97a0c35219ae4bf2a61a5fe6bf38621b38681184
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64                                    struct buffer_head *bh_result, int create);
65 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69
70 /*
71  * Test whether an inode is a fast symlink.
72  */
73 static int ext4_inode_is_fast_symlink(struct inode *inode)
74 {
75         int ea_blocks = EXT4_I(inode)->i_file_acl ?
76                 (inode->i_sb->s_blocksize >> 9) : 0;
77
78         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79 }
80
81 /*
82  * Work out how many blocks we need to proceed with the next chunk of a
83  * truncate transaction.
84  */
85 static unsigned long blocks_for_truncate(struct inode *inode)
86 {
87         ext4_lblk_t needed;
88
89         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91         /* Give ourselves just enough room to cope with inodes in which
92          * i_blocks is corrupt: we've seen disk corruptions in the past
93          * which resulted in random data in an inode which looked enough
94          * like a regular file for ext4 to try to delete it.  Things
95          * will go a bit crazy if that happens, but at least we should
96          * try not to panic the whole kernel. */
97         if (needed < 2)
98                 needed = 2;
99
100         /* But we need to bound the transaction so we don't overflow the
101          * journal. */
102         if (needed > EXT4_MAX_TRANS_DATA)
103                 needed = EXT4_MAX_TRANS_DATA;
104
105         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106 }
107
108 /*
109  * Truncate transactions can be complex and absolutely huge.  So we need to
110  * be able to restart the transaction at a conventient checkpoint to make
111  * sure we don't overflow the journal.
112  *
113  * start_transaction gets us a new handle for a truncate transaction,
114  * and extend_transaction tries to extend the existing one a bit.  If
115  * extend fails, we need to propagate the failure up and restart the
116  * transaction in the top-level truncate loop. --sct
117  */
118 static handle_t *start_transaction(struct inode *inode)
119 {
120         handle_t *result;
121
122         result = ext4_journal_start(inode, blocks_for_truncate(inode));
123         if (!IS_ERR(result))
124                 return result;
125
126         ext4_std_error(inode->i_sb, PTR_ERR(result));
127         return result;
128 }
129
130 /*
131  * Try to extend this transaction for the purposes of truncation.
132  *
133  * Returns 0 if we managed to create more room.  If we can't create more
134  * room, and the transaction must be restarted we return 1.
135  */
136 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137 {
138         if (!ext4_handle_valid(handle))
139                 return 0;
140         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141                 return 0;
142         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143                 return 0;
144         return 1;
145 }
146
147 /*
148  * Restart the transaction associated with *handle.  This does a commit,
149  * so before we call here everything must be consistently dirtied against
150  * this transaction.
151  */
152 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153                                  int nblocks)
154 {
155         int ret;
156
157         /*
158          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159          * moment, get_block can be called only for blocks inside i_size since
160          * page cache has been already dropped and writes are blocked by
161          * i_mutex. So we can safely drop the i_data_sem here.
162          */
163         BUG_ON(EXT4_JOURNAL(inode) == NULL);
164         jbd_debug(2, "restarting handle %p\n", handle);
165         up_write(&EXT4_I(inode)->i_data_sem);
166         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167         down_write(&EXT4_I(inode)->i_data_sem);
168         ext4_discard_preallocations(inode);
169
170         return ret;
171 }
172
173 /*
174  * Called at the last iput() if i_nlink is zero.
175  */
176 void ext4_evict_inode(struct inode *inode)
177 {
178         handle_t *handle;
179         int err;
180
181         if (inode->i_nlink) {
182                 truncate_inode_pages(&inode->i_data, 0);
183                 goto no_delete;
184         }
185
186         if (!is_bad_inode(inode))
187                 dquot_initialize(inode);
188
189         if (ext4_should_order_data(inode))
190                 ext4_begin_ordered_truncate(inode, 0);
191         truncate_inode_pages(&inode->i_data, 0);
192
193         if (is_bad_inode(inode))
194                 goto no_delete;
195
196         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197         if (IS_ERR(handle)) {
198                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
199                 /*
200                  * If we're going to skip the normal cleanup, we still need to
201                  * make sure that the in-core orphan linked list is properly
202                  * cleaned up.
203                  */
204                 ext4_orphan_del(NULL, inode);
205                 goto no_delete;
206         }
207
208         if (IS_SYNC(inode))
209                 ext4_handle_sync(handle);
210         inode->i_size = 0;
211         err = ext4_mark_inode_dirty(handle, inode);
212         if (err) {
213                 ext4_warning(inode->i_sb,
214                              "couldn't mark inode dirty (err %d)", err);
215                 goto stop_handle;
216         }
217         if (inode->i_blocks)
218                 ext4_truncate(inode);
219
220         /*
221          * ext4_ext_truncate() doesn't reserve any slop when it
222          * restarts journal transactions; therefore there may not be
223          * enough credits left in the handle to remove the inode from
224          * the orphan list and set the dtime field.
225          */
226         if (!ext4_handle_has_enough_credits(handle, 3)) {
227                 err = ext4_journal_extend(handle, 3);
228                 if (err > 0)
229                         err = ext4_journal_restart(handle, 3);
230                 if (err != 0) {
231                         ext4_warning(inode->i_sb,
232                                      "couldn't extend journal (err %d)", err);
233                 stop_handle:
234                         ext4_journal_stop(handle);
235                         ext4_orphan_del(NULL, inode);
236                         goto no_delete;
237                 }
238         }
239
240         /*
241          * Kill off the orphan record which ext4_truncate created.
242          * AKPM: I think this can be inside the above `if'.
243          * Note that ext4_orphan_del() has to be able to cope with the
244          * deletion of a non-existent orphan - this is because we don't
245          * know if ext4_truncate() actually created an orphan record.
246          * (Well, we could do this if we need to, but heck - it works)
247          */
248         ext4_orphan_del(handle, inode);
249         EXT4_I(inode)->i_dtime  = get_seconds();
250
251         /*
252          * One subtle ordering requirement: if anything has gone wrong
253          * (transaction abort, IO errors, whatever), then we can still
254          * do these next steps (the fs will already have been marked as
255          * having errors), but we can't free the inode if the mark_dirty
256          * fails.
257          */
258         if (ext4_mark_inode_dirty(handle, inode))
259                 /* If that failed, just do the required in-core inode clear. */
260                 ext4_clear_inode(inode);
261         else
262                 ext4_free_inode(handle, inode);
263         ext4_journal_stop(handle);
264         return;
265 no_delete:
266         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
267 }
268
269 typedef struct {
270         __le32  *p;
271         __le32  key;
272         struct buffer_head *bh;
273 } Indirect;
274
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276 {
277         p->key = *(p->p = v);
278         p->bh = bh;
279 }
280
281 /**
282  *      ext4_block_to_path - parse the block number into array of offsets
283  *      @inode: inode in question (we are only interested in its superblock)
284  *      @i_block: block number to be parsed
285  *      @offsets: array to store the offsets in
286  *      @boundary: set this non-zero if the referred-to block is likely to be
287  *             followed (on disk) by an indirect block.
288  *
289  *      To store the locations of file's data ext4 uses a data structure common
290  *      for UNIX filesystems - tree of pointers anchored in the inode, with
291  *      data blocks at leaves and indirect blocks in intermediate nodes.
292  *      This function translates the block number into path in that tree -
293  *      return value is the path length and @offsets[n] is the offset of
294  *      pointer to (n+1)th node in the nth one. If @block is out of range
295  *      (negative or too large) warning is printed and zero returned.
296  *
297  *      Note: function doesn't find node addresses, so no IO is needed. All
298  *      we need to know is the capacity of indirect blocks (taken from the
299  *      inode->i_sb).
300  */
301
302 /*
303  * Portability note: the last comparison (check that we fit into triple
304  * indirect block) is spelled differently, because otherwise on an
305  * architecture with 32-bit longs and 8Kb pages we might get into trouble
306  * if our filesystem had 8Kb blocks. We might use long long, but that would
307  * kill us on x86. Oh, well, at least the sign propagation does not matter -
308  * i_block would have to be negative in the very beginning, so we would not
309  * get there at all.
310  */
311
312 static int ext4_block_to_path(struct inode *inode,
313                               ext4_lblk_t i_block,
314                               ext4_lblk_t offsets[4], int *boundary)
315 {
316         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318         const long direct_blocks = EXT4_NDIR_BLOCKS,
319                 indirect_blocks = ptrs,
320                 double_blocks = (1 << (ptrs_bits * 2));
321         int n = 0;
322         int final = 0;
323
324         if (i_block < direct_blocks) {
325                 offsets[n++] = i_block;
326                 final = direct_blocks;
327         } else if ((i_block -= direct_blocks) < indirect_blocks) {
328                 offsets[n++] = EXT4_IND_BLOCK;
329                 offsets[n++] = i_block;
330                 final = ptrs;
331         } else if ((i_block -= indirect_blocks) < double_blocks) {
332                 offsets[n++] = EXT4_DIND_BLOCK;
333                 offsets[n++] = i_block >> ptrs_bits;
334                 offsets[n++] = i_block & (ptrs - 1);
335                 final = ptrs;
336         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337                 offsets[n++] = EXT4_TIND_BLOCK;
338                 offsets[n++] = i_block >> (ptrs_bits * 2);
339                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340                 offsets[n++] = i_block & (ptrs - 1);
341                 final = ptrs;
342         } else {
343                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344                              i_block + direct_blocks +
345                              indirect_blocks + double_blocks, inode->i_ino);
346         }
347         if (boundary)
348                 *boundary = final - 1 - (i_block & (ptrs - 1));
349         return n;
350 }
351
352 static int __ext4_check_blockref(const char *function, unsigned int line,
353                                  struct inode *inode,
354                                  __le32 *p, unsigned int max)
355 {
356         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357         __le32 *bref = p;
358         unsigned int blk;
359
360         while (bref < p+max) {
361                 blk = le32_to_cpu(*bref++);
362                 if (blk &&
363                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364                                                     blk, 1))) {
365                         es->s_last_error_block = cpu_to_le64(blk);
366                         ext4_error_inode(inode, function, line, blk,
367                                          "invalid block");
368                         return -EIO;
369                 }
370         }
371         return 0;
372 }
373
374
375 #define ext4_check_indirect_blockref(inode, bh)                         \
376         __ext4_check_blockref(__func__, __LINE__, inode,                \
377                               (__le32 *)(bh)->b_data,                   \
378                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380 #define ext4_check_inode_blockref(inode)                                \
381         __ext4_check_blockref(__func__, __LINE__, inode,                \
382                               EXT4_I(inode)->i_data,                    \
383                               EXT4_NDIR_BLOCKS)
384
385 /**
386  *      ext4_get_branch - read the chain of indirect blocks leading to data
387  *      @inode: inode in question
388  *      @depth: depth of the chain (1 - direct pointer, etc.)
