e3af85095ddbaa0de0a59e0eb93739481ec0694b
[pandora-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)       do { } while (0)
57 # define XB_CLEAR_OWNER(bp)     do { } while (0)
58 # define XB_GET_OWNER(bp)       do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68 #define xfs_buf_allocate(flags) \
69         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
70 #define xfs_buf_deallocate(bp) \
71         kmem_zone_free(xfs_buf_zone, (bp));
72
73 static inline int
74 xfs_buf_is_vmapped(
75         struct xfs_buf  *bp)
76 {
77         /*
78          * Return true if the buffer is vmapped.
79          *
80          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
81          * code is clever enough to know it doesn't have to map a single page,
82          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
83          */
84         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
85 }
86
87 static inline int
88 xfs_buf_vmap_len(
89         struct xfs_buf  *bp)
90 {
91         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
92 }
93
94 /*
95  * xfs_buf_lru_add - add a buffer to the LRU.
96  *
97  * The LRU takes a new reference to the buffer so that it will only be freed
98  * once the shrinker takes the buffer off the LRU.
99  */
100 STATIC void
101 xfs_buf_lru_add(
102         struct xfs_buf  *bp)
103 {
104         struct xfs_buftarg *btp = bp->b_target;
105
106         spin_lock(&btp->bt_lru_lock);
107         if (list_empty(&bp->b_lru)) {
108                 atomic_inc(&bp->b_hold);
109                 list_add_tail(&bp->b_lru, &btp->bt_lru);
110                 btp->bt_lru_nr++;
111         }
112         spin_unlock(&btp->bt_lru_lock);
113 }
114
115 /*
116  * xfs_buf_lru_del - remove a buffer from the LRU
117  *
118  * The unlocked check is safe here because it only occurs when there are not
119  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
120  * to optimise the shrinker removing the buffer from the LRU and calling
121  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
122  * bt_lru_lock.
123  */
124 STATIC void
125 xfs_buf_lru_del(
126         struct xfs_buf  *bp)
127 {
128         struct xfs_buftarg *btp = bp->b_target;
129
130         if (list_empty(&bp->b_lru))
131                 return;
132
133         spin_lock(&btp->bt_lru_lock);
134         if (!list_empty(&bp->b_lru)) {
135                 list_del_init(&bp->b_lru);
136                 btp->bt_lru_nr--;
137         }
138         spin_unlock(&btp->bt_lru_lock);
139 }
140
141 /*
142  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
143  * b_lru_ref count so that the buffer is freed immediately when the buffer
144  * reference count falls to zero. If the buffer is already on the LRU, we need
145  * to remove the reference that LRU holds on the buffer.
146  *
147  * This prevents build-up of stale buffers on the LRU.
148  */
149 void
150 xfs_buf_stale(
151         struct xfs_buf  *bp)
152 {
153         bp->b_flags |= XBF_STALE;
154         atomic_set(&(bp)->b_lru_ref, 0);
155         if (!list_empty(&bp->b_lru)) {
156                 struct xfs_buftarg *btp = bp->b_target;
157
158                 spin_lock(&btp->bt_lru_lock);
159                 if (!list_empty(&bp->b_lru)) {
160                         list_del_init(&bp->b_lru);
161                         btp->bt_lru_nr--;
162                         atomic_dec(&bp->b_hold);
163                 }
164                 spin_unlock(&btp->bt_lru_lock);
165         }
166         ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 STATIC void
170 _xfs_buf_initialize(
171         xfs_buf_t               *bp,
172         xfs_buftarg_t           *target,
173         xfs_off_t               range_base,
174         size_t                  range_length,
175         xfs_buf_flags_t         flags)
176 {
177         /*
178          * We don't want certain flags to appear in b_flags.
179          */
180         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182         memset(bp, 0, sizeof(xfs_buf_t));
183         atomic_set(&bp->b_hold, 1);
184         atomic_set(&bp->b_lru_ref, 1);
185         init_completion(&bp->b_iowait);
186         INIT_LIST_HEAD(&bp->b_lru);
187         INIT_LIST_HEAD(&bp->b_list);
188         RB_CLEAR_NODE(&bp->b_rbnode);
189         sema_init(&bp->b_sema, 0); /* held, no waiters */
190         XB_SET_OWNER(bp);
191         bp->b_target = target;
192         bp->b_file_offset = range_base;
193         /*
194          * Set buffer_length and count_desired to the same value initially.
195          * I/O routines should use count_desired, which will be the same in
196          * most cases but may be reset (e.g. XFS recovery).
197          */
198         bp->b_buffer_length = bp->b_count_desired = range_length;
199         bp->b_flags = flags;
200         bp->b_bn = XFS_BUF_DADDR_NULL;
201         atomic_set(&bp->b_pin_count, 0);
202         init_waitqueue_head(&bp->b_waiters);
203
204         XFS_STATS_INC(xb_create);
205
206         trace_xfs_buf_init(bp, _RET_IP_);
207 }
208
209 /*
210  *      Allocate a page array capable of holding a specified number
211  *      of pages, and point the page buf at it.
212  */
213 STATIC int
214 _xfs_buf_get_pages(
215         xfs_buf_t               *bp,
216         int                     page_count,
217         xfs_buf_flags_t         flags)
218 {
219         /* Make sure that we have a page list */
220         if (bp->b_pages == NULL) {
221                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
222                 bp->b_page_count = page_count;
223                 if (page_count <= XB_PAGES) {
224                         bp->b_pages = bp->b_page_array;
225                 } else {
226                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
227                                         page_count, xb_to_km(flags));
228                         if (bp->b_pages == NULL)
229                                 return -ENOMEM;
230                 }
231                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232         }
233         return 0;
234 }
235
236 /*
237  *      Frees b_pages if it was allocated.
238  */
239 STATIC void
240 _xfs_buf_free_pages(
241         xfs_buf_t       *bp)
242 {
243         if (bp->b_pages != bp->b_page_array) {
244                 kmem_free(bp->b_pages);
245                 bp->b_pages = NULL;
246         }
247 }
248
249 /*
250  *      Releases the specified buffer.
251  *
252  *      The modification state of any associated pages is left unchanged.
253  *      The buffer most not be on any hash - use xfs_buf_rele instead for
254  *      hashed and refcounted buffers
255  */
256 void
257 xfs_buf_free(
258         xfs_buf_t               *bp)
259 {
260         trace_xfs_buf_free(bp, _RET_IP_);
261
262         ASSERT(list_empty(&bp->b_lru));
263
264         if (bp->b_flags & _XBF_PAGES) {
265                 uint            i;
266
267                 if (xfs_buf_is_vmapped(bp))
268                         vm_unmap_ram(bp->b_addr - bp->b_offset,
269                                         bp->b_page_count);
270
271                 for (i = 0; i < bp->b_page_count; i++) {
272                         struct page     *page = bp->b_pages[i];
273
274                         __free_page(page);
275                 }
276         } else if (bp->b_flags & _XBF_KMEM)
277                 kmem_free(bp->b_addr);
278         _xfs_buf_free_pages(bp);
279         xfs_buf_deallocate(bp);
280 }
281
282 /*
283  * Allocates all the pages for buffer in question and builds it's page list.
