799242cecffbca8bf0306260c70588f996234ec9
[pandora-kernel.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207                 wait_transaction_locked(journal);
208                 return 1;
209         }
210
211         /*
212          * The commit code assumes that it can get enough log space
213          * without forcing a checkpoint.  This is *critical* for
214          * correctness: a checkpoint of a buffer which is also
215          * associated with a committing transaction creates a deadlock,
216          * so commit simply cannot force through checkpoints.
217          *
218          * We must therefore ensure the necessary space in the journal
219          * *before* starting to dirty potentially checkpointed buffers
220          * in the new transaction.
221          */
222         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223                 atomic_sub(total, &t->t_outstanding_credits);
224                 read_unlock(&journal->j_state_lock);
225                 write_lock(&journal->j_state_lock);
226                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227                         __jbd2_log_wait_for_space(journal);
228                 write_unlock(&journal->j_state_lock);
229                 return 1;
230         }
231
232         /* No reservation? We are done... */
233         if (!rsv_blocks)
234                 return 0;
235
236         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237         /* We allow at most half of a transaction to be reserved */
238         if (needed > journal->j_max_transaction_buffers / 2) {
239                 sub_reserved_credits(journal, rsv_blocks);
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 wait_event(journal->j_wait_reserved,
243                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
244                          <= journal->j_max_transaction_buffers / 2);
245                 return 1;
246         }
247         return 0;
248 }
249
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258                              gfp_t gfp_mask)
259 {
260         transaction_t   *transaction, *new_transaction = NULL;
261         int             blocks = handle->h_buffer_credits;
262         int             rsv_blocks = 0;
263         unsigned long ts = jiffies;
264
265         /*
266          * 1/2 of transaction can be reserved so we can practically handle
267          * only 1/2 of maximum transaction size per operation
268          */
269         if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271                        current->comm, blocks,
272                        journal->j_max_transaction_buffers / 2);
273                 return -ENOSPC;
274         }
275
276         if (handle->h_rsv_handle)
277                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280         if (!journal->j_running_transaction) {
281                 /*
282                  * If __GFP_FS is not present, then we may be being called from
283                  * inside the fs writeback layer, so we MUST NOT fail.
284                  */
285                 if ((gfp_mask & __GFP_FS) == 0)
286                         gfp_mask |= __GFP_NOFAIL;
287                 new_transaction = kmem_cache_zalloc(transaction_cache,
288                                                     gfp_mask);
289                 if (!new_transaction)
290                         return -ENOMEM;
291         }
292
293         jbd_debug(3, "New handle %p going live.\n", handle);
294
295         /*
296          * We need to hold j_state_lock until t_updates has been incremented,
297          * for proper journal barrier handling
298          */
299 repeat:
300         read_lock(&journal->j_state_lock);
301         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
302         if (is_journal_aborted(journal) ||
303             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
304                 read_unlock(&journal->j_state_lock);
305                 jbd2_journal_free_transaction(new_transaction);
306                 return -EROFS;
307         }
308
309         /*
310          * Wait on the journal's transaction barrier if necessary. Specifically
311          * we allow reserved handles to proceed because otherwise commit could
312          * deadlock on page writeback not being able to complete.
313          */
314         if (!handle->h_reserved && journal->j_barrier_count) {
315                 read_unlock(&journal->j_state_lock);
316                 wait_event(journal->j_wait_transaction_locked,
317                                 journal->j_barrier_count == 0);
318                 goto repeat;
319         }
320
321         if (!journal->j_running_transaction) {
322                 read_unlock(&journal->j_state_lock);
323                 if (!new_transaction)
324                         goto alloc_transaction;
325                 write_lock(&journal->j_state_lock);
326                 if (!journal->j_running_transaction &&
327                     (handle->h_reserved || !journal->j_barrier_count)) {
328                         jbd2_get_transaction(journal, new_transaction);
329                         new_transaction = NULL;
330                 }
331                 write_unlock(&journal->j_state_lock);
332                 goto repeat;
333         }
334
335         transaction = journal->j_running_transaction;
336
337         if (!handle->h_reserved) {
338                 /* We may have dropped j_state_lock - restart in that case */
339                 if (add_transaction_credits(journal, blocks, rsv_blocks))
340                         goto repeat;
341         } else {
342                 /*
343                  * We have handle reserved so we are allowed to join T_LOCKED
344                  * transaction and we don't have to check for transaction size
345                  * and journal space.
346                  */
347                 sub_reserved_credits(journal, blocks);
348                 handle->h_reserved = 0;
349         }
350
351         /* OK, account for the buffers that this operation expects to
352          * use and add the handle to the running transaction. 
353          */
354         update_t_max_wait(transaction, ts);
355         handle->h_transaction = transaction;
356         handle->h_requested_credits = blocks;
357         handle->h_start_jiffies = jiffies;
358         atomic_inc(&transaction->t_updates);
359         atomic_inc(&transaction->t_handle_count);
360         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
361                   handle, blocks,
362                   atomic_read(&transaction->t_outstanding_credits),
363                   jbd2_log_space_left(journal));
364         read_unlock(&journal->j_state_lock);
365         current->journal_info = handle;
366
367         lock_map_acquire(&handle->h_lockdep_map);
368         jbd2_journal_free_transaction(new_transaction);
369         return 0;
370 }
371
372 static struct lock_class_key jbd2_handle_key;
373
374 /* Allocate a new handle.  This should probably be in a slab... */
375 static handle_t *new_handle(int nblocks)
376 {
377         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
378         if (!handle)
379                 return NULL;
380         handle->h_buffer_credits = nblocks;
381         handle->h_ref = 1;
382
383         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
384                                                 &jbd2_handle_key, 0);
385
386         return handle;
387 }
388
389 /**
390  * handle_t *jbd2_journal_start() - Obtain a new handle.
391  * @journal: Journal to start transaction on.
392  * @nblocks: number of block buffer we might modify
393  *
394  * We make sure that the transaction can guarantee at least nblocks of
395  * modified buffers in the log.  We block until the log can guarantee
396  * that much space. Additionally, if rsv_blocks > 0, we also create another
397  * handle with rsv_blocks reserved blocks in the journal. This handle is
398  * is stored in h_rsv_handle. It is not attached to any particular transaction
399  * and thus doesn't block transaction commit. If the caller uses this reserved
400  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
401  * on the parent handle will dispose the reserved one. Reserved handle has to
402  * be converted to a normal handle using jbd2_journal_start_reserved() before
403  * it can be used.
404  *
405  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
406  * on failure.
407  */
408 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
409                               gfp_t gfp_mask, unsigned int type,
410                               unsigned int line_no)
411 {
412         handle_t *handle = journal_current_handle();
413         int err;
414
415         if (!journal)
416                 return ERR_PTR(-EROFS);
417
418         if (handle) {
419                 J_ASSERT(handle->h_transaction->t_journal == journal);
420                 handle->h_ref++;
421                 return handle;
422         }
423
424         handle = new_handle(nblocks);
425         if (!handle)
426                 return ERR_PTR(-ENOMEM);
427         if (rsv_blocks) {
428                 handle_t *rsv_handle;
429
430                 rsv_handle = new_handle(rsv_blocks);
431                 if (!rsv_handle) {
432                         jbd2_free_handle(handle);
433                         return ERR_PTR(-ENOMEM);
434                 }
435                 rsv_handle->h_reserved = 1;
436                 rsv_handle->h_journal = journal;
437                 handle->h_rsv_handle = rsv_handle;
438         }
439
440         err = start_this_handle(journal, handle, gfp_mask);
441         if (err < 0) {
442                 if (handle->h_rsv_handle)
443                         jbd2_free_handle(handle->h_rsv_handle);
444                 jbd2_free_handle(handle);
445                 return ERR_PTR(err);
446         }
447         handle->h_type = type;
448         handle->h_line_no = line_no;
449         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
450                                 handle->h_transaction->t_tid, type,
451                                 line_no, nblocks);
452         return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455
456
457 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
458 {
459         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
460 }
461 EXPORT_SYMBOL(jbd2_journal_start);
462
463 void jbd2_journal_free_reserved(handle_t *handle)
464 {
465         journal_t *journal = handle->h_journal;
466
467         WARN_ON(!handle->h_reserved);
468         sub_reserved_credits(journal, handle->h_buffer_credits);
469         jbd2_free_handle(handle);
470 }
471 EXPORT_SYMBOL(jbd2_journal_free_reserved);
472
473 /**
474  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
475  * @handle: handle to start
476  *
477  * Start handle that has been previously reserved with jbd2_journal_reserve().
478  * This attaches @handle to the running transaction (or creates one if there's
479  * not transaction running). Unlike jbd2_journal_start() this function cannot
480  * block on journal commit, checkpointing, or similar stuff. It can block on
481  * memory allocation or frozen journal though.
482  *
483  * Return 0 on success, non-zero on error - handle is freed in that case.
484  */
485 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
486                                 unsigned int line_no)
487 {
488         journal_t *journal = handle->h_journal;
489         int ret = -EIO;
490
491         if (WARN_ON(!handle->h_reserved)) {
492                 /* Someone passed in normal handle? Just stop it. */
493                 jbd2_journal_stop(handle);
494                 return ret;
495         }
496         /*
497          * Usefulness of mixing of reserved and unreserved handles is
498          * questionable. So far nobody seems to need it so just error out.
499          */
500         if (WARN_ON(current->journal_info)) {
501                 jbd2_journal_free_reserved(handle);
502                 return ret;
503         }
504
505         handle->h_journal = NULL;
506         /*
507          * GFP_NOFS is here because callers are likely from writeback or
508          * similarly constrained call sites
509          */
510         ret = start_this_handle(journal, handle, GFP_NOFS);
511         if (ret < 0) {
512                 jbd2_journal_free_reserved(handle);
513                 return ret;
514         }
515         handle->h_type = type;
516         handle->h_line_no = line_no;
517         return 0;
518 }
519 EXPORT_SYMBOL(jbd2_journal_start_reserved);
520
521 /**
522  * int jbd2_journal_extend() - extend buffer credits.