389  *      @offsets: offsets of pointers in inode/indirect blocks
390  *      @chain: place to store the result
391  *      @err: here we store the error value
392  *
393  *      Function fills the array of triples <key, p, bh> and returns %NULL
394  *      if everything went OK or the pointer to the last filled triple
395  *      (incomplete one) otherwise. Upon the return chain[i].key contains
396  *      the number of (i+1)-th block in the chain (as it is stored in memory,
397  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
398  *      number (it points into struct inode for i==0 and into the bh->b_data
399  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400  *      block for i>0 and NULL for i==0. In other words, it holds the block
401  *      numbers of the chain, addresses they were taken from (and where we can
402  *      verify that chain did not change) and buffer_heads hosting these
403  *      numbers.
404  *
405  *      Function stops when it stumbles upon zero pointer (absent block)
406  *              (pointer to last triple returned, *@err == 0)
407  *      or when it gets an IO error reading an indirect block
408  *              (ditto, *@err == -EIO)
409  *      or when it reads all @depth-1 indirect blocks successfully and finds
410  *      the whole chain, all way to the data (returns %NULL, *err == 0).
411  *
412  *      Need to be called with
413  *      down_read(&EXT4_I(inode)->i_data_sem)
414  */
415 static Indirect *ext4_get_branch(struct inode *inode, int depth,
416                                  ext4_lblk_t  *offsets,
417                                  Indirect chain[4], int *err)
418 {
419         struct super_block *sb = inode->i_sb;
420         Indirect *p = chain;
421         struct buffer_head *bh;
422
423         *err = 0;
424         /* i_data is not going away, no lock needed */
425         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426         if (!p->key)
427                 goto no_block;
428         while (--depth) {
429                 bh = sb_getblk(sb, le32_to_cpu(p->key));
430                 if (unlikely(!bh))
431                         goto failure;
432
433                 if (!bh_uptodate_or_lock(bh)) {
434                         if (bh_submit_read(bh) < 0) {
435                                 put_bh(bh);
436                                 goto failure;
437                         }
438                         /* validate block references */
439                         if (ext4_check_indirect_blockref(inode, bh)) {
440                                 put_bh(bh);
441                                 goto failure;
442                         }
443                 }
444
445                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446                 /* Reader: end */
447                 if (!p->key)
448                         goto no_block;
449         }
450         return NULL;
451
452 failure:
453         *err = -EIO;
454 no_block:
455         return p;
456 }
457
458 /**
459  *      ext4_find_near - find a place for allocation with sufficient locality
460  *      @inode: owner
461  *      @ind: descriptor of indirect block.
462  *
463  *      This function returns the preferred place for block allocation.
464  *      It is used when heuristic for sequential allocation fails.
465  *      Rules are:
466  *        + if there is a block to the left of our position - allocate near it.
467  *        + if pointer will live in indirect block - allocate near that block.
468  *        + if pointer will live in inode - allocate in the same
469  *          cylinder group.
470  *
471  * In the latter case we colour the starting block by the callers PID to
472  * prevent it from clashing with concurrent allocations for a different inode
473  * in the same block group.   The PID is used here so that functionally related
474  * files will be close-by on-disk.
475  *
476  *      Caller must make sure that @ind is valid and will stay that way.
477  */
478 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479 {
480         struct ext4_inode_info *ei = EXT4_I(inode);
481         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482         __le32 *p;
483         ext4_fsblk_t bg_start;
484         ext4_fsblk_t last_block;
485         ext4_grpblk_t colour;
486         ext4_group_t block_group;
487         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488
489         /* Try to find previous block */
490         for (p = ind->p - 1; p >= start; p--) {
491                 if (*p)
492                         return le32_to_cpu(*p);
493         }
494
495         /* No such thing, so let's try location of indirect block */
496         if (ind->bh)
497                 return ind->bh->b_blocknr;
498
499         /*
500          * It is going to be referred to from the inode itself? OK, just put it
501          * into the same cylinder group then.
502          */
503         block_group = ei->i_block_group;
504         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505                 block_group &= ~(flex_size-1);
506                 if (S_ISREG(inode->i_mode))
507                         block_group++;
508         }
509         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
512         /*
513          * If we are doing delayed allocation, we don't need take
514          * colour into account.
515          */
516         if (test_opt(inode->i_sb, DELALLOC))
517                 return bg_start;
518
519         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520                 colour = (current->pid % 16) *
521                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522         else
523                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524         return bg_start + colour;
525 }
526
527 /**
528  *      ext4_find_goal - find a preferred place for allocation.
529  *      @inode: owner
530  *      @block:  block we want
531  *      @partial: pointer to the last triple within a chain
532  *
533  *      Normally this function find the preferred place for block allocation,
534  *      returns it.
535  *      Because this is only used for non-extent files, we limit the block nr
536  *      to 32 bits.
537  */
538 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539                                    Indirect *partial)
540 {
541         ext4_fsblk_t goal;
542
543         /*
544          * XXX need to get goal block from mballoc's data structures
545          */
546
547         goal = ext4_find_near(inode, partial);
548         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549         return goal;
550 }
551
552 /**
553  *      ext4_blks_to_allocate: Look up the block map and count the number
554  *      of direct blocks need to be allocated for the given branch.
555  *
556  *      @branch: chain of indirect blocks
557  *      @k: number of blocks need for indirect blocks
558  *      @blks: number of data blocks to be mapped.
559  *      @blocks_to_boundary:  the offset in the indirect block
560  *
561  *      return the total number of blocks to be allocate, including the
562  *      direct and indirect blocks.
563  */
564 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565                                  int blocks_to_boundary)
566 {
567         unsigned int count = 0;
568
569         /*
570          * Simple case, [t,d]Indirect block(s) has not allocated yet
571          * then it's clear blocks on that path have not allocated
572          */
573         if (k > 0) {
574                 /* right now we don't handle cross boundary allocation */
575                 if (blks < blocks_to_boundary + 1)
576                         count += blks;
577                 else
578                         count += blocks_to_boundary + 1;
579                 return count;
580         }
581
582         count++;
583         while (count < blks && count <= blocks_to_boundary &&
584                 le32_to_cpu(*(branch[0].p + count)) == 0) {
585                 count++;
586         }
587         return count;
588 }
589
590 /**
591  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
592  *      @indirect_blks: the number of blocks need to allocate for indirect
593  *                      blocks
594  *
595  *      @new_blocks: on return it will store the new block numbers for
596  *      the indirect blocks(if needed) and the first direct block,
597  *      @blks:  on return it will store the total number of allocated
598  *              direct blocks
599  */
600 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601                              ext4_lblk_t iblock, ext4_fsblk_t goal,
602                              int indirect_blks, int blks,
603                              ext4_fsblk_t new_blocks[4], int *err)
604 {
605         struct ext4_allocation_request ar;
606         int target, i;
607         unsigned long count = 0, blk_allocated = 0;
608         int index = 0;
609         ext4_fsblk_t current_block = 0;
610         int ret = 0;
611
612         /*
613          * Here we try to allocate the requested multiple blocks at once,
614          * on a best-effort basis.
615          * To build a branch, we should allocate blocks for
616          * the indirect blocks(if not allocated yet), and at least
617          * the first direct block of this branch.  That's the
618          * minimum number of blocks need to allocate(required)
619          */
620         /* first we try to allocate the indirect blocks */
621         target = indirect_blks;
622         while (target > 0) {
623                 count = target;
624                 /* allocating blocks for indirect blocks and direct blocks */
625                 current_block = ext4_new_meta_blocks(handle, inode,
626                                                         goal, &count, err);
627                 if (*err)
628                         goto failed_out;
629
630                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631                         EXT4_ERROR_INODE(inode,
632                                          "current_block %llu + count %lu > %d!",
633                                          current_block, count,
634                                          EXT4_MAX_BLOCK_FILE_PHYS);
635                         *err = -EIO;
636                         goto failed_out;
637                 }
638
639                 target -= count;
640                 /* allocate blocks for indirect blocks */
641                 while (index < indirect_blks && count) {
642                         new_blocks[index++] = current_block++;
643                         count--;
644                 }
645                 if (count > 0) {
646                         /*
647                          * save the new block number
648                          * for the first direct block
649                          */
650                         new_blocks[index] = current_block;
651                         printk(KERN_INFO "%s returned more blocks than "
652                                                 "requested\n", __func__);
653                         WARN_ON(1);
654                         break;
655                 }
656         }
657
658         target = blks - count ;
659         blk_allocated = count;
660         if (!target)
661                 goto allocated;
662         /* Now allocate data blocks */
663         memset(&ar, 0, sizeof(ar));
664         ar.inode = inode;
665         ar.goal = goal;
666         ar.len = target;
667         ar.logical = iblock;
668         if (S_ISREG(inode->i_mode))
669                 /* enable in-core preallocation only for regular files */
670                 ar.flags = EXT4_MB_HINT_DATA;
671
672         current_block = ext4_mb_new_blocks(handle, &ar, err);
673         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674                 EXT4_ERROR_INODE(inode,
675                                  "current_block %llu + ar.len %d > %d!",
676                                  current_block, ar.len,
677                                  EXT4_MAX_BLOCK_FILE_PHYS);
678                 *err = -EIO;
679                 goto failed_out;
680         }
681
682         if (*err && (target == blks)) {
683                 /*
684                  * if the allocation failed and we didn't allocate
685                  * any blocks before
686                  */
687                 goto failed_out;
688         }
689         if (!*err) {
690                 if (target == blks) {
691                         /*
692                          * save the new block number
693                          * for the first direct block
694                          */
695                         new_blocks[index] = current_block;
696                 }
697                 blk_allocated += ar.len;
698         }
699 allocated:
700         /* total number of blocks allocated for direct blocks */
701         ret = blk_allocated;
702         *err = 0;
703         return ret;
704 failed_out:
705         for (i = 0; i < index; i++)
706                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707         return ret;
708 }
709
710 /**
711  *      ext4_alloc_branch - allocate and set up a chain of blocks.
