9551518be43577ce29f2db67c21f41ceeb4fde42
[pandora-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
63              (unsigned long long)iblock, bh_result, create);
64
65         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69                      (unsigned long long)iblock);
70                 goto bail;
71         }
72
73         status = ocfs2_read_inode_block(inode, &bh);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81                                                     le32_to_cpu(fe->i_clusters))) {
82                 mlog(ML_ERROR, "block offset is outside the allocated size: "
83                      "%llu\n", (unsigned long long)iblock);
84                 goto bail;
85         }
86
87         /* We don't use the page cache to create symlink data, so if
88          * need be, copy it over from the buffer cache. */
89         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91                             iblock;
92                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93                 if (!buffer_cache_bh) {
94                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95                         goto bail;
96                 }
97
98                 /* we haven't locked out transactions, so a commit
99                  * could've happened. Since we've got a reference on
100                  * the bh, even if it commits while we're doing the
101                  * copy, the data is still good. */
102                 if (buffer_jbd(buffer_cache_bh)
103                     && ocfs2_inode_is_new(inode)) {
104                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105                         if (!kaddr) {
106                                 mlog(ML_ERROR, "couldn't kmap!\n");
107                                 goto bail;
108                         }
109                         memcpy(kaddr + (bh_result->b_size * iblock),
110                                buffer_cache_bh->b_data,
111                                bh_result->b_size);
112                         kunmap_atomic(kaddr, KM_USER0);
113                         set_buffer_uptodate(bh_result);
114                 }
115                 brelse(buffer_cache_bh);
116         }
117
118         map_bh(bh_result, inode->i_sb,
119                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121         err = 0;
122
123 bail:
124         brelse(bh);
125
126         return err;
127 }
128
129 int ocfs2_get_block(struct inode *inode, sector_t iblock,
130                     struct buffer_head *bh_result, int create)
131 {
132         int err = 0;
133         unsigned int ext_flags;
134         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135         u64 p_blkno, count, past_eof;
136         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
137
138         mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
139              (unsigned long long)iblock, bh_result, create);
140
141         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143                      inode, inode->i_ino);
144
145         if (S_ISLNK(inode->i_mode)) {
146                 /* this always does I/O for some reason. */
147                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148                 goto bail;
149         }
150
151         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
152                                           &ext_flags);
153         if (err) {
154                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156                      (unsigned long long)p_blkno);
157                 goto bail;
158         }
159
160         if (max_blocks < count)
161                 count = max_blocks;
162
163         /*
164          * ocfs2 never allocates in this function - the only time we
165          * need to use BH_New is when we're extending i_size on a file
166          * system which doesn't support holes, in which case BH_New
167          * allows __block_write_begin() to zero.
168          *
169          * If we see this on a sparse file system, then a truncate has
170          * raced us and removed the cluster. In this case, we clear
171          * the buffers dirty and uptodate bits and let the buffer code
172          * ignore it as a hole.
173          */
174         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175                 clear_buffer_dirty(bh_result);
176                 clear_buffer_uptodate(bh_result);
177                 goto bail;
178         }
179
180         /* Treat the unwritten extent as a hole for zeroing purposes. */
181         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182                 map_bh(bh_result, inode->i_sb, p_blkno);
183
184         bh_result->b_size = count << inode->i_blkbits;
185
186         if (!ocfs2_sparse_alloc(osb)) {
187                 if (p_blkno == 0) {
188                         err = -EIO;
189                         mlog(ML_ERROR,
190                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191                              (unsigned long long)iblock,
192                              (unsigned long long)p_blkno,
193                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
194                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195                         dump_stack();
196                         goto bail;
197                 }
198         }
199
200         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201         mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202              (unsigned long long)past_eof);
203         if (create && (iblock >= past_eof))
204                 set_buffer_new(bh_result);
205
206 bail:
207         if (err < 0)
208                 err = -EIO;
209
210         return err;
211 }
212
213 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214                            struct buffer_head *di_bh)
215 {
216         void *kaddr;
217         loff_t size;
218         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
223                 return -EROFS;
224         }
225
226         size = i_size_read(inode);
227
228         if (size > PAGE_CACHE_SIZE ||
229             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
230                 ocfs2_error(inode->i_sb,
231                             "Inode %llu has with inline data has bad size: %Lu",
232                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
233                             (unsigned long long)size);
234                 return -EROFS;
235         }
236
237         kaddr = kmap_atomic(page, KM_USER0);
238         if (size)
239                 memcpy(kaddr, di->id2.i_data.id_data, size);
240         /* Clear the remaining part of the page */
241         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242         flush_dcache_page(page);
243         kunmap_atomic(kaddr, KM_USER0);
244
245         SetPageUptodate(page);
246
247         return 0;
248 }
249
250 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251 {
252         int ret;
253         struct buffer_head *di_bh = NULL;
254
255         BUG_ON(!PageLocked(page));
256         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
257
258         ret = ocfs2_read_inode_block(inode, &di_bh);
259         if (ret) {
260                 mlog_errno(ret);
261                 goto out;
262         }
263
264         ret = ocfs2_read_inline_data(inode, page, di_bh);
265 out:
266         unlock_page(page);
267
268         brelse(di_bh);
269         return ret;
270 }
271
272 static int ocfs2_readpage(struct file *file, struct page *page)
273 {
274         struct inode *inode = page->mapping->host;
275         struct ocfs2_inode_info *oi = OCFS2_I(inode);
276         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277         int ret, unlock = 1;
278
279         mlog(0, "(0x%p, %lu)\n", file, (page ? page->index : 0));
280
281         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
282         if (ret != 0) {
283                 if (ret == AOP_TRUNCATED_PAGE)
284                         unlock = 0;
285                 mlog_errno(ret);
286                 goto out;
287         }
288
289         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
290                 ret = AOP_TRUNCATED_PAGE;
291                 goto out_inode_unlock;
292         }
293
294         /*
295          * i_size might have just been updated as we grabed the meta lock.  We
296          * might now be discovering a truncate that hit on another node.
297          * block_read_full_page->get_block freaks out if it is asked to read
298          * beyond the end of a file, so we check here.  Callers
299          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
300          * and notice that the page they just read isn't needed.
301          *
302          * XXX sys_readahead() seems to get that wrong?
303          */
304         if (start >= i_size_read(inode)) {
305                 zero_user(page, 0, PAGE_SIZE);
306                 SetPageUptodate(page);
307                 ret = 0;
308                 goto out_alloc;
309         }
310
311         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312                 ret = ocfs2_readpage_inline(inode, page);
313         else
314                 ret = block_read_full_page(page, ocfs2_get_block);
315         unlock = 0;
316
317 out_alloc:
318         up_read(&OCFS2_I(inode)->ip_alloc_sem);
319 out_inode_unlock:
320         ocfs2_inode_unlock(inode, 0);
321 out:
322         if (unlock)
323                 unlock_page(page);
324         return ret;
325 }
326
327 /*
328  * This is used only for read-ahead. Failures or difficult to handle
329  * situations are safe to ignore.