284  */
285 STATIC int
286 xfs_buf_allocate_memory(
287         xfs_buf_t               *bp,
288         uint                    flags)
289 {
290         size_t                  size = bp->b_count_desired;
291         size_t                  nbytes, offset;
292         gfp_t                   gfp_mask = xb_to_gfp(flags);
293         unsigned short          page_count, i;
294         xfs_off_t               end;
295         int                     error;
296
297         /*
298          * for buffers that are contained within a single page, just allocate
299          * the memory from the heap - there's no need for the complexity of
300          * page arrays to keep allocation down to order 0.
301          */
302         if (bp->b_buffer_length < PAGE_SIZE) {
303                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
304                 if (!bp->b_addr) {
305                         /* low memory - use alloc_page loop instead */
306                         goto use_alloc_page;
307                 }
308
309                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
310                                                                 PAGE_MASK) !=
311                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
312                         /* b_addr spans two pages - use alloc_page instead */
313                         kmem_free(bp->b_addr);
314                         bp->b_addr = NULL;
315                         goto use_alloc_page;
316                 }
317                 bp->b_offset = offset_in_page(bp->b_addr);
318                 bp->b_pages = bp->b_page_array;
319                 bp->b_pages[0] = virt_to_page(bp->b_addr);
320                 bp->b_page_count = 1;
321                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
322                 return 0;
323         }
324
325 use_alloc_page:
326         end = bp->b_file_offset + bp->b_buffer_length;
327         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
328         error = _xfs_buf_get_pages(bp, page_count, flags);
329         if (unlikely(error))
330                 return error;
331
332         offset = bp->b_offset;
333         bp->b_flags |= _XBF_PAGES;
334
335         for (i = 0; i < bp->b_page_count; i++) {
336                 struct page     *page;
337                 uint            retries = 0;
338 retry:
339                 page = alloc_page(gfp_mask);
340                 if (unlikely(page == NULL)) {
341                         if (flags & XBF_READ_AHEAD) {
342                                 bp->b_page_count = i;
343                                 error = ENOMEM;
344                                 goto out_free_pages;
345                         }
346
347                         /*
348                          * This could deadlock.
349                          *
350                          * But until all the XFS lowlevel code is revamped to
351                          * handle buffer allocation failures we can't do much.
352                          */
353                         if (!(++retries % 100))
354                                 xfs_err(NULL,
355                 "possible memory allocation deadlock in %s (mode:0x%x)",
356                                         __func__, gfp_mask);
357
358                         XFS_STATS_INC(xb_page_retries);
359                         congestion_wait(BLK_RW_ASYNC, HZ/50);
360                         goto retry;
361                 }
362
363                 XFS_STATS_INC(xb_page_found);
364
365                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
366                 size -= nbytes;
367                 bp->b_pages[i] = page;
368                 offset = 0;
369         }
370         return 0;
371
372 out_free_pages:
373         for (i = 0; i < bp->b_page_count; i++)
374                 __free_page(bp->b_pages[i]);
375         return error;
376 }
377
378 /*
379  *      Map buffer into kernel address-space if necessary.
380  */
381 STATIC int
382 _xfs_buf_map_pages(
383         xfs_buf_t               *bp,
384         uint                    flags)
385 {
386         ASSERT(bp->b_flags & _XBF_PAGES);
387         if (bp->b_page_count == 1) {
388                 /* A single page buffer is always mappable */
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 int retried = 0;
393
394                 do {
395                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
396                                                 -1, PAGE_KERNEL);
397                         if (bp->b_addr)
398                                 break;
399                         vm_unmap_aliases();
400                 } while (retried++ <= 1);
401
402                 if (!bp->b_addr)
403                         return -ENOMEM;
404                 bp->b_addr += bp->b_offset;
405                 bp->b_flags |= XBF_MAPPED;
406         }
407
408         return 0;
409 }
410
411 /*
412  *      Finding and Reading Buffers
413  */
414
415 /*
416  *      Look up, and creates if absent, a lockable buffer for
417  *      a given range of an inode.  The buffer is returned
418  *      locked. No I/O is implied by this call.
419  */
420 xfs_buf_t *
421 _xfs_buf_find(
422         xfs_buftarg_t           *btp,   /* block device target          */
423         xfs_off_t               ioff,   /* starting offset of range     */
424         size_t                  isize,  /* length of range              */
425         xfs_buf_flags_t         flags,
426         xfs_buf_t               *new_bp)
427 {
428         xfs_off_t               range_base;
429         size_t                  range_length;
430         struct xfs_perag        *pag;
431         struct rb_node          **rbp;
432         struct rb_node          *parent;
433         xfs_buf_t               *bp;
434
435         range_base = (ioff << BBSHIFT);
436         range_length = (isize << BBSHIFT);
437
438         /* Check for IOs smaller than the sector size / not sector aligned */
439         ASSERT(!(range_length < (1 << btp->bt_sshift)));
440         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
441
442         /* get tree root */
443         pag = xfs_perag_get(btp->bt_mount,
444                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
445
446         /* walk tree */
447         spin_lock(&pag->pag_buf_lock);
448         rbp = &pag->pag_buf_tree.rb_node;
449         parent = NULL;
450         bp = NULL;
451         while (*rbp) {
452                 parent = *rbp;
453                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
454
455                 if (range_base < bp->b_file_offset)
456                         rbp = &(*rbp)->rb_left;
457                 else if (range_base > bp->b_file_offset)
458                         rbp = &(*rbp)->rb_right;
459                 else {
460                         /*
461                          * found a block offset match. If the range doesn't
462                          * match, the only way this is allowed is if the buffer
463                          * in the cache is stale and the transaction that made
464                          * it stale has not yet committed. i.e. we are
465                          * reallocating a busy extent. Skip this buffer and
466                          * continue searching to the right for an exact match.
467                          */
468                         if (bp->b_buffer_length != range_length) {
469                                 ASSERT(bp->b_flags & XBF_STALE);
470                                 rbp = &(*rbp)->rb_right;
471                                 continue;
472                         }
473                         atomic_inc(&bp->b_hold);
474                         goto found;
475                 }
476         }
477
478         /* No match found */
479         if (new_bp) {
480                 _xfs_buf_initialize(new_bp, btp, range_base,
481                                 range_length, flags);
482                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
483                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
484                 /* the buffer keeps the perag reference until it is freed */
485                 new_bp->b_pag = pag;
486                 spin_unlock(&pag->pag_buf_lock);
487         } else {
488                 XFS_STATS_INC(xb_miss_locked);
489                 spin_unlock(&pag->pag_buf_lock);
490                 xfs_perag_put(pag);
491         }
492         return new_bp;
493
494 found:
495         spin_unlock(&pag->pag_buf_lock);
496         xfs_perag_put(pag);
497
498         if (!xfs_buf_trylock(bp)) {
499                 if (flags & XBF_TRYLOCK) {
500                         xfs_buf_rele(bp);
501                         XFS_STATS_INC(xb_busy_locked);
502                         return NULL;
503                 }
504                 xfs_buf_lock(bp);
505                 XFS_STATS_INC(xb_get_locked_waited);
506         }
507
508         /*
509          * if the buffer is stale, clear all the external state associated with
510          * it. We need to keep flags such as how we allocated the buffer memory
511          * intact here.