712  *      @inode: owner
713  *      @indirect_blks: number of allocated indirect blocks
714  *      @blks: number of allocated direct blocks
715  *      @offsets: offsets (in the blocks) to store the pointers to next.
716  *      @branch: place to store the chain in.
717  *
718  *      This function allocates blocks, zeroes out all but the last one,
719  *      links them into chain and (if we are synchronous) writes them to disk.
720  *      In other words, it prepares a branch that can be spliced onto the
721  *      inode. It stores the information about that chain in the branch[], in
722  *      the same format as ext4_get_branch() would do. We are calling it after
723  *      we had read the existing part of chain and partial points to the last
724  *      triple of that (one with zero ->key). Upon the exit we have the same
725  *      picture as after the successful ext4_get_block(), except that in one
726  *      place chain is disconnected - *branch->p is still zero (we did not
727  *      set the last link), but branch->key contains the number that should
728  *      be placed into *branch->p to fill that gap.
729  *
730  *      If allocation fails we free all blocks we've allocated (and forget
731  *      their buffer_heads) and return the error value the from failed
732  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733  *      as described above and return 0.
734  */
735 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736                              ext4_lblk_t iblock, int indirect_blks,
737                              int *blks, ext4_fsblk_t goal,
738                              ext4_lblk_t *offsets, Indirect *branch)
739 {
740         int blocksize = inode->i_sb->s_blocksize;
741         int i, n = 0;
742         int err = 0;
743         struct buffer_head *bh;
744         int num;
745         ext4_fsblk_t new_blocks[4];
746         ext4_fsblk_t current_block;
747
748         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749                                 *blks, new_blocks, &err);
750         if (err)
751                 return err;
752
753         branch[0].key = cpu_to_le32(new_blocks[0]);
754         /*
755          * metadata blocks and data blocks are allocated.
756          */
757         for (n = 1; n <= indirect_blks;  n++) {
758                 /*
759                  * Get buffer_head for parent block, zero it out
760                  * and set the pointer to new one, then send
761                  * parent to disk.
762                  */
763                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764                 branch[n].bh = bh;
765                 lock_buffer(bh);
766                 BUFFER_TRACE(bh, "call get_create_access");
767                 err = ext4_journal_get_create_access(handle, bh);
768                 if (err) {
769                         /* Don't brelse(bh) here; it's done in
770                          * ext4_journal_forget() below */
771                         unlock_buffer(bh);
772                         goto failed;
773                 }
774
775                 memset(bh->b_data, 0, blocksize);
776                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
777                 branch[n].key = cpu_to_le32(new_blocks[n]);
778                 *branch[n].p = branch[n].key;
779                 if (n == indirect_blks) {
780                         current_block = new_blocks[n];
781                         /*
782                          * End of chain, update the last new metablock of
783                          * the chain to point to the new allocated
784                          * data blocks numbers
785                          */
786                         for (i = 1; i < num; i++)
787                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
788                 }
789                 BUFFER_TRACE(bh, "marking uptodate");
790                 set_buffer_uptodate(bh);
791                 unlock_buffer(bh);
792
793                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
794                 err = ext4_handle_dirty_metadata(handle, inode, bh);
795                 if (err)
796                         goto failed;
797         }
798         *blks = num;
799         return err;
800 failed:
801         /* Allocation failed, free what we already allocated */
802         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
803         for (i = 1; i <= n ; i++) {
804                 /*
805                  * branch[i].bh is newly allocated, so there is no
806                  * need to revoke the block, which is why we don't
807                  * need to set EXT4_FREE_BLOCKS_METADATA.
808                  */
809                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
810                                  EXT4_FREE_BLOCKS_FORGET);
811         }
812         for (i = n+1; i < indirect_blks; i++)
813                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
814
815         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
816
817         return err;
818 }
819
820 /**
821  * ext4_splice_branch - splice the allocated branch onto inode.
822  * @inode: owner
823  * @block: (logical) number of block we are adding
824  * @chain: chain of indirect blocks (with a missing link - see
825  *      ext4_alloc_branch)
826  * @where: location of missing link
827  * @num:   number of indirect blocks we are adding
828  * @blks:  number of direct blocks we are adding
829  *
830  * This function fills the missing link and does all housekeeping needed in
831  * inode (->i_blocks, etc.). In case of success we end up with the full
832  * chain to new block and return 0.
833  */
834 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
835                               ext4_lblk_t block, Indirect *where, int num,
836                               int blks)
837 {
838         int i;
839         int err = 0;
840         ext4_fsblk_t current_block;
841
842         /*
843          * If we're splicing into a [td]indirect block (as opposed to the
844          * inode) then we need to get write access to the [td]indirect block
845          * before the splice.
846          */
847         if (where->bh) {
848                 BUFFER_TRACE(where->bh, "get_write_access");
849                 err = ext4_journal_get_write_access(handle, where->bh);
850                 if (err)
851                         goto err_out;
852         }
853         /* That's it */
854
855         *where->p = where->key;
856
857         /*
858          * Update the host buffer_head or inode to point to more just allocated
859          * direct blocks blocks
860          */
861         if (num == 0 && blks > 1) {
862                 current_block = le32_to_cpu(where->key) + 1;
863                 for (i = 1; i < blks; i++)
864                         *(where->p + i) = cpu_to_le32(current_block++);
865         }
866
867         /* We are done with atomic stuff, now do the rest of housekeeping */
868         /* had we spliced it onto indirect block? */
869         if (where->bh) {
870                 /*
871                  * If we spliced it onto an indirect block, we haven't
872                  * altered the inode.  Note however that if it is being spliced
873                  * onto an indirect block at the very end of the file (the
874                  * file is growing) then we *will* alter the inode to reflect
875                  * the new i_size.  But that is not done here - it is done in
876                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
877                  */
878                 jbd_debug(5, "splicing indirect only\n");
879                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
880                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
881                 if (err)
882                         goto err_out;
883         } else {
884                 /*
885                  * OK, we spliced it into the inode itself on a direct block.
886                  */
887                 ext4_mark_inode_dirty(handle, inode);
888                 jbd_debug(5, "splicing direct\n");
889         }
890         return err;
891
892 err_out:
893         for (i = 1; i <= num; i++) {
894                 /*
895                  * branch[i].bh is newly allocated, so there is no
896                  * need to revoke the block, which is why we don't
897                  * need to set EXT4_FREE_BLOCKS_METADATA.
898                  */
899                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
900                                  EXT4_FREE_BLOCKS_FORGET);
901         }
902         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
903                          blks, 0);
904
905         return err;
906 }
907
908 /*
909  * The ext4_ind_map_blocks() function handles non-extents inodes
910  * (i.e., using the traditional indirect/double-indirect i_blocks
911  * scheme) for ext4_map_blocks().
912  *
913  * Allocation strategy is simple: if we have to allocate something, we will
914  * have to go the whole way to leaf. So let's do it before attaching anything
915  * to tree, set linkage between the newborn blocks, write them if sync is
916  * required, recheck the path, free and repeat if check fails, otherwise
917  * set the last missing link (that will protect us from any truncate-generated
918  * removals - all blocks on the path are immune now) and possibly force the
919  * write on the parent block.
920  * That has a nice additional property: no special recovery from the failed
921  * allocations is needed - we simply release blocks and do not touch anything
922  * reachable from inode.
923  *
924  * `handle' can be NULL if create == 0.
925  *
926  * return > 0, # of blocks mapped or allocated.
927  * return = 0, if plain lookup failed.
928  * return < 0, error case.
929  *
930  * The ext4_ind_get_blocks() function should be called with
931  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
932  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
933  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
934  * blocks.
935  */
936 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
937                                struct ext4_map_blocks *map,
938                                int flags)
939 {
940         int err = -EIO;
941         ext4_lblk_t offsets[4];
942         Indirect chain[4];
943         Indirect *partial;
944         ext4_fsblk_t goal;
945         int indirect_blks;
946         int blocks_to_boundary = 0;
947         int depth;
948         int count = 0;
949         ext4_fsblk_t first_block = 0;
950
951         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
952         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
953         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
954                                    &blocks_to_boundary);
955
956         if (depth == 0)
957                 goto out;
958
959         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
960
961         /* Simplest case - block found, no allocation needed */
962         if (!partial) {
963                 first_block = le32_to_cpu(chain[depth - 1].key);
964                 count++;
965                 /*map more blocks*/
966                 while (count < map->m_len && count <= blocks_to_boundary) {
967                         ext4_fsblk_t blk;
968
969                         blk = le32_to_cpu(*(chain[depth-1].p + count));
970
971                         if (blk == first_block + count)
972                                 count++;
973                         else
974                                 break;
975                 }
976                 goto got_it;
977         }
978
979         /* Next simple case - plain lookup or failed read of indirect block */
980         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
981                 goto cleanup;
982
983         /*
984          * Okay, we need to do block allocation.