523  * @handle:  handle to 'extend'
524  * @nblocks: nr blocks to try to extend by.
525  *
526  * Some transactions, such as large extends and truncates, can be done
527  * atomically all at once or in several stages.  The operation requests
528  * a credit for a number of buffer modications in advance, but can
529  * extend its credit if it needs more.
530  *
531  * jbd2_journal_extend tries to give the running handle more buffer credits.
532  * It does not guarantee that allocation - this is a best-effort only.
533  * The calling process MUST be able to deal cleanly with a failure to
534  * extend here.
535  *
536  * Return 0 on success, non-zero on failure.
537  *
538  * return code < 0 implies an error
539  * return code > 0 implies normal transaction-full status.
540  */
541 int jbd2_journal_extend(handle_t *handle, int nblocks)
542 {
543         transaction_t *transaction = handle->h_transaction;
544         journal_t *journal;
545         int result;
546         int wanted;
547
548         if (is_handle_aborted(handle))
549                 return -EROFS;
550         journal = transaction->t_journal;
551
552         result = 1;
553
554         read_lock(&journal->j_state_lock);
555
556         /* Don't extend a locked-down transaction! */
557         if (transaction->t_state != T_RUNNING) {
558                 jbd_debug(3, "denied handle %p %d blocks: "
559                           "transaction not running\n", handle, nblocks);
560                 goto error_out;
561         }
562
563         spin_lock(&transaction->t_handle_lock);
564         wanted = atomic_add_return(nblocks,
565                                    &transaction->t_outstanding_credits);
566
567         if (wanted > journal->j_max_transaction_buffers) {
568                 jbd_debug(3, "denied handle %p %d blocks: "
569                           "transaction too large\n", handle, nblocks);
570                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
571                 goto unlock;
572         }
573
574         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
575             jbd2_log_space_left(journal)) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "insufficient log space\n", handle, nblocks);
578                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
579                 goto unlock;
580         }
581
582         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
583                                  transaction->t_tid,
584                                  handle->h_type, handle->h_line_no,
585                                  handle->h_buffer_credits,
586                                  nblocks);
587
588         handle->h_buffer_credits += nblocks;
589         handle->h_requested_credits += nblocks;
590         result = 0;
591
592         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
593 unlock:
594         spin_unlock(&transaction->t_handle_lock);
595 error_out:
596         read_unlock(&journal->j_state_lock);
597         return result;
598 }
599
600
601 /**
602  * int jbd2_journal_restart() - restart a handle .
603  * @handle:  handle to restart
604  * @nblocks: nr credits requested
605  *
606  * Restart a handle for a multi-transaction filesystem
607  * operation.
608  *
609  * If the jbd2_journal_extend() call above fails to grant new buffer credits
610  * to a running handle, a call to jbd2_journal_restart will commit the
611  * handle's transaction so far and reattach the handle to a new
612  * transaction capabable of guaranteeing the requested number of
613  * credits. We preserve reserved handle if there's any attached to the
614  * passed in handle.
615  */
616 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
617 {
618         transaction_t *transaction = handle->h_transaction;
619         journal_t *journal;
620         tid_t           tid;
621         int             need_to_start, ret;
622
623         /* If we've had an abort of any type, don't even think about
624          * actually doing the restart! */
625         if (is_handle_aborted(handle))
626                 return 0;
627         journal = transaction->t_journal;
628
629         /*
630          * First unlink the handle from its current transaction, and start the
631          * commit on that.
632          */
633         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
634         J_ASSERT(journal_current_handle() == handle);
635
636         read_lock(&journal->j_state_lock);
637         spin_lock(&transaction->t_handle_lock);
638         atomic_sub(handle->h_buffer_credits,
639                    &transaction->t_outstanding_credits);
640         if (handle->h_rsv_handle) {
641                 sub_reserved_credits(journal,
642                                      handle->h_rsv_handle->h_buffer_credits);
643         }
644         if (atomic_dec_and_test(&transaction->t_updates))
645                 wake_up(&journal->j_wait_updates);
646         tid = transaction->t_tid;
647         spin_unlock(&transaction->t_handle_lock);
648         handle->h_transaction = NULL;
649         current->journal_info = NULL;
650
651         jbd_debug(2, "restarting handle %p\n", handle);
652         need_to_start = !tid_geq(journal->j_commit_request, tid);
653         read_unlock(&journal->j_state_lock);
654         if (need_to_start)
655                 jbd2_log_start_commit(journal, tid);
656
657         lock_map_release(&handle->h_lockdep_map);
658         handle->h_buffer_credits = nblocks;
659         ret = start_this_handle(journal, handle, gfp_mask);
660         return ret;
661 }
662 EXPORT_SYMBOL(jbd2__journal_restart);
663
664
665 int jbd2_journal_restart(handle_t *handle, int nblocks)
666 {
667         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
668 }
669 EXPORT_SYMBOL(jbd2_journal_restart);
670
671 /**
672  * void jbd2_journal_lock_updates () - establish a transaction barrier.
673  * @journal:  Journal to establish a barrier on.
674  *
675  * This locks out any further updates from being started, and blocks
676  * until all existing updates have completed, returning only once the
677  * journal is in a quiescent state with no updates running.
678  *
679  * The journal lock should not be held on entry.
680  */
681 void jbd2_journal_lock_updates(journal_t *journal)
682 {
683         DEFINE_WAIT(wait);
684
685         write_lock(&journal->j_state_lock);
686         ++journal->j_barrier_count;
687
688         /* Wait until there are no reserved handles */
689         if (atomic_read(&journal->j_reserved_credits)) {
690                 write_unlock(&journal->j_state_lock);
691                 wait_event(journal->j_wait_reserved,
692                            atomic_read(&journal->j_reserved_credits) == 0);
693                 write_lock(&journal->j_state_lock);
694         }
695
696         /* Wait until there are no running updates */
697         while (1) {
698                 transaction_t *transaction = journal->j_running_transaction;
699
700                 if (!transaction)
701                         break;
702
703                 spin_lock(&transaction->t_handle_lock);
704                 prepare_to_wait(&journal->j_wait_updates, &wait,
705                                 TASK_UNINTERRUPTIBLE);
706                 if (!atomic_read(&transaction->t_updates)) {
707                         spin_unlock(&transaction->t_handle_lock);
708                         finish_wait(&journal->j_wait_updates, &wait);
709                         break;
710                 }
711                 spin_unlock(&transaction->t_handle_lock);
712                 write_unlock(&journal->j_state_lock);
713                 schedule();
714                 finish_wait(&journal->j_wait_updates, &wait);
715                 write_lock(&journal->j_state_lock);
716         }
717         write_unlock(&journal->j_state_lock);
718
719         /*
720          * We have now established a barrier against other normal updates, but
721          * we also need to barrier against other jbd2_journal_lock_updates() calls
722          * to make sure that we serialise special journal-locked operations
723          * too.
724          */
725         mutex_lock(&journal->j_barrier);
726 }
727
728 /**
729  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
730  * @journal:  Journal to release the barrier on.
731  *
732  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
733  *
734  * Should be called without the journal lock held.
735  */
736 void jbd2_journal_unlock_updates (journal_t *journal)
737 {
738         J_ASSERT(journal->j_barrier_count != 0);
739
740         mutex_unlock(&journal->j_barrier);
741         write_lock(&journal->j_state_lock);
742         --journal->j_barrier_count;
743         write_unlock(&journal->j_state_lock);
744         wake_up(&journal->j_wait_transaction_locked);
745 }
746
747 static void warn_dirty_buffer(struct buffer_head *bh)
748 {
749         char b[BDEVNAME_SIZE];
750
751         printk(KERN_WARNING
752                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
753                "There's a risk of filesystem corruption in case of system "
754                "crash.\n",
755                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
756 }
757
758 /*
759  * If the buffer is already part of the current transaction, then there
760  * is nothing we need to do.  If it is already part of a prior
761  * transaction which we are still committing to disk, then we need to
762  * make sure that we do not overwrite the old copy: we do copy-out to
763  * preserve the copy going to disk.  We also account the buffer against
764  * the handle's metadata buffer credits (unless the buffer is already
765  * part of the transaction, that is).
766  *
767  */
768 static int
769 do_get_write_access(handle_t *handle, struct journal_head *jh,
770                         int force_copy)
771 {
772         struct buffer_head *bh;
773         transaction_t *transaction = handle->h_transaction;
774         journal_t *journal;
775         int error;
776         char *frozen_buffer = NULL;
777         int need_copy = 0;
778         unsigned long start_lock, time_lock;
779
780         if (is_handle_aborted(handle))
781                 return -EROFS;
782         journal = transaction->t_journal;
783
784         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
785
786         JBUFFER_TRACE(jh, "entry");
787 repeat:
788         bh = jh2bh(jh);
789
790         /* @@@ Need to check for errors here at some point. */
791
792         start_lock = jiffies;
793         lock_buffer(bh);
794         jbd_lock_bh_state(bh);
795
796         /* If it takes too long to lock the buffer, trace it */
797         time_lock = jbd2_time_diff(start_lock, jiffies);
798         if (time_lock > HZ/10)
799                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
800                         jiffies_to_msecs(time_lock));
801
802         /* We now hold the buffer lock so it is safe to query the buffer
803          * state.  Is the buffer dirty?
804          *
805          * If so, there are two possibilities.  The buffer may be
806          * non-journaled, and undergoing a quite legitimate writeback.