512          */
513         if (bp->b_flags & XBF_STALE) {
514                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
515                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
516         }
517
518         trace_xfs_buf_find(bp, flags, _RET_IP_);
519         XFS_STATS_INC(xb_get_locked);
520         return bp;
521 }
522
523 /*
524  *      Assembles a buffer covering the specified range.
525  *      Storage in memory for all portions of the buffer will be allocated,
526  *      although backing storage may not be.
527  */
528 xfs_buf_t *
529 xfs_buf_get(
530         xfs_buftarg_t           *target,/* target for buffer            */
531         xfs_off_t               ioff,   /* starting offset of range     */
532         size_t                  isize,  /* length of range              */
533         xfs_buf_flags_t         flags)
534 {
535         xfs_buf_t               *bp, *new_bp;
536         int                     error = 0;
537
538         new_bp = xfs_buf_allocate(flags);
539         if (unlikely(!new_bp))
540                 return NULL;
541
542         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
543         if (bp == new_bp) {
544                 error = xfs_buf_allocate_memory(bp, flags);
545                 if (error)
546                         goto no_buffer;
547         } else {
548                 xfs_buf_deallocate(new_bp);
549                 if (unlikely(bp == NULL))
550                         return NULL;
551         }
552
553         if (!(bp->b_flags & XBF_MAPPED)) {
554                 error = _xfs_buf_map_pages(bp, flags);
555                 if (unlikely(error)) {
556                         xfs_warn(target->bt_mount,
557                                 "%s: failed to map pages\n", __func__);
558                         goto no_buffer;
559                 }
560         }
561
562         XFS_STATS_INC(xb_get);
563
564         /*
565          * Always fill in the block number now, the mapped cases can do
566          * their own overlay of this later.
567          */
568         bp->b_bn = ioff;
569         bp->b_count_desired = bp->b_buffer_length;
570
571         trace_xfs_buf_get(bp, flags, _RET_IP_);
572         return bp;
573
574  no_buffer:
575         if (flags & (XBF_LOCK | XBF_TRYLOCK))
576                 xfs_buf_unlock(bp);
577         xfs_buf_rele(bp);
578         return NULL;
579 }
580
581 STATIC int
582 _xfs_buf_read(
583         xfs_buf_t               *bp,
584         xfs_buf_flags_t         flags)
585 {
586         int                     status;
587
588         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
589         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
590
591         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
592         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
593
594         status = xfs_buf_iorequest(bp);
595         if (status || bp->b_error || (flags & XBF_ASYNC))
596                 return status;
597         return xfs_buf_iowait(bp);
598 }
599
600 xfs_buf_t *
601 xfs_buf_read(
602         xfs_buftarg_t           *target,
603         xfs_off_t               ioff,
604         size_t                  isize,
605         xfs_buf_flags_t         flags)
606 {
607         xfs_buf_t               *bp;
608
609         flags |= XBF_READ;
610
611         bp = xfs_buf_get(target, ioff, isize, flags);
612         if (bp) {
613                 trace_xfs_buf_read(bp, flags, _RET_IP_);
614
615                 if (!XFS_BUF_ISDONE(bp)) {
616                         XFS_STATS_INC(xb_get_read);
617                         _xfs_buf_read(bp, flags);
618                 } else if (flags & XBF_ASYNC) {
619                         /*
620                          * Read ahead call which is already satisfied,
621                          * drop the buffer
622                          */
623                         goto no_buffer;
624                 } else {
625                         /* We do not want read in the flags */
626                         bp->b_flags &= ~XBF_READ;
627                 }
628         }
629
630         return bp;
631
632  no_buffer:
633         if (flags & (XBF_LOCK | XBF_TRYLOCK))
634                 xfs_buf_unlock(bp);
635         xfs_buf_rele(bp);
636         return NULL;
637 }
638
639 /*
640  *      If we are not low on memory then do the readahead in a deadlock
641  *      safe manner.
642  */
643 void
644 xfs_buf_readahead(
645         xfs_buftarg_t           *target,
646         xfs_off_t               ioff,
647         size_t                  isize)
648 {
649         if (bdi_read_congested(target->bt_bdi))
650                 return;
651
652         xfs_buf_read(target, ioff, isize,
653                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
654 }
655
656 /*
657  * Read an uncached buffer from disk. Allocates and returns a locked
658  * buffer containing the disk contents or nothing.
659  */
660 struct xfs_buf *
661 xfs_buf_read_uncached(
662         struct xfs_mount        *mp,
663         struct xfs_buftarg      *target,
664         xfs_daddr_t             daddr,
665         size_t                  length,
666         int                     flags)
667 {
668         xfs_buf_t               *bp;
669         int                     error;
670
671         bp = xfs_buf_get_uncached(target, length, flags);
672         if (!bp)
673                 return NULL;
674
675         /* set up the buffer for a read IO */
676         XFS_BUF_SET_ADDR(bp, daddr);
677         XFS_BUF_READ(bp);
678
679         xfsbdstrat(mp, bp);
680         error = xfs_buf_iowait(bp);
681         if (error || bp->b_error) {
682                 xfs_buf_relse(bp);
683                 return NULL;
684         }
685         return bp;
686 }
687
688 xfs_buf_t *
689 xfs_buf_get_empty(
690         size_t                  len,
691         xfs_buftarg_t           *target)
692 {
693         xfs_buf_t               *bp;
694
695         bp = xfs_buf_allocate(0);
696         if (bp)
697                 _xfs_buf_initialize(bp, target, 0, len, 0);
698         return bp;
699 }
700
701 /*
702  * Return a buffer allocated as an empty buffer and associated to external
703  * memory via xfs_buf_associate_memory() back to it's empty state.