985         */
986         goal = ext4_find_goal(inode, map->m_lblk, partial);
987
988         /* the number of blocks need to allocate for [d,t]indirect blocks */
989         indirect_blks = (chain + depth) - partial - 1;
990
991         /*
992          * Next look up the indirect map to count the totoal number of
993          * direct blocks to allocate for this branch.
994          */
995         count = ext4_blks_to_allocate(partial, indirect_blks,
996                                       map->m_len, blocks_to_boundary);
997         /*
998          * Block out ext4_truncate while we alter the tree
999          */
1000         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1001                                 &count, goal,
1002                                 offsets + (partial - chain), partial);
1003
1004         /*
1005          * The ext4_splice_branch call will free and forget any buffers
1006          * on the new chain if there is a failure, but that risks using
1007          * up transaction credits, especially for bitmaps where the
1008          * credits cannot be returned.  Can we handle this somehow?  We
1009          * may need to return -EAGAIN upwards in the worst case.  --sct
1010          */
1011         if (!err)
1012                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1013                                          partial, indirect_blks, count);
1014         if (err)
1015                 goto cleanup;
1016
1017         map->m_flags |= EXT4_MAP_NEW;
1018
1019         ext4_update_inode_fsync_trans(handle, inode, 1);
1020 got_it:
1021         map->m_flags |= EXT4_MAP_MAPPED;
1022         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1023         map->m_len = count;
1024         if (count > blocks_to_boundary)
1025                 map->m_flags |= EXT4_MAP_BOUNDARY;
1026         err = count;
1027         /* Clean up and exit */
1028         partial = chain + depth - 1;    /* the whole chain */
1029 cleanup:
1030         while (partial > chain) {
1031                 BUFFER_TRACE(partial->bh, "call brelse");
1032                 brelse(partial->bh);
1033                 partial--;
1034         }
1035 out:
1036         return err;
1037 }
1038
1039 #ifdef CONFIG_QUOTA
1040 qsize_t *ext4_get_reserved_space(struct inode *inode)
1041 {
1042         return &EXT4_I(inode)->i_reserved_quota;
1043 }
1044 #endif
1045
1046 /*
1047  * Calculate the number of metadata blocks need to reserve
1048  * to allocate a new block at @lblocks for non extent file based file
1049  */
1050 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1051                                               sector_t lblock)
1052 {
1053         struct ext4_inode_info *ei = EXT4_I(inode);
1054         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1055         int blk_bits;
1056
1057         if (lblock < EXT4_NDIR_BLOCKS)
1058                 return 0;
1059
1060         lblock -= EXT4_NDIR_BLOCKS;
1061
1062         if (ei->i_da_metadata_calc_len &&
1063             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1064                 ei->i_da_metadata_calc_len++;
1065                 return 0;
1066         }
1067         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1068         ei->i_da_metadata_calc_len = 1;
1069         blk_bits = order_base_2(lblock);
1070         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1071 }
1072
1073 /*
1074  * Calculate the number of metadata blocks need to reserve
1075  * to allocate a block located at @lblock
1076  */
1077 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1078 {
1079         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1080                 return ext4_ext_calc_metadata_amount(inode, lblock);
1081
1082         return ext4_indirect_calc_metadata_amount(inode, lblock);
1083 }
1084
1085 /*
1086  * Called with i_data_sem down, which is important since we can call
1087  * ext4_discard_preallocations() from here.
1088  */
1089 void ext4_da_update_reserve_space(struct inode *inode,
1090                                         int used, int quota_claim)
1091 {
1092         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093         struct ext4_inode_info *ei = EXT4_I(inode);
1094
1095         spin_lock(&ei->i_block_reservation_lock);
1096         trace_ext4_da_update_reserve_space(inode, used);
1097         if (unlikely(used > ei->i_reserved_data_blocks)) {
1098                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1099                          "with only %d reserved data blocks\n",
1100                          __func__, inode->i_ino, used,
1101                          ei->i_reserved_data_blocks);
1102                 WARN_ON(1);
1103                 used = ei->i_reserved_data_blocks;
1104         }
1105
1106         /* Update per-inode reservations */
1107         ei->i_reserved_data_blocks -= used;
1108         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1109         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1110                            used + ei->i_allocated_meta_blocks);
1111         ei->i_allocated_meta_blocks = 0;
1112
1113         if (ei->i_reserved_data_blocks == 0) {
1114                 /*
1115                  * We can release all of the reserved metadata blocks
1116                  * only when we have written all of the delayed
1117                  * allocation blocks.
1118                  */
1119                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120                                    ei->i_reserved_meta_blocks);
1121                 ei->i_reserved_meta_blocks = 0;
1122                 ei->i_da_metadata_calc_len = 0;
1123         }
1124         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1125
1126         /* Update quota subsystem for data blocks */
1127         if (quota_claim)
1128                 dquot_claim_block(inode, used);
1129         else {
1130                 /*
1131                  * We did fallocate with an offset that is already delayed
1132                  * allocated. So on delayed allocated writeback we should
1133                  * not re-claim the quota for fallocated blocks.
1134                  */
1135                 dquot_release_reservation_block(inode, used);
1136         }
1137
1138         /*
1139          * If we have done all the pending block allocations and if
1140          * there aren't any writers on the inode, we can discard the
1141          * inode's preallocations.
1142          */
1143         if ((ei->i_reserved_data_blocks == 0) &&
1144             (atomic_read(&inode->i_writecount) == 0))
1145                 ext4_discard_preallocations(inode);
1146 }
1147
1148 static int __check_block_validity(struct inode *inode, const char *func,
1149                                 unsigned int line,
1150                                 struct ext4_map_blocks *map)
1151 {
1152         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1153                                    map->m_len)) {
1154                 ext4_error_inode(inode, func, line, map->m_pblk,
1155                                  "lblock %lu mapped to illegal pblock "
1156                                  "(length %d)", (unsigned long) map->m_lblk,
1157                                  map->m_len);
1158                 return -EIO;
1159         }
1160         return 0;
1161 }
1162
1163 #define check_block_validity(inode, map)        \
1164         __check_block_validity((inode), __func__, __LINE__, (map))
1165
1166 /*
1167  * Return the number of contiguous dirty pages in a given inode
1168  * starting at page frame idx.
1169  */
1170 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1171                                     unsigned int max_pages)
1172 {
1173         struct address_space *mapping = inode->i_mapping;
1174         pgoff_t index;
1175         struct pagevec pvec;
1176         pgoff_t num = 0;
1177         int i, nr_pages, done = 0;
1178
1179         if (max_pages == 0)
1180                 return 0;
1181         pagevec_init(&pvec, 0);
1182         while (!done) {
1183                 index = idx;
1184                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1185                                               PAGECACHE_TAG_DIRTY,
1186                                               (pgoff_t)PAGEVEC_SIZE);
1187                 if (nr_pages == 0)
1188                         break;
1189                 for (i = 0; i < nr_pages; i++) {
1190                         struct page *page = pvec.pages[i];
1191                         struct buffer_head *bh, *head;
1192
1193                         lock_page(page);
1194                         if (unlikely(page->mapping != mapping) ||
1195                             !PageDirty(page) ||
1196                             PageWriteback(page) ||
1197                             page->index != idx) {
1198                                 done = 1;
1199                                 unlock_page(page);
1200                                 break;
1201                         }
1202                         if (page_has_buffers(page)) {
1203                                 bh = head = page_buffers(page);
1204                                 do {
1205                                         if (!buffer_delay(bh) &&
1206                                             !buffer_unwritten(bh))
1207                                                 done = 1;
1208                                         bh = bh->b_this_page;
1209                                 } while (!done && (bh != head));
1210                         }
1211                         unlock_page(page);
1212                         if (done)
1213                                 break;
1214                         idx++;
1215                         num++;
1216                         if (num >= max_pages) {
1217                                 done = 1;
1218                                 break;
1219                         }
1220                 }
1221                 pagevec_release(&pvec);
1222         }
1223         return num;
1224 }
1225
1226 /*
1227  * The ext4_map_blocks() function tries to look up the requested blocks,
1228  * and returns if the blocks are already mapped.
1229  *
1230  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1231  * and store the allocated blocks in the result buffer head and mark it
1232  * mapped.
1233  *
1234  * If file type is extents based, it will call ext4_ext_map_blocks(),
1235  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1236  * based files
1237  *
1238  * On success, it returns the number of blocks being mapped or allocate.
1239  * if create==0 and the blocks are pre-allocated and uninitialized block,
1240  * the result buffer head is unmapped. If the create ==1, it will make sure
1241  * the buffer head is mapped.
1242  *
1243  * It returns 0 if plain look up failed (blocks have not been allocated), in
1244  * that casem, buffer head is unmapped
1245  *
1246  * It returns the error in case of allocation failure.
1247  */
1248 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1249                     struct ext4_map_blocks *map, int flags)
1250 {
1251         int retval;
1252
1253         map->m_flags = 0;
1254         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1255                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1256                   (unsigned long) map->m_lblk);
1257         /*
1258          * Try to see if we can get the block without requesting a new
1259          * file system block.
1260          */
1261         down_read((&EXT4_I(inode)->i_data_sem));
1262         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1263                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1264         } else {
1265                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1266         }
1267         up_read((&EXT4_I(inode)->i_data_sem));
1268
1269         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1270                 int ret = check_block_validity(inode, map);
1271                 if (ret != 0)
1272                         return ret;
1273         }
1274
1275         /* If it is only a block(s) look up */
1276         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1277                 return retval;
1278
1279         /*
1280          * Returns if the blocks have already allocated
1281          *
1282          * Note that if blocks have been preallocated
1283          * ext4_ext_get_block() returns th create = 0
1284          * with buffer head unmapped.