330  *
331  * Right now, we don't bother with BH_Boundary - in-inode extent lists
332  * are quite large (243 extents on 4k blocks), so most inodes don't
333  * grow out to a tree. If need be, detecting boundary extents could
334  * trivially be added in a future version of ocfs2_get_block().
335  */
336 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
337                            struct list_head *pages, unsigned nr_pages)
338 {
339         int ret, err = -EIO;
340         struct inode *inode = mapping->host;
341         struct ocfs2_inode_info *oi = OCFS2_I(inode);
342         loff_t start;
343         struct page *last;
344
345         /*
346          * Use the nonblocking flag for the dlm code to avoid page
347          * lock inversion, but don't bother with retrying.
348          */
349         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
350         if (ret)
351                 return err;
352
353         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
354                 ocfs2_inode_unlock(inode, 0);
355                 return err;
356         }
357
358         /*
359          * Don't bother with inline-data. There isn't anything
360          * to read-ahead in that case anyway...
361          */
362         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
363                 goto out_unlock;
364
365         /*
366          * Check whether a remote node truncated this file - we just
367          * drop out in that case as it's not worth handling here.
368          */
369         last = list_entry(pages->prev, struct page, lru);
370         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
371         if (start >= i_size_read(inode))
372                 goto out_unlock;
373
374         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
375
376 out_unlock:
377         up_read(&oi->ip_alloc_sem);
378         ocfs2_inode_unlock(inode, 0);
379
380         return err;
381 }
382
383 /* Note: Because we don't support holes, our allocation has
384  * already happened (allocation writes zeros to the file data)
385  * so we don't have to worry about ordered writes in
386  * ocfs2_writepage.
387  *
388  * ->writepage is called during the process of invalidating the page cache
389  * during blocked lock processing.  It can't block on any cluster locks
390  * to during block mapping.  It's relying on the fact that the block
391  * mapping can't have disappeared under the dirty pages that it is
392  * being asked to write back.
393  */
394 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
395 {
396         int ret;
397
398         mlog(0, "(0x%p)\n", page);
399
400         ret = block_write_full_page(page, ocfs2_get_block, wbc);
401
402         return ret;
403 }
404
405 /* Taken from ext3. We don't necessarily need the full blown
406  * functionality yet, but IMHO it's better to cut and paste the whole
407  * thing so we can avoid introducing our own bugs (and easily pick up
408  * their fixes when they happen) --Mark */
409 int walk_page_buffers(  handle_t *handle,
410                         struct buffer_head *head,
411                         unsigned from,
412                         unsigned to,
413                         int *partial,
414                         int (*fn)(      handle_t *handle,
415                                         struct buffer_head *bh))
416 {
417         struct buffer_head *bh;
418         unsigned block_start, block_end;
419         unsigned blocksize = head->b_size;
420         int err, ret = 0;
421         struct buffer_head *next;
422
423         for (   bh = head, block_start = 0;
424                 ret == 0 && (bh != head || !block_start);
425                 block_start = block_end, bh = next)
426         {
427                 next = bh->b_this_page;
428                 block_end = block_start + blocksize;
429                 if (block_end <= from || block_start >= to) {
430                         if (partial && !buffer_uptodate(bh))
431                                 *partial = 1;
432                         continue;
433                 }
434                 err = (*fn)(handle, bh);
435                 if (!ret)
436                         ret = err;
437         }
438         return ret;
439 }
440
441 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
442 {
443         sector_t status;
444         u64 p_blkno = 0;
445         int err = 0;
446         struct inode *inode = mapping->host;
447
448         mlog(0, "(block = %llu)\n", (unsigned long long)block);
449
450         /* We don't need to lock journal system files, since they aren't
451          * accessed concurrently from multiple nodes.
452          */
453         if (!INODE_JOURNAL(inode)) {
454                 err = ocfs2_inode_lock(inode, NULL, 0);
455                 if (err) {
456                         if (err != -ENOENT)
457                                 mlog_errno(err);
458                         goto bail;
459                 }
460                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
461         }
462
463         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
464                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
465                                                   NULL);
466
467         if (!INODE_JOURNAL(inode)) {
468                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
469                 ocfs2_inode_unlock(inode, 0);
470         }
471
472         if (err) {
473                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
474                      (unsigned long long)block);
475                 mlog_errno(err);
476                 goto bail;
477         }
478
479 bail:
480         status = err ? 0 : p_blkno;
481
482         return status;
483 }
484
485 /*
486  * TODO: Make this into a generic get_blocks function.
487  *
488  * From do_direct_io in direct-io.c:
489  *  "So what we do is to permit the ->get_blocks function to populate
490  *   bh.b_size with the size of IO which is permitted at this offset and
491  *   this i_blkbits."
492  *
493  * This function is called directly from get_more_blocks in direct-io.c.
494  *
495  * called like this: dio->get_blocks(dio->inode, fs_startblk,
496  *                                      fs_count, map_bh, dio->rw == WRITE);
497  *
498  * Note that we never bother to allocate blocks here, and thus ignore the
499  * create argument.
500  */
501 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
502                                      struct buffer_head *bh_result, int create)
503 {
504         int ret;
505         u64 p_blkno, inode_blocks, contig_blocks;
506         unsigned int ext_flags;
507         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
508         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
509
510         /* This function won't even be called if the request isn't all
511          * nicely aligned and of the right size, so there's no need
512          * for us to check any of that. */
513
514         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
515
516         /* This figures out the size of the next contiguous block, and
517          * our logical offset */
518         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
519                                           &contig_blocks, &ext_flags);
520         if (ret) {
521                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
522                      (unsigned long long)iblock);
523                 ret = -EIO;
524                 goto bail;
525         }
526
527         /* We should already CoW the refcounted extent in case of create. */
528         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
529
530         /*
531          * get_more_blocks() expects us to describe a hole by clearing
532          * the mapped bit on bh_result().
533          *
534          * Consider an unwritten extent as a hole.
535          */
536         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
537                 map_bh(bh_result, inode->i_sb, p_blkno);
538         else
539                 clear_buffer_mapped(bh_result);
540
541         /* make sure we don't map more than max_blocks blocks here as
542            that's all the kernel will handle at this point. */
543         if (max_blocks < contig_blocks)
544                 contig_blocks = max_blocks;
545         bh_result->b_size = contig_blocks << blocksize_bits;
546 bail:
547         return ret;
548 }
549
550 /*
551  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
552  * particularly interested in the aio/dio case.  Like the core uses
553  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
554  * truncation on another.