807          * Otherwise, it is journaled, and we don't expect dirty buffers
808          * in that state (the buffers should be marked JBD_Dirty
809          * instead.)  So either the IO is being done under our own
810          * control and this is a bug, or it's a third party IO such as
811          * dump(8) (which may leave the buffer scheduled for read ---
812          * ie. locked but not dirty) or tune2fs (which may actually have
813          * the buffer dirtied, ugh.)  */
814
815         if (buffer_dirty(bh)) {
816                 /*
817                  * First question: is this buffer already part of the current
818                  * transaction or the existing committing transaction?
819                  */
820                 if (jh->b_transaction) {
821                         J_ASSERT_JH(jh,
822                                 jh->b_transaction == transaction ||
823                                 jh->b_transaction ==
824                                         journal->j_committing_transaction);
825                         if (jh->b_next_transaction)
826                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
827                                                         transaction);
828                         warn_dirty_buffer(bh);
829                 }
830                 /*
831                  * In any case we need to clean the dirty flag and we must
832                  * do it under the buffer lock to be sure we don't race
833                  * with running write-out.
834                  */
835                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
836                 clear_buffer_dirty(bh);
837                 set_buffer_jbddirty(bh);
838         }
839
840         unlock_buffer(bh);
841
842         error = -EROFS;
843         if (is_handle_aborted(handle)) {
844                 jbd_unlock_bh_state(bh);
845                 goto out;
846         }
847         error = 0;
848
849         /*
850          * The buffer is already part of this transaction if b_transaction or
851          * b_next_transaction points to it
852          */
853         if (jh->b_transaction == transaction ||
854             jh->b_next_transaction == transaction)
855                 goto done;
856
857         /*
858          * this is the first time this transaction is touching this buffer,
859          * reset the modified flag
860          */
861        jh->b_modified = 0;
862
863         /*
864          * If there is already a copy-out version of this buffer, then we don't
865          * need to make another one
866          */
867         if (jh->b_frozen_data) {
868                 JBUFFER_TRACE(jh, "has frozen data");
869                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
870                 jh->b_next_transaction = transaction;
871                 goto done;
872         }
873
874         /* Is there data here we need to preserve? */
875
876         if (jh->b_transaction && jh->b_transaction != transaction) {
877                 JBUFFER_TRACE(jh, "owned by older transaction");
878                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
879                 J_ASSERT_JH(jh, jh->b_transaction ==
880                                         journal->j_committing_transaction);
881
882                 /* There is one case we have to be very careful about.
883                  * If the committing transaction is currently writing
884                  * this buffer out to disk and has NOT made a copy-out,
885                  * then we cannot modify the buffer contents at all
886                  * right now.  The essence of copy-out is that it is the
887                  * extra copy, not the primary copy, which gets
888                  * journaled.  If the primary copy is already going to
889                  * disk then we cannot do copy-out here. */
890
891                 if (buffer_shadow(bh)) {
892                         JBUFFER_TRACE(jh, "on shadow: sleep");
893                         jbd_unlock_bh_state(bh);
894                         wait_on_bit_io(&bh->b_state, BH_Shadow,
895                                        TASK_UNINTERRUPTIBLE);
896                         goto repeat;
897                 }
898
899                 /*
900                  * Only do the copy if the currently-owning transaction still
901                  * needs it. If buffer isn't on BJ_Metadata list, the
902                  * committing transaction is past that stage (here we use the
903                  * fact that BH_Shadow is set under bh_state lock together with
904                  * refiling to BJ_Shadow list and at this point we know the
905                  * buffer doesn't have BH_Shadow set).
906                  *
907                  * Subtle point, though: if this is a get_undo_access,
908                  * then we will be relying on the frozen_data to contain
909                  * the new value of the committed_data record after the
910                  * transaction, so we HAVE to force the frozen_data copy
911                  * in that case.
912                  */
913                 if (jh->b_jlist == BJ_Metadata || force_copy) {
914                         JBUFFER_TRACE(jh, "generate frozen data");
915                         if (!frozen_buffer) {
916                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
917                                 jbd_unlock_bh_state(bh);
918                                 frozen_buffer =
919                                         jbd2_alloc(jh2bh(jh)->b_size,
920                                                          GFP_NOFS);
921                                 if (!frozen_buffer) {
922                                         printk(KERN_ERR
923                                                "%s: OOM for frozen_buffer\n",
924                                                __func__);
925                                         JBUFFER_TRACE(jh, "oom!");
926                                         error = -ENOMEM;
927                                         jbd_lock_bh_state(bh);
928                                         goto done;
929                                 }
930                                 goto repeat;
931                         }
932                         jh->b_frozen_data = frozen_buffer;
933                         frozen_buffer = NULL;
934                         need_copy = 1;
935                 }
936                 jh->b_next_transaction = transaction;
937         }
938
939
940         /*
941          * Finally, if the buffer is not journaled right now, we need to make
942          * sure it doesn't get written to disk before the caller actually
943          * commits the new data
944          */
945         if (!jh->b_transaction) {
946                 JBUFFER_TRACE(jh, "no transaction");
947                 J_ASSERT_JH(jh, !jh->b_next_transaction);
948                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
949                 spin_lock(&journal->j_list_lock);
950                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
951                 spin_unlock(&journal->j_list_lock);
952         }
953
954 done:
955         if (need_copy) {
956                 struct page *page;
957                 int offset;
958                 char *source;
959
960                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
961                             "Possible IO failure.\n");
962                 page = jh2bh(jh)->b_page;
963                 offset = offset_in_page(jh2bh(jh)->b_data);
964                 source = kmap_atomic(page);
965                 /* Fire data frozen trigger just before we copy the data */
966                 jbd2_buffer_frozen_trigger(jh, source + offset,
967                                            jh->b_triggers);
968                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
969                 kunmap_atomic(source);
970
971                 /*
972                  * Now that the frozen data is saved off, we need to store
973                  * any matching triggers.
974                  */
975                 jh->b_frozen_triggers = jh->b_triggers;
976         }
977         jbd_unlock_bh_state(bh);
978
979         /*
980          * If we are about to journal a buffer, then any revoke pending on it is
981          * no longer valid
982          */
983         jbd2_journal_cancel_revoke(handle, jh);
984
985 out:
986         if (unlikely(frozen_buffer))    /* It's usually NULL */
987                 jbd2_free(frozen_buffer, bh->b_size);
988
989         JBUFFER_TRACE(jh, "exit");
990         return error;
991 }
992
993 /**
994  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
995  * @handle: transaction to add buffer modifications to
996  * @bh:     bh to be used for metadata writes
997  *
998  * Returns an error code or 0 on success.
999  *
1000  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1001  * because we're write()ing a buffer which is also part of a shared mapping.
1002  */
1003
1004 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1005 {
1006         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1007         int rc;
1008
1009         /* We do not want to get caught playing with fields which the
1010          * log thread also manipulates.  Make sure that the buffer
1011          * completes any outstanding IO before proceeding. */
1012         rc = do_get_write_access(handle, jh, 0);
1013         jbd2_journal_put_journal_head(jh);
1014         return rc;
1015 }
1016
1017
1018 /*
1019  * When the user wants to journal a newly created buffer_head
1020  * (ie. getblk() returned a new buffer and we are going to populate it
1021  * manually rather than reading off disk), then we need to keep the
1022  * buffer_head locked until it has been completely filled with new
1023  * data.  In this case, we should be able to make the assertion that
1024  * the bh is not already part of an existing transaction.
1025  *
1026  * The buffer should already be locked by the caller by this point.
1027  * There is no lock ranking violation: it was a newly created,
1028  * unlocked buffer beforehand. */
1029
1030 /**
1031  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1032  * @handle: transaction to new buffer to
1033  * @bh: new buffer.
1034  *
1035  * Call this if you create a new bh.
1036  */
1037 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1038 {
1039         transaction_t *transaction = handle->h_transaction;
1040         journal_t *journal;
1041         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1042         int err;
1043
1044         jbd_debug(5, "journal_head %p\n", jh);
1045         err = -EROFS;
1046         if (is_handle_aborted(handle))
1047                 goto out;
1048         journal = transaction->t_journal;
1049         err = 0;
1050
1051         JBUFFER_TRACE(jh, "entry");
1052         /*
1053          * The buffer may already belong to this transaction due to pre-zeroing
1054          * in the filesystem's new_block code.  It may also be on the previous,
1055          * committing transaction's lists, but it HAS to be in Forget state in
1056          * that case: the transaction must have deleted the buffer for it to be
1057          * reused here.
1058          */
1059         jbd_lock_bh_state(bh);
1060         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1061                 jh->b_transaction == NULL ||
1062                 (jh->b_transaction == journal->j_committing_transaction &&
1063                           jh->b_jlist == BJ_Forget)));
1064
1065         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1066         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1067
1068         if (jh->b_transaction == NULL) {
1069                 /*
1070                  * Previous jbd2_journal_forget() could have left the buffer
1071                  * with jbddirty bit set because it was being committed. When
1072                  * the commit finished, we've filed the buffer for
1073                  * checkpointing and marked it dirty. Now we are reallocating
1074                  * the buffer so the transaction freeing it must have
1075                  * committed and so it's safe to clear the dirty bit.
1076                  */
1077                 clear_buffer_dirty(jh2bh(jh));
1078                 /* first access by this transaction */
1079                 jh->b_modified = 0;
1080
1081                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1082                 spin_lock(&journal->j_list_lock);
1083                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1084         } else if (jh->b_transaction == journal->j_committing_transaction) {
1085                 /* first access by this transaction */
1086                 jh->b_modified = 0;
1087
1088                 JBUFFER_TRACE(jh, "set next transaction");
1089                 spin_lock(&journal->j_list_lock);
1090                 jh->b_next_transaction = transaction;
1091         }
1092         spin_unlock(&journal->j_list_lock);
1093         jbd_unlock_bh_state(bh);
1094
1095         /*
1096          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1097          * blocks which contain freed but then revoked metadata.  We need
1098          * to cancel the revoke in case we end up freeing it yet again
1099          * and the reallocating as data - this would cause a second revoke,
1100          * which hits an assertion error.