1285          */
1286         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1287                 return retval;
1288
1289         /*
1290          * When we call get_blocks without the create flag, the
1291          * BH_Unwritten flag could have gotten set if the blocks
1292          * requested were part of a uninitialized extent.  We need to
1293          * clear this flag now that we are committed to convert all or
1294          * part of the uninitialized extent to be an initialized
1295          * extent.  This is because we need to avoid the combination
1296          * of BH_Unwritten and BH_Mapped flags being simultaneously
1297          * set on the buffer_head.
1298          */
1299         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1300
1301         /*
1302          * New blocks allocate and/or writing to uninitialized extent
1303          * will possibly result in updating i_data, so we take
1304          * the write lock of i_data_sem, and call get_blocks()
1305          * with create == 1 flag.
1306          */
1307         down_write((&EXT4_I(inode)->i_data_sem));
1308
1309         /*
1310          * if the caller is from delayed allocation writeout path
1311          * we have already reserved fs blocks for allocation
1312          * let the underlying get_block() function know to
1313          * avoid double accounting
1314          */
1315         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1316                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1317         /*
1318          * We need to check for EXT4 here because migrate
1319          * could have changed the inode type in between
1320          */
1321         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1322                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1323         } else {
1324                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1325
1326                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1327                         /*
1328                          * We allocated new blocks which will result in
1329                          * i_data's format changing.  Force the migrate
1330                          * to fail by clearing migrate flags
1331                          */
1332                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1333                 }
1334
1335                 /*
1336                  * Update reserved blocks/metadata blocks after successful
1337                  * block allocation which had been deferred till now. We don't
1338                  * support fallocate for non extent files. So we can update
1339                  * reserve space here.
1340                  */
1341                 if ((retval > 0) &&
1342                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1343                         ext4_da_update_reserve_space(inode, retval, 1);
1344         }
1345         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1346                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1347
1348         up_write((&EXT4_I(inode)->i_data_sem));
1349         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1350                 int ret = check_block_validity(inode, map);
1351                 if (ret != 0)
1352                         return ret;
1353         }
1354         return retval;
1355 }
1356
1357 /* Maximum number of blocks we map for direct IO at once. */
1358 #define DIO_MAX_BLOCKS 4096
1359
1360 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1361                            struct buffer_head *bh, int flags)
1362 {
1363         handle_t *handle = ext4_journal_current_handle();
1364         struct ext4_map_blocks map;
1365         int ret = 0, started = 0;
1366         int dio_credits;
1367
1368         map.m_lblk = iblock;
1369         map.m_len = bh->b_size >> inode->i_blkbits;
1370
1371         if (flags && !handle) {
1372                 /* Direct IO write... */
1373                 if (map.m_len > DIO_MAX_BLOCKS)
1374                         map.m_len = DIO_MAX_BLOCKS;
1375                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1376                 handle = ext4_journal_start(inode, dio_credits);
1377                 if (IS_ERR(handle)) {
1378                         ret = PTR_ERR(handle);
1379                         return ret;
1380                 }
1381                 started = 1;
1382         }
1383
1384         ret = ext4_map_blocks(handle, inode, &map, flags);
1385         if (ret > 0) {
1386                 map_bh(bh, inode->i_sb, map.m_pblk);
1387                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1388                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1389                 ret = 0;
1390         }
1391         if (started)
1392                 ext4_journal_stop(handle);
1393         return ret;
1394 }
1395
1396 int ext4_get_block(struct inode *inode, sector_t iblock,
1397                    struct buffer_head *bh, int create)
1398 {
1399         return _ext4_get_block(inode, iblock, bh,
1400                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1401 }
1402
1403 /*
1404  * `handle' can be NULL if create is zero
1405  */
1406 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1407                                 ext4_lblk_t block, int create, int *errp)
1408 {
1409         struct ext4_map_blocks map;
1410         struct buffer_head *bh;
1411         int fatal = 0, err;
1412
1413         J_ASSERT(handle != NULL || create == 0);
1414
1415         map.m_lblk = block;
1416         map.m_len = 1;
1417         err = ext4_map_blocks(handle, inode, &map,
1418                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1419
1420         if (err < 0)
1421                 *errp = err;
1422         if (err <= 0)
1423                 return NULL;
1424         *errp = 0;
1425
1426         bh = sb_getblk(inode->i_sb, map.m_pblk);
1427         if (!bh) {
1428                 *errp = -EIO;
1429                 return NULL;
1430         }
1431         if (map.m_flags & EXT4_MAP_NEW) {
1432                 J_ASSERT(create != 0);
1433                 J_ASSERT(handle != NULL);
1434
1435                 /*
1436                  * Now that we do not always journal data, we should
1437                  * keep in mind whether this should always journal the
1438                  * new buffer as metadata.  For now, regular file
1439                  * writes use ext4_get_block instead, so it's not a
1440                  * problem.
1441                  */
1442                 lock_buffer(bh);
1443                 BUFFER_TRACE(bh, "call get_create_access");
1444                 fatal = ext4_journal_get_create_access(handle, bh);
1445                 if (!fatal && !buffer_uptodate(bh)) {
1446                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447                         set_buffer_uptodate(bh);
1448                 }
1449                 unlock_buffer(bh);
1450                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1452                 if (!fatal)
1453                         fatal = err;
1454         } else {
1455                 BUFFER_TRACE(bh, "not a new buffer");
1456         }
1457         if (fatal) {
1458                 *errp = fatal;
1459                 brelse(bh);
1460                 bh = NULL;
1461         }
1462         return bh;
1463 }
1464
1465 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1466                                ext4_lblk_t block, int create, int *err)
1467 {
1468         struct buffer_head *bh;
1469
1470         bh = ext4_getblk(handle, inode, block, create, err);
1471         if (!bh)
1472                 return bh;
1473         if (buffer_uptodate(bh))
1474                 return bh;
1475         ll_rw_block(READ_META, 1, &bh);
1476         wait_on_buffer(bh);
1477         if (buffer_uptodate(bh))
1478                 return bh;
1479         put_bh(bh);
1480         *err = -EIO;
1481         return NULL;
1482 }
1483
1484 static int walk_page_buffers(handle_t *handle,
1485                              struct buffer_head *head,
1486                              unsigned from,
1487                              unsigned to,
1488                              int *partial,
1489                              int (*fn)(handle_t *handle,
1490                                        struct buffer_head *bh))
1491 {
1492         struct buffer_head *bh;
1493         unsigned block_start, block_end;
1494         unsigned blocksize = head->b_size;
1495         int err, ret = 0;
1496         struct buffer_head *next;
1497
1498         for (bh = head, block_start = 0;
1499              ret == 0 && (bh != head || !block_start);
1500              block_start = block_end, bh = next) {
1501                 next = bh->b_this_page;
1502                 block_end = block_start + blocksize;
1503                 if (block_end <= from || block_start >= to) {
1504                         if (partial && !buffer_uptodate(bh))
1505                                 *partial = 1;
1506                         continue;
1507                 }
1508                 err = (*fn)(handle, bh);
1509                 if (!ret)
1510                         ret = err;
1511         }
1512         return ret;
1513 }
1514
1515 /*
1516  * To preserve ordering, it is essential that the hole instantiation and
1517  * the data write be encapsulated in a single transaction.  We cannot
1518  * close off a transaction and start a new one between the ext4_get_block()
1519  * and the commit_write().  So doing the jbd2_journal_start at the start of
1520  * prepare_write() is the right place.
1521  *
1522  * Also, this function can nest inside ext4_writepage() ->
1523  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1524  * has generated enough buffer credits to do the whole page.  So we won't
1525  * block on the journal in that case, which is good, because the caller may
1526  * be PF_MEMALLOC.
1527  *
1528  * By accident, ext4 can be reentered when a transaction is open via
1529  * quota file writes.  If we were to commit the transaction while thus
1530  * reentered, there can be a deadlock - we would be holding a quota
1531  * lock, and the commit would never complete if another thread had a
1532  * transaction open and was blocking on the quota lock - a ranking
1533  * violation.
1534  *
1535  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1536  * will _not_ run commit under these circumstances because handle->h_ref
1537  * is elevated.  We'll still have enough credits for the tiny quotafile
1538  * write.
1539  */
1540 static int do_journal_get_write_access(handle_t *handle,
1541                                        struct buffer_head *bh)
1542 {
1543         int dirty = buffer_dirty(bh);
1544         int ret;
1545
1546         if (!buffer_mapped(bh) || buffer_freed(bh))
1547                 return 0;
1548         /*
1549          * __block_prepare_write() could have dirtied some buffers. Clean
1550          * the dirty bit as jbd2_journal_get_write_access() could complain
1551          * otherwise about fs integrity issues. Setting of the dirty bit
1552          * by __block_prepare_write() isn't a real problem here as we clear
1553          * the bit before releasing a page lock and thus writeback cannot
1554          * ever write the buffer.
1555          */
1556         if (dirty)
1557                 clear_buffer_dirty(bh);
1558         ret = ext4_journal_get_write_access(handle, bh);
1559         if (!ret && dirty)
1560                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1561         return ret;
1562 }
1563
1564 /*
1565  * Truncate blocks that were not used by write. We have to truncate the
1566  * pagecache as well so that corresponding buffers get properly unmapped.