555  */
556 static void ocfs2_dio_end_io(struct kiocb *iocb,
557                              loff_t offset,
558                              ssize_t bytes,
559                              void *private,
560                              int ret,
561                              bool is_async)
562 {
563         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
564         int level;
565
566         /* this io's submitter should not have unlocked this before we could */
567         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
568
569         if (ocfs2_iocb_is_sem_locked(iocb)) {
570                 up_read(&inode->i_alloc_sem);
571                 ocfs2_iocb_clear_sem_locked(iocb);
572         }
573
574         ocfs2_iocb_clear_rw_locked(iocb);
575
576         level = ocfs2_iocb_rw_locked_level(iocb);
577         ocfs2_rw_unlock(inode, level);
578
579         if (is_async)
580                 aio_complete(iocb, ret, 0);
581 }
582
583 /*
584  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
586  * do journalled data.
587  */
588 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589 {
590         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
592         jbd2_journal_invalidatepage(journal, page, offset);
593 }
594
595 static int ocfs2_releasepage(struct page *page, gfp_t wait)
596 {
597         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599         if (!page_has_buffers(page))
600                 return 0;
601         return jbd2_journal_try_to_free_buffers(journal, page, wait);
602 }
603
604 static ssize_t ocfs2_direct_IO(int rw,
605                                struct kiocb *iocb,
606                                const struct iovec *iov,
607                                loff_t offset,
608                                unsigned long nr_segs)
609 {
610         struct file *file = iocb->ki_filp;
611         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
612
613         /*
614          * Fallback to buffered I/O if we see an inode without
615          * extents.
616          */
617         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618                 return 0;
619
620         /* Fallback to buffered I/O if we are appending. */
621         if (i_size_read(inode) <= offset)
622                 return 0;
623
624         return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625                                     iov, offset, nr_segs,
626                                     ocfs2_direct_IO_get_blocks,
627                                     ocfs2_dio_end_io, NULL, 0);
628 }
629
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631                                             u32 cpos,
632                                             unsigned int *start,
633                                             unsigned int *end)
634 {
635         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638                 unsigned int cpp;
639
640                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642                 cluster_start = cpos % cpp;
643                 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645                 cluster_end = cluster_start + osb->s_clustersize;
646         }
647
648         BUG_ON(cluster_start > PAGE_SIZE);
649         BUG_ON(cluster_end > PAGE_SIZE);
650
651         if (start)
652                 *start = cluster_start;
653         if (end)
654                 *end = cluster_end;
655 }
656
657 /*
658  * 'from' and 'to' are the region in the page to avoid zeroing.
659  *
660  * If pagesize > clustersize, this function will avoid zeroing outside
661  * of the cluster boundary.
662  *
663  * from == to == 0 is code for "zero the entire cluster region"
664  */
665 static void ocfs2_clear_page_regions(struct page *page,
666                                      struct ocfs2_super *osb, u32 cpos,
667                                      unsigned from, unsigned to)
668 {
669         void *kaddr;
670         unsigned int cluster_start, cluster_end;
671
672         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674         kaddr = kmap_atomic(page, KM_USER0);
675
676         if (from || to) {
677                 if (from > cluster_start)
678                         memset(kaddr + cluster_start, 0, from - cluster_start);
679                 if (to < cluster_end)
680                         memset(kaddr + to, 0, cluster_end - to);
681         } else {
682                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683         }
684
685         kunmap_atomic(kaddr, KM_USER0);
686 }
687
688 /*
689  * Nonsparse file systems fully allocate before we get to the write
690  * code. This prevents ocfs2_write() from tagging the write as an
691  * allocating one, which means ocfs2_map_page_blocks() might try to
692  * read-in the blocks at the tail of our file. Avoid reading them by
693  * testing i_size against each block offset.
694  */
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696                                  unsigned int block_start)
697 {
698         u64 offset = page_offset(page) + block_start;
699
700         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701                 return 1;
702
703         if (i_size_read(inode) > offset)
704                 return 1;
705
706         return 0;
707 }
708
709 /*
710  * Some of this taken from __block_write_begin(). We already have our
711  * mapping by now though, and the entire write will be allocating or
712  * it won't, so not much need to use BH_New.
713  *
714  * This will also skip zeroing, which is handled externally.
715  */
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717                           struct inode *inode, unsigned int from,
718                           unsigned int to, int new)
719 {
720         int ret = 0;
721         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722         unsigned int block_end, block_start;
723         unsigned int bsize = 1 << inode->i_blkbits;
724
725         if (!page_has_buffers(page))
726                 create_empty_buffers(page, bsize, 0);
727
728         head = page_buffers(page);
729         for (bh = head, block_start = 0; bh != head || !block_start;
730              bh = bh->b_this_page, block_start += bsize) {
731                 block_end = block_start + bsize;
732
733                 clear_buffer_new(bh);
734
735                 /*
736                  * Ignore blocks outside of our i/o range -
737                  * they may belong to unallocated clusters.
738                  */
739                 if (block_start >= to || block_end <= from) {
740                         if (PageUptodate(page))
741                                 set_buffer_uptodate(bh);
742                         continue;
743                 }
744
745                 /*
746                  * For an allocating write with cluster size >= page
747                  * size, we always write the entire page.
748                  */
749                 if (new)
750                         set_buffer_new(bh);
751
752                 if (!buffer_mapped(bh)) {
753                         map_bh(bh, inode->i_sb, *p_blkno);
754                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755                 }
756
757                 if (PageUptodate(page)) {
758                         if (!buffer_uptodate(bh))
759                                 set_buffer_uptodate(bh);
760                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761                            !buffer_new(bh) &&
762                            ocfs2_should_read_blk(inode, page, block_start) &&
763                            (block_start < from || block_end > to)) {
764                         ll_rw_block(READ, 1, &bh);
765                         *wait_bh++=bh;
766                 }
767
768                 *p_blkno = *p_blkno + 1;
769         }
770
771         /*
772          * If we issued read requests - let them complete.
773          */
774         while(wait_bh > wait) {
775                 wait_on_buffer(*--wait_bh);
776                 if (!buffer_uptodate(*wait_bh))
777                         ret = -EIO;
778         }
779
780         if (ret == 0 || !new)
781                 return ret;
782
783         /*
784          * If we get -EIO above, zero out any newly allocated blocks
785          * to avoid exposing stale data.
786          */
787         bh = head;
788         block_start = 0;
789         do {
790                 block_end = block_start + bsize;
791                 if (block_end <= from)
792                         goto next_bh;
793                 if (block_start >= to)
794                         break;
795
796                 zero_user(page, block_start, bh->b_size);
797                 set_buffer_uptodate(bh);
798                 mark_buffer_dirty(bh);
799
800 next_bh:
801                 block_start = block_end;
802                 bh = bh->b_this_page;
803         } while (bh != head);
804
805         return ret;
806 }
807
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES    1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
813
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
816 /*
817  * Describe the state of a single cluster to be written to.
818  */
819 struct ocfs2_write_cluster_desc {
820         u32             c_cpos;
821         u32             c_phys;
822         /*
823          * Give this a unique field because c_phys eventually gets
824          * filled.
