = css_lookup(&mem_cgroup_subsys, id);
2075         if (!css)
2076                 return NULL;
2077         return container_of(css, struct mem_cgroup, css);
2078 }
2079
2080 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2081 {
2082         struct mem_cgroup *mem = NULL;
2083         struct page_cgroup *pc;
2084         unsigned short id;
2085         swp_entry_t ent;
2086
2087         VM_BUG_ON(!PageLocked(page));
2088
2089         pc = lookup_page_cgroup(page);
2090         lock_page_cgroup(pc);
2091         if (PageCgroupUsed(pc)) {
2092                 mem = pc->mem_cgroup;
2093                 if (mem && !css_tryget(&mem->css))
2094                         mem = NULL;
2095         } else if (PageSwapCache(page)) {
2096                 ent.val = page_private(page);
2097                 id = lookup_swap_cgroup(ent);
2098                 rcu_read_lock();
2099                 mem = mem_cgroup_lookup(id);
2100                 if (mem && !css_tryget(&mem->css))
2101                         mem = NULL;
2102                 rcu_read_unlock();
2103         }
2104         unlock_page_cgroup(pc);
2105         return mem;
2106 }
2107
2108 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2109                                        struct page_cgroup *pc,
2110                                        enum charge_type ctype,
2111                                        int page_size)
2112 {
2113         int nr_pages = page_size >> PAGE_SHIFT;
2114
2115         /* try_charge() can return NULL to *memcg, taking care of it. */
2116         if (!mem)
2117                 return;
2118
2119         lock_page_cgroup(pc);
2120         if (unlikely(PageCgroupUsed(pc))) {
2121                 unlock_page_cgroup(pc);
2122                 mem_cgroup_cancel_charge(mem, page_size);
2123                 return;
2124         }
2125         /*
2126          * we don't need page_cgroup_lock about tail pages, becase they are not
2127          * accessed by any other context at this point.
2128          */
2129         pc->mem_cgroup = mem;
2130         /*
2131          * We access a page_cgroup asynchronously without lock_page_cgroup().
2132          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2133          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2134          * before USED bit, we need memory barrier here.
2135          * See mem_cgroup_add_lru_list(), etc.
2136          */
2137         smp_wmb();
2138         switch (ctype) {
2139         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2140         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2141                 SetPageCgroupCache(pc);
2142                 SetPageCgroupUsed(pc);
2143                 break;
2144         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2145                 ClearPageCgroupCache(pc);
2146                 SetPageCgroupUsed(pc);
2147                 break;
2148         default:
2149                 break;
2150         }
2151
2152         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2153         unlock_page_cgroup(pc);
2154         /*
2155          * "charge_statistics" updated event counter. Then, check it.
2156          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2157          * if they exceeds softlimit.
2158          */
2159         memcg_check_events(mem, pc->page);
2160 }
2161
2162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2163
2164 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2165                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2166 /*
2167  * Because tail pages are not marked as "used", set it. We're under
2168  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2169  */
2170 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2171 {
2172         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2173         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2174         unsigned long flags;
2175
2176         if (mem_cgroup_disabled())
2177                 return;
2178         /*
2179          * We have no races with charge/uncharge but will have races with
2180          * page state accounting.
2181          */
2182         move_lock_page_cgroup(head_pc, &flags);
2183
2184         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2185         smp_wmb(); /* see __commit_charge() */
2186         if (PageCgroupAcctLRU(head_pc)) {
2187                 enum lru_list lru;
2188                 struct mem_cgroup_per_zone *mz;
2189
2190                 /*
2191                  * LRU flags cannot be copied because we need to add tail
2192                  *.page to LRU by generic call and our hook will be called.
2193                  * We hold lru_lock, then, reduce counter directly.
2194                  */
2195                 lru = page_lru(head);
2196                 mz = page_cgroup_zoneinfo(head_pc);
2197                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2198         }
2199         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2200         move_unlock_page_cgroup(head_pc, &flags);
2201 }
2202 #endif
2203
2204 /**
2205  * __mem_cgroup_move_account - move account of the page
2206  * @pc: page_cgroup of the page.
2207  * @from: mem_cgroup which the page is moved from.
2208  * @to: mem_cgroup which the page is moved to. @from != @to.
2209  * @uncharge: whether we should call uncharge and css_put against @from.
2210  *
2211  * The caller must confirm following.
2212  * - page is not on LRU (isolate_page() is useful.)
2213  * - the pc is locked, used, and ->mem_cgroup points to @from.
2214  *
2215  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2216  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2217  * true, this function does "uncharge" from old cgroup, but it doesn't if
2218  * @uncharge is false, so a caller should do "uncharge".
2219  */
2220
2221 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2222         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2223         int charge_size)
2224 {
2225         int nr_pages = charge_size >> PAGE_SHIFT;
2226
2227         VM_BUG_ON(from == to);
2228         VM_BUG_ON(PageLRU(pc->page));
2229         VM_BUG_ON(!page_is_cgroup_locked(pc));
2230         VM_BUG_ON(!PageCgroupUsed(pc));
2231         VM_BUG_ON(pc->mem_cgroup != from);
2232
2233         if (PageCgroupFileMapped(pc)) {
2234                 /* Update mapped_file data for mem_cgroup */
2235                 preempt_disable();
2236                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2237                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2238                 preempt_enable();
2239         }
2240         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2241         if (uncharge)
2242                 /* This is not "cancel", but cancel_charge does all we need. */
2243                 mem_cgroup_cancel_charge(from, charge_size);
2244
2245         /* caller should have done css_get */
2246         pc->mem_cgroup = to;
2247         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2248         /*
2249          * We charges against "to" which may not have any tasks. Then, "to"
2250          * can be under rmdir(). But in current implementation, caller of
2251          * this function is just force_empty() and move charge, so it's
2252          * garanteed that "to" is never removed. So, we don't check rmdir
2253          * status here.
2254          */
2255 }
2256
2257 /*
2258  * check whether the @pc is valid for moving account and call
2259  * __mem_cgroup_move_account()
2260  */
2261 static int mem_cgroup_move_account(struct page_cgroup *pc,
2262                 struct mem_cgroup *from, struct mem_cgroup *to,
2263                 bool uncharge, int charge_size)
2264 {
2265         int ret = -EINVAL;
2266         unsigned long flags;
2267         /*
2268          * The page is isolated from LRU. So, collapse function
2269          * will not handle this page. But page splitting can happen.
2270          * Do this check under compound_page_lock(). The caller should
2271          * hold it.
2272          */
2273         if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2274                 return -EBUSY;
2275
2276         lock_page_cgroup(pc);
2277         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2278                 move_lock_page_cgroup(pc, &flags);
2279                 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2280                 move_unlock_page_cgroup(pc, &flags);
2281                 ret = 0;
2282         }
2283         unlock_page_cgroup(pc);
2284         /*
2285          * check events
2286          */
2287         memcg_check_events(to, pc->page);
2288         memcg_check_events(from, pc->page);
2289         return ret;
2290 }
2291
2292 /*
2293  * move charges to its parent.
2294  */
2295
2296 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2297                                   struct mem_cgroup *child,
2298                                   gfp_t gfp_mask)
2299 {
2300         struct page *page = pc->page;
2301         struct cgroup *cg = child->css.cgroup;
2302         struct cgroup *pcg = cg->parent;
2303         struct mem_cgroup *parent;
2304         int page_size = PAGE_SIZE;
2305         unsigned long flags;
2306         int ret;
2307
2308         /* Is ROOT ? */
2309         if (!pcg)
2310                 return -EINVAL;
2311
2312         ret = -EBUSY;
2313         if (!get_page_unless_zero(page))
2314                 goto out;
2315         if (isolate_lru_page(page))
2316                 goto put;
2317
2318         if (PageTransHuge(page))
2319                 page_size = HPAGE_SIZE;
2320
2321         parent = mem_cgroup_from_cont(pcg);
2322         ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2323                                 &parent, false, page_size);
2324         if (ret || !parent)
2325                 goto put_back;
2326
2327         if (page_size > PAGE_SIZE)
2328                 flags = compound_lock_irqsave(page);
2329
2330         ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2331         if (ret)
2332                 mem_cgroup_cancel_charge(parent, page_size);
2333
2334         if (page_size > PAGE_SIZE)
2335                 compound_unlock_irqrestore(page, flags);
2336 put_back:
2337         putback_lru_page(page);
2338 put:
2339         put_page(page);
2340 out:
2341         return ret;
2342 }
2343
2344 /*
2345  * Charge the memory controller for page usage.
2346  * Return
2347  * 0 if the charge was successful
2348  * < 0 if the cgroup is over its limit
2349  */
2350 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2351                                 gfp_t gfp_mask, enum charge_type ctype)
2352 {
2353         struct mem_cgroup *mem = NULL;
2354         int page_size = PAGE_SIZE;
2355         struct page_cgroup *pc;
2356         bool oom = true;
2357         int ret;
2358
2359         if (PageTransHuge(page)) {
2360                 page_size <<= compound_order(page);
2361                 VM_BUG_ON(!PageTransHuge(page));
2362                 /*
2363                  * Never OOM-kill a process for a huge page.  The
2364                  * fault handler will fall back to regular pages.
2365                  */
2366                 oom = false;
2367         }
2368
2369         pc = lookup_page_cgroup(page);
2370         /* can happen at boot */
2371         if (unlikely(!pc))
2372                 return 0;
2373         prefetchw(pc);
2374
2375         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2376         if (ret || !mem)
2377                 return ret;
2378
2379         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2380         return 0;
2381 }
2382
2383 int mem_cgroup_newpage_charge(struct page *page,
2384                               struct mm_struct *mm, gfp_t gfp_mask)
2385 {
2386         if (mem_cgroup_disabled())
2387                 return 0;
2388         /*
2389          * If already mapped, we don't have to account.
2390          * If page cache, page->mapping has address_space.
2391          * But page->mapping may have out-of-use anon_vma pointer,
2392          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2393          * is NULL.
2394          */
2395         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2396                 return 0;
2397         if (unlikely(!mm))
2398                 mm = &init_mm;
2399         return mem_cgroup_charge_common(page, mm, gfp_mask,
2400                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2401 }
2402
2403 static void
2404 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2405                                         enum charge_type ctype);
2406
2407 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2408                                 gfp_t gfp_mask)
2409 {
2410         int ret;
2411
2412         if (mem_cgroup_disabled())
2413                 return 0;
2414         if (PageCompound(page))
2415                 return 0;
2416         /*
2417          * Corner case handling. This is called from add_to_page_cache()
2418          * in usual. But some FS (shmem) precharges this page before calling it
2419          * and call add_to_page_cache() with GFP_NOWAIT.
2420          *
2421          * For GFP_NOWAIT case, the page may be pre-charged before calling
2422          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2423          * charge twice. (It works but has to pay a bit larger cost.)
2424          * And when the page is SwapCache, it should take swap information
2425          * into account. This is under lock_page() now.
2426          */
2427         if (!(gfp_mask & __GFP_WAIT)) {
2428                 struct page_cgroup *pc;
2429
2430                 pc = lookup_page_cgroup(page);
2431                 if (!pc)
2432                         return 0;
2433                 lock_page_cgroup(pc);
2434                 if (PageCgroupUsed(pc)) {
2435                         unlock_page_cgroup(pc);
2436                         return 0;
2437                 }
2438                 unlock_page_cgroup(pc);
2439         }
2440
2441         if (unlikely(!mm))
2442                 mm = &init_mm;
2443
2444         if (page_is_file_cache(page))
2445                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2446                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2447
2448         /* shmem */
2449         if (PageSwapCache(page)) {
2450                 struct mem_cgroup *mem = NULL;
2451
2452                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2453                 if (!ret)
2454                         __mem_cgroup_commit_charge_swapin(page, mem,
2455                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2456         } else
2457                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2458                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2459
2460         return ret;
2461 }
2462
2463 /*
2464  * While swap-in, try_charge -> commit or cancel, the page is locked.