1567  */
1568 static void ext4_truncate_failed_write(struct inode *inode)
1569 {
1570         truncate_inode_pages(inode->i_mapping, inode->i_size);
1571         ext4_truncate(inode);
1572 }
1573
1574 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1575                    struct buffer_head *bh_result, int create);
1576 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1577                             loff_t pos, unsigned len, unsigned flags,
1578                             struct page **pagep, void **fsdata)
1579 {
1580         struct inode *inode = mapping->host;
1581         int ret, needed_blocks;
1582         handle_t *handle;
1583         int retries = 0;
1584         struct page *page;
1585         pgoff_t index;
1586         unsigned from, to;
1587
1588         trace_ext4_write_begin(inode, pos, len, flags);
1589         /*
1590          * Reserve one block more for addition to orphan list in case
1591          * we allocate blocks but write fails for some reason
1592          */
1593         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1594         index = pos >> PAGE_CACHE_SHIFT;
1595         from = pos & (PAGE_CACHE_SIZE - 1);
1596         to = from + len;
1597
1598 retry:
1599         handle = ext4_journal_start(inode, needed_blocks);
1600         if (IS_ERR(handle)) {
1601                 ret = PTR_ERR(handle);
1602                 goto out;
1603         }
1604
1605         /* We cannot recurse into the filesystem as the transaction is already
1606          * started */
1607         flags |= AOP_FLAG_NOFS;
1608
1609         page = grab_cache_page_write_begin(mapping, index, flags);
1610         if (!page) {
1611                 ext4_journal_stop(handle);
1612                 ret = -ENOMEM;
1613                 goto out;
1614         }
1615         *pagep = page;
1616
1617         if (ext4_should_dioread_nolock(inode))
1618                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1619         else
1620                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1621
1622         if (!ret && ext4_should_journal_data(inode)) {
1623                 ret = walk_page_buffers(handle, page_buffers(page),
1624                                 from, to, NULL, do_journal_get_write_access);
1625         }
1626
1627         if (ret) {
1628                 unlock_page(page);
1629                 page_cache_release(page);
1630                 /*
1631                  * __block_write_begin may have instantiated a few blocks
1632                  * outside i_size.  Trim these off again. Don't need
1633                  * i_size_read because we hold i_mutex.
1634                  *
1635                  * Add inode to orphan list in case we crash before
1636                  * truncate finishes
1637                  */
1638                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1639                         ext4_orphan_add(handle, inode);
1640
1641                 ext4_journal_stop(handle);
1642                 if (pos + len > inode->i_size) {
1643                         ext4_truncate_failed_write(inode);
1644                         /*
1645                          * If truncate failed early the inode might
1646                          * still be on the orphan list; we need to
1647                          * make sure the inode is removed from the
1648                          * orphan list in that case.
1649                          */
1650                         if (inode->i_nlink)
1651                                 ext4_orphan_del(NULL, inode);
1652                 }
1653         }
1654
1655         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1656                 goto retry;
1657 out:
1658         return ret;
1659 }
1660
1661 /* For write_end() in data=journal mode */
1662 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1663 {
1664         if (!buffer_mapped(bh) || buffer_freed(bh))
1665                 return 0;
1666         set_buffer_uptodate(bh);
1667         return ext4_handle_dirty_metadata(handle, NULL, bh);
1668 }
1669
1670 static int ext4_generic_write_end(struct file *file,
1671                                   struct address_space *mapping,
1672                                   loff_t pos, unsigned len, unsigned copied,
1673                                   struct page *page, void *fsdata)
1674 {
1675         int i_size_changed = 0;
1676         struct inode *inode = mapping->host;
1677         handle_t *handle = ext4_journal_current_handle();
1678
1679         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1680
1681         /*
1682          * No need to use i_size_read() here, the i_size
1683          * cannot change under us because we hold i_mutex.
1684          *
1685          * But it's important to update i_size while still holding page lock:
1686          * page writeout could otherwise come in and zero beyond i_size.
1687          */
1688         if (pos + copied > inode->i_size) {
1689                 i_size_write(inode, pos + copied);
1690                 i_size_changed = 1;
1691         }
1692
1693         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1694                 /* We need to mark inode dirty even if
1695                  * new_i_size is less that inode->i_size
1696                  * bu greater than i_disksize.(hint delalloc)
1697                  */
1698                 ext4_update_i_disksize(inode, (pos + copied));
1699                 i_size_changed = 1;
1700         }
1701         unlock_page(page);
1702         page_cache_release(page);
1703
1704         /*
1705          * Don't mark the inode dirty under page lock. First, it unnecessarily
1706          * makes the holding time of page lock longer. Second, it forces lock
1707          * ordering of page lock and transaction start for journaling
1708          * filesystems.
1709          */
1710         if (i_size_changed)
1711                 ext4_mark_inode_dirty(handle, inode);
1712
1713         return copied;
1714 }
1715
1716 /*
1717  * We need to pick up the new inode size which generic_commit_write gave us
1718  * `file' can be NULL - eg, when called from page_symlink().
1719  *
1720  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1721  * buffers are managed internally.
1722  */
1723 static int ext4_ordered_write_end(struct file *file,
1724                                   struct address_space *mapping,
1725                                   loff_t pos, unsigned len, unsigned copied,
1726                                   struct page *page, void *fsdata)
1727 {
1728         handle_t *handle = ext4_journal_current_handle();
1729         struct inode *inode = mapping->host;
1730         int ret = 0, ret2;
1731
1732         trace_ext4_ordered_write_end(inode, pos, len, copied);
1733         ret = ext4_jbd2_file_inode(handle, inode);
1734
1735         if (ret == 0) {
1736                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737                                                         page, fsdata);
1738                 copied = ret2;
1739                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740                         /* if we have allocated more blocks and copied
1741                          * less. We will have blocks allocated outside
1742                          * inode->i_size. So truncate them
1743                          */
1744                         ext4_orphan_add(handle, inode);
1745                 if (ret2 < 0)
1746                         ret = ret2;
1747         }
1748         ret2 = ext4_journal_stop(handle);
1749         if (!ret)
1750                 ret = ret2;
1751
1752         if (pos + len > inode->i_size) {
1753                 ext4_truncate_failed_write(inode);
1754                 /*
1755                  * If truncate failed early the inode might still be
1756                  * on the orphan list; we need to make sure the inode
1757                  * is removed from the orphan list in that case.
1758                  */
1759                 if (inode->i_nlink)
1760                         ext4_orphan_del(NULL, inode);
1761         }
1762
1763
1764         return ret ? ret : copied;
1765 }
1766
1767 static int ext4_writeback_write_end(struct file *file,
1768                                     struct address_space *mapping,
1769                                     loff_t pos, unsigned len, unsigned copied,
1770                                     struct page *page, void *fsdata)
1771 {
1772         handle_t *handle = ext4_journal_current_handle();
1773         struct inode *inode = mapping->host;
1774         int ret = 0, ret2;
1775
1776         trace_ext4_writeback_write_end(inode, pos, len, copied);
1777         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1778                                                         page, fsdata);
1779         copied = ret2;
1780         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1781                 /* if we have allocated more blocks and copied
1782                  * less. We will have blocks allocated outside
1783                  * inode->i_size. So truncate them
1784                  */
1785                 ext4_orphan_add(handle, inode);
1786
1787         if (ret2 < 0)
1788                 ret = ret2;
1789
1790         ret2 = ext4_journal_stop(handle);
1791         if (!ret)
1792                 ret = ret2;
1793
1794         if (pos + len > inode->i_size) {
1795                 ext4_truncate_failed_write(inode);
1796                 /*
1797                  * If truncate failed early the inode might still be
1798                  * on the orphan list; we need to make sure the inode
1799                  * is removed from the orphan list in that case.
1800                  */
1801                 if (inode->i_nlink)
1802                         ext4_orphan_del(NULL, inode);
1803         }
1804
1805         return ret ? ret : copied;
1806 }
1807
1808 static int ext4_journalled_write_end(struct file *file,
1809                                      struct address_space *mapping,
1810                                      loff_t pos, unsigned len, unsigned copied,
1811                                      struct page *page, void *fsdata)
1812 {
1813         handle_t *handle = ext4_journal_current_handle();
1814         struct inode *inode = mapping->host;
1815         int ret = 0, ret2;
1816         int partial = 0;
1817         unsigned from, to;
1818         loff_t new_i_size;
1819
1820         trace_ext4_journalled_write_end(inode, pos, len, copied);
1821         from = pos & (PAGE_CACHE_SIZE - 1);
1822         to = from + len;
1823
1824         if (copied < len) {
1825                 if (!PageUptodate(page))
1826                         copied = 0;
1827                 page_zero_new_buffers(page, from+copied, to);
1828         }
1829
1830         ret = walk_page_buffers(handle, page_buffers(page), from,
1831                                 to, &partial, write_end_fn);
1832         if (!partial)
1833                 SetPageUptodate(page);
1834         new_i_size = pos + copied;
1835         if (new_i_size > inode->i_size)
1836                 i_size_write(inode, pos+copied);
1837         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1838         if (new_i_size > EXT4_I(inode)->i_disksize) {
1839                 ext4_update_i_disksize(inode, new_i_size);
1840                 ret2 = ext4_mark_inode_dirty(handle, inode);
1841                 if (!ret)
1842                         ret = ret2;
1843         }
1844
1845         unlock_page(page);
1846         page_cache_release(page);
1847         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1848                 /* if we have allocated more blocks and copied
1849                  * less. We will have blocks allocated outside
1850                  * inode->i_size. So truncate them
1851                  */
1852                 ext4_orphan_add(handle, inode);
1853
1854         ret2 = ext4_journal_stop(handle);
1855         if (!ret)
1856                 ret = ret2;
1857         if (pos + len > inode->i_size) {
1858                 ext4_truncate_failed_write(inode);
1859                 /*
1860                  * If truncate failed early the inode might still be
1861                  * on the orphan list; we need to make sure the inode
1862                  * is removed from the orphan list in that case.