825          */
826         unsigned        c_new;
827         unsigned        c_unwritten;
828         unsigned        c_needs_zero;
829 };
830
831 struct ocfs2_write_ctxt {
832         /* Logical cluster position / len of write */
833         u32                             w_cpos;
834         u32                             w_clen;
835
836         /* First cluster allocated in a nonsparse extend */
837         u32                             w_first_new_cpos;
838
839         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840
841         /*
842          * This is true if page_size > cluster_size.
843          *
844          * It triggers a set of special cases during write which might
845          * have to deal with allocating writes to partial pages.
846          */
847         unsigned int                    w_large_pages;
848
849         /*
850          * Pages involved in this write.
851          *
852          * w_target_page is the page being written to by the user.
853          *
854          * w_pages is an array of pages which always contains
855          * w_target_page, and in the case of an allocating write with
856          * page_size < cluster size, it will contain zero'd and mapped
857          * pages adjacent to w_target_page which need to be written
858          * out in so that future reads from that region will get
859          * zero's.
860          */
861         unsigned int                    w_num_pages;
862         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
863         struct page                     *w_target_page;
864
865         /*
866          * ocfs2_write_end() uses this to know what the real range to
867          * write in the target should be.
868          */
869         unsigned int                    w_target_from;
870         unsigned int                    w_target_to;
871
872         /*
873          * We could use journal_current_handle() but this is cleaner,
874          * IMHO -Mark
875          */
876         handle_t                        *w_handle;
877
878         struct buffer_head              *w_di_bh;
879
880         struct ocfs2_cached_dealloc_ctxt w_dealloc;
881 };
882
883 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
884 {
885         int i;
886
887         for(i = 0; i < num_pages; i++) {
888                 if (pages[i]) {
889                         unlock_page(pages[i]);
890                         mark_page_accessed(pages[i]);
891                         page_cache_release(pages[i]);
892                 }
893         }
894 }
895
896 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897 {
898         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
899
900         brelse(wc->w_di_bh);
901         kfree(wc);
902 }
903
904 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905                                   struct ocfs2_super *osb, loff_t pos,
906                                   unsigned len, struct buffer_head *di_bh)
907 {
908         u32 cend;
909         struct ocfs2_write_ctxt *wc;
910
911         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912         if (!wc)
913                 return -ENOMEM;
914
915         wc->w_cpos = pos >> osb->s_clustersize_bits;
916         wc->w_first_new_cpos = UINT_MAX;
917         cend = (pos + len - 1) >> osb->s_clustersize_bits;
918         wc->w_clen = cend - wc->w_cpos + 1;
919         get_bh(di_bh);
920         wc->w_di_bh = di_bh;
921
922         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923                 wc->w_large_pages = 1;
924         else
925                 wc->w_large_pages = 0;
926
927         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
929         *wcp = wc;
930
931         return 0;
932 }
933
934 /*
935  * If a page has any new buffers, zero them out here, and mark them uptodate
936  * and dirty so they'll be written out (in order to prevent uninitialised
937  * block data from leaking). And clear the new bit.
938  */
939 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
940 {
941         unsigned int block_start, block_end;
942         struct buffer_head *head, *bh;
943
944         BUG_ON(!PageLocked(page));
945         if (!page_has_buffers(page))
946                 return;
947
948         bh = head = page_buffers(page);
949         block_start = 0;
950         do {
951                 block_end = block_start + bh->b_size;
952
953                 if (buffer_new(bh)) {
954                         if (block_end > from && block_start < to) {
955                                 if (!PageUptodate(page)) {
956                                         unsigned start, end;
957
958                                         start = max(from, block_start);
959                                         end = min(to, block_end);
960
961                                         zero_user_segment(page, start, end);
962                                         set_buffer_uptodate(bh);
963                                 }
964
965                                 clear_buffer_new(bh);
966                                 mark_buffer_dirty(bh);
967                         }
968                 }
969
970                 block_start = block_end;
971                 bh = bh->b_this_page;
972         } while (bh != head);
973 }
974
975 /*
976  * Only called when we have a failure during allocating write to write
977  * zero's to the newly allocated region.
978  */
979 static void ocfs2_write_failure(struct inode *inode,
980                                 struct ocfs2_write_ctxt *wc,
981                                 loff_t user_pos, unsigned user_len)
982 {
983         int i;
984         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985                 to = user_pos + user_len;
986         struct page *tmppage;
987
988         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
989
990         for(i = 0; i < wc->w_num_pages; i++) {
991                 tmppage = wc->w_pages[i];
992
993                 if (page_has_buffers(tmppage)) {
994                         if (ocfs2_should_order_data(inode))
995                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
996
997                         block_commit_write(tmppage, from, to);
998                 }
999         }
1000 }
1001
1002 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003                                         struct ocfs2_write_ctxt *wc,
1004                                         struct page *page, u32 cpos,
1005                                         loff_t user_pos, unsigned user_len,
1006                                         int new)
1007 {
1008         int ret;
1009         unsigned int map_from = 0, map_to = 0;
1010         unsigned int cluster_start, cluster_end;
1011         unsigned int user_data_from = 0, user_data_to = 0;
1012
1013         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014                                         &cluster_start, &cluster_end);
1015
1016         if (page == wc->w_target_page) {
1017                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1018                 map_to = map_from + user_len;
1019
1020                 if (new)
1021                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1022                                                     cluster_start, cluster_end,
1023                                                     new);
1024                 else
1025                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1026                                                     map_from, map_to, new);
1027                 if (ret) {
1028                         mlog_errno(ret);
1029                         goto out;
1030                 }
1031
1032                 user_data_from = map_from;
1033                 user_data_to = map_to;
1034                 if (new) {
1035                         map_from = cluster_start;
1036                         map_to = cluster_end;
1037                 }
1038         } else {
1039                 /*
1040                  * If we haven't allocated the new page yet, we
1041                  * shouldn't be writing it out without copying user
1042                  * data. This is likely a math error from the caller.
1043                  */
1044                 BUG_ON(!new);
1045
1046                 map_from = cluster_start;
1047                 map_to = cluster_end;
1048
1049                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1050                                             cluster_start, cluster_end, new);
1051                 if (ret) {
1052                         mlog_errno(ret);
1053                         goto out;
1054                 }
1055         }
1056
1057         /*
1058          * Parts of newly allocated pages need to be zero'd.
1059          *
1060          * Above, we have also rewritten 'to' and 'from' - as far as
1061          * the rest of the function is concerned, the entire cluster
1062          * range inside of a page needs to be written.
1063          *
1064          * We can skip this if the page is up to date - it's already
1065          * been zero'd from being read in as a hole.
1066          */
1067         if (new && !PageUptodate(page))
1068                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1069                                          cpos, user_data_from, user_data_to);
1070
1071         flush_dcache_page(page);
1072
1073 out:
1074         return ret;
1075 }
1076
1077 /*
1078  * This function will only grab one clusters worth of pages.