2465  * And when try_charge() successfully returns, one refcnt to memcg without
2466  * struct page_cgroup is acquired. This refcnt will be consumed by
2467  * "commit()" or removed by "cancel()"
2468  */
2469 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2470                                  struct page *page,
2471                                  gfp_t mask, struct mem_cgroup **ptr)
2472 {
2473         struct mem_cgroup *mem;
2474         int ret;
2475
2476         if (mem_cgroup_disabled())
2477                 return 0;
2478
2479         if (!do_swap_account)
2480                 goto charge_cur_mm;
2481         /*
2482          * A racing thread's fault, or swapoff, may have already updated
2483          * the pte, and even removed page from swap cache: in those cases
2484          * do_swap_page()'s pte_same() test will fail; but there's also a
2485          * KSM case which does need to charge the page.
2486          */
2487         if (!PageSwapCache(page))
2488                 goto charge_cur_mm;
2489         mem = try_get_mem_cgroup_from_page(page);
2490         if (!mem)
2491                 goto charge_cur_mm;
2492         *ptr = mem;
2493         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2494         css_put(&mem->css);
2495         return ret;
2496 charge_cur_mm:
2497         if (unlikely(!mm))
2498                 mm = &init_mm;
2499         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2500 }
2501
2502 static void
2503 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2504                                         enum charge_type ctype)
2505 {
2506         struct page_cgroup *pc;
2507
2508         if (mem_cgroup_disabled())
2509                 return;
2510         if (!ptr)
2511                 return;
2512         cgroup_exclude_rmdir(&ptr->css);
2513         pc = lookup_page_cgroup(page);
2514         mem_cgroup_lru_del_before_commit_swapcache(page);
2515         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2516         mem_cgroup_lru_add_after_commit_swapcache(page);
2517         /*
2518          * Now swap is on-memory. This means this page may be
2519          * counted both as mem and swap....double count.
2520          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2521          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2522          * may call delete_from_swap_cache() before reach here.
2523          */
2524         if (do_swap_account && PageSwapCache(page)) {
2525                 swp_entry_t ent = {.val = page_private(page)};
2526                 unsigned short id;
2527                 struct mem_cgroup *memcg;
2528
2529                 id = swap_cgroup_record(ent, 0);
2530                 rcu_read_lock();
2531                 memcg = mem_cgroup_lookup(id);
2532                 if (memcg) {
2533                         /*
2534                          * This recorded memcg can be obsolete one. So, avoid
2535                          * calling css_tryget
2536                          */
2537                         if (!mem_cgroup_is_root(memcg))
2538                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2539                         mem_cgroup_swap_statistics(memcg, false);
2540                         mem_cgroup_put(memcg);
2541                 }
2542                 rcu_read_unlock();
2543         }
2544         /*
2545          * At swapin, we may charge account against cgroup which has no tasks.
2546          * So, rmdir()->pre_destroy() can be called while we do this charge.
2547          * In that case, we need to call pre_destroy() again. check it here.
2548          */
2549         cgroup_release_and_wakeup_rmdir(&ptr->css);
2550 }
2551
2552 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2553 {
2554         __mem_cgroup_commit_charge_swapin(page, ptr,
2555                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2556 }
2557
2558 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2559 {
2560         if (mem_cgroup_disabled())
2561                 return;
2562         if (!mem)
2563                 return;
2564         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2565 }
2566
2567 static void
2568 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2569               int page_size)
2570 {
2571         struct memcg_batch_info *batch = NULL;
2572         bool uncharge_memsw = true;
2573         /* If swapout, usage of swap doesn't decrease */
2574         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2575                 uncharge_memsw = false;
2576
2577         batch = &current->memcg_batch;
2578         /*
2579          * In usual, we do css_get() when we remember memcg pointer.
2580          * But in this case, we keep res->usage until end of a series of
2581          * uncharges. Then, it's ok to ignore memcg's refcnt.
2582          */
2583         if (!batch->memcg)
2584                 batch->memcg = mem;
2585         /*
2586          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2587          * In those cases, all pages freed continously can be expected to be in
2588          * the same cgroup and we have chance to coalesce uncharges.
2589          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2590          * because we want to do uncharge as soon as possible.
2591          */
2592
2593         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2594                 goto direct_uncharge;
2595
2596         if (page_size != PAGE_SIZE)
2597                 goto direct_uncharge;
2598
2599         /*
2600          * In typical case, batch->memcg == mem. This means we can
2601          * merge a series of uncharges to an uncharge of res_counter.
2602          * If not, we uncharge res_counter ony by one.
2603          */
2604         if (batch->memcg != mem)
2605                 goto direct_uncharge;
2606         /* remember freed charge and uncharge it later */
2607         batch->bytes += PAGE_SIZE;
2608         if (uncharge_memsw)
2609                 batch->memsw_bytes += PAGE_SIZE;
2610         return;
2611 direct_uncharge:
2612         res_counter_uncharge(&mem->res, page_size);
2613         if (uncharge_memsw)
2614                 res_counter_uncharge(&mem->memsw, page_size);
2615         if (unlikely(batch->memcg != mem))
2616                 memcg_oom_recover(mem);
2617         return;
2618 }
2619
2620 /*
2621  * uncharge if !page_mapped(page)
2622  */
2623 static struct mem_cgroup *
2624 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2625 {
2626         int count;
2627         struct page_cgroup *pc;
2628         struct mem_cgroup *mem = NULL;
2629         int page_size = PAGE_SIZE;
2630
2631         if (mem_cgroup_disabled())
2632                 return NULL;
2633
2634         if (PageSwapCache(page))
2635                 return NULL;
2636
2637         if (PageTransHuge(page)) {
2638                 page_size <<= compound_order(page);
2639                 VM_BUG_ON(!PageTransHuge(page));
2640         }
2641
2642         count = page_size >> PAGE_SHIFT;
2643         /*
2644          * Check if our page_cgroup is valid
2645          */
2646         pc = lookup_page_cgroup(page);
2647         if (unlikely(!pc || !PageCgroupUsed(pc)))
2648                 return NULL;
2649
2650         lock_page_cgroup(pc);
2651
2652         mem = pc->mem_cgroup;
2653
2654         if (!PageCgroupUsed(pc))
2655                 goto unlock_out;
2656
2657         switch (ctype) {
2658         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2659         case MEM_CGROUP_CHARGE_TYPE_DROP:
2660                 /* See mem_cgroup_prepare_migration() */
2661                 if (page_mapped(page) || PageCgroupMigration(pc))
2662                         goto unlock_out;
2663                 break;
2664         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2665                 if (!PageAnon(page)) {  /* Shared memory */
2666                         if (page->mapping && !page_is_file_cache(page))
2667                                 goto unlock_out;
2668                 } else if (page_mapped(page)) /* Anon */
2669                                 goto unlock_out;
2670                 break;
2671         default:
2672                 break;
2673         }
2674
2675         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2676
2677         ClearPageCgroupUsed(pc);
2678         /*
2679          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2680          * freed from LRU. This is safe because uncharged page is expected not
2681          * to be reused (freed soon). Exception is SwapCache, it's handled by
2682          * special functions.
2683          */
2684
2685         unlock_page_cgroup(pc);
2686         /*
2687          * even after unlock, we have mem->res.usage here and this memcg
2688          * will never be freed.
2689          */
2690         memcg_check_events(mem, page);
2691         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2692                 mem_cgroup_swap_statistics(mem, true);
2693                 mem_cgroup_get(mem);
2694         }
2695         if (!mem_cgroup_is_root(mem))
2696                 __do_uncharge(mem, ctype, page_size);
2697
2698         return mem;
2699
2700 unlock_out:
2701         unlock_page_cgroup(pc);
2702         return NULL;
2703 }
2704
2705 void mem_cgroup_uncharge_page(struct page *page)
2706 {
2707         /* early check. */
2708         if (page_mapped(page))
2709                 return;
2710         if (page->mapping && !PageAnon(page))
2711                 return;
2712         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2713 }
2714
2715 void mem_cgroup_uncharge_cache_page(struct page *page)
2716 {
2717         VM_BUG_ON(page_mapped(page));
2718         VM_BUG_ON(page->mapping);
2719         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2720 }
2721
2722 /*
2723  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2724  * In that cases, pages are freed continuously and we can expect pages
2725  * are in the same memcg. All these calls itself limits the number of
2726  * pages freed at once, then uncharge_start/end() is called properly.
2727  * This may be called prural(2) times in a context,
2728  */
2729
2730 void mem_cgroup_uncharge_start(void)
2731 {
2732         current->memcg_batch.do_batch++;
2733         /* We can do nest. */
2734         if (current->memcg_batch.do_batch == 1) {
2735                 current->memcg_batch.memcg = NULL;
2736                 current->memcg_batch.bytes = 0;
2737                 current->memcg_batch.memsw_bytes = 0;
2738         }
2739 }
2740
2741 void mem_cgroup_uncharge_end(void)
2742 {
2743         struct memcg_batch_info *batch = &current->memcg_batch;
2744
2745         if (!batch->do_batch)
2746                 return;
2747
2748         batch->do_batch--;
2749         if (batch->do_batch) /* If stacked, do nothing. */
2750                 return;
2751
2752         if (!batch->memcg)
2753                 return;
2754         /*
2755          * This "batch->memcg" is valid without any css_get/put etc...
2756          * bacause we hide charges behind us.
2757          */
2758         if (batch->bytes)
2759                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2760         if (batch->memsw_bytes)
2761                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2762         memcg_oom_recover(batch->memcg);
2763         /* forget this pointer (for sanity check) */
2764         batch->memcg = NULL;
2765 }
2766
2767 #ifdef CONFIG_SWAP
2768 /*
2769  * called after __delete_from_swap_cache() and drop "page" account.
2770  * memcg information is recorded to swap_cgroup of "ent"
2771  */
2772 void
2773 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2774 {
2775         struct mem_cgroup *memcg;
2776         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2777
2778         if (!swapout) /* this was a swap cache but the swap is unused ! */
2779                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2780
2781         memcg = __mem_cgroup_uncharge_common(page, ctype);
2782
2783         /*
2784          * record memcg information,  if swapout && memcg != NULL,
2785          * mem_cgroup_get() was called in uncharge().
2786          */
2787         if (do_swap_account && swapout && memcg)
2788                 swap_cgroup_record(ent, css_id(&memcg->css));
2789 }
2790 #endif
2791
2792 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2793 /*
2794  * called from swap_entry_free(). remove record in swap_cgroup and
2795  * uncharge "memsw" account.
2796  */
2797 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2798 {
2799         struct mem_cgroup *memcg;
2800         unsigned short id;
2801
2802         if (!do_swap_account)
2803                 return;
2804
2805         id = swap_cgroup_record(ent, 0);
2806         rcu_read_lock();
2807         memcg = mem_cgroup_lookup(id);
2808         if (memcg) {
2809                 /*
2810                  * We uncharge this because swap is freed.