704  */
705 void
706 xfs_buf_set_empty(
707         struct xfs_buf          *bp,
708         size_t                  len)
709 {
710         if (bp->b_pages)
711                 _xfs_buf_free_pages(bp);
712
713         bp->b_pages = NULL;
714         bp->b_page_count = 0;
715         bp->b_addr = NULL;
716         bp->b_file_offset = 0;
717         bp->b_buffer_length = bp->b_count_desired = len;
718         bp->b_bn = XFS_BUF_DADDR_NULL;
719         bp->b_flags &= ~XBF_MAPPED;
720 }
721
722 static inline struct page *
723 mem_to_page(
724         void                    *addr)
725 {
726         if ((!is_vmalloc_addr(addr))) {
727                 return virt_to_page(addr);
728         } else {
729                 return vmalloc_to_page(addr);
730         }
731 }
732
733 int
734 xfs_buf_associate_memory(
735         xfs_buf_t               *bp,
736         void                    *mem,
737         size_t                  len)
738 {
739         int                     rval;
740         int                     i = 0;
741         unsigned long           pageaddr;
742         unsigned long           offset;
743         size_t                  buflen;
744         int                     page_count;
745
746         pageaddr = (unsigned long)mem & PAGE_MASK;
747         offset = (unsigned long)mem - pageaddr;
748         buflen = PAGE_ALIGN(len + offset);
749         page_count = buflen >> PAGE_SHIFT;
750
751         /* Free any previous set of page pointers */
752         if (bp->b_pages)
753                 _xfs_buf_free_pages(bp);
754
755         bp->b_pages = NULL;
756         bp->b_addr = mem;
757
758         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
759         if (rval)
760                 return rval;
761
762         bp->b_offset = offset;
763
764         for (i = 0; i < bp->b_page_count; i++) {
765                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
766                 pageaddr += PAGE_SIZE;
767         }
768
769         bp->b_count_desired = len;
770         bp->b_buffer_length = buflen;
771         bp->b_flags |= XBF_MAPPED;
772
773         return 0;
774 }
775
776 xfs_buf_t *
777 xfs_buf_get_uncached(
778         struct xfs_buftarg      *target,
779         size_t                  len,
780         int                     flags)
781 {
782         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
783         int                     error, i;
784         xfs_buf_t               *bp;
785
786         bp = xfs_buf_allocate(0);
787         if (unlikely(bp == NULL))
788                 goto fail;
789         _xfs_buf_initialize(bp, target, 0, len, 0);
790
791         error = _xfs_buf_get_pages(bp, page_count, 0);
792         if (error)
793                 goto fail_free_buf;
794
795         for (i = 0; i < page_count; i++) {
796                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
797                 if (!bp->b_pages[i])
798                         goto fail_free_mem;
799         }
800         bp->b_flags |= _XBF_PAGES;
801
802         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
803         if (unlikely(error)) {
804                 xfs_warn(target->bt_mount,
805                         "%s: failed to map pages\n", __func__);
806                 goto fail_free_mem;
807         }
808
809         trace_xfs_buf_get_uncached(bp, _RET_IP_);
810         return bp;
811
812  fail_free_mem:
813         while (--i >= 0)
814                 __free_page(bp->b_pages[i]);
815         _xfs_buf_free_pages(bp);
816  fail_free_buf:
817         xfs_buf_deallocate(bp);
818  fail:
819         return NULL;
820 }
821
822 /*
823  *      Increment reference count on buffer, to hold the buffer concurrently
824  *      with another thread which may release (free) the buffer asynchronously.
825  *      Must hold the buffer already to call this function.
826  */
827 void
828 xfs_buf_hold(
829         xfs_buf_t               *bp)
830 {
831         trace_xfs_buf_hold(bp, _RET_IP_);
832         atomic_inc(&bp->b_hold);
833 }
834
835 /*
836  *      Releases a hold on the specified buffer.  If the
837  *      the hold count is 1, calls xfs_buf_free.
838  */
839 void
840 xfs_buf_rele(
841         xfs_buf_t               *bp)
842 {
843         struct xfs_perag        *pag = bp->b_pag;
844
845         trace_xfs_buf_rele(bp, _RET_IP_);
846
847         if (!pag) {
848                 ASSERT(list_empty(&bp->b_lru));
849                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
850                 if (atomic_dec_and_test(&bp->b_hold))
851                         xfs_buf_free(bp);
852                 return;
853         }
854
855         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
856
857         ASSERT(atomic_read(&bp->b_hold) > 0);
858         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
859                 if (!(bp->b_flags & XBF_STALE) &&
860                            atomic_read(&bp->b_lru_ref)) {
861                         xfs_buf_lru_add(bp);
862                         spin_unlock(&pag->pag_buf_lock);
863                 } else {
864                         xfs_buf_lru_del(bp);
865                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
866                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
867                         spin_unlock(&pag->pag_buf_lock);
868                         xfs_perag_put(pag);
869                         xfs_buf_free(bp);
870                 }
871         }
872 }
873
874
875 /*
876  *      Lock a buffer object, if it is not already locked.
877  *
878  *      If we come across a stale, pinned, locked buffer, we know that we are
879  *      being asked to lock a buffer that has been reallocated. Because it is
880  *      pinned, we know that the log has not been pushed to disk and hence it
881  *      will still be locked.  Rather than continuing to have trylock attempts
882  *      fail until someone else pushes the log, push it ourselves before
883  *      returning.  This means that the xfsaild will not get stuck trying
884  *      to push on stale inode buffers.
885  */
886 int
887 xfs_buf_trylock(
888         struct xfs_buf          *bp)
889 {
890         int                     locked;
891
892         locked = down_trylock(&bp->b_sema) == 0;
893         if (locked)
894                 XB_SET_OWNER(bp);
895         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
896                 xfs_log_force(bp->b_target->bt_mount, 0);
897
898         trace_xfs_buf_trylock(bp, _RET_IP_);
899         return locked;
900 }
901
902 /*
903  *      Lock a buffer object.
904  *
905  *      If we come across a stale, pinned, locked buffer, we know that we
906  *      are being asked to lock a buffer that has been reallocated. Because
907  *      it is pinned, we know that the log has not been pushed to disk and
908  *      hence it will still be locked. Rather than sleeping until someone
909  *      else pushes the log, push it ourselves before trying to get the lock.
910  */
911 void
912 xfs_buf_lock(
913         struct xfs_buf          *bp)
914 {
915         trace_xfs_buf_lock(bp, _RET_IP_);
916
917         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
918                 xfs_log_force(bp->b_target->bt_mount, 0);
919         down(&bp->b_sema);
920         XB_SET_OWNER(bp);
921
922         trace_xfs_buf_lock_done(bp, _RET_IP_);
923 }
924
925 /*
926  *      Releases the lock on the buffer object.
927  *      If the buffer is marked delwri but is not queued, do so before we
928  *      unlock the buffer as we need to set flags correctly.  We also need to
929  *      take a reference for the delwri queue because the unlocker is going to
930  *      drop their's and they don't know we just queued it.