1079  */
1080 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1081                                       struct ocfs2_write_ctxt *wc,
1082                                       u32 cpos, loff_t user_pos,
1083                                       unsigned user_len, int new,
1084                                       struct page *mmap_page)
1085 {
1086         int ret = 0, i;
1087         unsigned long start, target_index, end_index, index;
1088         struct inode *inode = mapping->host;
1089         loff_t last_byte;
1090
1091         target_index = user_pos >> PAGE_CACHE_SHIFT;
1092
1093         /*
1094          * Figure out how many pages we'll be manipulating here. For
1095          * non allocating write, we just change the one
1096          * page. Otherwise, we'll need a whole clusters worth.  If we're
1097          * writing past i_size, we only need enough pages to cover the
1098          * last page of the write.
1099          */
1100         if (new) {
1101                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1102                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1103                 /*
1104                  * We need the index *past* the last page we could possibly
1105                  * touch.  This is the page past the end of the write or
1106                  * i_size, whichever is greater.
1107                  */
1108                 last_byte = max(user_pos + user_len, i_size_read(inode));
1109                 BUG_ON(last_byte < 1);
1110                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1111                 if ((start + wc->w_num_pages) > end_index)
1112                         wc->w_num_pages = end_index - start;
1113         } else {
1114                 wc->w_num_pages = 1;
1115                 start = target_index;
1116         }
1117
1118         for(i = 0; i < wc->w_num_pages; i++) {
1119                 index = start + i;
1120
1121                 if (index == target_index && mmap_page) {
1122                         /*
1123                          * ocfs2_pagemkwrite() is a little different
1124                          * and wants us to directly use the page
1125                          * passed in.
1126                          */
1127                         lock_page(mmap_page);
1128
1129                         if (mmap_page->mapping != mapping) {
1130                                 unlock_page(mmap_page);
1131                                 /*
1132                                  * Sanity check - the locking in
1133                                  * ocfs2_pagemkwrite() should ensure
1134                                  * that this code doesn't trigger.
1135                                  */
1136                                 ret = -EINVAL;
1137                                 mlog_errno(ret);
1138                                 goto out;
1139                         }
1140
1141                         page_cache_get(mmap_page);
1142                         wc->w_pages[i] = mmap_page;
1143                 } else {
1144                         wc->w_pages[i] = find_or_create_page(mapping, index,
1145                                                              GFP_NOFS);
1146                         if (!wc->w_pages[i]) {
1147                                 ret = -ENOMEM;
1148                                 mlog_errno(ret);
1149                                 goto out;
1150                         }
1151                 }
1152
1153                 if (index == target_index)
1154                         wc->w_target_page = wc->w_pages[i];
1155         }
1156 out:
1157         return ret;
1158 }
1159
1160 /*
1161  * Prepare a single cluster for write one cluster into the file.
1162  */
1163 static int ocfs2_write_cluster(struct address_space *mapping,
1164                                u32 phys, unsigned int unwritten,
1165                                unsigned int should_zero,
1166                                struct ocfs2_alloc_context *data_ac,
1167                                struct ocfs2_alloc_context *meta_ac,
1168                                struct ocfs2_write_ctxt *wc, u32 cpos,
1169                                loff_t user_pos, unsigned user_len)
1170 {
1171         int ret, i, new;
1172         u64 v_blkno, p_blkno;
1173         struct inode *inode = mapping->host;
1174         struct ocfs2_extent_tree et;
1175
1176         new = phys == 0 ? 1 : 0;
1177         if (new) {
1178                 u32 tmp_pos;
1179
1180                 /*
1181                  * This is safe to call with the page locks - it won't take
1182                  * any additional semaphores or cluster locks.
1183                  */
1184                 tmp_pos = cpos;
1185                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1186                                            &tmp_pos, 1, 0, wc->w_di_bh,
1187                                            wc->w_handle, data_ac,
1188                                            meta_ac, NULL);
1189                 /*
1190                  * This shouldn't happen because we must have already
1191                  * calculated the correct meta data allocation required. The
1192                  * internal tree allocation code should know how to increase
1193                  * transaction credits itself.
1194                  *
1195                  * If need be, we could handle -EAGAIN for a
1196                  * RESTART_TRANS here.
1197                  */
1198                 mlog_bug_on_msg(ret == -EAGAIN,
1199                                 "Inode %llu: EAGAIN return during allocation.\n",
1200                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1201                 if (ret < 0) {
1202                         mlog_errno(ret);
1203                         goto out;
1204                 }
1205         } else if (unwritten) {
1206                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1207                                               wc->w_di_bh);
1208                 ret = ocfs2_mark_extent_written(inode, &et,
1209                                                 wc->w_handle, cpos, 1, phys,
1210                                                 meta_ac, &wc->w_dealloc);
1211                 if (ret < 0) {
1212                         mlog_errno(ret);
1213                         goto out;
1214                 }
1215         }
1216
1217         if (should_zero)
1218                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1219         else
1220                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1221
1222         /*
1223          * The only reason this should fail is due to an inability to
1224          * find the extent added.
1225          */
1226         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1227                                           NULL);
1228         if (ret < 0) {
1229                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1230                             "at logical block %llu",
1231                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1232                             (unsigned long long)v_blkno);
1233                 goto out;
1234         }
1235
1236         BUG_ON(p_blkno == 0);
1237
1238         for(i = 0; i < wc->w_num_pages; i++) {
1239                 int tmpret;
1240
1241                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1242                                                       wc->w_pages[i], cpos,
1243                                                       user_pos, user_len,
1244                                                       should_zero);
1245                 if (tmpret) {
1246                         mlog_errno(tmpret);
1247                         if (ret == 0)
1248                                 ret = tmpret;
1249                 }
1250         }
1251
1252         /*
1253          * We only have cleanup to do in case of allocating write.
1254          */
1255         if (ret && new)
1256                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1257
1258 out:
1259
1260         return ret;
1261 }
1262
1263 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1264                                        struct ocfs2_alloc_context *data_ac,
1265                                        struct ocfs2_alloc_context *meta_ac,
1266                                        struct ocfs2_write_ctxt *wc,
1267                                        loff_t pos, unsigned len)
1268 {
1269         int ret, i;
1270         loff_t cluster_off;
1271         unsigned int local_len = len;
1272         struct ocfs2_write_cluster_desc *desc;
1273         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1274
1275         for (i = 0; i < wc->w_clen; i++) {
1276                 desc = &wc->w_desc[i];
1277
1278                 /*
1279                  * We have to make sure that the total write passed in
1280                  * doesn't extend past a single cluster.
1281                  */
1282                 local_len = len;
1283                 cluster_off = pos & (osb->s_clustersize - 1);
1284                 if ((cluster_off + local_len) > osb->s_clustersize)
1285                         local_len = osb->s_clustersize - cluster_off;
1286
1287                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1288                                           desc->c_unwritten,
1289                                           desc->c_needs_zero,
1290                                           data_ac, meta_ac,
1291                                           wc, desc->c_cpos, pos, local_len);
1292                 if (ret) {
1293                         mlog_errno(ret);
1294                         goto out;
1295                 }
1296
1297                 len -= local_len;
1298                 pos += local_len;
1299         }
1300
1301         ret = 0;
1302 out:
1303         return ret;
1304 }
1305
1306 /*
1307  * ocfs2_write_end() wants to know which parts of the target page it
1308  * should complete the write on. It's easiest to compute them ahead of
1309  * time when a more complete view of the write is available.