2811                  * This memcg can be obsolete one. We avoid calling css_tryget
2812                  */
2813                 if (!mem_cgroup_is_root(memcg))
2814                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2815                 mem_cgroup_swap_statistics(memcg, false);
2816                 mem_cgroup_put(memcg);
2817         }
2818         rcu_read_unlock();
2819 }
2820
2821 /**
2822  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2823  * @entry: swap entry to be moved
2824  * @from:  mem_cgroup which the entry is moved from
2825  * @to:  mem_cgroup which the entry is moved to
2826  * @need_fixup: whether we should fixup res_counters and refcounts.
2827  *
2828  * It succeeds only when the swap_cgroup's record for this entry is the same
2829  * as the mem_cgroup's id of @from.
2830  *
2831  * Returns 0 on success, -EINVAL on failure.
2832  *
2833  * The caller must have charged to @to, IOW, called res_counter_charge() about
2834  * both res and memsw, and called css_get().
2835  */
2836 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2837                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2838 {
2839         unsigned short old_id, new_id;
2840
2841         old_id = css_id(&from->css);
2842         new_id = css_id(&to->css);
2843
2844         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2845                 mem_cgroup_swap_statistics(from, false);
2846                 mem_cgroup_swap_statistics(to, true);
2847                 /*
2848                  * This function is only called from task migration context now.
2849                  * It postpones res_counter and refcount handling till the end
2850                  * of task migration(mem_cgroup_clear_mc()) for performance
2851                  * improvement. But we cannot postpone mem_cgroup_get(to)
2852                  * because if the process that has been moved to @to does
2853                  * swap-in, the refcount of @to might be decreased to 0.
2854                  */
2855                 mem_cgroup_get(to);
2856                 if (need_fixup) {
2857                         if (!mem_cgroup_is_root(from))
2858                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2859                         mem_cgroup_put(from);
2860                         /*
2861                          * we charged both to->res and to->memsw, so we should
2862                          * uncharge to->res.
2863                          */
2864                         if (!mem_cgroup_is_root(to))
2865                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2866                 }
2867                 return 0;
2868         }
2869         return -EINVAL;
2870 }
2871 #else
2872 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2873                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2874 {
2875         return -EINVAL;
2876 }
2877 #endif
2878
2879 /*
2880  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2881  * page belongs to.
2882  */
2883 int mem_cgroup_prepare_migration(struct page *page,
2884         struct page *newpage, struct mem_cgroup **ptr)
2885 {
2886         struct page_cgroup *pc;
2887         struct mem_cgroup *mem = NULL;
2888         enum charge_type ctype;
2889         int ret = 0;
2890
2891         VM_BUG_ON(PageTransHuge(page));
2892         if (mem_cgroup_disabled())
2893                 return 0;
2894
2895         pc = lookup_page_cgroup(page);
2896         lock_page_cgroup(pc);
2897         if (PageCgroupUsed(pc)) {
2898                 mem = pc->mem_cgroup;
2899                 css_get(&mem->css);
2900                 /*
2901                  * At migrating an anonymous page, its mapcount goes down
2902                  * to 0 and uncharge() will be called. But, even if it's fully
2903                  * unmapped, migration may fail and this page has to be
2904                  * charged again. We set MIGRATION flag here and delay uncharge
2905                  * until end_migration() is called
2906                  *
2907                  * Corner Case Thinking
2908                  * A)
2909                  * When the old page was mapped as Anon and it's unmap-and-freed
2910                  * while migration was ongoing.
2911                  * If unmap finds the old page, uncharge() of it will be delayed
2912                  * until end_migration(). If unmap finds a new page, it's
2913                  * uncharged when it make mapcount to be 1->0. If unmap code
2914                  * finds swap_migration_entry, the new page will not be mapped
2915                  * and end_migration() will find it(mapcount==0).
2916                  *
2917                  * B)
2918                  * When the old page was mapped but migraion fails, the kernel
2919                  * remaps it. A charge for it is kept by MIGRATION flag even
2920                  * if mapcount goes down to 0. We can do remap successfully
2921                  * without charging it again.
2922                  *
2923                  * C)
2924                  * The "old" page is under lock_page() until the end of
2925                  * migration, so, the old page itself will not be swapped-out.
2926                  * If the new page is swapped out before end_migraton, our
2927                  * hook to usual swap-out path will catch the event.
2928                  */
2929                 if (PageAnon(page))
2930                         SetPageCgroupMigration(pc);
2931         }
2932         unlock_page_cgroup(pc);
2933         /*
2934          * If the page is not charged at this point,
2935          * we return here.
2936          */
2937         if (!mem)
2938                 return 0;
2939
2940         *ptr = mem;
2941         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2942         css_put(&mem->css);/* drop extra refcnt */
2943         if (ret || *ptr == NULL) {
2944                 if (PageAnon(page)) {
2945                         lock_page_cgroup(pc);
2946                         ClearPageCgroupMigration(pc);
2947                         unlock_page_cgroup(pc);
2948                         /*
2949                          * The old page may be fully unmapped while we kept it.
2950                          */
2951                         mem_cgroup_uncharge_page(page);
2952                 }
2953                 return -ENOMEM;
2954         }
2955         /*
2956          * We charge new page before it's used/mapped. So, even if unlock_page()
2957          * is called before end_migration, we can catch all events on this new
2958          * page. In the case new page is migrated but not remapped, new page's
2959          * mapcount will be finally 0 and we call uncharge in end_migration().
2960          */
2961         pc = lookup_page_cgroup(newpage);
2962         if (PageAnon(page))
2963                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2964         else if (page_is_file_cache(page))
2965                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2966         else
2967                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2968         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2969         return ret;
2970 }
2971
2972 /* remove redundant charge if migration failed*/
2973 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2974         struct page *oldpage, struct page *newpage, bool migration_ok)
2975 {
2976         struct page *used, *unused;
2977         struct page_cgroup *pc;
2978
2979         if (!mem)
2980                 return;
2981         /* blocks rmdir() */
2982         cgroup_exclude_rmdir(&mem->css);
2983         if (!migration_ok) {
2984                 used = oldpage;
2985                 unused = newpage;
2986         } else {
2987                 used = newpage;
2988                 unused = oldpage;
2989         }
2990         /*
2991          * We disallowed uncharge of pages under migration because mapcount
2992          * of the page goes down to zero, temporarly.
2993          * Clear the flag and check the page should be charged.
2994          */
2995         pc = lookup_page_cgroup(oldpage);
2996         lock_page_cgroup(pc);
2997         ClearPageCgroupMigration(pc);
2998         unlock_page_cgroup(pc);
2999
3000         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3001
3002         /*
3003          * If a page is a file cache, radix-tree replacement is very atomic
3004          * and we can skip this check. When it was an Anon page, its mapcount
3005          * goes down to 0. But because we added MIGRATION flage, it's not
3006          * uncharged yet. There are several case but page->mapcount check
3007          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3008          * check. (see prepare_charge() also)
3009          */
3010         if (PageAnon(used))
3011                 mem_cgroup_uncharge_page(used);
3012         /*
3013          * At migration, we may charge account against cgroup which has no
3014          * tasks.
3015          * So, rmdir()->pre_destroy() can be called while we do this charge.
3016          * In that case, we need to call pre_destroy() again. check it here.
3017          */
3018         cgroup_release_and_wakeup_rmdir(&mem->css);
3019 }
3020
3021 /*
3022  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3023  * Calling hierarchical_reclaim is not enough because we should update
3024  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3025  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3026  * not from the memcg which this page would be charged to.
3027  * try_charge_swapin does all of these works properly.
3028  */
3029 int mem_cgroup_shmem_charge_fallback(struct page *page,
3030                             struct mm_struct *mm,
3031                             gfp_t gfp_mask)
3032 {
3033         struct mem_cgroup *mem = NULL;
3034         int ret;
3035
3036         if (mem_cgroup_disabled())
3037                 return 0;
3038
3039         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3040         if (!ret)
3041                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3042
3043         return ret;
3044 }
3045
3046 static DEFINE_MUTEX(set_limit_mutex);
3047
3048 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3049                                 unsigned long long val)
3050 {
3051         int retry_count;
3052         u64 memswlimit, memlimit;
3053         int ret = 0;
3054         int children = mem_cgroup_count_children(memcg);
3055         u64 curusage, oldusage;
3056         int enlarge;
3057
3058         /*
3059          * For keeping hierarchical_reclaim simple, how long we should retry
3060          * is depends on callers. We set our retry-count to be function
3061          * of # of children which we should visit in this loop.
3062          */
3063         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3064
3065         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3066
3067         enlarge = 0;
3068         while (retry_count) {
3069                 if (signal_pending(current)) {
3070                         ret = -EINTR;
3071                         break;
3072                 }
3073                 /*
3074                  * Rather than hide all in some function, I do this in
3075                  * open coded manner. You see what this really does.
3076                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3077                  */
3078                 mutex_lock(&set_limit_mutex);
3079                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3080                 if (memswlimit < val) {
3081                         ret = -EINVAL;
3082                         mutex_unlock(&set_limit_mutex);
3083                         break;
3084                 }
3085
3086                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3087                 if (memlimit < val)
3088                         enlarge = 1;
3089
3090                 ret = res_counter_set_limit(&memcg->res, val);
3091                 if (!ret) {
3092                         if (memswlimit == val)
3093                                 memcg->memsw_is_minimum = true;
3094                         else
3095                                 memcg->memsw_is_minimum = false;
3096                 }
3097                 mutex_unlock(&set_limit_mutex);
3098
3099                 if (!ret)
3100                         break;
3101
3102                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3103                                                 MEM_CGROUP_RECLAIM_SHRINK);
3104                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3105                 /* Usage is reduced ? */
3106                 if (curusage >= oldusage)
3107                         retry_count--;
3108                 else
3109                         oldusage = curusage;
3110         }
3111         if (!ret && enlarge)
3112                 memcg_oom_recover(memcg);
3113
3114         return ret;
3115 }
3116
3117 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3118                                         unsigned long long val)
3119 {
3120         int retry_count;
3121         u64 memlimit, memswlimit, oldusage, curusage;
3122         int children = mem_cgroup_count_children(memcg);
3123         int ret = -EBUSY;
3124         int enlarge = 0;
3125
3126         /* see mem_cgroup_resize_res_limit */
3127         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3128         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3129         while (retry_count) {
3130                 if (signal_pending(current)) {
3131                         ret = -EINTR;
3132                         break;
3133                 }
3134                 /*
3135                  * Rather than hide all in some function, I do this in
3136                  * open coded manner. You see what this really does.
