2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
21 #include "internals.h"
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
26 struct lock_class_key irq_desc_lock_class;
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 print_irq_desc(irq, desc);
38 kstat_incr_irqs_this_cpu(irq, desc);
43 * Linux has a controller-independent interrupt architecture.
44 * Every controller has a 'controller-template', that is used
45 * by the main code to do the right thing. Each driver-visible
46 * interrupt source is transparently wired to the appropriate
47 * controller. Thus drivers need not be aware of the
48 * interrupt-controller.
50 * The code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic or
52 * having to touch the generic code.
54 * Controller mappings for all interrupt sources:
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
62 .status = IRQ_DISABLED,
64 .handle_irq = handle_bad_irq,
66 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
68 .affinity = CPU_MASK_ALL
72 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
78 /* Compute how many bytes we need per irq and allocate them */
79 bytes = nr * sizeof(unsigned int);
81 node = cpu_to_node(cpu);
82 ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
83 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node);
86 desc->kstat_irqs = (unsigned int *)ptr;
89 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
91 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
93 spin_lock_init(&desc->lock);
98 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
99 init_kstat_irqs(desc, cpu, nr_cpu_ids);
100 if (!desc->kstat_irqs) {
101 printk(KERN_ERR "can not alloc kstat_irqs\n");
104 arch_init_chip_data(desc, cpu);
108 * Protect the sparse_irqs:
110 DEFINE_SPINLOCK(sparse_irq_lock);
112 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
114 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
115 [0 ... NR_IRQS_LEGACY-1] = {
117 .status = IRQ_DISABLED,
118 .chip = &no_irq_chip,
119 .handle_irq = handle_bad_irq,
121 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
123 .affinity = CPU_MASK_ALL
128 /* FIXME: use bootmem alloc ...*/
129 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
131 int __init early_irq_init(void)
133 struct irq_desc *desc;
137 desc = irq_desc_legacy;
138 legacy_count = ARRAY_SIZE(irq_desc_legacy);
140 for (i = 0; i < legacy_count; i++) {
142 desc[i].kstat_irqs = kstat_irqs_legacy[i];
143 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
145 irq_desc_ptrs[i] = desc + i;
148 for (i = legacy_count; i < NR_IRQS; i++)
149 irq_desc_ptrs[i] = NULL;
151 return arch_early_irq_init();
154 struct irq_desc *irq_to_desc(unsigned int irq)
156 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
159 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
161 struct irq_desc *desc;
165 if (irq >= NR_IRQS) {
166 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
172 desc = irq_desc_ptrs[irq];
176 spin_lock_irqsave(&sparse_irq_lock, flags);
178 /* We have to check it to avoid races with another CPU */
179 desc = irq_desc_ptrs[irq];
183 node = cpu_to_node(cpu);
184 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
185 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
188 printk(KERN_ERR "can not alloc irq_desc\n");
191 init_one_irq_desc(irq, desc, cpu);
193 irq_desc_ptrs[irq] = desc;
196 spin_unlock_irqrestore(&sparse_irq_lock, flags);
201 #else /* !CONFIG_SPARSE_IRQ */
203 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
204 [0 ... NR_IRQS-1] = {
205 .status = IRQ_DISABLED,
206 .chip = &no_irq_chip,
207 .handle_irq = handle_bad_irq,
209 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
211 .affinity = CPU_MASK_ALL
216 int __init early_irq_init(void)
218 struct irq_desc *desc;
223 count = ARRAY_SIZE(irq_desc);
225 for (i = 0; i < count; i++)
228 return arch_early_irq_init();
231 struct irq_desc *irq_to_desc(unsigned int irq)
233 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
236 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
238 return irq_to_desc(irq);
240 #endif /* !CONFIG_SPARSE_IRQ */
243 * What should we do if we get a hw irq event on an illegal vector?
244 * Each architecture has to answer this themself.