1310  */
1311 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1312                                         struct ocfs2_write_ctxt *wc,
1313                                         loff_t pos, unsigned len, int alloc)
1314 {
1315         struct ocfs2_write_cluster_desc *desc;
1316
1317         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1318         wc->w_target_to = wc->w_target_from + len;
1319
1320         if (alloc == 0)
1321                 return;
1322
1323         /*
1324          * Allocating write - we may have different boundaries based
1325          * on page size and cluster size.
1326          *
1327          * NOTE: We can no longer compute one value from the other as
1328          * the actual write length and user provided length may be
1329          * different.
1330          */
1331
1332         if (wc->w_large_pages) {
1333                 /*
1334                  * We only care about the 1st and last cluster within
1335                  * our range and whether they should be zero'd or not. Either
1336                  * value may be extended out to the start/end of a
1337                  * newly allocated cluster.
1338                  */
1339                 desc = &wc->w_desc[0];
1340                 if (desc->c_needs_zero)
1341                         ocfs2_figure_cluster_boundaries(osb,
1342                                                         desc->c_cpos,
1343                                                         &wc->w_target_from,
1344                                                         NULL);
1345
1346                 desc = &wc->w_desc[wc->w_clen - 1];
1347                 if (desc->c_needs_zero)
1348                         ocfs2_figure_cluster_boundaries(osb,
1349                                                         desc->c_cpos,
1350                                                         NULL,
1351                                                         &wc->w_target_to);
1352         } else {
1353                 wc->w_target_from = 0;
1354                 wc->w_target_to = PAGE_CACHE_SIZE;
1355         }
1356 }
1357
1358 /*
1359  * Populate each single-cluster write descriptor in the write context
1360  * with information about the i/o to be done.
1361  *
1362  * Returns the number of clusters that will have to be allocated, as
1363  * well as a worst case estimate of the number of extent records that
1364  * would have to be created during a write to an unwritten region.
1365  */
1366 static int ocfs2_populate_write_desc(struct inode *inode,
1367                                      struct ocfs2_write_ctxt *wc,
1368                                      unsigned int *clusters_to_alloc,
1369                                      unsigned int *extents_to_split)
1370 {
1371         int ret;
1372         struct ocfs2_write_cluster_desc *desc;
1373         unsigned int num_clusters = 0;
1374         unsigned int ext_flags = 0;
1375         u32 phys = 0;
1376         int i;
1377
1378         *clusters_to_alloc = 0;
1379         *extents_to_split = 0;
1380
1381         for (i = 0; i < wc->w_clen; i++) {
1382                 desc = &wc->w_desc[i];
1383                 desc->c_cpos = wc->w_cpos + i;
1384
1385                 if (num_clusters == 0) {
1386                         /*
1387                          * Need to look up the next extent record.
1388                          */
1389                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1390                                                  &num_clusters, &ext_flags);
1391                         if (ret) {
1392                                 mlog_errno(ret);
1393                                 goto out;
1394                         }
1395
1396                         /* We should already CoW the refcountd extent. */
1397                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1398
1399                         /*
1400                          * Assume worst case - that we're writing in
1401                          * the middle of the extent.
1402                          *
1403                          * We can assume that the write proceeds from
1404                          * left to right, in which case the extent
1405                          * insert code is smart enough to coalesce the
1406                          * next splits into the previous records created.
1407                          */
1408                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1409                                 *extents_to_split = *extents_to_split + 2;
1410                 } else if (phys) {
1411                         /*
1412                          * Only increment phys if it doesn't describe
1413                          * a hole.
1414                          */
1415                         phys++;
1416                 }
1417
1418                 /*
1419                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1420                  * file that got extended.  w_first_new_cpos tells us
1421                  * where the newly allocated clusters are so we can
1422                  * zero them.
1423                  */
1424                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1425                         BUG_ON(phys == 0);
1426                         desc->c_needs_zero = 1;
1427                 }
1428
1429                 desc->c_phys = phys;
1430                 if (phys == 0) {
1431                         desc->c_new = 1;
1432                         desc->c_needs_zero = 1;
1433                         *clusters_to_alloc = *clusters_to_alloc + 1;
1434                 }
1435
1436                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1437                         desc->c_unwritten = 1;
1438                         desc->c_needs_zero = 1;
1439                 }
1440
1441                 num_clusters--;
1442         }
1443
1444         ret = 0;
1445 out:
1446         return ret;
1447 }
1448
1449 static int ocfs2_write_begin_inline(struct address_space *mapping,
1450                                     struct inode *inode,
1451                                     struct ocfs2_write_ctxt *wc)
1452 {
1453         int ret;
1454         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1455         struct page *page;
1456         handle_t *handle;
1457         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1458
1459         page = find_or_create_page(mapping, 0, GFP_NOFS);
1460         if (!page) {
1461                 ret = -ENOMEM;
1462                 mlog_errno(ret);
1463                 goto out;
1464         }
1465         /*
1466          * If we don't set w_num_pages then this page won't get unlocked
1467          * and freed on cleanup of the write context.
1468          */
1469         wc->w_pages[0] = wc->w_target_page = page;
1470         wc->w_num_pages = 1;
1471
1472         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1473         if (IS_ERR(handle)) {
1474                 ret = PTR_ERR(handle);
1475                 mlog_errno(ret);
1476                 goto out;
1477         }
1478
1479         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1480                                       OCFS2_JOURNAL_ACCESS_WRITE);
1481         if (ret) {
1482                 ocfs2_commit_trans(osb, handle);
1483
1484                 mlog_errno(ret);
1485                 goto out;
1486         }
1487
1488         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1489                 ocfs2_set_inode_data_inline(inode, di);
1490
1491         if (!PageUptodate(page)) {
1492                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1493                 if (ret) {
1494                         ocfs2_commit_trans(osb, handle);
1495
1496                         goto out;
1497                 }
1498         }
1499
1500         wc->w_handle = handle;
1501 out:
1502         return ret;
1503 }
1504
1505 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1506 {
1507         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1508
1509         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1510                 return 1;
1511         return 0;
1512 }
1513
1514 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1515                                           struct inode *inode, loff_t pos,
1516                                           unsigned len, struct page *mmap_page,
1517                                           struct ocfs2_write_ctxt *wc)
1518 {
1519         int ret, written = 0;
1520         loff_t end = pos + len;
1521         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1522         struct ocfs2_dinode *di = NULL;
1523
1524         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1525              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1526              oi->ip_dyn_features);
1527
1528         /*
1529          * Handle inodes which already have inline data 1st.
1530          */
1531         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1532                 if (mmap_page == NULL &&
1533                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1534                         goto do_inline_write;
1535
1536                 /*
1537                  * The write won't fit - we have to give this inode an
1538                  * inline extent list now.