3137                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3138                  */
3139                 mutex_lock(&set_limit_mutex);
3140                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3141                 if (memlimit > val) {
3142                         ret = -EINVAL;
3143                         mutex_unlock(&set_limit_mutex);
3144                         break;
3145                 }
3146                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3147                 if (memswlimit < val)
3148                         enlarge = 1;
3149                 ret = res_counter_set_limit(&memcg->memsw, val);
3150                 if (!ret) {
3151                         if (memlimit == val)
3152                                 memcg->memsw_is_minimum = true;
3153                         else
3154                                 memcg->memsw_is_minimum = false;
3155                 }
3156                 mutex_unlock(&set_limit_mutex);
3157
3158                 if (!ret)
3159                         break;
3160
3161                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3162                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3163                                                 MEM_CGROUP_RECLAIM_SHRINK);
3164                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3165                 /* Usage is reduced ? */
3166                 if (curusage >= oldusage)
3167                         retry_count--;
3168                 else
3169                         oldusage = curusage;
3170         }
3171         if (!ret && enlarge)
3172                 memcg_oom_recover(memcg);
3173         return ret;
3174 }
3175
3176 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3177                                             gfp_t gfp_mask)
3178 {
3179         unsigned long nr_reclaimed = 0;
3180         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3181         unsigned long reclaimed;
3182         int loop = 0;
3183         struct mem_cgroup_tree_per_zone *mctz;
3184         unsigned long long excess;
3185
3186         if (order > 0)
3187                 return 0;
3188
3189         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3190         /*
3191          * This loop can run a while, specially if mem_cgroup's continuously
3192          * keep exceeding their soft limit and putting the system under
3193          * pressure
3194          */
3195         do {
3196                 if (next_mz)
3197                         mz = next_mz;
3198                 else
3199                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3200                 if (!mz)
3201                         break;
3202
3203                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3204                                                 gfp_mask,
3205                                                 MEM_CGROUP_RECLAIM_SOFT);
3206                 nr_reclaimed += reclaimed;
3207                 spin_lock(&mctz->lock);
3208
3209                 /*
3210                  * If we failed to reclaim anything from this memory cgroup
3211                  * it is time to move on to the next cgroup
3212                  */
3213                 next_mz = NULL;
3214                 if (!reclaimed) {
3215                         do {
3216                                 /*
3217                                  * Loop until we find yet another one.
3218                                  *
3219                                  * By the time we get the soft_limit lock
3220                                  * again, someone might have aded the
3221                                  * group back on the RB tree. Iterate to
3222                                  * make sure we get a different mem.
3223                                  * mem_cgroup_largest_soft_limit_node returns
3224                                  * NULL if no other cgroup is present on
3225                                  * the tree
3226                                  */
3227                                 next_mz =
3228                                 __mem_cgroup_largest_soft_limit_node(mctz);
3229                                 if (next_mz == mz) {
3230                                         css_put(&next_mz->mem->css);
3231                                         next_mz = NULL;
3232                                 } else /* next_mz == NULL or other memcg */
3233                                         break;
3234                         } while (1);
3235                 }
3236                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3237                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3238                 /*
3239                  * One school of thought says that we should not add
3240                  * back the node to the tree if reclaim returns 0.
3241                  * But our reclaim could return 0, simply because due
3242                  * to priority we are exposing a smaller subset of
3243                  * memory to reclaim from. Consider this as a longer
3244                  * term TODO.
3245                  */
3246                 /* If excess == 0, no tree ops */
3247                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3248                 spin_unlock(&mctz->lock);
3249                 css_put(&mz->mem->css);
3250                 loop++;
3251                 /*
3252                  * Could not reclaim anything and there are no more
3253                  * mem cgroups to try or we seem to be looping without
3254                  * reclaiming anything.
3255                  */
3256                 if (!nr_reclaimed &&
3257                         (next_mz == NULL ||
3258                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3259                         break;
3260         } while (!nr_reclaimed);
3261         if (next_mz)
3262                 css_put(&next_mz->mem->css);
3263         return nr_reclaimed;
3264 }
3265
3266 /*
3267  * This routine traverse page_cgroup in given list and drop them all.
3268  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3269  */
3270 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3271                                 int node, int zid, enum lru_list lru)
3272 {
3273         struct zone *zone;
3274         struct mem_cgroup_per_zone *mz;
3275         struct page_cgroup *pc, *busy;
3276         unsigned long flags, loop;
3277         struct list_head *list;
3278         int ret = 0;
3279
3280         zone = &NODE_DATA(node)->node_zones[zid];
3281         mz = mem_cgroup_zoneinfo(mem, node, zid);
3282         list = &mz->lists[lru];
3283
3284         loop = MEM_CGROUP_ZSTAT(mz, lru);
3285         /* give some margin against EBUSY etc...*/
3286         loop += 256;
3287         busy = NULL;
3288         while (loop--) {
3289                 ret = 0;
3290                 spin_lock_irqsave(&zone->lru_lock, flags);
3291                 if (list_empty(list)) {
3292                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3293                         break;
3294                 }
3295                 pc = list_entry(list->prev, struct page_cgroup, lru);
3296                 if (busy == pc) {
3297                         list_move(&pc->lru, list);
3298                         busy = NULL;
3299                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3300                         continue;
3301                 }
3302                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3303
3304                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3305                 if (ret == -ENOMEM)
3306                         break;
3307
3308                 if (ret == -EBUSY || ret == -EINVAL) {
3309                         /* found lock contention or "pc" is obsolete. */
3310                         busy = pc;
3311                         cond_resched();
3312                 } else
3313                         busy = NULL;
3314         }
3315
3316         if (!ret && !list_empty(list))
3317                 return -EBUSY;
3318         return ret;
3319 }
3320
3321 /*
3322  * make mem_cgroup's charge to be 0 if there is no task.
3323  * This enables deleting this mem_cgroup.
3324  */
3325 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3326 {
3327         int ret;
3328         int node, zid, shrink;
3329         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3330         struct cgroup *cgrp = mem->css.cgroup;
3331
3332         css_get(&mem->css);
3333
3334         shrink = 0;
3335         /* should free all ? */
3336         if (free_all)
3337                 goto try_to_free;
3338 move_account:
3339         do {
3340                 ret = -EBUSY;
3341                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3342                         goto out;
3343                 ret = -EINTR;
3344                 if (signal_pending(current))
3345                         goto out;
3346                 /* This is for making all *used* pages to be on LRU. */
3347                 lru_add_drain_all();
3348                 drain_all_stock_sync();
3349                 ret = 0;
3350                 mem_cgroup_start_move(mem);
3351                 for_each_node_state(node, N_HIGH_MEMORY) {
3352                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3353                                 enum lru_list l;
3354                                 for_each_lru(l) {
3355                                         ret = mem_cgroup_force_empty_list(mem,
3356                                                         node, zid, l);
3357                                         if (ret)
3358                                                 break;
3359                                 }
3360                         }
3361                         if (ret)
3362                                 break;
3363                 }
3364                 mem_cgroup_end_move(mem);
3365                 memcg_oom_recover(mem);
3366                 /* it seems parent cgroup doesn't have enough mem */
3367                 if (ret == -ENOMEM)
3368                         goto try_to_free;
3369                 cond_resched();
3370         /* "ret" should also be checked to ensure all lists are empty. */
3371         } while (mem->res.usage > 0 || ret);
3372 out:
3373         css_put(&mem->css);
3374         return ret;
3375
3376 try_to_free:
3377         /* returns EBUSY if there is a task or if we come here twice. */
3378         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3379                 ret = -EBUSY;
3380                 goto out;
3381         }
3382         /* we call try-to-free pages for make this cgroup empty */
3383         lru_add_drain_all();
3384         /* try to free all pages in this cgroup */
3385         shrink = 1;
3386         while (nr_retries && mem->res.usage > 0) {
3387                 int progress;
3388
3389                 if (signal_pending(current)) {
3390                         ret = -EINTR;
3391                         goto out;
3392                 }
3393                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3394                                                 false, get_swappiness(mem));
3395                 if (!progress) {
3396                         nr_retries--;
3397                         /* maybe some writeback is necessary */
3398                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3399                 }
3400
3401         }
3402         lru_add_drain();
3403         /* try move_account...there may be some *locked* pages. */
3404         goto move_account;
3405 }
3406
3407 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3408 {
3409         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3410 }
3411
3412
3413 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3414 {
3415         return mem_cgroup_from_cont(cont)->use_hierarchy;
3416 }
3417
3418 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3419                                         u64 val)
3420 {
3421         int retval = 0;
3422         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3423         struct cgroup *parent = cont->parent;
3424         struct mem_cgroup *parent_mem = NULL;
3425
3426         if (parent)
3427                 parent_mem = mem_cgroup_from_cont(parent);
3428
3429         cgroup_lock();
3430         /*
3431          * If parent's use_hierarchy is set, we can't make any modifications
3432          * in the child subtrees. If it is unset, then the change can
3433          * occur, provided the current cgroup has no children.
3434          *
3435          * For the root cgroup, parent_mem is NULL, we allow value to be
3436          * set if there are no children.
3437          */
3438         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3439                                 (val == 1 || val == 0)) {
3440                 if (list_empty(&cont->children))
3441                         mem->use_hierarchy = val;
3442                 else
3443                         retval = -EBUSY;
3444         } else
3445                 retval = -EINVAL;
3446         cgroup_unlock();
3447
3448         return retval;
3449 }
3450
3451
3452 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3453                                 enum mem_cgroup_stat_index idx)
3454 {
3455         struct mem_cgroup *iter;
3456         s64 val = 0;
3457
3458         /* each per cpu's value can be minus.Then, use s64 */
3459         for_each_mem_cgroup_tree(iter, mem)
3460                 val += mem_cgroup_read_stat(iter, idx);
3461
3462         if (val < 0) /* race ? */
3463                 val = 0;
3464         return val;
3465 }
3466
3467 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3468 {
3469         u64 val;
3470
3471         if (!mem_cgroup_is_root(mem)) {
3472                 if (!swap)
3473                         return res_counter_read_u64(&mem->res, RES_USAGE);
3474                 else
3475                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3476         }
3477
3478         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3479         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3480
3481         if (swap)
3482                 val += mem_cgroup_get_recursive_idx_stat(mem,
3483                                 MEM_CGROUP_STAT_SWAPOUT);
3484
3485         return val << PAGE_SHIFT;
3486 }
3487
3488 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3489 {
3490         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3491         u64 val;
3492         int type, name;
3493
3494         type = MEMFILE_TYPE(cft->private);
3495         name = MEMFILE_ATTR(cft->private);
3496         switch (type) {
3497         case _MEM:
3498                 if (name == RES_USAGE)
3499                         val = mem_cgroup_usage(mem, false);
3500                 else
3501                         val = res_counter_read_u64(&mem->res, name);
3502                 break;
3503         case _MEMSWAP:
3504                 if (name == RES_USAGE)
3505                         val = mem_cgroup_usage(mem, true);
3506                 else
3507                         val = res_counter_read_u64(&mem->memsw, name);
3508                 break;
3509         default:
3510                 BUG();
3511                 break;
3512         }
3513         return val;
3514 }
3515 /*
3516  * The user of this function is...
3517  * RES_LIMIT.