931  */
932 void
933 xfs_buf_unlock(
934         struct xfs_buf          *bp)
935 {
936         XB_CLEAR_OWNER(bp);
937         up(&bp->b_sema);
938
939         trace_xfs_buf_unlock(bp, _RET_IP_);
940 }
941
942 STATIC void
943 xfs_buf_wait_unpin(
944         xfs_buf_t               *bp)
945 {
946         DECLARE_WAITQUEUE       (wait, current);
947
948         if (atomic_read(&bp->b_pin_count) == 0)
949                 return;
950
951         add_wait_queue(&bp->b_waiters, &wait);
952         for (;;) {
953                 set_current_state(TASK_UNINTERRUPTIBLE);
954                 if (atomic_read(&bp->b_pin_count) == 0)
955                         break;
956                 io_schedule();
957         }
958         remove_wait_queue(&bp->b_waiters, &wait);
959         set_current_state(TASK_RUNNING);
960 }
961
962 /*
963  *      Buffer Utility Routines
964  */
965
966 STATIC void
967 xfs_buf_iodone_work(
968         struct work_struct      *work)
969 {
970         xfs_buf_t               *bp =
971                 container_of(work, xfs_buf_t, b_iodone_work);
972
973         if (bp->b_iodone)
974                 (*(bp->b_iodone))(bp);
975         else if (bp->b_flags & XBF_ASYNC)
976                 xfs_buf_relse(bp);
977 }
978
979 void
980 xfs_buf_ioend(
981         xfs_buf_t               *bp,
982         int                     schedule)
983 {
984         trace_xfs_buf_iodone(bp, _RET_IP_);
985
986         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
987         if (bp->b_error == 0)
988                 bp->b_flags |= XBF_DONE;
989
990         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
991                 if (schedule) {
992                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
993                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
994                 } else {
995                         xfs_buf_iodone_work(&bp->b_iodone_work);
996                 }
997         } else {
998                 complete(&bp->b_iowait);
999         }
1000 }
1001
1002 void
1003 xfs_buf_ioerror(
1004         xfs_buf_t               *bp,
1005         int                     error)
1006 {
1007         ASSERT(error >= 0 && error <= 0xffff);
1008         bp->b_error = (unsigned short)error;
1009         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1010 }
1011
1012 int
1013 xfs_bwrite(
1014         struct xfs_buf          *bp)
1015 {
1016         int                     error;
1017
1018         bp->b_flags |= XBF_WRITE;
1019         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1020
1021         xfs_buf_delwri_dequeue(bp);
1022         xfs_bdstrat_cb(bp);
1023
1024         error = xfs_buf_iowait(bp);
1025         if (error) {
1026                 xfs_force_shutdown(bp->b_target->bt_mount,
1027                                    SHUTDOWN_META_IO_ERROR);
1028         }
1029         return error;
1030 }
1031
1032 /*
1033  * Called when we want to stop a buffer from getting written or read.
1034  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1035  * so that the proper iodone callbacks get called.
1036  */
1037 STATIC int
1038 xfs_bioerror(
1039         xfs_buf_t *bp)
1040 {
1041 #ifdef XFSERRORDEBUG
1042         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1043 #endif
1044
1045         /*
1046          * No need to wait until the buffer is unpinned, we aren't flushing it.
1047          */
1048         xfs_buf_ioerror(bp, EIO);
1049
1050         /*
1051          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1052          */
1053         XFS_BUF_UNREAD(bp);
1054         xfs_buf_delwri_dequeue(bp);
1055         XFS_BUF_UNDONE(bp);
1056         XFS_BUF_STALE(bp);
1057
1058         xfs_buf_ioend(bp, 0);
1059
1060         return EIO;
1061 }
1062
1063 /*
1064  * Same as xfs_bioerror, except that we are releasing the buffer
1065  * here ourselves, and avoiding the xfs_buf_ioend call.
1066  * This is meant for userdata errors; metadata bufs come with
1067  * iodone functions attached, so that we can track down errors.
1068  */
1069 STATIC int
1070 xfs_bioerror_relse(
1071         struct xfs_buf  *bp)
1072 {
1073         int64_t         fl = bp->b_flags;
1074         /*
1075          * No need to wait until the buffer is unpinned.
1076          * We aren't flushing it.
1077          *
1078          * chunkhold expects B_DONE to be set, whether
1079          * we actually finish the I/O or not. We don't want to
1080          * change that interface.
1081          */
1082         XFS_BUF_UNREAD(bp);
1083         xfs_buf_delwri_dequeue(bp);
1084         XFS_BUF_DONE(bp);
1085         XFS_BUF_STALE(bp);
1086         bp->b_iodone = NULL;
1087         if (!(fl & XBF_ASYNC)) {
1088                 /*
1089                  * Mark b_error and B_ERROR _both_.
1090                  * Lot's of chunkcache code assumes that.
1091                  * There's no reason to mark error for
1092                  * ASYNC buffers.
1093                  */
1094                 xfs_buf_ioerror(bp, EIO);
1095                 XFS_BUF_FINISH_IOWAIT(bp);
1096         } else {
1097                 xfs_buf_relse(bp);
1098         }
1099
1100         return EIO;
1101 }
1102
1103
1104 /*
1105  * All xfs metadata buffers except log state machine buffers
1106  * get this attached as their b_bdstrat callback function.
1107  * This is so that we can catch a buffer
1108  * after prematurely unpinning it to forcibly shutdown the filesystem.
1109  */
1110 int
1111 xfs_bdstrat_cb(
1112         struct xfs_buf  *bp)
1113 {
1114         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1115                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1116                 /*
1117                  * Metadata write that didn't get logged but
1118                  * written delayed anyway. These aren't associated
1119                  * with a transaction, and can be ignored.
1120                  */
1121                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1122                         return xfs_bioerror_relse(bp);
1123                 else
1124                         return xfs_bioerror(bp);
1125         }
1126
1127         xfs_buf_iorequest(bp);
1128         return 0;
1129 }
1130
1131 /*
1132  * Wrapper around bdstrat so that we can stop data from going to disk in case
1133  * we are shutting down the filesystem.  Typically user data goes thru this
1134  * path; one of the exceptions is the superblock.