1101          */
1102         JBUFFER_TRACE(jh, "cancelling revoke");
1103         jbd2_journal_cancel_revoke(handle, jh);
1104 out:
1105         jbd2_journal_put_journal_head(jh);
1106         return err;
1107 }
1108
1109 /**
1110  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1111  *     non-rewindable consequences
1112  * @handle: transaction
1113  * @bh: buffer to undo
1114  *
1115  * Sometimes there is a need to distinguish between metadata which has
1116  * been committed to disk and that which has not.  The ext3fs code uses
1117  * this for freeing and allocating space, we have to make sure that we
1118  * do not reuse freed space until the deallocation has been committed,
1119  * since if we overwrote that space we would make the delete
1120  * un-rewindable in case of a crash.
1121  *
1122  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1123  * buffer for parts of non-rewindable operations such as delete
1124  * operations on the bitmaps.  The journaling code must keep a copy of
1125  * the buffer's contents prior to the undo_access call until such time
1126  * as we know that the buffer has definitely been committed to disk.
1127  *
1128  * We never need to know which transaction the committed data is part
1129  * of, buffers touched here are guaranteed to be dirtied later and so
1130  * will be committed to a new transaction in due course, at which point
1131  * we can discard the old committed data pointer.
1132  *
1133  * Returns error number or 0 on success.
1134  */
1135 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1136 {
1137         int err;
1138         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1139         char *committed_data = NULL;
1140
1141         JBUFFER_TRACE(jh, "entry");
1142
1143         /*
1144          * Do this first --- it can drop the journal lock, so we want to
1145          * make sure that obtaining the committed_data is done
1146          * atomically wrt. completion of any outstanding commits.
1147          */
1148         err = do_get_write_access(handle, jh, 1);
1149         if (err)
1150                 goto out;
1151
1152 repeat:
1153         if (!jh->b_committed_data) {
1154                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1155                 if (!committed_data) {
1156                         printk(KERN_ERR "%s: No memory for committed data\n",
1157                                 __func__);
1158                         err = -ENOMEM;
1159                         goto out;
1160                 }
1161         }
1162
1163         jbd_lock_bh_state(bh);
1164         if (!jh->b_committed_data) {
1165                 /* Copy out the current buffer contents into the
1166                  * preserved, committed copy. */
1167                 JBUFFER_TRACE(jh, "generate b_committed data");
1168                 if (!committed_data) {
1169                         jbd_unlock_bh_state(bh);
1170                         goto repeat;
1171                 }
1172
1173                 jh->b_committed_data = committed_data;
1174                 committed_data = NULL;
1175                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1176         }
1177         jbd_unlock_bh_state(bh);
1178 out:
1179         jbd2_journal_put_journal_head(jh);
1180         if (unlikely(committed_data))
1181                 jbd2_free(committed_data, bh->b_size);
1182         return err;
1183 }
1184
1185 /**
1186  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1187  * @bh: buffer to trigger on
1188  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1189  *
1190  * Set any triggers on this journal_head.  This is always safe, because
1191  * triggers for a committing buffer will be saved off, and triggers for
1192  * a running transaction will match the buffer in that transaction.
1193  *
1194  * Call with NULL to clear the triggers.
1195  */
1196 void jbd2_journal_set_triggers(struct buffer_head *bh,
1197                                struct jbd2_buffer_trigger_type *type)
1198 {
1199         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1200
1201         if (WARN_ON(!jh))
1202                 return;
1203         jh->b_triggers = type;
1204         jbd2_journal_put_journal_head(jh);
1205 }
1206
1207 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1208                                 struct jbd2_buffer_trigger_type *triggers)
1209 {
1210         struct buffer_head *bh = jh2bh(jh);
1211
1212         if (!triggers || !triggers->t_frozen)
1213                 return;
1214
1215         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1216 }
1217
1218 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1219                                struct jbd2_buffer_trigger_type *triggers)
1220 {
1221         if (!triggers || !triggers->t_abort)
1222                 return;
1223
1224         triggers->t_abort(triggers, jh2bh(jh));
1225 }
1226
1227
1228
1229 /**
1230  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1231  * @handle: transaction to add buffer to.
1232  * @bh: buffer to mark
1233  *
1234  * mark dirty metadata which needs to be journaled as part of the current
1235  * transaction.
1236  *
1237  * The buffer must have previously had jbd2_journal_get_write_access()
1238  * called so that it has a valid journal_head attached to the buffer
1239  * head.
1240  *
1241  * The buffer is placed on the transaction's metadata list and is marked
1242  * as belonging to the transaction.
1243  *
1244  * Returns error number or 0 on success.
1245  *
1246  * Special care needs to be taken if the buffer already belongs to the
1247  * current committing transaction (in which case we should have frozen
1248  * data present for that commit).  In that case, we don't relink the
1249  * buffer: that only gets done when the old transaction finally
1250  * completes its commit.
1251  */
1252 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1253 {
1254         transaction_t *transaction = handle->h_transaction;
1255         journal_t *journal;
1256         struct journal_head *jh;
1257         int ret = 0;
1258
1259         if (is_handle_aborted(handle))
1260                 return -EROFS;
1261         journal = transaction->t_journal;
1262         jh = jbd2_journal_grab_journal_head(bh);
1263         if (!jh) {
1264                 ret = -EUCLEAN;
1265                 goto out;
1266         }
1267         jbd_debug(5, "journal_head %p\n", jh);
1268         JBUFFER_TRACE(jh, "entry");
1269
1270         jbd_lock_bh_state(bh);
1271
1272         if (jh->b_modified == 0) {
1273                 /*
1274                  * This buffer's got modified and becoming part
1275                  * of the transaction. This needs to be done
1276                  * once a transaction -bzzz
1277                  */
1278                 jh->b_modified = 1;
1279                 if (handle->h_buffer_credits <= 0) {
1280                         ret = -ENOSPC;
1281                         goto out_unlock_bh;
1282                 }
1283                 handle->h_buffer_credits--;
1284         }
1285
1286         /*
1287          * fastpath, to avoid expensive locking.  If this buffer is already
1288          * on the running transaction's metadata list there is nothing to do.
1289          * Nobody can take it off again because there is a handle open.
1290          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1291          * result in this test being false, so we go in and take the locks.
1292          */
1293         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1294                 JBUFFER_TRACE(jh, "fastpath");
1295                 if (unlikely(jh->b_transaction !=
1296                              journal->j_running_transaction)) {
1297                         printk(KERN_ERR "JBD2: %s: "
1298                                "jh->b_transaction (%llu, %p, %u) != "
1299                                "journal->j_running_transaction (%p, %u)\n",
1300                                journal->j_devname,
1301                                (unsigned long long) bh->b_blocknr,
1302                                jh->b_transaction,
1303                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1304                                journal->j_running_transaction,
1305                                journal->j_running_transaction ?
1306                                journal->j_running_transaction->t_tid : 0);
1307                         ret = -EINVAL;
1308                 }
1309                 goto out_unlock_bh;
1310         }
1311
1312         set_buffer_jbddirty(bh);
1313
1314         /*
1315          * Metadata already on the current transaction list doesn't
1316          * need to be filed.  Metadata on another transaction's list must
1317          * be committing, and will be refiled once the commit completes:
1318          * leave it alone for now.
1319          */
1320         if (jh->b_transaction != transaction) {
1321                 JBUFFER_TRACE(jh, "already on other transaction");
1322                 if (unlikely(((jh->b_transaction !=
1323                                journal->j_committing_transaction)) ||
1324                              (jh->b_next_transaction != transaction))) {
1325                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1326                                "bad jh for block %llu: "
1327                                "transaction (%p, %u), "
1328                                "jh->b_transaction (%p, %u), "
1329                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1330                                journal->j_devname,
1331                                (unsigned long long) bh->b_blocknr,
1332                                transaction, transaction->t_tid,
1333                                jh->b_transaction,
1334                                jh->b_transaction ?
1335                                jh->b_transaction->t_tid : 0,
1336                                jh->b_next_transaction,
1337                                jh->b_next_transaction ?
1338                                jh->b_next_transaction->t_tid : 0,
1339                                jh->b_jlist);
1340                         WARN_ON(1);
1341                         ret = -EINVAL;
1342                 }
1343                 /* And this case is illegal: we can't reuse another
1344                  * transaction's data buffer, ever. */
1345                 goto out_unlock_bh;
1346         }
1347
1348         /* That test should have eliminated the following case: */
1349         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1350
1351         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1352         spin_lock(&journal->j_list_lock);
1353         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1354         spin_unlock(&journal->j_list_lock);
1355 out_unlock_bh:
1356         jbd_unlock_bh_state(bh);
1357         jbd2_journal_put_journal_head(jh);
1358 out:
1359         JBUFFER_TRACE(jh, "exit");
1360         return ret;
1361 }
1362
1363 /**
1364  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1365  * @handle: transaction handle
1366  * @bh:     bh to 'forget'
1367  *
1368  * We can only do the bforget if there are no commits pending against the
1369  * buffer.  If the buffer is dirty in the current running transaction we
1370  * can safely unlink it.
1371  *
1372  * bh may not be a journalled buffer at all - it may be a non-JBD
1373  * buffer which came off the hashtable.  Check for this.
1374  *
1375  * Decrements bh->b_count by one.
1376  *
1377  * Allow this call even if the handle has aborted --- it may be part of
1378  * the caller's cleanup after an abort.