1863                  */
1864                 if (inode->i_nlink)
1865                         ext4_orphan_del(NULL, inode);
1866         }
1867
1868         return ret ? ret : copied;
1869 }
1870
1871 /*
1872  * Reserve a single block located at lblock
1873  */
1874 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1875 {
1876         int retries = 0;
1877         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878         struct ext4_inode_info *ei = EXT4_I(inode);
1879         unsigned long md_needed;
1880         int ret;
1881
1882         /*
1883          * recalculate the amount of metadata blocks to reserve
1884          * in order to allocate nrblocks
1885          * worse case is one extent per block
1886          */
1887 repeat:
1888         spin_lock(&ei->i_block_reservation_lock);
1889         md_needed = ext4_calc_metadata_amount(inode, lblock);
1890         trace_ext4_da_reserve_space(inode, md_needed);
1891         spin_unlock(&ei->i_block_reservation_lock);
1892
1893         /*
1894          * We will charge metadata quota at writeout time; this saves
1895          * us from metadata over-estimation, though we may go over by
1896          * a small amount in the end.  Here we just reserve for data.
1897          */
1898         ret = dquot_reserve_block(inode, 1);
1899         if (ret)
1900                 return ret;
1901         /*
1902          * We do still charge estimated metadata to the sb though;
1903          * we cannot afford to run out of free blocks.
1904          */
1905         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1906                 dquot_release_reservation_block(inode, 1);
1907                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1908                         yield();
1909                         goto repeat;
1910                 }
1911                 return -ENOSPC;
1912         }
1913         spin_lock(&ei->i_block_reservation_lock);
1914         ei->i_reserved_data_blocks++;
1915         ei->i_reserved_meta_blocks += md_needed;
1916         spin_unlock(&ei->i_block_reservation_lock);
1917
1918         return 0;       /* success */
1919 }
1920
1921 static void ext4_da_release_space(struct inode *inode, int to_free)
1922 {
1923         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1924         struct ext4_inode_info *ei = EXT4_I(inode);
1925
1926         if (!to_free)
1927                 return;         /* Nothing to release, exit */
1928
1929         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1930
1931         trace_ext4_da_release_space(inode, to_free);
1932         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1933                 /*
1934                  * if there aren't enough reserved blocks, then the
1935                  * counter is messed up somewhere.  Since this
1936                  * function is called from invalidate page, it's
1937                  * harmless to return without any action.
1938                  */
1939                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1940                          "ino %lu, to_free %d with only %d reserved "
1941                          "data blocks\n", inode->i_ino, to_free,
1942                          ei->i_reserved_data_blocks);
1943                 WARN_ON(1);
1944                 to_free = ei->i_reserved_data_blocks;
1945         }
1946         ei->i_reserved_data_blocks -= to_free;
1947
1948         if (ei->i_reserved_data_blocks == 0) {
1949                 /*
1950                  * We can release all of the reserved metadata blocks
1951                  * only when we have written all of the delayed
1952                  * allocation blocks.
1953                  */
1954                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1955                                    ei->i_reserved_meta_blocks);
1956                 ei->i_reserved_meta_blocks = 0;
1957                 ei->i_da_metadata_calc_len = 0;
1958         }
1959
1960         /* update fs dirty data blocks counter */
1961         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1962
1963         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1964
1965         dquot_release_reservation_block(inode, to_free);
1966 }
1967
1968 static void ext4_da_page_release_reservation(struct page *page,
1969                                              unsigned long offset)
1970 {
1971         int to_release = 0;
1972         struct buffer_head *head, *bh;
1973         unsigned int curr_off = 0;
1974
1975         head = page_buffers(page);
1976         bh = head;
1977         do {
1978                 unsigned int next_off = curr_off + bh->b_size;
1979
1980                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1981                         to_release++;
1982                         clear_buffer_delay(bh);
1983                 }
1984                 curr_off = next_off;
1985         } while ((bh = bh->b_this_page) != head);
1986         ext4_da_release_space(page->mapping->host, to_release);
1987 }
1988
1989 /*
1990  * Delayed allocation stuff
1991  */
1992
1993 /*
1994  * mpage_da_submit_io - walks through extent of pages and try to write
1995  * them with writepage() call back
1996  *
1997  * @mpd->inode: inode
1998  * @mpd->first_page: first page of the extent
1999  * @mpd->next_page: page after the last page of the extent
2000  *
2001  * By the time mpage_da_submit_io() is called we expect all blocks
2002  * to be allocated. this may be wrong if allocation failed.
2003  *
2004  * As pages are already locked by write_cache_pages(), we can't use it
2005  */
2006 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2007 {
2008         struct pagevec pvec;
2009         unsigned long index, end;
2010         int ret = 0, err, nr_pages, i;
2011         struct inode *inode = mpd->inode;
2012         struct address_space *mapping = inode->i_mapping;
2013         loff_t size = i_size_read(inode);
2014         unsigned int len;
2015         struct buffer_head *page_bufs = NULL;
2016         int journal_data = ext4_should_journal_data(inode);
2017
2018         BUG_ON(mpd->next_page <= mpd->first_page);
2019         /*
2020          * We need to start from the first_page to the next_page - 1
2021          * to make sure we also write the mapped dirty buffer_heads.
2022          * If we look at mpd->b_blocknr we would only be looking
2023          * at the currently mapped buffer_heads.
2024          */
2025         index = mpd->first_page;
2026         end = mpd->next_page - 1;
2027
2028         pagevec_init(&pvec, 0);
2029         while (index <= end) {
2030                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2031                 if (nr_pages == 0)
2032                         break;
2033                 for (i = 0; i < nr_pages; i++) {
2034                         int commit_write = 0;
2035                         struct page *page = pvec.pages[i];
2036
2037                         index = page->index;
2038                         if (index > end)
2039                                 break;
2040
2041                         if (index == size >> PAGE_CACHE_SHIFT)
2042                                 len = size & ~PAGE_CACHE_MASK;
2043                         else
2044                                 len = PAGE_CACHE_SIZE;
2045                         index++;
2046
2047                         BUG_ON(!PageLocked(page));
2048                         BUG_ON(PageWriteback(page));
2049
2050                         /*
2051                          * If the page does not have buffers (for
2052                          * whatever reason), try to create them using
2053                          * block_prepare_write.  If this fails,
2054                          * redirty the page and move on.
2055                          */
2056                         if (!page_has_buffers(page)) {
2057                                 if (block_prepare_write(page, 0, len,
2058                                                 noalloc_get_block_write)) {
2059                                 redirty_page:
2060                                         redirty_page_for_writepage(mpd->wbc,
2061                                                                    page);
2062                                         unlock_page(page);
2063                                         continue;
2064                                 }
2065                                 commit_write = 1;
2066                         }
2067                         page_bufs = page_buffers(page);
2068                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069                                               ext4_bh_delay_or_unwritten)) {
2070                                 /*
2071                                  * We couldn't do block allocation for
2072                                  * some reason.
2073                                  */
2074                                 goto redirty_page;
2075                         }
2076
2077                         if (commit_write)
2078                                 /* mark the buffer_heads as dirty & uptodate */
2079                                 block_commit_write(page, 0, len);
2080
2081                         if (journal_data && PageChecked(page))
2082                                 err = __ext4_journalled_writepage(page, len);
2083                         else if (buffer_uninit(page_bufs)) {
2084                                 ext4_set_bh_endio(page_bufs, inode);
2085                                 err = block_write_full_page_endio(page,
2086                                         noalloc_get_block_write,
2087                                         mpd->wbc, ext4_end_io_buffer_write);
2088                         } else
2089                                 err = block_write_full_page(page,
2090                                             noalloc_get_block_write, mpd->wbc);
2091
2092                         if (!err)
2093                                 mpd->pages_written++;
2094                         /*
2095                          * In error case, we have to continue because
2096                          * remaining pages are still locked
2097                          */
2098                         if (ret == 0)
2099                                 ret = err;
2100                 }
2101                 pagevec_release(&pvec);
2102         }
2103         return ret;
2104 }
2105
2106 /*
2107  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2108  *
2109  * the function goes through all passed space and put actual disk
2110  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2111  */
2112 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2113                                  struct ext4_map_blocks *map)
2114 {
2115         struct inode *inode = mpd->inode;
2116         struct address_space *mapping = inode->i_mapping;
2117         int blocks = map->m_len;
2118         sector_t pblock = map->m_pblk, cur_logical;
2119         struct buffer_head *head, *bh;
2120         pgoff_t index, end;
2121         struct pagevec pvec;
2122         int nr_pages, i;
2123
2124         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2125         end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2127
2128         pagevec_init(&pvec, 0);
2129
2130         while (index <= end) {
2131                 /* XXX: optimize tail */
2132                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133                 if (nr_pages == 0)
2134                         break;
2135                 for (i = 0; i < nr_pages; i++) {
2136                         struct page *page = pvec.pages[i];
2137
2138                         index = page->index;
2139                         if (index > end)
2140                                 break;
2141                         index++;
2142
2143                         BUG_ON(!PageLocked(page));
2144                         BUG_ON(PageWriteback(page));
2145                         BUG_ON(!page_has_buffers(page));
2146
2147                         bh = page_buffers(page);
2148                         head = bh;
2149
2150                         /* skip blocks out of the range */
2151                         do {
2152                                 if (cur_logical >= map->m_lblk)
2153                                         break;
2154                                 cur_logical++;
2155                         } while ((bh = bh->b_this_page) != head);
2156
2157                         do {
2158                                 if (cur_logical > map->m_lblk + (blocks - 1))
2159                                         break;
2160
2161                                 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2162
2163                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2164
2165                                         if (buffer_delay(bh)) {
2166                                                 clear_buffer_delay(bh);
2167                                                 bh->b_blocknr = pblock;
2168                                         } else {
2169                                                 /*
2170                                                  * unwritten already should have
2171                                                  * blocknr assigned. Verify that
2172                                                  */
2173                                                 clear_buffer_unwritten(bh);
2174                                                 BUG_ON(bh->b_blocknr != pblock);
2175                                         }
2176
2177                                 } else if (buffer_mapped(bh))
2178                                         BUG_ON(bh->b_blocknr != pblock);
2179
2180                                 if (map->m_flags & EXT4_MAP_UNINIT)
2181                                         set_buffer_uninit(bh);
2182                                 cur_logical++;
2183                                 pblock++;
2184                         } while ((bh = bh->b_this_page) != head);
2185                 }
2186                 pagevec_release(&pvec);
2187         }
2188 }
2189
2190
2191 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2192                                         sector_t logical, long blk_cnt)
2193 {
2194         int nr_pages, i;
2195         pgoff_t index, end;
2196         struct pagevec pvec;
2197         struct inode *inode = mpd->inode;
2198         struct address_space *mapping = inode->i_mapping;
2199
2200         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2201         end   = (logical + blk_cnt - 1) >>
2202                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2203         while (index <= end) {
2204                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2205                 if (nr_pages == 0)
2206                         break;
2207                 for (i = 0; i < nr_pages; i++) {
2208                         struct page *page = pvec.pages[i];
2209                         if (page->index > end)
2210                                 break;
2211                         BUG_ON(!PageLocked(page));
2212                         BUG_ON(PageWriteback(page));
2213                         block_invalidatepage(page, 0);
2214                         ClearPageUptodate(page);
2215                         unlock_page(page);
2216                 }
2217                 index = pvec.pages[nr_pages - 1]->index + 1;
2218                 pagevec_release(&pvec);
2219         }
2220         return;
2221 }
2222
2223 static void ext4_print_free_blocks(struct inode *inode)
2224 {
2225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2226         printk(KERN_CRIT "Total free blocks count %lld\n",
2227                ext4_count_free_blocks(inode->i_sb));
2228         printk(KERN_CRIT "Free/Dirty block details\n");
2229         printk(KERN_CRIT "free_blocks=%lld\n",
2230                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2231         printk(KERN_CRIT "dirty_blocks=%lld\n",
2232                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2233         printk(KERN_CRIT "Block reservation details\n");
2234         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2235                EXT4_I(inode)->i_reserved_data_blocks);
2236         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2237                EXT4_I(inode)->i_reserved_meta_blocks);
2238         return;
2239 }
2240
2241 /*
2242  * mpage_da_map_and_submit - go through given space, map them
2243  *       if necessary, and then submit them for I/O
2244  *
2245  * @mpd - bh describing space
2246  *
2247  * The function skips space we know is already mapped to disk blocks.