1135  */
1136 void
1137 xfsbdstrat(
1138         struct xfs_mount        *mp,
1139         struct xfs_buf          *bp)
1140 {
1141         if (XFS_FORCED_SHUTDOWN(mp)) {
1142                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1143                 xfs_bioerror_relse(bp);
1144                 return;
1145         }
1146
1147         xfs_buf_iorequest(bp);
1148 }
1149
1150 STATIC void
1151 _xfs_buf_ioend(
1152         xfs_buf_t               *bp,
1153         int                     schedule)
1154 {
1155         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1156                 xfs_buf_ioend(bp, schedule);
1157 }
1158
1159 STATIC void
1160 xfs_buf_bio_end_io(
1161         struct bio              *bio,
1162         int                     error)
1163 {
1164         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1165
1166         xfs_buf_ioerror(bp, -error);
1167
1168         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1169                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1170
1171         _xfs_buf_ioend(bp, 1);
1172         bio_put(bio);
1173 }
1174
1175 STATIC void
1176 _xfs_buf_ioapply(
1177         xfs_buf_t               *bp)
1178 {
1179         int                     rw, map_i, total_nr_pages, nr_pages;
1180         struct bio              *bio;
1181         int                     offset = bp->b_offset;
1182         int                     size = bp->b_count_desired;
1183         sector_t                sector = bp->b_bn;
1184
1185         total_nr_pages = bp->b_page_count;
1186         map_i = 0;
1187
1188         if (bp->b_flags & XBF_WRITE) {
1189                 if (bp->b_flags & XBF_SYNCIO)
1190                         rw = WRITE_SYNC;
1191                 else
1192                         rw = WRITE;
1193                 if (bp->b_flags & XBF_FUA)
1194                         rw |= REQ_FUA;
1195                 if (bp->b_flags & XBF_FLUSH)
1196                         rw |= REQ_FLUSH;
1197         } else if (bp->b_flags & XBF_READ_AHEAD) {
1198                 rw = READA;
1199         } else {
1200                 rw = READ;
1201         }
1202
1203         /* we only use the buffer cache for meta-data */
1204         rw |= REQ_META;
1205
1206 next_chunk:
1207         atomic_inc(&bp->b_io_remaining);
1208         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1209         if (nr_pages > total_nr_pages)
1210                 nr_pages = total_nr_pages;
1211
1212         bio = bio_alloc(GFP_NOIO, nr_pages);
1213         bio->bi_bdev = bp->b_target->bt_bdev;
1214         bio->bi_sector = sector;
1215         bio->bi_end_io = xfs_buf_bio_end_io;
1216         bio->bi_private = bp;
1217
1218
1219         for (; size && nr_pages; nr_pages--, map_i++) {
1220                 int     rbytes, nbytes = PAGE_SIZE - offset;
1221
1222                 if (nbytes > size)
1223                         nbytes = size;
1224
1225                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1226                 if (rbytes < nbytes)
1227                         break;
1228
1229                 offset = 0;
1230                 sector += nbytes >> BBSHIFT;
1231                 size -= nbytes;
1232                 total_nr_pages--;
1233         }
1234
1235         if (likely(bio->bi_size)) {
1236                 if (xfs_buf_is_vmapped(bp)) {
1237                         flush_kernel_vmap_range(bp->b_addr,
1238                                                 xfs_buf_vmap_len(bp));
1239                 }
1240                 submit_bio(rw, bio);
1241                 if (size)
1242                         goto next_chunk;
1243         } else {
1244                 xfs_buf_ioerror(bp, EIO);
1245                 bio_put(bio);
1246         }
1247 }
1248
1249 int
1250 xfs_buf_iorequest(
1251         xfs_buf_t               *bp)
1252 {
1253         trace_xfs_buf_iorequest(bp, _RET_IP_);
1254
1255         ASSERT(!(bp->b_flags & XBF_DELWRI));
1256
1257         if (bp->b_flags & XBF_WRITE)
1258                 xfs_buf_wait_unpin(bp);
1259         xfs_buf_hold(bp);
1260
1261         /* Set the count to 1 initially, this will stop an I/O
1262          * completion callout which happens before we have started
1263          * all the I/O from calling xfs_buf_ioend too early.
1264          */
1265         atomic_set(&bp->b_io_remaining, 1);
1266         _xfs_buf_ioapply(bp);
1267         _xfs_buf_ioend(bp, 0);
1268
1269         xfs_buf_rele(bp);
1270         return 0;
1271 }
1272
1273 /*
1274  *      Waits for I/O to complete on the buffer supplied.
1275  *      It returns immediately if no I/O is pending.
1276  *      It returns the I/O error code, if any, or 0 if there was no error.
1277  */
1278 int
1279 xfs_buf_iowait(
1280         xfs_buf_t               *bp)
1281 {
1282         trace_xfs_buf_iowait(bp, _RET_IP_);
1283
1284         wait_for_completion(&bp->b_iowait);
1285
1286         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1287         return bp->b_error;
1288 }
1289
1290 xfs_caddr_t
1291 xfs_buf_offset(
1292         xfs_buf_t               *bp,
1293         size_t                  offset)
1294 {
1295         struct page             *page;
1296
1297         if (bp->b_flags & XBF_MAPPED)
1298                 return bp->b_addr + offset;
1299
1300         offset += bp->b_offset;
1301         page = bp->b_pages[offset >> PAGE_SHIFT];
1302         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1303 }
1304
1305 /*
1306  *      Move data into or out of a buffer.
1307  */
1308 void
1309 xfs_buf_iomove(
1310         xfs_buf_t               *bp,    /* buffer to process            */
1311         size_t                  boff,   /* starting buffer offset       */
1312         size_t                  bsize,  /* length to copy               */
1313         void                    *data,  /* data address                 */
1314         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1315 {
1316         size_t                  bend, cpoff, csize;
1317         struct page             *page;
1318
1319         bend = boff + bsize;
1320         while (boff < bend) {
1321                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1322                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1323                 csize = min_t(size_t,
1324                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1325
1326                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1327
1328                 switch (mode) {
1329                 case XBRW_ZERO:
1330                         memset(page_address(page) + cpoff, 0, csize);
1331                         break;
1332                 case XBRW_READ:
1333                         memcpy(data, page_address(page) + cpoff, csize);
1334                         break;
1335                 case XBRW_WRITE:
1336                         memcpy(page_address(page) + cpoff, data, csize);
1337                 }
1338
1339                 boff += csize;
1340                 data += csize;
1341         }
1342 }
1343
1344 /*
1345  *      Handling of buffer targets (buftargs).
1346  */
1347
1348 /*
1349  * Wait for any bufs with callbacks that have been submitted but have not yet
1350  * returned. These buffers will have an elevated hold count, so wait on those
1351  * while freeing all the buffers only held by the LRU.
1352  */
1353 void
1354 xfs_wait_buftarg(
1355         struct xfs_buftarg      *btp)
1356 {
1357         struct xfs_buf          *bp;
1358
1359 restart:
1360         spin_lock(&btp->bt_lru_lock);
1361         while (!list_empty(&btp->bt_lru)) {
1362                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1363                 if (atomic_read(&bp->b_hold) > 1) {
1364                         spin_unlock(&btp->bt_lru_lock);
1365                         delay(100);
1366                         goto restart;
1367                 }
1368                 /*
1369                  * clear the LRU reference count so the bufer doesn't get
1370                  * ignored in xfs_buf_rele().
1371                  */
1372                 atomic_set(&bp->b_lru_ref, 0);
1373                 spin_unlock(&btp->bt_lru_lock);
1374                 xfs_buf_rele(bp);
1375                 spin_lock(&btp->bt_lru_lock);
1376         }
1377         spin_unlock(&btp->bt_lru_lock);
1378 }
1379
1380 int
1381 xfs_buftarg_shrink(
1382         struct shrinker         *shrink,
1383         struct shrink_control   *sc)
1384 {
1385         struct xfs_buftarg      *btp = container_of(shrink,
1386                                         struct xfs_buftarg, bt_shrinker);
1387         struct xfs_buf          *bp;
1388         int nr_to_scan = sc->nr_to_scan;
1389         LIST_HEAD(dispose);
1390
1391         if (!nr_to_scan)
1392                 return btp->bt_lru_nr;
1393
1394         spin_lock(&btp->bt_lru_lock);
1395         while (!list_empty(&btp->bt_lru)) {
1396                 if (nr_to_scan-- <= 0)
1397                         break;
1398
1399                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1400
1401                 /*
1402                  * Decrement the b_lru_ref count unless the value is already
1403                  * zero. If the value is already zero, we need to reclaim the
1404                  * buffer, otherwise it gets another trip through the LRU.