3518  */
3519 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3520                             const char *buffer)
3521 {
3522         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3523         int type, name;
3524         unsigned long long val;
3525         int ret;
3526
3527         type = MEMFILE_TYPE(cft->private);
3528         name = MEMFILE_ATTR(cft->private);
3529         switch (name) {
3530         case RES_LIMIT:
3531                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3532                         ret = -EINVAL;
3533                         break;
3534                 }
3535                 /* This function does all necessary parse...reuse it */
3536                 ret = res_counter_memparse_write_strategy(buffer, &val);
3537                 if (ret)
3538                         break;
3539                 if (type == _MEM)
3540                         ret = mem_cgroup_resize_limit(memcg, val);
3541                 else
3542                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3543                 break;
3544         case RES_SOFT_LIMIT:
3545                 ret = res_counter_memparse_write_strategy(buffer, &val);
3546                 if (ret)
3547                         break;
3548                 /*
3549                  * For memsw, soft limits are hard to implement in terms
3550                  * of semantics, for now, we support soft limits for
3551                  * control without swap
3552                  */
3553                 if (type == _MEM)
3554                         ret = res_counter_set_soft_limit(&memcg->res, val);
3555                 else
3556                         ret = -EINVAL;
3557                 break;
3558         default:
3559                 ret = -EINVAL; /* should be BUG() ? */
3560                 break;
3561         }
3562         return ret;
3563 }
3564
3565 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3566                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3567 {
3568         struct cgroup *cgroup;
3569         unsigned long long min_limit, min_memsw_limit, tmp;
3570
3571         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3572         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3573         cgroup = memcg->css.cgroup;
3574         if (!memcg->use_hierarchy)
3575                 goto out;
3576
3577         while (cgroup->parent) {
3578                 cgroup = cgroup->parent;
3579                 memcg = mem_cgroup_from_cont(cgroup);
3580                 if (!memcg->use_hierarchy)
3581                         break;
3582                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3583                 min_limit = min(min_limit, tmp);
3584                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3585                 min_memsw_limit = min(min_memsw_limit, tmp);
3586         }
3587 out:
3588         *mem_limit = min_limit;
3589         *memsw_limit = min_memsw_limit;
3590         return;
3591 }
3592
3593 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3594 {
3595         struct mem_cgroup *mem;
3596         int type, name;
3597
3598         mem = mem_cgroup_from_cont(cont);
3599         type = MEMFILE_TYPE(event);
3600         name = MEMFILE_ATTR(event);
3601         switch (name) {
3602         case RES_MAX_USAGE:
3603                 if (type == _MEM)
3604                         res_counter_reset_max(&mem->res);
3605                 else
3606                         res_counter_reset_max(&mem->memsw);
3607                 break;
3608         case RES_FAILCNT:
3609                 if (type == _MEM)
3610                         res_counter_reset_failcnt(&mem->res);
3611                 else
3612                         res_counter_reset_failcnt(&mem->memsw);
3613                 break;
3614         }
3615
3616         return 0;
3617 }
3618
3619 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3620                                         struct cftype *cft)
3621 {
3622         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3623 }
3624
3625 #ifdef CONFIG_MMU
3626 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3627                                         struct cftype *cft, u64 val)
3628 {
3629         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3630
3631         if (val >= (1 << NR_MOVE_TYPE))
3632                 return -EINVAL;
3633         /*
3634          * We check this value several times in both in can_attach() and
3635          * attach(), so we need cgroup lock to prevent this value from being
3636          * inconsistent.
3637          */
3638         cgroup_lock();
3639         mem->move_charge_at_immigrate = val;
3640         cgroup_unlock();
3641
3642         return 0;
3643 }
3644 #else
3645 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3646                                         struct cftype *cft, u64 val)
3647 {
3648         return -ENOSYS;
3649 }
3650 #endif
3651
3652
3653 /* For read statistics */
3654 enum {
3655         MCS_CACHE,
3656         MCS_RSS,
3657         MCS_FILE_MAPPED,
3658         MCS_PGPGIN,
3659         MCS_PGPGOUT,
3660         MCS_SWAP,
3661         MCS_INACTIVE_ANON,
3662         MCS_ACTIVE_ANON,
3663         MCS_INACTIVE_FILE,
3664         MCS_ACTIVE_FILE,
3665         MCS_UNEVICTABLE,
3666         NR_MCS_STAT,
3667 };
3668
3669 struct mcs_total_stat {
3670         s64 stat[NR_MCS_STAT];
3671 };
3672
3673 struct {
3674         char *local_name;
3675         char *total_name;
3676 } memcg_stat_strings[NR_MCS_STAT] = {
3677         {"cache", "total_cache"},
3678         {"rss", "total_rss"},
3679         {"mapped_file", "total_mapped_file"},
3680         {"pgpgin", "total_pgpgin"},
3681         {"pgpgout", "total_pgpgout"},
3682         {"swap", "total_swap"},
3683         {"inactive_anon", "total_inactive_anon"},
3684         {"active_anon", "total_active_anon"},
3685         {"inactive_file", "total_inactive_file"},
3686         {"active_file", "total_active_file"},
3687         {"unevictable", "total_unevictable"}
3688 };
3689
3690
3691 static void
3692 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3693 {
3694         s64 val;
3695
3696         /* per cpu stat */
3697         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3698         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3699         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3700         s->stat[MCS_RSS] += val * PAGE_SIZE;
3701         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3702         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3703         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3704         s->stat[MCS_PGPGIN] += val;
3705         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3706         s->stat[MCS_PGPGOUT] += val;
3707         if (do_swap_account) {
3708                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3709                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3710         }
3711
3712         /* per zone stat */
3713         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3714         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3715         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3716         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3717         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3718         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3719         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3720         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3721         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3722         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3723 }
3724
3725 static void
3726 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3727 {
3728         struct mem_cgroup *iter;
3729
3730         for_each_mem_cgroup_tree(iter, mem)
3731                 mem_cgroup_get_local_stat(iter, s);
3732 }
3733
3734 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3735                                  struct cgroup_map_cb *cb)
3736 {
3737         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3738         struct mcs_total_stat mystat;
3739         int i;
3740
3741         memset(&mystat, 0, sizeof(mystat));
3742         mem_cgroup_get_local_stat(mem_cont, &mystat);
3743
3744         for (i = 0; i < NR_MCS_STAT; i++) {
3745                 if (i == MCS_SWAP && !do_swap_account)
3746                         continue;
3747                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3748         }
3749
3750         /* Hierarchical information */
3751         {
3752                 unsigned long long limit, memsw_limit;
3753                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3754                 cb->fill(cb, "hierarchical_memory_limit", limit);
3755                 if (do_swap_account)
3756                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3757         }
3758
3759         memset(&mystat, 0, sizeof(mystat));
3760         mem_cgroup_get_total_stat(mem_cont, &mystat);
3761         for (i = 0; i < NR_MCS_STAT; i++) {
3762                 if (i == MCS_SWAP && !do_swap_account)
3763                         continue;
3764                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3765         }
3766
3767 #ifdef CONFIG_DEBUG_VM
3768         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3769
3770         {
3771                 int nid, zid;
3772                 struct mem_cgroup_per_zone *mz;
3773                 unsigned long recent_rotated[2] = {0, 0};
3774                 unsigned long recent_scanned[2] = {0, 0};
3775
3776                 for_each_online_node(nid)
3777                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3778                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3779
3780                                 recent_rotated[0] +=
3781                                         mz->reclaim_stat.recent_rotated[0];
3782                                 recent_rotated[1] +=
3783                                         mz->reclaim_stat.recent_rotated[1];
3784                                 recent_scanned[0] +=
3785                                         mz->reclaim_stat.recent_scanned[0];
3786                                 recent_scanned[1] +=
3787                                         mz->reclaim_stat.recent_scanned[1];
3788                         }
3789                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3790                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3791                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3792                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3793         }
3794 #endif
3795
3796         return 0;
3797 }
3798
3799 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3800 {
3801         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3802
3803         return get_swappiness(memcg);
3804 }
3805
3806 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3807                                        u64 val)
3808 {
3809         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3810         struct mem_cgroup *parent;
3811
3812         if (val > 100)
3813                 return -EINVAL;
3814
3815         if (cgrp->parent == NULL)
3816                 return -EINVAL;
3817
3818         parent = mem_cgroup_from_cont(cgrp->parent);
3819
3820         cgroup_lock();
3821
3822         /* If under hierarchy, only empty-root can set this value */
3823         if ((parent->use_hierarchy) ||
3824             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3825                 cgroup_unlock();
3826                 return -EINVAL;
3827         }
3828
3829         spin_lock(&memcg->reclaim_param_lock);
3830         memcg->swappiness = val;
3831         spin_unlock(&memcg->reclaim_param_lock);
3832
3833         cgroup_unlock();
3834
3835         return 0;
3836 }
3837
3838 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3839 {
3840         struct mem_cgroup_threshold_ary *t;
3841         u64 usage;
3842         int i;
3843
3844         rcu_read_lock();
3845         if (!swap)
3846                 t = rcu_dereference(memcg->thresholds.primary);
3847         else
3848                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3849
3850         if (!t)
3851                 goto unlock;
3852
3853         usage = mem_cgroup_usage(memcg, swap);
3854
3855         /*
3856          * current_threshold points to threshold just below usage.
3857          * If it's not true, a threshold was crossed after last
3858          * call of __mem_cgroup_threshold().
3859          */
3860         i = t->current_threshold;
3861
3862         /*
3863          * Iterate backward over array of thresholds starting from
3864          * current_threshold and check if a threshold is crossed.
3865          * If none of thresholds below usage is crossed, we read
3866          * only one element of the array here.
3867          */
3868         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3869                 eventfd_signal(t->entries[i].eventfd, 1);
3870
3871         /* i = current_threshold + 1 */
3872         i++;
3873
3874         /*
3875          * Iterate forward over array of thresholds starting from
3876          * current_threshold+1 and check if a threshold is crossed.
3877          * If none of thresholds above usage is crossed, we read
3878          * only one element of the array here.
3879          */
3880         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3881                 eventfd_signal(t->entries[i].eventfd, 1);
3882
3883         /* Update current_threshold */
3884         t->current_threshold = i - 1;
3885 unlock:
3886         rcu_read_unlock();
3887 }
3888
3889 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3890 {
3891         while (memcg) {
3892                 __mem_cgroup_threshold(memcg, false);
3893                 if (do_swap_account)
3894                         __mem_cgroup_threshold(memcg, true);
3895
3896                 memcg = parent_mem_cgroup(memcg);
3897         }
3898 }
3899
3900 static int compare_thresholds(const void *a, const void *b)
3901 {
3902         const struct mem_cgroup_threshold *_a = a;
3903         const struct mem_cgroup_threshold *_b = b;
3904
3905         return _a->threshold - _b->threshold;
3906 }
3907
3908 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3909 {
3910         struct mem_cgroup_eventfd_list *ev;
3911
3912         list_for_each_entry(ev, &mem->oom_notify, list)
3913                 eventfd_signal(ev->eventfd, 1);
3914         return 0;
3915 }
3916
3917 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3918 {
3919         struct mem_cgroup *iter;
3920
3921         for_each_mem_cgroup_tree(iter, mem)
3922                 mem_cgroup_oom_notify_cb(iter);
3923 }
3924
3925 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3926         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3927 {
3928         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3929         struct mem_cgroup_thresholds *thresholds;
3930         struct mem_cgroup_threshold_ary *new;
3931         int type = MEMFILE_TYPE(cft->private);
3932         u64 threshold, usage;
3933         int i, size, ret;
3934
3935         ret = res_counter_memparse_write_strategy(args, &threshold);
3936         if (ret)
3937                 return ret;
3938
3939         mutex_lock(&memcg->thresholds_lock);
3940
3941         if (type == _MEM)
3942                 thresholds = &memcg->thresholds;
3943         else if (type == _MEMSWAP)
3944                 thresholds = &memcg->memsw_thresholds;
3945         else
3946                 BUG();
3947
3948         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3949
3950         /* Check if a threshold crossed before adding a new one */
3951         if (thresholds->primary)
3952                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3953
3954         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3955
3956         /* Allocate memory for new array of thresholds */
3957         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3958                         GFP_KERNEL);
3959         if (!new) {
3960                 ret = -ENOMEM;
3961                 goto unlock;
3962         }
3963         new->size = size;
3964
3965         /* Copy thresholds (if any) to new array */
3966         if (thresholds->primary) {
3967                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3968                                 sizeof(struct mem_cgroup_threshold));
3969         }
3970
3971         /* Add new threshold */
3972         new->entries[size - 1].eventfd = eventfd;
3973         new->entries[size - 1].threshold = threshold;
3974
3975         /* Sort thresholds. Registering of new threshold isn't time-critical */
3976         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3977                         compare_thresholds, NULL);
3978
3979         /* Find current threshold */
3980         new->current_threshold = -1;
3981         for (i = 0; i < size; i++) {
3982                 if (new->entries[i].threshold < usage) {
3983                         /*
3984                          * new->current_threshold will not be used until
3985                          * rcu_assign_pointer(), so it's safe to increment
3986                          * it here.