1379  */
1380 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1381 {
1382         transaction_t *transaction = handle->h_transaction;
1383         journal_t *journal;
1384         struct journal_head *jh;
1385         int drop_reserve = 0;
1386         int err = 0;
1387         int was_modified = 0;
1388
1389         if (is_handle_aborted(handle))
1390                 return -EROFS;
1391         journal = transaction->t_journal;
1392
1393         BUFFER_TRACE(bh, "entry");
1394
1395         jbd_lock_bh_state(bh);
1396
1397         if (!buffer_jbd(bh))
1398                 goto not_jbd;
1399         jh = bh2jh(bh);
1400
1401         /* Critical error: attempting to delete a bitmap buffer, maybe?
1402          * Don't do any jbd operations, and return an error. */
1403         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1404                          "inconsistent data on disk")) {
1405                 err = -EIO;
1406                 goto not_jbd;
1407         }
1408
1409         /* keep track of whether or not this transaction modified us */
1410         was_modified = jh->b_modified;
1411
1412         /*
1413          * The buffer's going from the transaction, we must drop
1414          * all references -bzzz
1415          */
1416         jh->b_modified = 0;
1417
1418         if (jh->b_transaction == transaction) {
1419                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1420
1421                 /* If we are forgetting a buffer which is already part
1422                  * of this transaction, then we can just drop it from
1423                  * the transaction immediately. */
1424                 clear_buffer_dirty(bh);
1425                 clear_buffer_jbddirty(bh);
1426
1427                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1428
1429                 /*
1430                  * we only want to drop a reference if this transaction
1431                  * modified the buffer
1432                  */
1433                 if (was_modified)
1434                         drop_reserve = 1;
1435
1436                 /*
1437                  * We are no longer going to journal this buffer.
1438                  * However, the commit of this transaction is still
1439                  * important to the buffer: the delete that we are now
1440                  * processing might obsolete an old log entry, so by
1441                  * committing, we can satisfy the buffer's checkpoint.
1442                  *
1443                  * So, if we have a checkpoint on the buffer, we should
1444                  * now refile the buffer on our BJ_Forget list so that
1445                  * we know to remove the checkpoint after we commit.
1446                  */
1447
1448                 spin_lock(&journal->j_list_lock);
1449                 if (jh->b_cp_transaction) {
1450                         __jbd2_journal_temp_unlink_buffer(jh);
1451                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1452                 } else {
1453                         __jbd2_journal_unfile_buffer(jh);
1454                         if (!buffer_jbd(bh)) {
1455                                 spin_unlock(&journal->j_list_lock);
1456                                 jbd_unlock_bh_state(bh);
1457                                 __bforget(bh);
1458                                 goto drop;
1459                         }
1460                 }
1461                 spin_unlock(&journal->j_list_lock);
1462         } else if (jh->b_transaction) {
1463                 J_ASSERT_JH(jh, (jh->b_transaction ==
1464                                  journal->j_committing_transaction));
1465                 /* However, if the buffer is still owned by a prior
1466                  * (committing) transaction, we can't drop it yet... */
1467                 JBUFFER_TRACE(jh, "belongs to older transaction");
1468                 /* ... but we CAN drop it from the new transaction if we
1469                  * have also modified it since the original commit. */
1470
1471                 if (jh->b_next_transaction) {
1472                         J_ASSERT(jh->b_next_transaction == transaction);
1473                         spin_lock(&journal->j_list_lock);
1474                         jh->b_next_transaction = NULL;
1475                         spin_unlock(&journal->j_list_lock);
1476
1477                         /*
1478                          * only drop a reference if this transaction modified
1479                          * the buffer
1480                          */
1481                         if (was_modified)
1482                                 drop_reserve = 1;
1483                 }
1484         }
1485
1486 not_jbd:
1487         jbd_unlock_bh_state(bh);
1488         __brelse(bh);
1489 drop:
1490         if (drop_reserve) {
1491                 /* no need to reserve log space for this block -bzzz */
1492                 handle->h_buffer_credits++;
1493         }
1494         return err;
1495 }
1496
1497 /**
1498  * int jbd2_journal_stop() - complete a transaction
1499  * @handle: tranaction to complete.
1500  *
1501  * All done for a particular handle.
1502  *
1503  * There is not much action needed here.  We just return any remaining
1504  * buffer credits to the transaction and remove the handle.  The only
1505  * complication is that we need to start a commit operation if the
1506  * filesystem is marked for synchronous update.
1507  *
1508  * jbd2_journal_stop itself will not usually return an error, but it may
1509  * do so in unusual circumstances.  In particular, expect it to
1510  * return -EIO if a jbd2_journal_abort has been executed since the
1511  * transaction began.
1512  */
1513 int jbd2_journal_stop(handle_t *handle)
1514 {
1515         transaction_t *transaction = handle->h_transaction;
1516         journal_t *journal;
1517         int err = 0, wait_for_commit = 0;
1518         tid_t tid;
1519         pid_t pid;
1520
1521         if (!transaction) {
1522                 /*
1523                  * Handle is already detached from the transaction so
1524                  * there is nothing to do other than decrease a refcount,
1525                  * or free the handle if refcount drops to zero
1526                  */
1527                 if (--handle->h_ref > 0) {
1528                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1529                                                          handle->h_ref);
1530                         return err;
1531                 } else {
1532                         if (handle->h_rsv_handle)
1533                                 jbd2_free_handle(handle->h_rsv_handle);
1534                         goto free_and_exit;
1535                 }
1536         }
1537         journal = transaction->t_journal;
1538
1539         J_ASSERT(journal_current_handle() == handle);
1540
1541         if (is_handle_aborted(handle))
1542                 err = -EIO;
1543         else
1544                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1545
1546         if (--handle->h_ref > 0) {
1547                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1548                           handle->h_ref);
1549                 return err;
1550         }
1551
1552         jbd_debug(4, "Handle %p going down\n", handle);
1553         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1554                                 transaction->t_tid,
1555                                 handle->h_type, handle->h_line_no,
1556                                 jiffies - handle->h_start_jiffies,
1557                                 handle->h_sync, handle->h_requested_credits,
1558                                 (handle->h_requested_credits -
1559                                  handle->h_buffer_credits));
1560
1561         /*
1562          * Implement synchronous transaction batching.  If the handle
1563          * was synchronous, don't force a commit immediately.  Let's
1564          * yield and let another thread piggyback onto this
1565          * transaction.  Keep doing that while new threads continue to
1566          * arrive.  It doesn't cost much - we're about to run a commit
1567          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1568          * operations by 30x or more...
1569          *
1570          * We try and optimize the sleep time against what the
1571          * underlying disk can do, instead of having a static sleep
1572          * time.  This is useful for the case where our storage is so
1573          * fast that it is more optimal to go ahead and force a flush
1574          * and wait for the transaction to be committed than it is to
1575          * wait for an arbitrary amount of time for new writers to
1576          * join the transaction.  We achieve this by measuring how
1577          * long it takes to commit a transaction, and compare it with
1578          * how long this transaction has been running, and if run time
1579          * < commit time then we sleep for the delta and commit.  This
1580          * greatly helps super fast disks that would see slowdowns as
1581          * more threads started doing fsyncs.
1582          *
1583          * But don't do this if this process was the most recent one
1584          * to perform a synchronous write.  We do this to detect the
1585          * case where a single process is doing a stream of sync
1586          * writes.  No point in waiting for joiners in that case.
1587          *
1588          * Setting max_batch_time to 0 disables this completely.
1589          */
1590         pid = current->pid;
1591         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1592             journal->j_max_batch_time) {
1593                 u64 commit_time, trans_time;
1594
1595                 journal->j_last_sync_writer = pid;
1596
1597                 read_lock(&journal->j_state_lock);
1598                 commit_time = journal->j_average_commit_time;
1599                 read_unlock(&journal->j_state_lock);
1600
1601                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1602                                                    transaction->t_start_time));
1603
1604                 commit_time = max_t(u64, commit_time,
1605                                     1000*journal->j_min_batch_time);
1606                 commit_time = min_t(u64, commit_time,
1607                                     1000*journal->j_max_batch_time);
1608
1609                 if (trans_time < commit_time) {
1610                         ktime_t expires = ktime_add_ns(ktime_get(),
1611                                                        commit_time);
1612                         set_current_state(TASK_UNINTERRUPTIBLE);
1613                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1614                 }
1615         }
1616
1617         if (handle->h_sync)
1618                 transaction->t_synchronous_commit = 1;
1619         current->journal_info = NULL;
1620         atomic_sub(handle->h_buffer_credits,
1621                    &transaction->t_outstanding_credits);
1622
1623         /*
1624          * If the handle is marked SYNC, we need to set another commit
1625          * going!  We also want to force a commit if the current
1626          * transaction is occupying too much of the log, or if the
1627          * transaction is too old now.
1628          */
1629         if (handle->h_sync ||
1630             (atomic_read(&transaction->t_outstanding_credits) >
1631              journal->j_max_transaction_buffers) ||
1632             time_after_eq(jiffies, transaction->t_expires)) {
1633                 /* Do this even for aborted journals: an abort still
1634                  * completes the commit thread, it just doesn't write
1635                  * anything to disk. */
1636
1637                 jbd_debug(2, "transaction too old, requesting commit for "
1638                                         "handle %p\n", handle);
1639                 /* This is non-blocking */
1640                 jbd2_log_start_commit(journal, transaction->t_tid);
1641
1642                 /*
1643                  * Special case: JBD2_SYNC synchronous updates require us
1644                  * to wait for the commit to complete.
1645                  */
1646                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1647                         wait_for_commit = 1;
1648         }
1649
1650         /*
1651          * Once we drop t_updates, if it goes to zero the transaction
1652          * could start committing on us and eventually disappear.  So
1653          * once we do this, we must not dereference transaction
1654          * pointer again.