1405                  */
1406                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1407                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1408                         continue;
1409                 }
1410
1411                 /*
1412                  * remove the buffer from the LRU now to avoid needing another
1413                  * lock round trip inside xfs_buf_rele().
1414                  */
1415                 list_move(&bp->b_lru, &dispose);
1416                 btp->bt_lru_nr--;
1417         }
1418         spin_unlock(&btp->bt_lru_lock);
1419
1420         while (!list_empty(&dispose)) {
1421                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1422                 list_del_init(&bp->b_lru);
1423                 xfs_buf_rele(bp);
1424         }
1425
1426         return btp->bt_lru_nr;
1427 }
1428
1429 void
1430 xfs_free_buftarg(
1431         struct xfs_mount        *mp,
1432         struct xfs_buftarg      *btp)
1433 {
1434         unregister_shrinker(&btp->bt_shrinker);
1435
1436         xfs_flush_buftarg(btp, 1);
1437         if (mp->m_flags & XFS_MOUNT_BARRIER)
1438                 xfs_blkdev_issue_flush(btp);
1439
1440         kthread_stop(btp->bt_task);
1441         kmem_free(btp);
1442 }
1443
1444 STATIC int
1445 xfs_setsize_buftarg_flags(
1446         xfs_buftarg_t           *btp,
1447         unsigned int            blocksize,
1448         unsigned int            sectorsize,
1449         int                     verbose)
1450 {
1451         btp->bt_bsize = blocksize;
1452         btp->bt_sshift = ffs(sectorsize) - 1;
1453         btp->bt_smask = sectorsize - 1;
1454
1455         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1456                 xfs_warn(btp->bt_mount,
1457                         "Cannot set_blocksize to %u on device %s\n",
1458                         sectorsize, xfs_buf_target_name(btp));
1459                 return EINVAL;
1460         }
1461
1462         return 0;
1463 }
1464
1465 /*
1466  *      When allocating the initial buffer target we have not yet
1467  *      read in the superblock, so don't know what sized sectors
1468  *      are being used is at this early stage.  Play safe.
1469  */
1470 STATIC int
1471 xfs_setsize_buftarg_early(
1472         xfs_buftarg_t           *btp,
1473         struct block_device     *bdev)
1474 {
1475         return xfs_setsize_buftarg_flags(btp,
1476                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1477 }
1478
1479 int
1480 xfs_setsize_buftarg(
1481         xfs_buftarg_t           *btp,
1482         unsigned int            blocksize,
1483         unsigned int            sectorsize)
1484 {
1485         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1486 }
1487
1488 STATIC int
1489 xfs_alloc_delwri_queue(
1490         xfs_buftarg_t           *btp,
1491         const char              *fsname)
1492 {
1493         INIT_LIST_HEAD(&btp->bt_delwri_queue);
1494         spin_lock_init(&btp->bt_delwri_lock);
1495         btp->bt_flags = 0;
1496         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1497         if (IS_ERR(btp->bt_task))
1498                 return PTR_ERR(btp->bt_task);
1499         return 0;
1500 }
1501
1502 xfs_buftarg_t *
1503 xfs_alloc_buftarg(
1504         struct xfs_mount        *mp,
1505         struct block_device     *bdev,
1506         int                     external,
1507         const char              *fsname)
1508 {
1509         xfs_buftarg_t           *btp;
1510
1511         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1512
1513         btp->bt_mount = mp;
1514         btp->bt_dev =  bdev->bd_dev;
1515         btp->bt_bdev = bdev;
1516         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1517         if (!btp->bt_bdi)
1518                 goto error;
1519
1520         INIT_LIST_HEAD(&btp->bt_lru);
1521         spin_lock_init(&btp->bt_lru_lock);
1522         if (xfs_setsize_buftarg_early(btp, bdev))
1523                 goto error;
1524         if (xfs_alloc_delwri_queue(btp, fsname))
1525                 goto error;
1526         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1527         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1528         register_shrinker(&btp->bt_shrinker);
1529         return btp;
1530
1531 error:
1532         kmem_free(btp);
1533         return NULL;
1534 }
1535
1536
1537 /*
1538  *      Delayed write buffer handling
1539  */
1540 void
1541 xfs_buf_delwri_queue(
1542         xfs_buf_t               *bp)
1543 {
1544         struct xfs_buftarg      *btp = bp->b_target;
1545
1546         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1547
1548         ASSERT(!(bp->b_flags & XBF_READ));
1549
1550         spin_lock(&btp->bt_delwri_lock);
1551         if (!list_empty(&bp->b_list)) {
1552                 /* if already in the queue, move it to the tail */
1553                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1554                 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1555         } else {
1556                 /* start xfsbufd as it is about to have something to do */
1557                 if (list_empty(&btp->bt_delwri_queue))
1558                         wake_up_process(bp->b_target->bt_task);
1559
1560                 atomic_inc(&bp->b_hold);
1561                 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1562                 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1563         }
1564         bp->b_queuetime = jiffies;
1565         spin_unlock(&btp->bt_delwri_lock);
1566 }
1567
1568 void
1569 xfs_buf_delwri_dequeue(
1570         xfs_buf_t               *bp)
1571 {
1572         int                     dequeued = 0;
1573
1574         spin_lock(&bp->b_target->bt_delwri_lock);
1575         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1576                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1577                 list_del_init(&bp->b_list);
1578                 dequeued = 1;
1579         }
1580         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1581         spin_unlock(&bp->b_target->bt_delwri_lock);
1582
1583         if (dequeued)
1584                 xfs_buf_rele(bp);
1585
1586         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1587 }
1588
1589 /*
1590  * If a delwri buffer needs to be pushed before it has aged out, then promote
1591  * it to the head of the delwri queue so that it will be flushed on the next
1592  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1593  * than the age currently needed to flush the buffer. Hence the next time the
1594  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1595  */
1596 void
1597 xfs_buf_delwri_promote(
1598         struct xfs_buf  *bp)
1599 {
1600         struct xfs_buftarg *btp = bp->b_target;
1601         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1602
1603         ASSERT(bp->b_flags & XBF_DELWRI);
1604         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1605
1606         /*
1607          * Check the buffer age before locking the delayed write queue as we
1608          * don't need to promote buffers that are already past the flush age.