3987                          */
3988                         ++new->current_threshold;
3989                 }
3990         }
3991
3992         /* Free old spare buffer and save old primary buffer as spare */
3993         kfree(thresholds->spare);
3994         thresholds->spare = thresholds->primary;
3995
3996         rcu_assign_pointer(thresholds->primary, new);
3997
3998         /* To be sure that nobody uses thresholds */
3999         synchronize_rcu();
4000
4001 unlock:
4002         mutex_unlock(&memcg->thresholds_lock);
4003
4004         return ret;
4005 }
4006
4007 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4008         struct cftype *cft, struct eventfd_ctx *eventfd)
4009 {
4010         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4011         struct mem_cgroup_thresholds *thresholds;
4012         struct mem_cgroup_threshold_ary *new;
4013         int type = MEMFILE_TYPE(cft->private);
4014         u64 usage;
4015         int i, j, size;
4016
4017         mutex_lock(&memcg->thresholds_lock);
4018         if (type == _MEM)
4019                 thresholds = &memcg->thresholds;
4020         else if (type == _MEMSWAP)
4021                 thresholds = &memcg->memsw_thresholds;
4022         else
4023                 BUG();
4024
4025         /*
4026          * Something went wrong if we trying to unregister a threshold
4027          * if we don't have thresholds
4028          */
4029         BUG_ON(!thresholds);
4030
4031         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4032
4033         /* Check if a threshold crossed before removing */
4034         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4035
4036         /* Calculate new number of threshold */
4037         size = 0;
4038         for (i = 0; i < thresholds->primary->size; i++) {
4039                 if (thresholds->primary->entries[i].eventfd != eventfd)
4040                         size++;
4041         }
4042
4043         new = thresholds->spare;
4044
4045         /* Set thresholds array to NULL if we don't have thresholds */
4046         if (!size) {
4047                 kfree(new);
4048                 new = NULL;
4049                 goto swap_buffers;
4050         }
4051
4052         new->size = size;
4053
4054         /* Copy thresholds and find current threshold */
4055         new->current_threshold = -1;
4056         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4057                 if (thresholds->primary->entries[i].eventfd == eventfd)
4058                         continue;
4059
4060                 new->entries[j] = thresholds->primary->entries[i];
4061                 if (new->entries[j].threshold < usage) {
4062                         /*
4063                          * new->current_threshold will not be used
4064                          * until rcu_assign_pointer(), so it's safe to increment
4065                          * it here.
4066                          */
4067                         ++new->current_threshold;
4068                 }
4069                 j++;
4070         }
4071
4072 swap_buffers:
4073         /* Swap primary and spare array */
4074         thresholds->spare = thresholds->primary;
4075         rcu_assign_pointer(thresholds->primary, new);
4076
4077         /* To be sure that nobody uses thresholds */
4078         synchronize_rcu();
4079
4080         mutex_unlock(&memcg->thresholds_lock);
4081 }
4082
4083 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4084         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4085 {
4086         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4087         struct mem_cgroup_eventfd_list *event;
4088         int type = MEMFILE_TYPE(cft->private);
4089
4090         BUG_ON(type != _OOM_TYPE);
4091         event = kmalloc(sizeof(*event), GFP_KERNEL);
4092         if (!event)
4093                 return -ENOMEM;
4094
4095         mutex_lock(&memcg_oom_mutex);
4096
4097         event->eventfd = eventfd;
4098         list_add(&event->list, &memcg->oom_notify);
4099
4100         /* already in OOM ? */
4101         if (atomic_read(&memcg->oom_lock))
4102                 eventfd_signal(eventfd, 1);
4103         mutex_unlock(&memcg_oom_mutex);
4104
4105         return 0;
4106 }
4107
4108 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4109         struct cftype *cft, struct eventfd_ctx *eventfd)
4110 {
4111         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4112         struct mem_cgroup_eventfd_list *ev, *tmp;
4113         int type = MEMFILE_TYPE(cft->private);
4114
4115         BUG_ON(type != _OOM_TYPE);
4116
4117         mutex_lock(&memcg_oom_mutex);
4118
4119         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4120                 if (ev->eventfd == eventfd) {
4121                         list_del(&ev->list);
4122                         kfree(ev);
4123                 }
4124         }
4125
4126         mutex_unlock(&memcg_oom_mutex);
4127 }
4128
4129 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4130         struct cftype *cft,  struct cgroup_map_cb *cb)
4131 {
4132         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4133
4134         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4135
4136         if (atomic_read(&mem->oom_lock))
4137                 cb->fill(cb, "under_oom", 1);
4138         else
4139                 cb->fill(cb, "under_oom", 0);
4140         return 0;
4141 }
4142
4143 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4144         struct cftype *cft, u64 val)
4145 {
4146         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4147         struct mem_cgroup *parent;
4148
4149         /* cannot set to root cgroup and only 0 and 1 are allowed */
4150         if (!cgrp->parent || !((val == 0) || (val == 1)))
4151                 return -EINVAL;
4152
4153         parent = mem_cgroup_from_cont(cgrp->parent);
4154
4155         cgroup_lock();
4156         /* oom-kill-disable is a flag for subhierarchy. */
4157         if ((parent->use_hierarchy) ||
4158             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4159                 cgroup_unlock();
4160                 return -EINVAL;
4161         }
4162         mem->oom_kill_disable = val;
4163         if (!val)
4164                 memcg_oom_recover(mem);
4165         cgroup_unlock();
4166         return 0;
4167 }
4168
4169 static struct cftype mem_cgroup_files[] = {
4170         {
4171                 .name = "usage_in_bytes",
4172                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4173                 .read_u64 = mem_cgroup_read,
4174                 .register_event = mem_cgroup_usage_register_event,
4175                 .unregister_event = mem_cgroup_usage_unregister_event,
4176         },
4177         {
4178                 .name = "max_usage_in_bytes",
4179                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4180                 .trigger = mem_cgroup_reset,
4181                 .read_u64 = mem_cgroup_read,
4182         },
4183         {
4184                 .name = "limit_in_bytes",
4185                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4186                 .write_string = mem_cgroup_write,
4187                 .read_u64 = mem_cgroup_read,
4188         },
4189         {
4190                 .name = "soft_limit_in_bytes",
4191                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4192                 .write_string = mem_cgroup_write,
4193                 .read_u64 = mem_cgroup_read,
4194         },
4195         {
4196                 .name = "failcnt",
4197                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4198                 .trigger = mem_cgroup_reset,
4199                 .read_u64 = mem_cgroup_read,
4200         },
4201         {
4202                 .name = "stat",
4203                 .read_map = mem_control_stat_show,
4204         },
4205         {
4206                 .name = "force_empty",
4207                 .trigger = mem_cgroup_force_empty_write,
4208         },
4209         {
4210                 .name = "use_hierarchy",
4211                 .write_u64 = mem_cgroup_hierarchy_write,
4212                 .read_u64 = mem_cgroup_hierarchy_read,
4213         },
4214         {
4215                 .name = "swappiness",
4216                 .read_u64 = mem_cgroup_swappiness_read,
4217                 .write_u64 = mem_cgroup_swappiness_write,
4218         },
4219         {
4220                 .name = "move_charge_at_immigrate",
4221                 .read_u64 = mem_cgroup_move_charge_read,
4222                 .write_u64 = mem_cgroup_move_charge_write,
4223         },
4224         {
4225                 .name = "oom_control",
4226                 .read_map = mem_cgroup_oom_control_read,
4227                 .write_u64 = mem_cgroup_oom_control_write,
4228                 .register_event = mem_cgroup_oom_register_event,
4229                 .unregister_event = mem_cgroup_oom_unregister_event,
4230                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4231         },
4232 };
4233
4234 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4235 static struct cftype memsw_cgroup_files[] = {
4236         {
4237                 .name = "memsw.usage_in_bytes",
4238                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4239                 .read_u64 = mem_cgroup_read,
4240                 .register_event = mem_cgroup_usage_register_event,
4241                 .unregister_event = mem_cgroup_usage_unregister_event,
4242         },
4243         {
4244                 .name = "memsw.max_usage_in_bytes",
4245                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4246                 .trigger = mem_cgroup_reset,
4247                 .read_u64 = mem_cgroup_read,
4248         },
4249         {
4250                 .name = "memsw.limit_in_bytes",
4251                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4252                 .write_string = mem_cgroup_write,
4253                 .read_u64 = mem_cgroup_read,
4254         },
4255         {
4256                 .name = "memsw.failcnt",
4257                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4258                 .trigger = mem_cgroup_reset,
4259                 .read_u64 = mem_cgroup_read,
4260         },
4261 };
4262
4263 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4264 {
4265         if (!do_swap_account)
4266                 return 0;
4267         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4268                                 ARRAY_SIZE(memsw_cgroup_files));
4269 };
4270 #else
4271 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4272 {
4273         return 0;
4274 }
4275 #endif
4276
4277 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4278 {
4279         struct mem_cgroup_per_node *pn;
4280         struct mem_cgroup_per_zone *mz;
4281         enum lru_list l;
4282         int zone, tmp = node;
4283         /*
4284          * This routine is called against possible nodes.
4285          * But it's BUG to call kmalloc() against offline node.
4286          *
4287          * TODO: this routine can waste much memory for nodes which will
4288          *       never be onlined. It's better to use memory hotplug callback
4289          *       function.
4290          */
4291         if (!node_state(node, N_NORMAL_MEMORY))
4292                 tmp = -1;
4293         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4294         if (!pn)
4295                 return 1;
4296
4297         mem->info.nodeinfo[node] = pn;
4298         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4299                 mz = &pn->zoneinfo[zone];
4300                 for_each_lru(l)
4301                         INIT_LIST_HEAD(&mz->lists[l]);
4302                 mz->usage_in_excess = 0;
4303                 mz->on_tree = false;
4304                 mz->mem = mem;
4305         }
4306         return 0;
4307 }
4308
4309 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4310 {
4311         kfree(mem->info.nodeinfo[node]);
4312 }
4313
4314 static struct mem_cgroup *mem_cgroup_alloc(void)
4315 {
4316         struct mem_cgroup *mem;
4317         int size = sizeof(struct mem_cgroup);
4318
4319         /* Can be very big if MAX_NUMNODES is very big */
4320         if (size < PAGE_SIZE)
4321                 mem = kzalloc(size, GFP_KERNEL);
4322         else
4323                 mem = vzalloc(size);
4324
4325         if (!mem)
4326                 return NULL;
4327
4328         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4329         if (!mem->stat)
4330                 goto out_free;
4331         spin_lock_init(&mem->pcp_counter_lock);
4332         return mem;
4333
4334 out_free:
4335         if (size < PAGE_SIZE)
4336                 kfree(mem);
4337         else
4338                 vfree(mem);
4339         return NULL;
4340 }
4341
4342 /*
4343  * At destroying mem_cgroup, references from swap_cgroup can remain.