1655          */
1656         tid = transaction->t_tid;
1657         if (atomic_dec_and_test(&transaction->t_updates)) {
1658                 wake_up(&journal->j_wait_updates);
1659                 if (journal->j_barrier_count)
1660                         wake_up(&journal->j_wait_transaction_locked);
1661         }
1662
1663         if (wait_for_commit)
1664                 err = jbd2_log_wait_commit(journal, tid);
1665
1666         lock_map_release(&handle->h_lockdep_map);
1667
1668         if (handle->h_rsv_handle)
1669                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1670 free_and_exit:
1671         jbd2_free_handle(handle);
1672         return err;
1673 }
1674
1675 /*
1676  *
1677  * List management code snippets: various functions for manipulating the
1678  * transaction buffer lists.
1679  *
1680  */
1681
1682 /*
1683  * Append a buffer to a transaction list, given the transaction's list head
1684  * pointer.
1685  *
1686  * j_list_lock is held.
1687  *
1688  * jbd_lock_bh_state(jh2bh(jh)) is held.
1689  */
1690
1691 static inline void
1692 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1693 {
1694         if (!*list) {
1695                 jh->b_tnext = jh->b_tprev = jh;
1696                 *list = jh;
1697         } else {
1698                 /* Insert at the tail of the list to preserve order */
1699                 struct journal_head *first = *list, *last = first->b_tprev;
1700                 jh->b_tprev = last;
1701                 jh->b_tnext = first;
1702                 last->b_tnext = first->b_tprev = jh;
1703         }
1704 }
1705
1706 /*
1707  * Remove a buffer from a transaction list, given the transaction's list
1708  * head pointer.
1709  *
1710  * Called with j_list_lock held, and the journal may not be locked.
1711  *
1712  * jbd_lock_bh_state(jh2bh(jh)) is held.
1713  */
1714
1715 static inline void
1716 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1717 {
1718         if (*list == jh) {
1719                 *list = jh->b_tnext;
1720                 if (*list == jh)
1721                         *list = NULL;
1722         }
1723         jh->b_tprev->b_tnext = jh->b_tnext;
1724         jh->b_tnext->b_tprev = jh->b_tprev;
1725 }
1726
1727 /*
1728  * Remove a buffer from the appropriate transaction list.
1729  *
1730  * Note that this function can *change* the value of
1731  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1732  * t_reserved_list.  If the caller is holding onto a copy of one of these
1733  * pointers, it could go bad.  Generally the caller needs to re-read the
1734  * pointer from the transaction_t.
1735  *
1736  * Called under j_list_lock.
1737  */
1738 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1739 {
1740         struct journal_head **list = NULL;
1741         transaction_t *transaction;
1742         struct buffer_head *bh = jh2bh(jh);
1743
1744         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1745         transaction = jh->b_transaction;
1746         if (transaction)
1747                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1748
1749         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1750         if (jh->b_jlist != BJ_None)
1751                 J_ASSERT_JH(jh, transaction != NULL);
1752
1753         switch (jh->b_jlist) {
1754         case BJ_None:
1755                 return;
1756         case BJ_Metadata:
1757                 transaction->t_nr_buffers--;
1758                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1759                 list = &transaction->t_buffers;
1760                 break;
1761         case BJ_Forget:
1762                 list = &transaction->t_forget;
1763                 break;
1764         case BJ_Shadow:
1765                 list = &transaction->t_shadow_list;
1766                 break;
1767         case BJ_Reserved:
1768                 list = &transaction->t_reserved_list;
1769                 break;
1770         }
1771
1772         __blist_del_buffer(list, jh);
1773         jh->b_jlist = BJ_None;
1774         if (test_clear_buffer_jbddirty(bh))
1775                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1776 }
1777
1778 /*
1779  * Remove buffer from all transactions.
1780  *
1781  * Called with bh_state lock and j_list_lock
1782  *
1783  * jh and bh may be already freed when this function returns.
1784  */
1785 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1786 {
1787         __jbd2_journal_temp_unlink_buffer(jh);
1788         jh->b_transaction = NULL;
1789         jbd2_journal_put_journal_head(jh);
1790 }
1791
1792 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1793 {
1794         struct buffer_head *bh = jh2bh(jh);
1795
1796         /* Get reference so that buffer cannot be freed before we unlock it */
1797         get_bh(bh);
1798         jbd_lock_bh_state(bh);
1799         spin_lock(&journal->j_list_lock);
1800         __jbd2_journal_unfile_buffer(jh);
1801         spin_unlock(&journal->j_list_lock);
1802         jbd_unlock_bh_state(bh);
1803         __brelse(bh);
1804 }
1805
1806 /*
1807  * Called from jbd2_journal_try_to_free_buffers().
1808  *
1809  * Called under jbd_lock_bh_state(bh)
1810  */
1811 static void
1812 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1813 {
1814         struct journal_head *jh;
1815
1816         jh = bh2jh(bh);
1817
1818         if (buffer_locked(bh) || buffer_dirty(bh))
1819                 goto out;
1820
1821         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1822                 goto out;
1823
1824         spin_lock(&journal->j_list_lock);
1825         if (jh->b_cp_transaction != NULL) {
1826                 /* written-back checkpointed metadata buffer */
1827                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1828                 __jbd2_journal_remove_checkpoint(jh);
1829         }
1830         spin_unlock(&journal->j_list_lock);
1831 out:
1832         return;
1833 }
1834
1835 /**
1836  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1837  * @journal: journal for operation
1838  * @page: to try and free
1839  * @gfp_mask: we use the mask to detect how hard should we try to release
1840  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1841  * release the buffers.
1842  *
1843  *
1844  * For all the buffers on this page,
1845  * if they are fully written out ordered data, move them onto BUF_CLEAN
1846  * so try_to_free_buffers() can reap them.
1847  *
1848  * This function returns non-zero if we wish try_to_free_buffers()
1849  * to be called. We do this if the page is releasable by try_to_free_buffers().
1850  * We also do it if the page has locked or dirty buffers and the caller wants
1851  * us to perform sync or async writeout.
1852  *
1853  * This complicates JBD locking somewhat.  We aren't protected by the
1854  * BKL here.  We wish to remove the buffer from its committing or
1855  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1856  *
1857  * This may *change* the value of transaction_t->t_datalist, so anyone
1858  * who looks at t_datalist needs to lock against this function.
1859  *
1860  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1861  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1862  * will come out of the lock with the buffer dirty, which makes it
1863  * ineligible for release here.
1864  *
1865  * Who else is affected by this?  hmm...  Really the only contender
1866  * is do_get_write_access() - it could be looking at the buffer while
1867  * journal_try_to_free_buffer() is changing its state.  But that
1868  * cannot happen because we never reallocate freed data as metadata
1869  * while the data is part of a transaction.  Yes?
1870  *
1871  * Return 0 on failure, 1 on success
1872  */
1873 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1874                                 struct page *page, gfp_t gfp_mask)
1875 {
1876         struct buffer_head *head;
1877         struct buffer_head *bh;
1878         int ret = 0;
1879
1880         J_ASSERT(PageLocked(page));
1881
1882         head = page_buffers(page);
1883         bh = head;
1884         do {
1885                 struct journal_head *jh;
1886
1887                 /*
1888                  * We take our own ref against the journal_head here to avoid
1889                  * having to add tons of locking around each instance of
1890                  * jbd2_journal_put_journal_head().
1891                  */
1892                 jh = jbd2_journal_grab_journal_head(bh);
1893                 if (!jh)
1894                         continue;
1895
1896                 jbd_lock_bh_state(bh);
1897                 __journal_try_to_free_buffer(journal, bh);
1898                 jbd2_journal_put_journal_head(jh);
1899                 jbd_unlock_bh_state(bh);
1900                 if (buffer_jbd(bh))
1901                         goto busy;
1902         } while ((bh = bh->b_this_page) != head);
1903
1904         ret = try_to_free_buffers(page);
1905
1906 busy:
1907         return ret;
1908 }
1909
1910 /*
1911  * This buffer is no longer needed.  If it is on an older transaction's
1912  * checkpoint list we need to record it on this transaction's forget list
1913  * to pin this buffer (and hence its checkpointing transaction) down until
1914  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1915  * release it.
1916  * Returns non-zero if JBD no longer has an interest in the buffer.
1917  *
1918  * Called under j_list_lock.
1919  *
1920  * Called under jbd_lock_bh_state(bh).
1921  */
1922 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1923 {
1924         int may_free = 1;
1925         struct buffer_head *bh = jh2bh(jh);
1926
1927         if (jh->b_cp_transaction) {
1928                 JBUFFER_TRACE(jh, "on running+cp transaction");
1929                 __jbd2_journal_temp_unlink_buffer(jh);
1930                 /*
1931                  * We don't want to write the buffer anymore, clear the
1932                  * bit so that we don't confuse checks in
1933                  * __journal_file_buffer
1934                  */
1935                 clear_buffer_dirty(bh);
1936                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1937                 may_free = 0;
1938         } else {
1939                 JBUFFER_TRACE(jh, "on running transaction");
1940                 __jbd2_journal_unfile_buffer(jh);
1941         }
1942         return may_free;
1943 }
1944
1945 /*
1946  * jbd2_journal_invalidatepage
1947  *
1948  * This code is tricky.  It has a number of cases to deal with.
1949  *
1950  * There are two invariants which this code relies on:
1951  *
1952  * i_size must be updated on disk before we start calling invalidatepage on the
1953  * data.
1954  *
1955  *  This is done in ext3 by defining an ext3_setattr method which
1956  *  updates i_size before truncate gets going.  By maintaining this
1957  *  invariant, we can be sure that it is safe to throw away any buffers
1958  *  attached to the current transaction: once the transaction commits,
1959  *  we know that the data will not be needed.