1609          */
1610         if (bp->b_queuetime < jiffies - age)
1611                 return;
1612         bp->b_queuetime = jiffies - age;
1613         spin_lock(&btp->bt_delwri_lock);
1614         list_move(&bp->b_list, &btp->bt_delwri_queue);
1615         spin_unlock(&btp->bt_delwri_lock);
1616 }
1617
1618 STATIC void
1619 xfs_buf_runall_queues(
1620         struct workqueue_struct *queue)
1621 {
1622         flush_workqueue(queue);
1623 }
1624
1625 /*
1626  * Move as many buffers as specified to the supplied list
1627  * idicating if we skipped any buffers to prevent deadlocks.
1628  */
1629 STATIC int
1630 xfs_buf_delwri_split(
1631         xfs_buftarg_t   *target,
1632         struct list_head *list,
1633         unsigned long   age)
1634 {
1635         xfs_buf_t       *bp, *n;
1636         int             skipped = 0;
1637         int             force;
1638
1639         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1640         INIT_LIST_HEAD(list);
1641         spin_lock(&target->bt_delwri_lock);
1642         list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1643                 ASSERT(bp->b_flags & XBF_DELWRI);
1644
1645                 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1646                         if (!force &&
1647                             time_before(jiffies, bp->b_queuetime + age)) {
1648                                 xfs_buf_unlock(bp);
1649                                 break;
1650                         }
1651
1652                         bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1653                         bp->b_flags |= XBF_WRITE;
1654                         list_move_tail(&bp->b_list, list);
1655                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1656                 } else
1657                         skipped++;
1658         }
1659
1660         spin_unlock(&target->bt_delwri_lock);
1661         return skipped;
1662 }
1663
1664 /*
1665  * Compare function is more complex than it needs to be because
1666  * the return value is only 32 bits and we are doing comparisons
1667  * on 64 bit values
1668  */
1669 static int
1670 xfs_buf_cmp(
1671         void            *priv,
1672         struct list_head *a,
1673         struct list_head *b)
1674 {
1675         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1676         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1677         xfs_daddr_t             diff;
1678
1679         diff = ap->b_bn - bp->b_bn;
1680         if (diff < 0)
1681                 return -1;
1682         if (diff > 0)
1683                 return 1;
1684         return 0;
1685 }
1686
1687 STATIC int
1688 xfsbufd(
1689         void            *data)
1690 {
1691         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1692
1693         current->flags |= PF_MEMALLOC;
1694
1695         set_freezable();
1696
1697         do {
1698                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1699                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1700                 struct list_head tmp;
1701                 struct blk_plug plug;
1702
1703                 if (unlikely(freezing(current))) {
1704                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1705                         refrigerator();
1706                 } else {
1707                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1708                 }
1709
1710                 /* sleep for a long time if there is nothing to do. */
1711                 if (list_empty(&target->bt_delwri_queue))
1712                         tout = MAX_SCHEDULE_TIMEOUT;
1713                 schedule_timeout_interruptible(tout);
1714
1715                 xfs_buf_delwri_split(target, &tmp, age);
1716                 list_sort(NULL, &tmp, xfs_buf_cmp);
1717
1718                 blk_start_plug(&plug);
1719                 while (!list_empty(&tmp)) {
1720                         struct xfs_buf *bp;
1721                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1722                         list_del_init(&bp->b_list);
1723                         xfs_bdstrat_cb(bp);
1724                 }
1725                 blk_finish_plug(&plug);
1726         } while (!kthread_should_stop());
1727
1728         return 0;
1729 }
1730
1731 /*
1732  *      Go through all incore buffers, and release buffers if they belong to
1733  *      the given device. This is used in filesystem error handling to
1734  *      preserve the consistency of its metadata.
1735  */
1736 int
1737 xfs_flush_buftarg(
1738         xfs_buftarg_t   *target,
1739         int             wait)
1740 {
1741         xfs_buf_t       *bp;
1742         int             pincount = 0;
1743         LIST_HEAD(tmp_list);
1744         LIST_HEAD(wait_list);
1745         struct blk_plug plug;
1746
1747         xfs_buf_runall_queues(xfsconvertd_workqueue);
1748         xfs_buf_runall_queues(xfsdatad_workqueue);
1749         xfs_buf_runall_queues(xfslogd_workqueue);
1750
1751         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1752         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1753
1754         /*
1755          * Dropped the delayed write list lock, now walk the temporary list.
1756          * All I/O is issued async and then if we need to wait for completion
1757          * we do that after issuing all the IO.
1758          */
1759         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1760
1761         blk_start_plug(&plug);
1762         while (!list_empty(&tmp_list)) {
1763                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1764                 ASSERT(target == bp->b_target);
1765                 list_del_init(&bp->b_list);
1766                 if (wait) {
1767                         bp->b_flags &= ~XBF_ASYNC;
1768                         list_add(&bp->b_list, &wait_list);
1769                 }
1770                 xfs_bdstrat_cb(bp);
1771         }
1772         blk_finish_plug(&plug);
1773
1774         if (wait) {
1775                 /* Wait for IO to complete. */
1776                 while (!list_empty(&wait_list)) {
1777                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1778
1779                         list_del_init(&bp->b_list);
1780                         xfs_buf_iowait(bp);
1781                         xfs_buf_relse(bp);
1782                 }
1783         }
1784
1785         return pincount;
1786 }
1787
1788 int __init
1789 xfs_buf_init(void)
1790 {
1791         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1792                                                 KM_ZONE_HWALIGN, NULL);
1793         if (!xfs_buf_zone)
1794                 goto out;
1795
1796         xfslogd_workqueue = alloc_workqueue("xfslogd",
1797                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1798         if (!xfslogd_workqueue)
1799                 goto out_free_buf_zone;
1800
1801         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1802         if (!xfsdatad_workqueue)
1803                 goto out_destroy_xfslogd_workqueue;
1804
1805         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1806                                                 WQ_MEM_RECLAIM, 1);
1807         if (!xfsconvertd_workqueue)
1808                 goto out_destroy_xfsdatad_workqueue;
1809
1810         return 0;
1811
1812  out_destroy_xfsdatad_workqueue:
1813         destroy_workqueue(xfsdatad_workqueue);
1814  out_destroy_xfslogd_workqueue:
1815         destroy_workqueue(xfslogd_workqueue);
1816  out_free_buf_zone:
1817         kmem_zone_destroy(xfs_buf_zone);
1818  out:
1819         return -ENOMEM;
1820 }
1821
1822 void
1823 xfs_buf_terminate(void)
1824 {
1825         destroy_workqueue(xfsconvertd_workqueue);
1826         destroy_workqueue(xfsdatad_workqueue);
1827         destroy_workqueue(xfslogd_workqueue);
1828         kmem_zone_destroy(xfs_buf_zone);
1829 }
1830
1831 #ifdef CONFIG_KDB_MODULES
1832 struct list_head *
1833 xfs_get_buftarg_list(void)
1834 {
1835         return &xfs_buftarg_list;
1836 }
1837 #endif