1539                  */
1540                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1541                 if (ret)
1542                         mlog_errno(ret);
1543                 goto out;
1544         }
1545
1546         /*
1547          * Check whether the inode can accept inline data.
1548          */
1549         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1550                 return 0;
1551
1552         /*
1553          * Check whether the write can fit.
1554          */
1555         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1556         if (mmap_page ||
1557             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1558                 return 0;
1559
1560 do_inline_write:
1561         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1562         if (ret) {
1563                 mlog_errno(ret);
1564                 goto out;
1565         }
1566
1567         /*
1568          * This signals to the caller that the data can be written
1569          * inline.
1570          */
1571         written = 1;
1572 out:
1573         return written ? written : ret;
1574 }
1575
1576 /*
1577  * This function only does anything for file systems which can't
1578  * handle sparse files.
1579  *
1580  * What we want to do here is fill in any hole between the current end
1581  * of allocation and the end of our write. That way the rest of the
1582  * write path can treat it as an non-allocating write, which has no
1583  * special case code for sparse/nonsparse files.
1584  */
1585 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1586                                         struct buffer_head *di_bh,
1587                                         loff_t pos, unsigned len,
1588                                         struct ocfs2_write_ctxt *wc)
1589 {
1590         int ret;
1591         loff_t newsize = pos + len;
1592
1593         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1594
1595         if (newsize <= i_size_read(inode))
1596                 return 0;
1597
1598         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1599         if (ret)
1600                 mlog_errno(ret);
1601
1602         wc->w_first_new_cpos =
1603                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1604
1605         return ret;
1606 }
1607
1608 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1609                            loff_t pos)
1610 {
1611         int ret = 0;
1612
1613         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1614         if (pos > i_size_read(inode))
1615                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1616
1617         return ret;
1618 }
1619
1620 /*
1621  * Try to flush truncate logs if we can free enough clusters from it.
1622  * As for return value, "< 0" means error, "0" no space and "1" means
1623  * we have freed enough spaces and let the caller try to allocate again.
1624  */
1625 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1626                                           unsigned int needed)
1627 {
1628         tid_t target;
1629         int ret = 0;
1630         unsigned int truncated_clusters;
1631
1632         mutex_lock(&osb->osb_tl_inode->i_mutex);
1633         truncated_clusters = osb->truncated_clusters;
1634         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1635
1636         /*
1637          * Check whether we can succeed in allocating if we free
1638          * the truncate log.
1639          */
1640         if (truncated_clusters < needed)
1641                 goto out;
1642
1643         ret = ocfs2_flush_truncate_log(osb);
1644         if (ret) {
1645                 mlog_errno(ret);
1646                 goto out;
1647         }
1648
1649         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1650                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1651                 ret = 1;
1652         }
1653 out:
1654         return ret;
1655 }
1656
1657 int ocfs2_write_begin_nolock(struct file *filp,
1658                              struct address_space *mapping,
1659                              loff_t pos, unsigned len, unsigned flags,
1660                              struct page **pagep, void **fsdata,
1661                              struct buffer_head *di_bh, struct page *mmap_page)
1662 {
1663         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1664         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1665         struct ocfs2_write_ctxt *wc;
1666         struct inode *inode = mapping->host;
1667         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668         struct ocfs2_dinode *di;
1669         struct ocfs2_alloc_context *data_ac = NULL;
1670         struct ocfs2_alloc_context *meta_ac = NULL;
1671         handle_t *handle;
1672         struct ocfs2_extent_tree et;
1673         int try_free = 1, ret1;
1674
1675 try_again:
1676         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1677         if (ret) {
1678                 mlog_errno(ret);
1679                 return ret;
1680         }
1681
1682         if (ocfs2_supports_inline_data(osb)) {
1683                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684                                                      mmap_page, wc);
1685                 if (ret == 1) {
1686                         ret = 0;
1687                         goto success;
1688                 }
1689                 if (ret < 0) {
1690                         mlog_errno(ret);
1691                         goto out;
1692                 }
1693         }
1694
1695         if (ocfs2_sparse_alloc(osb))
1696                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1697         else
1698                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1699                                                    wc);
1700         if (ret) {
1701                 mlog_errno(ret);
1702                 goto out;
1703         }
1704
1705         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1706         if (ret < 0) {
1707                 mlog_errno(ret);
1708                 goto out;
1709         } else if (ret == 1) {
1710                 clusters_need = wc->w_clen;
1711                 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1712                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1713                 if (ret) {
1714                         mlog_errno(ret);
1715                         goto out;
1716                 }
1717         }
1718
1719         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1720                                         &extents_to_split);
1721         if (ret) {
1722                 mlog_errno(ret);
1723                 goto out;
1724         }
1725         clusters_need += clusters_to_alloc;
1726
1727         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1728
1729         /*
1730          * We set w_target_from, w_target_to here so that
1731          * ocfs2_write_end() knows which range in the target page to
1732          * write out. An allocation requires that we write the entire
1733          * cluster range.
1734          */
1735         if (clusters_to_alloc || extents_to_split) {
1736                 /*
1737                  * XXX: We are stretching the limits of
1738                  * ocfs2_lock_allocators(). It greatly over-estimates
1739                  * the work to be done.
1740                  */
1741                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1742                      " clusters_to_add = %u, extents_to_split = %u\n",
1743                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1744                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1745                      clusters_to_alloc, extents_to_split);
1746
1747                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1748                                               wc->w_di_bh);
1749                 ret = ocfs2_lock_allocators(inode, &et,
1750                                             clusters_to_alloc, extents_to_split,
1751                                             &data_ac, &meta_ac);
1752                 if (ret) {
1753                         mlog_errno(ret);
1754                         goto out;
1755                 }
1756
1757                 if (data_ac)
1758                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1759
1760                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1761                                                     &di->id2.i_list,
1762                                                     clusters_to_alloc);
1763
1764         }
1765
1766         /*
1767          * We have to zero sparse allocated clusters, unwritten extent clusters,
1768          * and non-sparse clusters we just extended.  For non-sparse writes,
1769          * we know zeros will only be needed in the first and/or last cluster.
1770          */
1771         if (clusters_to_alloc || extents_to_split ||
1772             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1773                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1774                 cluster_of_pages = 1;
1775         else
1776                 cluster_of_pages = 0;
1777
1778         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1779
1780         handle = ocfs2_start_trans(osb, credits);
1781         if (IS_ERR(handle)) {
1782                 ret = PTR_ERR(handle);
1783                 mlog_errno(ret);
1784                 goto out;
1785         }
1786
1787         wc->w_handle = handle;
1788
1789         if (clusters_to_alloc) {
1790                 ret = dquot_alloc_space_nodirty(inode,
1791                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1792                 if (ret)
1793                         goto out_commit;
1794         }
1795         /*
1796          * We don't want this to fail in ocfs2_write_end(), so do it
1797          * here.