1960  *
1961  *  Note however that we can *not* throw away data belonging to the
1962  *  previous, committing transaction!
1963  *
1964  * Any disk blocks which *are* part of the previous, committing
1965  * transaction (and which therefore cannot be discarded immediately) are
1966  * not going to be reused in the new running transaction
1967  *
1968  *  The bitmap committed_data images guarantee this: any block which is
1969  *  allocated in one transaction and removed in the next will be marked
1970  *  as in-use in the committed_data bitmap, so cannot be reused until
1971  *  the next transaction to delete the block commits.  This means that
1972  *  leaving committing buffers dirty is quite safe: the disk blocks
1973  *  cannot be reallocated to a different file and so buffer aliasing is
1974  *  not possible.
1975  *
1976  *
1977  * The above applies mainly to ordered data mode.  In writeback mode we
1978  * don't make guarantees about the order in which data hits disk --- in
1979  * particular we don't guarantee that new dirty data is flushed before
1980  * transaction commit --- so it is always safe just to discard data
1981  * immediately in that mode.  --sct
1982  */
1983
1984 /*
1985  * The journal_unmap_buffer helper function returns zero if the buffer
1986  * concerned remains pinned as an anonymous buffer belonging to an older
1987  * transaction.
1988  *
1989  * We're outside-transaction here.  Either or both of j_running_transaction
1990  * and j_committing_transaction may be NULL.
1991  */
1992 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1993                                 int partial_page)
1994 {
1995         transaction_t *transaction;
1996         struct journal_head *jh;
1997         int may_free = 1;
1998
1999         BUFFER_TRACE(bh, "entry");
2000
2001         /*
2002          * It is safe to proceed here without the j_list_lock because the
2003          * buffers cannot be stolen by try_to_free_buffers as long as we are
2004          * holding the page lock. --sct
2005          */
2006
2007         if (!buffer_jbd(bh))
2008                 goto zap_buffer_unlocked;
2009
2010         /* OK, we have data buffer in journaled mode */
2011         write_lock(&journal->j_state_lock);
2012         jbd_lock_bh_state(bh);
2013         spin_lock(&journal->j_list_lock);
2014
2015         jh = jbd2_journal_grab_journal_head(bh);
2016         if (!jh)
2017                 goto zap_buffer_no_jh;
2018
2019         /*
2020          * We cannot remove the buffer from checkpoint lists until the
2021          * transaction adding inode to orphan list (let's call it T)
2022          * is committed.  Otherwise if the transaction changing the
2023          * buffer would be cleaned from the journal before T is
2024          * committed, a crash will cause that the correct contents of
2025          * the buffer will be lost.  On the other hand we have to
2026          * clear the buffer dirty bit at latest at the moment when the
2027          * transaction marking the buffer as freed in the filesystem
2028          * structures is committed because from that moment on the
2029          * block can be reallocated and used by a different page.
2030          * Since the block hasn't been freed yet but the inode has
2031          * already been added to orphan list, it is safe for us to add
2032          * the buffer to BJ_Forget list of the newest transaction.
2033          *
2034          * Also we have to clear buffer_mapped flag of a truncated buffer
2035          * because the buffer_head may be attached to the page straddling
2036          * i_size (can happen only when blocksize < pagesize) and thus the
2037          * buffer_head can be reused when the file is extended again. So we end
2038          * up keeping around invalidated buffers attached to transactions'
2039          * BJ_Forget list just to stop checkpointing code from cleaning up
2040          * the transaction this buffer was modified in.
2041          */
2042         transaction = jh->b_transaction;
2043         if (transaction == NULL) {
2044                 /* First case: not on any transaction.  If it
2045                  * has no checkpoint link, then we can zap it:
2046                  * it's a writeback-mode buffer so we don't care
2047                  * if it hits disk safely. */
2048                 if (!jh->b_cp_transaction) {
2049                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2050                         goto zap_buffer;
2051                 }
2052
2053                 if (!buffer_dirty(bh)) {
2054                         /* bdflush has written it.  We can drop it now */
2055                         goto zap_buffer;
2056                 }
2057
2058                 /* OK, it must be in the journal but still not
2059                  * written fully to disk: it's metadata or
2060                  * journaled data... */
2061
2062                 if (journal->j_running_transaction) {
2063                         /* ... and once the current transaction has
2064                          * committed, the buffer won't be needed any
2065                          * longer. */
2066                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2067                         may_free = __dispose_buffer(jh,
2068                                         journal->j_running_transaction);
2069                         goto zap_buffer;
2070                 } else {
2071                         /* There is no currently-running transaction. So the
2072                          * orphan record which we wrote for this file must have
2073                          * passed into commit.  We must attach this buffer to
2074                          * the committing transaction, if it exists. */
2075                         if (journal->j_committing_transaction) {
2076                                 JBUFFER_TRACE(jh, "give to committing trans");
2077                                 may_free = __dispose_buffer(jh,
2078                                         journal->j_committing_transaction);
2079                                 goto zap_buffer;
2080                         } else {
2081                                 /* The orphan record's transaction has
2082                                  * committed.  We can cleanse this buffer */
2083                                 clear_buffer_jbddirty(bh);
2084                                 goto zap_buffer;
2085                         }
2086                 }
2087         } else if (transaction == journal->j_committing_transaction) {
2088                 JBUFFER_TRACE(jh, "on committing transaction");
2089                 /*
2090                  * The buffer is committing, we simply cannot touch
2091                  * it. If the page is straddling i_size we have to wait
2092                  * for commit and try again.
2093                  */
2094                 if (partial_page) {
2095                         jbd2_journal_put_journal_head(jh);
2096                         spin_unlock(&journal->j_list_lock);
2097                         jbd_unlock_bh_state(bh);
2098                         write_unlock(&journal->j_state_lock);
2099                         return -EBUSY;
2100                 }
2101                 /*
2102                  * OK, buffer won't be reachable after truncate. We just set
2103                  * j_next_transaction to the running transaction (if there is
2104                  * one) and mark buffer as freed so that commit code knows it
2105                  * should clear dirty bits when it is done with the buffer.
2106                  */
2107                 set_buffer_freed(bh);
2108                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2109                         jh->b_next_transaction = journal->j_running_transaction;
2110                 jbd2_journal_put_journal_head(jh);
2111                 spin_unlock(&journal->j_list_lock);
2112                 jbd_unlock_bh_state(bh);
2113                 write_unlock(&journal->j_state_lock);
2114                 return 0;
2115         } else {
2116                 /* Good, the buffer belongs to the running transaction.
2117                  * We are writing our own transaction's data, not any
2118                  * previous one's, so it is safe to throw it away
2119                  * (remember that we expect the filesystem to have set
2120                  * i_size already for this truncate so recovery will not
2121                  * expose the disk blocks we are discarding here.) */
2122                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2123                 JBUFFER_TRACE(jh, "on running transaction");
2124                 may_free = __dispose_buffer(jh, transaction);
2125         }
2126
2127 zap_buffer:
2128         /*
2129          * This is tricky. Although the buffer is truncated, it may be reused
2130          * if blocksize < pagesize and it is attached to the page straddling
2131          * EOF. Since the buffer might have been added to BJ_Forget list of the
2132          * running transaction, journal_get_write_access() won't clear
2133          * b_modified and credit accounting gets confused. So clear b_modified
2134          * here.
2135          */
2136         jh->b_modified = 0;
2137         jbd2_journal_put_journal_head(jh);
2138 zap_buffer_no_jh:
2139         spin_unlock(&journal->j_list_lock);
2140         jbd_unlock_bh_state(bh);
2141         write_unlock(&journal->j_state_lock);
2142 zap_buffer_unlocked:
2143         clear_buffer_dirty(bh);
2144         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2145         clear_buffer_mapped(bh);
2146         clear_buffer_req(bh);
2147         clear_buffer_new(bh);
2148         clear_buffer_delay(bh);
2149         clear_buffer_unwritten(bh);
2150         bh->b_bdev = NULL;
2151         return may_free;
2152 }
2153
2154 /**
2155  * void jbd2_journal_invalidatepage()
2156  * @journal: journal to use for flush...
2157  * @page:    page to flush
2158  * @offset:  start of the range to invalidate
2159  * @length:  length of the range to invalidate
2160  *
2161  * Reap page buffers containing data after in the specified range in page.
2162  * Can return -EBUSY if buffers are part of the committing transaction and
2163  * the page is straddling i_size. Caller then has to wait for current commit
2164  * and try again.
2165  */
2166 int jbd2_journal_invalidatepage(journal_t *journal,
2167                                 struct page *page,
2168                                 unsigned int offset,
2169                                 unsigned int length)
2170 {
2171         struct buffer_head *head, *bh, *next;
2172         unsigned int stop = offset + length;
2173         unsigned int curr_off = 0;
2174         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2175         int may_free = 1;
2176         int ret = 0;
2177
2178         if (!PageLocked(page))
2179                 BUG();
2180         if (!page_has_buffers(page))
2181                 return 0;
2182
2183         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2184
2185         /* We will potentially be playing with lists other than just the
2186          * data lists (especially for journaled data mode), so be
2187          * cautious in our locking. */
2188
2189         head = bh = page_buffers(page);
2190         do {
2191                 unsigned int next_off = curr_off + bh->b_size;
2192                 next = bh->b_this_page;
2193
2194                 if (next_off > stop)
2195                         return 0;
2196
2197                 if (offset <= curr_off) {
2198                         /* This block is wholly outside the truncation point */
2199                         lock_buffer(bh);
2200                         ret = journal_unmap_buffer(journal, bh, partial_page);
2201                         unlock_buffer(bh);
2202                         if (ret < 0)
2203                                 return ret;
2204                         may_free &= ret;
2205                 }
2206                 curr_off = next_off;
2207                 bh = next;
2208
2209         } while (bh != head);
2210
2211         if (!partial_page) {
2212                 if (may_free && try_to_free_buffers(page))
2213                         J_ASSERT(!page_has_buffers(page));
2214         }
2215         return 0;
2216 }
2217
2218 /*
2219  * File a buffer on the given transaction list.