246 static void ack_bad(unsigned int irq)
248 struct irq_desc *desc = irq_to_desc(irq);
250 print_irq_desc(irq, desc);
257 static void noop(unsigned int irq)
261 static unsigned int noop_ret(unsigned int irq)
267 * Generic no controller implementation
269 struct irq_chip no_irq_chip = {
280 * Generic dummy implementation which can be used for
281 * real dumb interrupt sources
283 struct irq_chip dummy_irq_chip = {
296 * Special, empty irq handler:
298 irqreturn_t no_action(int cpl, void *dev_id)
304 * handle_IRQ_event - irq action chain handler
305 * @irq: the interrupt number
306 * @action: the interrupt action chain for this irq
308 * Handles the action chain of an irq event
310 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
312 irqreturn_t ret, retval = IRQ_NONE;
313 unsigned int status = 0;
315 if (!(action->flags & IRQF_DISABLED))
316 local_irq_enable_in_hardirq();
319 ret = action->handler(irq, action->dev_id);
320 if (ret == IRQ_HANDLED)
321 status |= action->flags;
323 action = action->next;
326 if (status & IRQF_SAMPLE_RANDOM)
327 add_interrupt_randomness(irq);
333 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
335 * __do_IRQ - original all in one highlevel IRQ handler
336 * @irq: the interrupt number
338 * __do_IRQ handles all normal device IRQ's (the special
339 * SMP cross-CPU interrupts have their own specific
342 * This is the original x86 implementation which is used for every
345 unsigned int __do_IRQ(unsigned int irq)
347 struct irq_desc *desc = irq_to_desc(irq);
348 struct irqaction *action;
351 kstat_incr_irqs_this_cpu(irq, desc);
353 if (CHECK_IRQ_PER_CPU(desc->status)) {
354 irqreturn_t action_ret;
357 * No locking required for CPU-local interrupts:
359 if (desc->chip->ack) {
360 desc->chip->ack(irq);
362 desc = irq_remap_to_desc(irq, desc);
364 if (likely(!(desc->status & IRQ_DISABLED))) {
365 action_ret = handle_IRQ_event(irq, desc->action);
367 note_interrupt(irq, desc, action_ret);
369 desc->chip->end(irq);
373 spin_lock(&desc->lock);
374 if (desc->chip->ack) {
375 desc->chip->ack(irq);
376 desc = irq_remap_to_desc(irq, desc);
379 * REPLAY is when Linux resends an IRQ that was dropped earlier
380 * WAITING is used by probe to mark irqs that are being tested
382 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
383 status |= IRQ_PENDING; /* we _want_ to handle it */
386 * If the IRQ is disabled for whatever reason, we cannot
387 * use the action we have.
390 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
391 action = desc->action;
392 status &= ~IRQ_PENDING; /* we commit to handling */
393 status |= IRQ_INPROGRESS; /* we are handling it */
395 desc->status = status;
398 * If there is no IRQ handler or it was disabled, exit early.
399 * Since we set PENDING, if another processor is handling
400 * a different instance of this same irq, the other processor
401 * will take care of it.
403 if (unlikely(!action))
407 * Edge triggered interrupts need to remember
409 * This applies to any hw interrupts that allow a second
410 * instance of the same irq to arrive while we are in do_IRQ
411 * or in the handler. But the code here only handles the _second_
412 * instance of the irq, not the third or fourth. So it is mostly
413 * useful for irq hardware that does not mask cleanly in an
417 irqreturn_t action_ret;
419 spin_unlock(&desc->lock);
421 action_ret = handle_IRQ_event(irq, action);
423 note_interrupt(irq, desc, action_ret);
425 spin_lock(&desc->lock);
426 if (likely(!(desc->status & IRQ_PENDING)))
428 desc->status &= ~IRQ_PENDING;
430 desc->status &= ~IRQ_INPROGRESS;
434 * The ->end() handler has to deal with interrupts which got
435 * disabled while the handler was running.
437 desc->chip->end(irq);
438 spin_unlock(&desc->lock);
444 void early_init_irq_lock_class(void)
446 struct irq_desc *desc;
449 for_each_irq_desc(i, desc) {
450 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
454 #ifdef CONFIG_SPARSE_IRQ
455 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
457 struct irq_desc *desc = irq_to_desc(irq);
458 return desc ? desc->kstat_irqs[cpu] : 0;
461 EXPORT_SYMBOL(kstat_irqs_cpu);