1798          */
1799         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1800                                       OCFS2_JOURNAL_ACCESS_WRITE);
1801         if (ret) {
1802                 mlog_errno(ret);
1803                 goto out_quota;
1804         }
1805
1806         /*
1807          * Fill our page array first. That way we've grabbed enough so
1808          * that we can zero and flush if we error after adding the
1809          * extent.
1810          */
1811         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1812                                          cluster_of_pages, mmap_page);
1813         if (ret) {
1814                 mlog_errno(ret);
1815                 goto out_quota;
1816         }
1817
1818         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819                                           len);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 goto out_quota;
1823         }
1824
1825         if (data_ac)
1826                 ocfs2_free_alloc_context(data_ac);
1827         if (meta_ac)
1828                 ocfs2_free_alloc_context(meta_ac);
1829
1830 success:
1831         *pagep = wc->w_target_page;
1832         *fsdata = wc;
1833         return 0;
1834 out_quota:
1835         if (clusters_to_alloc)
1836                 dquot_free_space(inode,
1837                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1838 out_commit:
1839         ocfs2_commit_trans(osb, handle);
1840
1841 out:
1842         ocfs2_free_write_ctxt(wc);
1843
1844         if (data_ac)
1845                 ocfs2_free_alloc_context(data_ac);
1846         if (meta_ac)
1847                 ocfs2_free_alloc_context(meta_ac);
1848
1849         if (ret == -ENOSPC && try_free) {
1850                 /*
1851                  * Try to free some truncate log so that we can have enough
1852                  * clusters to allocate.
1853                  */
1854                 try_free = 0;
1855
1856                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1857                 if (ret1 == 1)
1858                         goto try_again;
1859
1860                 if (ret1 < 0)
1861                         mlog_errno(ret1);
1862         }
1863
1864         return ret;
1865 }
1866
1867 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1868                              loff_t pos, unsigned len, unsigned flags,
1869                              struct page **pagep, void **fsdata)
1870 {
1871         int ret;
1872         struct buffer_head *di_bh = NULL;
1873         struct inode *inode = mapping->host;
1874
1875         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1876         if (ret) {
1877                 mlog_errno(ret);
1878                 return ret;
1879         }
1880
1881         /*
1882          * Take alloc sem here to prevent concurrent lookups. That way
1883          * the mapping, zeroing and tree manipulation within
1884          * ocfs2_write() will be safe against ->readpage(). This
1885          * should also serve to lock out allocation from a shared
1886          * writeable region.
1887          */
1888         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1889
1890         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1891                                        fsdata, di_bh, NULL);
1892         if (ret) {
1893                 mlog_errno(ret);
1894                 goto out_fail;
1895         }
1896
1897         brelse(di_bh);
1898
1899         return 0;
1900
1901 out_fail:
1902         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1903
1904         brelse(di_bh);
1905         ocfs2_inode_unlock(inode, 1);
1906
1907         return ret;
1908 }
1909
1910 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1911                                    unsigned len, unsigned *copied,
1912                                    struct ocfs2_dinode *di,
1913                                    struct ocfs2_write_ctxt *wc)
1914 {
1915         void *kaddr;
1916
1917         if (unlikely(*copied < len)) {
1918                 if (!PageUptodate(wc->w_target_page)) {
1919                         *copied = 0;
1920                         return;
1921                 }
1922         }
1923
1924         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1925         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1926         kunmap_atomic(kaddr, KM_USER0);
1927
1928         mlog(0, "Data written to inode at offset %llu. "
1929              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1930              (unsigned long long)pos, *copied,
1931              le16_to_cpu(di->id2.i_data.id_count),
1932              le16_to_cpu(di->i_dyn_features));
1933 }
1934
1935 int ocfs2_write_end_nolock(struct address_space *mapping,
1936                            loff_t pos, unsigned len, unsigned copied,
1937                            struct page *page, void *fsdata)
1938 {
1939         int i;
1940         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1941         struct inode *inode = mapping->host;
1942         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1943         struct ocfs2_write_ctxt *wc = fsdata;
1944         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1945         handle_t *handle = wc->w_handle;
1946         struct page *tmppage;
1947
1948         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1949                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1950                 goto out_write_size;
1951         }
1952
1953         if (unlikely(copied < len)) {
1954                 if (!PageUptodate(wc->w_target_page))
1955                         copied = 0;
1956
1957                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1958                                        start+len);
1959         }
1960         flush_dcache_page(wc->w_target_page);
1961
1962         for(i = 0; i < wc->w_num_pages; i++) {
1963                 tmppage = wc->w_pages[i];
1964
1965                 if (tmppage == wc->w_target_page) {
1966                         from = wc->w_target_from;
1967                         to = wc->w_target_to;
1968
1969                         BUG_ON(from > PAGE_CACHE_SIZE ||
1970                                to > PAGE_CACHE_SIZE ||
1971                                to < from);
1972                 } else {
1973                         /*
1974                          * Pages adjacent to the target (if any) imply
1975                          * a hole-filling write in which case we want
1976                          * to flush their entire range.
1977                          */
1978                         from = 0;
1979                         to = PAGE_CACHE_SIZE;
1980                 }
1981
1982                 if (page_has_buffers(tmppage)) {
1983                         if (ocfs2_should_order_data(inode))
1984                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1985                         block_commit_write(tmppage, from, to);
1986                 }
1987         }
1988
1989 out_write_size:
1990         pos += copied;
1991         if (pos > inode->i_size) {
1992                 i_size_write(inode, pos);
1993                 mark_inode_dirty(inode);
1994         }
1995         inode->i_blocks = ocfs2_inode_sector_count(inode);
1996         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1997         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1998         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1999         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2000         ocfs2_journal_dirty(handle, wc->w_di_bh);
2001
2002         ocfs2_commit_trans(osb, handle);
2003
2004         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2005
2006         ocfs2_free_write_ctxt(wc);
2007
2008         return copied;
2009 }
2010
2011 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2012                            loff_t pos, unsigned len, unsigned copied,
2013                            struct page *page, void *fsdata)
2014 {
2015         int ret;
2016         struct inode *inode = mapping->host;
2017
2018         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2019
2020         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2021         ocfs2_inode_unlock(inode, 1);
2022
2023         return ret;
2024 }
2025
2026 const struct address_space_operations ocfs2_aops = {
2027         .readpage               = ocfs2_readpage,
2028         .readpages              = ocfs2_readpages,
2029         .writepage              = ocfs2_writepage,
2030         .write_begin            = ocfs2_write_begin,
2031         .write_end              = ocfs2_write_end,
2032         .bmap                   = ocfs2_bmap,
2033         .sync_page              = block_sync_page,
2034         .direct_IO              = ocfs2_direct_IO,
2035         .invalidatepage         = ocfs2_invalidatepage,
2036         .releasepage            = ocfs2_releasepage,
2037         .migratepage            = buffer_migrate_page,
2038         .is_partially_uptodate  = block_is_partially_uptodate,
2039         .error_remove_page      = generic_error_remove_page,
2040 };