4344  * (scanning all at force_empty is too costly...)
4345  *
4346  * Instead of clearing all references at force_empty, we remember
4347  * the number of reference from swap_cgroup and free mem_cgroup when
4348  * it goes down to 0.
4349  *
4350  * Removal of cgroup itself succeeds regardless of refs from swap.
4351  */
4352
4353 static void __mem_cgroup_free(struct mem_cgroup *mem)
4354 {
4355         int node;
4356
4357         mem_cgroup_remove_from_trees(mem);
4358         free_css_id(&mem_cgroup_subsys, &mem->css);
4359
4360         for_each_node_state(node, N_POSSIBLE)
4361                 free_mem_cgroup_per_zone_info(mem, node);
4362
4363         free_percpu(mem->stat);
4364         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4365                 kfree(mem);
4366         else
4367                 vfree(mem);
4368 }
4369
4370 static void mem_cgroup_get(struct mem_cgroup *mem)
4371 {
4372         atomic_inc(&mem->refcnt);
4373 }
4374
4375 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4376 {
4377         if (atomic_sub_and_test(count, &mem->refcnt)) {
4378                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4379                 __mem_cgroup_free(mem);
4380                 if (parent)
4381                         mem_cgroup_put(parent);
4382         }
4383 }
4384
4385 static void mem_cgroup_put(struct mem_cgroup *mem)
4386 {
4387         __mem_cgroup_put(mem, 1);
4388 }
4389
4390 /*
4391  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4392  */
4393 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4394 {
4395         if (!mem->res.parent)
4396                 return NULL;
4397         return mem_cgroup_from_res_counter(mem->res.parent, res);
4398 }
4399
4400 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4401 static void __init enable_swap_cgroup(void)
4402 {
4403         if (!mem_cgroup_disabled() && really_do_swap_account)
4404                 do_swap_account = 1;
4405 }
4406 #else
4407 static void __init enable_swap_cgroup(void)
4408 {
4409 }
4410 #endif
4411
4412 static int mem_cgroup_soft_limit_tree_init(void)
4413 {
4414         struct mem_cgroup_tree_per_node *rtpn;
4415         struct mem_cgroup_tree_per_zone *rtpz;
4416         int tmp, node, zone;
4417
4418         for_each_node_state(node, N_POSSIBLE) {
4419                 tmp = node;
4420                 if (!node_state(node, N_NORMAL_MEMORY))
4421                         tmp = -1;
4422                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4423                 if (!rtpn)
4424                         return 1;
4425
4426                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4427
4428                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4429                         rtpz = &rtpn->rb_tree_per_zone[zone];
4430                         rtpz->rb_root = RB_ROOT;
4431                         spin_lock_init(&rtpz->lock);
4432                 }
4433         }
4434         return 0;
4435 }
4436
4437 static struct cgroup_subsys_state * __ref
4438 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4439 {
4440         struct mem_cgroup *mem, *parent;
4441         long error = -ENOMEM;
4442         int node;
4443
4444         mem = mem_cgroup_alloc();
4445         if (!mem)
4446                 return ERR_PTR(error);
4447
4448         for_each_node_state(node, N_POSSIBLE)
4449                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4450                         goto free_out;
4451
4452         /* root ? */
4453         if (cont->parent == NULL) {
4454                 int cpu;
4455                 enable_swap_cgroup();
4456                 parent = NULL;
4457                 root_mem_cgroup = mem;
4458                 if (mem_cgroup_soft_limit_tree_init())
4459                         goto free_out;
4460                 for_each_possible_cpu(cpu) {
4461                         struct memcg_stock_pcp *stock =
4462                                                 &per_cpu(memcg_stock, cpu);
4463                         INIT_WORK(&stock->work, drain_local_stock);
4464                 }
4465                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4466         } else {
4467                 parent = mem_cgroup_from_cont(cont->parent);
4468                 mem->use_hierarchy = parent->use_hierarchy;
4469                 mem->oom_kill_disable = parent->oom_kill_disable;
4470         }
4471
4472         if (parent && parent->use_hierarchy) {
4473                 res_counter_init(&mem->res, &parent->res);
4474                 res_counter_init(&mem->memsw, &parent->memsw);
4475                 /*
4476                  * We increment refcnt of the parent to ensure that we can
4477                  * safely access it on res_counter_charge/uncharge.
4478                  * This refcnt will be decremented when freeing this
4479                  * mem_cgroup(see mem_cgroup_put).
4480                  */
4481                 mem_cgroup_get(parent);
4482         } else {
4483                 res_counter_init(&mem->res, NULL);
4484                 res_counter_init(&mem->memsw, NULL);
4485         }
4486         mem->last_scanned_child = 0;
4487         spin_lock_init(&mem->reclaim_param_lock);
4488         INIT_LIST_HEAD(&mem->oom_notify);
4489
4490         if (parent)
4491                 mem->swappiness = get_swappiness(parent);
4492         atomic_set(&mem->refcnt, 1);
4493         mem->move_charge_at_immigrate = 0;
4494         mutex_init(&mem->thresholds_lock);
4495         return &mem->css;
4496 free_out:
4497         __mem_cgroup_free(mem);
4498         root_mem_cgroup = NULL;
4499         return ERR_PTR(error);
4500 }
4501
4502 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4503                                         struct cgroup *cont)
4504 {
4505         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4506
4507         return mem_cgroup_force_empty(mem, false);
4508 }
4509
4510 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4511                                 struct cgroup *cont)
4512 {
4513         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4514
4515         mem_cgroup_put(mem);
4516 }
4517
4518 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4519                                 struct cgroup *cont)
4520 {
4521         int ret;
4522
4523         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4524                                 ARRAY_SIZE(mem_cgroup_files));
4525
4526         if (!ret)
4527                 ret = register_memsw_files(cont, ss);
4528         return ret;
4529 }
4530
4531 #ifdef CONFIG_MMU
4532 /* Handlers for move charge at task migration. */
4533 #define PRECHARGE_COUNT_AT_ONCE 256
4534 static int mem_cgroup_do_precharge(unsigned long count)
4535 {
4536         int ret = 0;
4537         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4538         struct mem_cgroup *mem = mc.to;
4539
4540         if (mem_cgroup_is_root(mem)) {
4541                 mc.precharge += count;
4542                 /* we don't need css_get for root */
4543                 return ret;
4544         }
4545         /* try to charge at once */
4546         if (count > 1) {
4547                 struct res_counter *dummy;
4548                 /*
4549                  * "mem" cannot be under rmdir() because we've already checked
4550                  * by cgroup_lock_live_cgroup() that it is not removed and we
4551                  * are still under the same cgroup_mutex. So we can postpone
4552                  * css_get().
4553                  */
4554                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4555                         goto one_by_one;
4556                 if (do_swap_account && res_counter_charge(&mem->memsw,
4557                                                 PAGE_SIZE * count, &dummy)) {
4558                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4559                         goto one_by_one;
4560                 }
4561                 mc.precharge += count;
4562                 return ret;
4563         }
4564 one_by_one:
4565         /* fall back to one by one charge */
4566         while (count--) {
4567                 if (signal_pending(current)) {
4568                         ret = -EINTR;
4569                         break;
4570                 }
4571                 if (!batch_count--) {
4572                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4573                         cond_resched();
4574                 }
4575                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4576                                               PAGE_SIZE);
4577                 if (ret || !mem)
4578                         /* mem_cgroup_clear_mc() will do uncharge later */
4579                         return -ENOMEM;
4580                 mc.precharge++;
4581         }
4582         return ret;
4583 }
4584
4585 /**
4586  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4587  * @vma: the vma the pte to be checked belongs
4588  * @addr: the address corresponding to the pte to be checked
4589  * @ptent: the pte to be checked
4590  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4591  *
4592  * Returns
4593  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4594  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4595  *     move charge. if @target is not NULL, the page is stored in target->page
4596  *     with extra refcnt got(Callers should handle it).
4597  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4598  *     target for charge migration. if @target is not NULL, the entry is stored
4599  *     in target->ent.
4600  *
4601  * Called with pte lock held.
4602  */
4603 union mc_target {
4604         struct page     *page;
4605         swp_entry_t     ent;
4606 };
4607
4608 enum mc_target_type {
4609         MC_TARGET_NONE, /* not used */
4610         MC_TARGET_PAGE,
4611         MC_TARGET_SWAP,
4612 };
4613
4614 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4615                                                 unsigned long addr, pte_t ptent)
4616 {
4617         struct page *page = vm_normal_page(vma, addr, ptent);
4618
4619         if (!page || !page_mapped(page))
4620                 return NULL;
4621         if (PageAnon(page)) {
4622                 /* we don't move shared anon */
4623                 if (!move_anon() || page_mapcount(page) > 2)
4624                         return NULL;
4625         } else if (!move_file())
4626                 /* we ignore mapcount for file pages */
4627                 return NULL;
4628         if (!get_page_unless_zero(page))
4629                 return NULL;
4630
4631         return page;
4632 }
4633
4634 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4635                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4636 {
4637         int usage_count;
4638         struct page *page = NULL;
4639         swp_entry_t ent = pte_to_swp_entry(ptent);
4640
4641         if (!move_anon() || non_swap_entry(ent))
4642                 return NULL;
4643         usage_count = mem_cgroup_count_swap_user(ent, &page);
4644         if (usage_count > 1) { /* we don't move shared anon */
4645                 if (page)
4646                         put_page(page);
4647                 return NULL;
4648         }
4649         if (do_swap_account)
4650                 entry->val = ent.val;
4651
4652         return page;
4653 }
4654
4655 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4656                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4657 {
4658         struct page *page = NULL;
4659         struct inode *inode;
4660         struct address_space *mapping;
4661         pgoff_t pgoff;
4662
4663         if (!vma->vm_file) /* anonymous vma */
4664                 return NULL;
4665         if (!move_file())
4666                 return NULL;
4667
4668         inode = vma->vm_file->f_path.dentry->d_inode;
4669         mapping = vma->vm_file->f_mapping;
4670         if (pte_none(ptent))
4671                 pgoff = linear_page_index(vma, addr);
4672         else /* pte_file(ptent) is true */
4673                 pgoff = pte_to_pgoff(ptent);
4674
4675         /* page is moved even if it's not RSS of this task(page-faulted). */
4676         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4677                 page = find_get_page(mapping, pgoff);
4678         } else { /* shmem/tmpfs file. we should take account of swap too. */
4679                 swp_entry_t ent;
4680                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4681                 if (do_swap_account)
4682                         entry->val = ent.val;
4683         }
4684
4685         return page;
4686 }
4687
4688 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4689                 unsigned long addr, pte_t ptent, union mc_target *target)
4690 {
4691         struct page *page = NULL;
4692         struct page_cgroup *pc;
4693         int ret = 0;
4694         swp_entry_t ent = { .val = 0 };
4695
4696         if (pte_present(ptent))
4697                 page = mc_handle_present_pte(vma, addr, ptent);
4698         else if (is_swap_pte(ptent))
4699                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4700         else if (pte_none(ptent) || pte_file(ptent))
4701                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4702
4703         if (!page && !ent.val)
4704                 return 0;
4705         if (page) {
4706                 pc = lookup_page_cgroup(page);
4707                 /*
4708                  * Do only loose check w/o page_cgroup lock.
4709                  * mem_cgroup_move_account() checks the pc is valid or not under
4710                  * the lock.