2220  */
2221 void __jbd2_journal_file_buffer(struct journal_head *jh,
2222                         transaction_t *transaction, int jlist)
2223 {
2224         struct journal_head **list = NULL;
2225         int was_dirty = 0;
2226         struct buffer_head *bh = jh2bh(jh);
2227
2228         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2229         assert_spin_locked(&transaction->t_journal->j_list_lock);
2230
2231         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2232         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2233                                 jh->b_transaction == NULL);
2234
2235         if (jh->b_transaction && jh->b_jlist == jlist)
2236                 return;
2237
2238         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2239             jlist == BJ_Shadow || jlist == BJ_Forget) {
2240                 /*
2241                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2242                  * instead of buffer_dirty. We should not see a dirty bit set
2243                  * here because we clear it in do_get_write_access but e.g.
2244                  * tune2fs can modify the sb and set the dirty bit at any time
2245                  * so we try to gracefully handle that.
2246                  */
2247                 if (buffer_dirty(bh))
2248                         warn_dirty_buffer(bh);
2249                 if (test_clear_buffer_dirty(bh) ||
2250                     test_clear_buffer_jbddirty(bh))
2251                         was_dirty = 1;
2252         }
2253
2254         if (jh->b_transaction)
2255                 __jbd2_journal_temp_unlink_buffer(jh);
2256         else
2257                 jbd2_journal_grab_journal_head(bh);
2258         jh->b_transaction = transaction;
2259
2260         switch (jlist) {
2261         case BJ_None:
2262                 J_ASSERT_JH(jh, !jh->b_committed_data);
2263                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2264                 return;
2265         case BJ_Metadata:
2266                 transaction->t_nr_buffers++;
2267                 list = &transaction->t_buffers;
2268                 break;
2269         case BJ_Forget:
2270                 list = &transaction->t_forget;
2271                 break;
2272         case BJ_Shadow:
2273                 list = &transaction->t_shadow_list;
2274                 break;
2275         case BJ_Reserved:
2276                 list = &transaction->t_reserved_list;
2277                 break;
2278         }
2279
2280         __blist_add_buffer(list, jh);
2281         jh->b_jlist = jlist;
2282
2283         if (was_dirty)
2284                 set_buffer_jbddirty(bh);
2285 }
2286
2287 void jbd2_journal_file_buffer(struct journal_head *jh,
2288                                 transaction_t *transaction, int jlist)
2289 {
2290         jbd_lock_bh_state(jh2bh(jh));
2291         spin_lock(&transaction->t_journal->j_list_lock);
2292         __jbd2_journal_file_buffer(jh, transaction, jlist);
2293         spin_unlock(&transaction->t_journal->j_list_lock);
2294         jbd_unlock_bh_state(jh2bh(jh));
2295 }
2296
2297 /*
2298  * Remove a buffer from its current buffer list in preparation for
2299  * dropping it from its current transaction entirely.  If the buffer has
2300  * already started to be used by a subsequent transaction, refile the
2301  * buffer on that transaction's metadata list.
2302  *
2303  * Called under j_list_lock
2304  * Called under jbd_lock_bh_state(jh2bh(jh))
2305  *
2306  * jh and bh may be already free when this function returns
2307  */
2308 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2309 {
2310         int was_dirty, jlist;
2311         struct buffer_head *bh = jh2bh(jh);
2312
2313         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2314         if (jh->b_transaction)
2315                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2316
2317         /* If the buffer is now unused, just drop it. */
2318         if (jh->b_next_transaction == NULL) {
2319                 __jbd2_journal_unfile_buffer(jh);
2320                 return;
2321         }
2322
2323         /*
2324          * It has been modified by a later transaction: add it to the new
2325          * transaction's metadata list.
2326          */
2327
2328         was_dirty = test_clear_buffer_jbddirty(bh);
2329         __jbd2_journal_temp_unlink_buffer(jh);
2330         /*
2331          * We set b_transaction here because b_next_transaction will inherit
2332          * our jh reference and thus __jbd2_journal_file_buffer() must not
2333          * take a new one.
2334          */
2335         jh->b_transaction = jh->b_next_transaction;
2336         jh->b_next_transaction = NULL;
2337         if (buffer_freed(bh))
2338                 jlist = BJ_Forget;
2339         else if (jh->b_modified)
2340                 jlist = BJ_Metadata;
2341         else
2342                 jlist = BJ_Reserved;
2343         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2344         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2345
2346         if (was_dirty)
2347                 set_buffer_jbddirty(bh);
2348 }
2349
2350 /*
2351  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2352  * bh reference so that we can safely unlock bh.
2353  *
2354  * The jh and bh may be freed by this call.
2355  */
2356 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2357 {
2358         struct buffer_head *bh = jh2bh(jh);
2359
2360         /* Get reference so that buffer cannot be freed before we unlock it */
2361         get_bh(bh);
2362         jbd_lock_bh_state(bh);
2363         spin_lock(&journal->j_list_lock);
2364         __jbd2_journal_refile_buffer(jh);
2365         jbd_unlock_bh_state(bh);
2366         spin_unlock(&journal->j_list_lock);
2367         __brelse(bh);
2368 }
2369
2370 /*
2371  * File inode in the inode list of the handle's transaction
2372  */
2373 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2374 {
2375         transaction_t *transaction = handle->h_transaction;
2376         journal_t *journal;
2377
2378         if (is_handle_aborted(handle))
2379                 return -EROFS;
2380         journal = transaction->t_journal;
2381
2382         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2383                         transaction->t_tid);
2384
2385         /*
2386          * First check whether inode isn't already on the transaction's
2387          * lists without taking the lock. Note that this check is safe
2388          * without the lock as we cannot race with somebody removing inode
2389          * from the transaction. The reason is that we remove inode from the
2390          * transaction only in journal_release_jbd_inode() and when we commit
2391          * the transaction. We are guarded from the first case by holding
2392          * a reference to the inode. We are safe against the second case
2393          * because if jinode->i_transaction == transaction, commit code
2394          * cannot touch the transaction because we hold reference to it,
2395          * and if jinode->i_next_transaction == transaction, commit code
2396          * will only file the inode where we want it.
2397          */
2398         if (jinode->i_transaction == transaction ||
2399             jinode->i_next_transaction == transaction)
2400                 return 0;
2401
2402         spin_lock(&journal->j_list_lock);
2403
2404         if (jinode->i_transaction == transaction ||
2405             jinode->i_next_transaction == transaction)
2406                 goto done;
2407
2408         /*
2409          * We only ever set this variable to 1 so the test is safe. Since
2410          * t_need_data_flush is likely to be set, we do the test to save some
2411          * cacheline bouncing
2412          */
2413         if (!transaction->t_need_data_flush)
2414                 transaction->t_need_data_flush = 1;
2415         /* On some different transaction's list - should be
2416          * the committing one */
2417         if (jinode->i_transaction) {
2418                 J_ASSERT(jinode->i_next_transaction == NULL);
2419                 J_ASSERT(jinode->i_transaction ==
2420                                         journal->j_committing_transaction);
2421                 jinode->i_next_transaction = transaction;
2422                 goto done;
2423         }
2424         /* Not on any transaction list... */
2425         J_ASSERT(!jinode->i_next_transaction);
2426         jinode->i_transaction = transaction;
2427         list_add(&jinode->i_list, &transaction->t_inode_list);
2428 done:
2429         spin_unlock(&journal->j_list_lock);
2430
2431         return 0;
2432 }
2433
2434 /*
2435  * File truncate and transaction commit interact with each other in a
2436  * non-trivial way.  If a transaction writing data block A is
2437  * committing, we cannot discard the data by truncate until we have
2438  * written them.  Otherwise if we crashed after the transaction with
2439  * write has committed but before the transaction with truncate has
2440  * committed, we could see stale data in block A.  This function is a
2441  * helper to solve this problem.  It starts writeout of the truncated
2442  * part in case it is in the committing transaction.
2443  *
2444  * Filesystem code must call this function when inode is journaled in
2445  * ordered mode before truncation happens and after the inode has been
2446  * placed on orphan list with the new inode size. The second condition
2447  * avoids the race that someone writes new data and we start
2448  * committing the transaction after this function has been called but
2449  * before a transaction for truncate is started (and furthermore it
2450  * allows us to optimize the case where the addition to orphan list
2451  * happens in the same transaction as write --- we don't have to write
2452  * any data in such case).
2453  */
2454 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2455                                         struct jbd2_inode *jinode,
2456                                         loff_t new_size)
2457 {
2458         transaction_t *inode_trans, *commit_trans;
2459         int ret = 0;
2460
2461         /* This is a quick check to avoid locking if not necessary */
2462         if (!jinode->i_transaction)
2463                 goto out;
2464         /* Locks are here just to force reading of recent values, it is
2465          * enough that the transaction was not committing before we started
2466          * a transaction adding the inode to orphan list */
2467         read_lock(&journal->j_state_lock);
2468         commit_trans = journal->j_committing_transaction;
2469         read_unlock(&journal->j_state_lock);
2470         spin_lock(&journal->j_list_lock);
2471         inode_trans = jinode->i_transaction;
2472         spin_unlock(&journal->j_list_lock);
2473         if (inode_trans == commit_trans) {
2474                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2475                         new_size, LLONG_MAX);
2476                 if (ret)
2477                         jbd2_journal_abort(journal, ret);
2478         }
2479 out:
2480         return ret;
2481 }