4711                  */
4712                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4713                         ret = MC_TARGET_PAGE;
4714                         if (target)
4715                                 target->page = page;
4716                 }
4717                 if (!ret || !target)
4718                         put_page(page);
4719         }
4720         /* There is a swap entry and a page doesn't exist or isn't charged */
4721         if (ent.val && !ret &&
4722                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4723                 ret = MC_TARGET_SWAP;
4724                 if (target)
4725                         target->ent = ent;
4726         }
4727         return ret;
4728 }
4729
4730 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4731                                         unsigned long addr, unsigned long end,
4732                                         struct mm_walk *walk)
4733 {
4734         struct vm_area_struct *vma = walk->private;
4735         pte_t *pte;
4736         spinlock_t *ptl;
4737
4738         VM_BUG_ON(pmd_trans_huge(*pmd));
4739         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4740         for (; addr != end; pte++, addr += PAGE_SIZE)
4741                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4742                         mc.precharge++; /* increment precharge temporarily */
4743         pte_unmap_unlock(pte - 1, ptl);
4744         cond_resched();
4745
4746         return 0;
4747 }
4748
4749 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4750 {
4751         unsigned long precharge;
4752         struct vm_area_struct *vma;
4753
4754         down_read(&mm->mmap_sem);
4755         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4756                 struct mm_walk mem_cgroup_count_precharge_walk = {
4757                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4758                         .mm = mm,
4759                         .private = vma,
4760                 };
4761                 if (is_vm_hugetlb_page(vma))
4762                         continue;
4763                 walk_page_range(vma->vm_start, vma->vm_end,
4764                                         &mem_cgroup_count_precharge_walk);
4765         }
4766         up_read(&mm->mmap_sem);
4767
4768         precharge = mc.precharge;
4769         mc.precharge = 0;
4770
4771         return precharge;
4772 }
4773
4774 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4775 {
4776         unsigned long precharge = mem_cgroup_count_precharge(mm);
4777
4778         VM_BUG_ON(mc.moving_task);
4779         mc.moving_task = current;
4780         return mem_cgroup_do_precharge(precharge);
4781 }
4782
4783 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4784 static void __mem_cgroup_clear_mc(void)
4785 {
4786         struct mem_cgroup *from = mc.from;
4787         struct mem_cgroup *to = mc.to;
4788
4789         /* we must uncharge all the leftover precharges from mc.to */
4790         if (mc.precharge) {
4791                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4792                 mc.precharge = 0;
4793         }
4794         /*
4795          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4796          * we must uncharge here.
4797          */
4798         if (mc.moved_charge) {
4799                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4800                 mc.moved_charge = 0;
4801         }
4802         /* we must fixup refcnts and charges */
4803         if (mc.moved_swap) {
4804                 /* uncharge swap account from the old cgroup */
4805                 if (!mem_cgroup_is_root(mc.from))
4806                         res_counter_uncharge(&mc.from->memsw,
4807                                                 PAGE_SIZE * mc.moved_swap);
4808                 __mem_cgroup_put(mc.from, mc.moved_swap);
4809
4810                 if (!mem_cgroup_is_root(mc.to)) {
4811                         /*
4812                          * we charged both to->res and to->memsw, so we should
4813                          * uncharge to->res.
4814                          */
4815                         res_counter_uncharge(&mc.to->res,
4816                                                 PAGE_SIZE * mc.moved_swap);
4817                 }
4818                 /* we've already done mem_cgroup_get(mc.to) */
4819                 mc.moved_swap = 0;
4820         }
4821         memcg_oom_recover(from);
4822         memcg_oom_recover(to);
4823         wake_up_all(&mc.waitq);
4824 }
4825
4826 static void mem_cgroup_clear_mc(void)
4827 {
4828         struct mem_cgroup *from = mc.from;
4829
4830         /*
4831          * we must clear moving_task before waking up waiters at the end of
4832          * task migration.
4833          */
4834         mc.moving_task = NULL;
4835         __mem_cgroup_clear_mc();
4836         spin_lock(&mc.lock);
4837         mc.from = NULL;
4838         mc.to = NULL;
4839         spin_unlock(&mc.lock);
4840         mem_cgroup_end_move(from);
4841 }
4842
4843 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4844                                 struct cgroup *cgroup,
4845                                 struct task_struct *p,
4846                                 bool threadgroup)
4847 {
4848         int ret = 0;
4849         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4850
4851         if (mem->move_charge_at_immigrate) {
4852                 struct mm_struct *mm;
4853                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4854
4855                 VM_BUG_ON(from == mem);
4856
4857                 mm = get_task_mm(p);
4858                 if (!mm)
4859                         return 0;
4860                 /* We move charges only when we move a owner of the mm */
4861                 if (mm->owner == p) {
4862                         VM_BUG_ON(mc.from);
4863                         VM_BUG_ON(mc.to);
4864                         VM_BUG_ON(mc.precharge);
4865                         VM_BUG_ON(mc.moved_charge);
4866                         VM_BUG_ON(mc.moved_swap);
4867                         mem_cgroup_start_move(from);
4868                         spin_lock(&mc.lock);
4869                         mc.from = from;
4870                         mc.to = mem;
4871                         spin_unlock(&mc.lock);
4872                         /* We set mc.moving_task later */
4873
4874                         ret = mem_cgroup_precharge_mc(mm);
4875                         if (ret)
4876                                 mem_cgroup_clear_mc();
4877                 }
4878                 mmput(mm);
4879         }
4880         return ret;
4881 }
4882
4883 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4884                                 struct cgroup *cgroup,
4885                                 struct task_struct *p,
4886                                 bool threadgroup)
4887 {
4888         mem_cgroup_clear_mc();
4889 }
4890
4891 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4892                                 unsigned long addr, unsigned long end,
4893                                 struct mm_walk *walk)
4894 {
4895         int ret = 0;
4896         struct vm_area_struct *vma = walk->private;
4897         pte_t *pte;
4898         spinlock_t *ptl;
4899
4900 retry:
4901         VM_BUG_ON(pmd_trans_huge(*pmd));
4902         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4903         for (; addr != end; addr += PAGE_SIZE) {
4904                 pte_t ptent = *(pte++);
4905                 union mc_target target;
4906                 int type;
4907                 struct page *page;
4908                 struct page_cgroup *pc;
4909                 swp_entry_t ent;
4910
4911                 if (!mc.precharge)
4912                         break;
4913
4914                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4915                 switch (type) {
4916                 case MC_TARGET_PAGE:
4917                         page = target.page;
4918                         if (isolate_lru_page(page))
4919                                 goto put;
4920                         pc = lookup_page_cgroup(page);
4921                         if (!mem_cgroup_move_account(pc,
4922                                         mc.from, mc.to, false, PAGE_SIZE)) {
4923                                 mc.precharge--;
4924                                 /* we uncharge from mc.from later. */
4925                                 mc.moved_charge++;
4926                         }
4927                         putback_lru_page(page);
4928 put:                    /* is_target_pte_for_mc() gets the page */
4929                         put_page(page);
4930                         break;
4931                 case MC_TARGET_SWAP:
4932                         ent = target.ent;
4933                         if (!mem_cgroup_move_swap_account(ent,
4934                                                 mc.from, mc.to, false)) {
4935                                 mc.precharge--;
4936                                 /* we fixup refcnts and charges later. */
4937                                 mc.moved_swap++;
4938                         }
4939                         break;
4940                 default:
4941                         break;
4942                 }
4943         }
4944         pte_unmap_unlock(pte - 1, ptl);
4945         cond_resched();
4946
4947         if (addr != end) {
4948                 /*
4949                  * We have consumed all precharges we got in can_attach().
4950                  * We try charge one by one, but don't do any additional
4951                  * charges to mc.to if we have failed in charge once in attach()
4952                  * phase.
4953                  */
4954                 ret = mem_cgroup_do_precharge(1);
4955                 if (!ret)
4956                         goto retry;
4957         }
4958
4959         return ret;
4960 }
4961
4962 static void mem_cgroup_move_charge(struct mm_struct *mm)
4963 {
4964         struct vm_area_struct *vma;
4965
4966         lru_add_drain_all();
4967 retry:
4968         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4969                 /*
4970                  * Someone who are holding the mmap_sem might be waiting in
4971                  * waitq. So we cancel all extra charges, wake up all waiters,
4972                  * and retry. Because we cancel precharges, we might not be able
4973                  * to move enough charges, but moving charge is a best-effort
4974                  * feature anyway, so it wouldn't be a big problem.
4975                  */
4976                 __mem_cgroup_clear_mc();
4977                 cond_resched();
4978                 goto retry;
4979         }
4980         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4981                 int ret;
4982                 struct mm_walk mem_cgroup_move_charge_walk = {
4983                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4984                         .mm = mm,
4985                         .private = vma,
4986                 };
4987                 if (is_vm_hugetlb_page(vma))
4988                         continue;
4989                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4990                                                 &mem_cgroup_move_charge_walk);
4991                 if (ret)
4992                         /*
4993                          * means we have consumed all precharges and failed in
4994                          * doing additional charge. Just abandon here.
4995                          */
4996                         break;
4997         }
4998         up_read(&mm->mmap_sem);
4999 }
5000
5001 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5002                                 struct cgroup *cont,
5003                                 struct cgroup *old_cont,
5004                                 struct task_struct *p,
5005                                 bool threadgroup)
5006 {
5007         struct mm_struct *mm;
5008
5009         if (!mc.to)
5010                 /* no need to move charge */
5011                 return;
5012
5013         mm = get_task_mm(p);
5014         if (mm) {
5015                 mem_cgroup_move_charge(mm);
5016                 mmput(mm);
5017         }
5018         mem_cgroup_clear_mc();
5019 }
5020 #else   /* !CONFIG_MMU */
5021 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5022                                 struct cgroup *cgroup,
5023                                 struct task_struct *p,
5024                                 bool threadgroup)
5025 {
5026         return 0;
5027 }
5028 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5029                                 struct cgroup *cgroup,
5030                                 struct task_struct *p,
5031                                 bool threadgroup)
5032 {
5033 }
5034 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5035                                 struct cgroup *cont,
5036                                 struct cgroup *old_cont,
5037                                 struct task_struct *p,
5038                                 bool threadgroup)
5039 {
5040 }
5041 #endif
5042
5043 struct cgroup_subsys mem_cgroup_subsys = {
5044         .name = "memory",
5045         .subsys_id = mem_cgroup_subsys_id,
5046         .create = mem_cgroup_create,
5047         .pre_destroy = mem_cgroup_pre_destroy,
5048         .destroy = mem_cgroup_destroy,
5049         .populate = mem_cgroup_populate,
5050         .can_attach = mem_cgroup_can_attach,
5051         .cancel_attach = mem_cgroup_cancel_attach,
5052         .attach = mem_cgroup_move_task,
5053         .early_init = 0,
5054         .use_id = 1,
5055 };
5056
5057 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5058 static int __init enable_swap_account(char *s)
5059 {
5060         /* consider enabled if no parameter or 1 is given */
5061         if (!(*s) || !strcmp(s, "=1"))
5062                 really_do_swap_account = 1;
5063         else if (!strcmp(s, "=0"))
5064                 really_do_swap_account = 0;
5065         return 1;
5066 }
5067 __setup("swapaccount", enable_swap_account);
5068
5069 static int __init disable_swap_account(char *s)
5070 {
5071         printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5072         enable_swap_account("=0");
5073         return 1;
5074 }
5075 __setup("noswapaccount", disable_swap_account);
5076 #endif