2248  *
2249  */
2250 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2251 {
2252         int err, blks, get_blocks_flags;
2253         struct ext4_map_blocks map;
2254         sector_t next = mpd->b_blocknr;
2255         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2256         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2257         handle_t *handle = NULL;
2258
2259         /*
2260          * If the blocks are mapped already, or we couldn't accumulate
2261          * any blocks, then proceed immediately to the submission stage.
2262          */
2263         if ((mpd->b_size == 0) ||
2264             ((mpd->b_state  & (1 << BH_Mapped)) &&
2265              !(mpd->b_state & (1 << BH_Delay)) &&
2266              !(mpd->b_state & (1 << BH_Unwritten))))
2267                 goto submit_io;
2268
2269         handle = ext4_journal_current_handle();
2270         BUG_ON(!handle);
2271
2272         /*
2273          * Call ext4_map_blocks() to allocate any delayed allocation
2274          * blocks, or to convert an uninitialized extent to be
2275          * initialized (in the case where we have written into
2276          * one or more preallocated blocks).
2277          *
2278          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2279          * indicate that we are on the delayed allocation path.  This
2280          * affects functions in many different parts of the allocation
2281          * call path.  This flag exists primarily because we don't
2282          * want to change *many* call functions, so ext4_map_blocks()
2283          * will set the magic i_delalloc_reserved_flag once the
2284          * inode's allocation semaphore is taken.
2285          *
2286          * If the blocks in questions were delalloc blocks, set
2287          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2288          * variables are updated after the blocks have been allocated.
2289          */
2290         map.m_lblk = next;
2291         map.m_len = max_blocks;
2292         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2293         if (ext4_should_dioread_nolock(mpd->inode))
2294                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2295         if (mpd->b_state & (1 << BH_Delay))
2296                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2297
2298         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2299         if (blks < 0) {
2300                 struct super_block *sb = mpd->inode->i_sb;
2301
2302                 err = blks;
2303                 /*
2304                  * If get block returns EAGAIN or ENOSPC and there
2305                  * appears to be free blocks we will call
2306                  * ext4_writepage() for all of the pages which will
2307                  * just redirty the pages.
2308                  */
2309                 if (err == -EAGAIN)
2310                         goto submit_io;
2311
2312                 if (err == -ENOSPC &&
2313                     ext4_count_free_blocks(sb)) {
2314                         mpd->retval = err;
2315                         goto submit_io;
2316                 }
2317
2318                 /*
2319                  * get block failure will cause us to loop in
2320                  * writepages, because a_ops->writepage won't be able
2321                  * to make progress. The page will be redirtied by
2322                  * writepage and writepages will again try to write
2323                  * the same.
2324                  */
2325                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2326                         ext4_msg(sb, KERN_CRIT,
2327                                  "delayed block allocation failed for inode %lu "
2328                                  "at logical offset %llu with max blocks %zd "
2329                                  "with error %d", mpd->inode->i_ino,
2330                                  (unsigned long long) next,
2331                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2332                         ext4_msg(sb, KERN_CRIT,
2333                                 "This should not happen!! Data will be lost\n");
2334                         if (err == -ENOSPC)
2335                                 ext4_print_free_blocks(mpd->inode);
2336                 }
2337                 /* invalidate all the pages */
2338                 ext4_da_block_invalidatepages(mpd, next,
2339                                 mpd->b_size >> mpd->inode->i_blkbits);
2340                 return;
2341         }
2342         BUG_ON(blks == 0);
2343
2344         if (map.m_flags & EXT4_MAP_NEW) {
2345                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2346                 int i;
2347
2348                 for (i = 0; i < map.m_len; i++)
2349                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2350         }
2351
2352         /*
2353          * If blocks are delayed marked, we need to
2354          * put actual blocknr and drop delayed bit
2355          */
2356         if ((mpd->b_state & (1 << BH_Delay)) ||
2357             (mpd->b_state & (1 << BH_Unwritten)))
2358                 mpage_put_bnr_to_bhs(mpd, &map);
2359
2360         if (ext4_should_order_data(mpd->inode)) {
2361                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2362                 if (err)
2363                         /* This only happens if the journal is aborted */
2364                         return;
2365         }
2366
2367         /*
2368          * Update on-disk size along with block allocation.
2369          */
2370         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2371         if (disksize > i_size_read(mpd->inode))
2372                 disksize = i_size_read(mpd->inode);
2373         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2374                 ext4_update_i_disksize(mpd->inode, disksize);
2375                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2376                 if (err)
2377                         ext4_error(mpd->inode->i_sb,
2378                                    "Failed to mark inode %lu dirty",
2379                                    mpd->inode->i_ino);
2380         }
2381
2382 submit_io:
2383         mpage_da_submit_io(mpd);
2384         mpd->io_done = 1;
2385 }
2386
2387 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2388                 (1 << BH_Delay) | (1 << BH_Unwritten))
2389
2390 /*
2391  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2392  *
2393  * @mpd->lbh - extent of blocks
2394  * @logical - logical number of the block in the file
2395  * @bh - bh of the block (used to access block's state)
2396  *
2397  * the function is used to collect contig. blocks in same state
2398  */
2399 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2400                                    sector_t logical, size_t b_size,
2401                                    unsigned long b_state)
2402 {
2403         sector_t next;
2404         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2405
2406         /*
2407          * XXX Don't go larger than mballoc is willing to allocate
2408          * This is a stopgap solution.  We eventually need to fold
2409          * mpage_da_submit_io() into this function and then call
2410          * ext4_map_blocks() multiple times in a loop
2411          */
2412         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2413                 goto flush_it;
2414
2415         /* check if thereserved journal credits might overflow */
2416         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2417                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2418                         /*
2419                          * With non-extent format we are limited by the journal
2420                          * credit available.  Total credit needed to insert
2421                          * nrblocks contiguous blocks is dependent on the
2422                          * nrblocks.  So limit nrblocks.
2423                          */
2424                         goto flush_it;
2425                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2426                                 EXT4_MAX_TRANS_DATA) {
2427                         /*
2428                          * Adding the new buffer_head would make it cross the
2429                          * allowed limit for which we have journal credit
2430                          * reserved. So limit the new bh->b_size
2431                          */
2432                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2433                                                 mpd->inode->i_blkbits;
2434                         /* we will do mpage_da_submit_io in the next loop */
2435                 }
2436         }
2437         /*
2438          * First block in the extent
2439          */
2440         if (mpd->b_size == 0) {
2441                 mpd->b_blocknr = logical;
2442                 mpd->b_size = b_size;
2443                 mpd->b_state = b_state & BH_FLAGS;
2444                 return;
2445         }
2446
2447         next = mpd->b_blocknr + nrblocks;
2448         /*
2449          * Can we merge the block to our big extent?
2450          */
2451         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2452                 mpd->b_size += b_size;
2453                 return;
2454         }
2455
2456 flush_it:
2457         /*
2458          * We couldn't merge the block to our extent, so we
2459          * need to flush current  extent and start new one
2460          */
2461         mpage_da_map_and_submit(mpd);
2462         return;
2463 }
2464
2465 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2466 {
2467         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2468 }
2469
2470 /*
2471  * __mpage_da_writepage - finds extent of pages and blocks
2472  *
2473  * @page: page to consider
2474  * @wbc: not used, we just follow rules
2475  * @data: context
2476  *
2477  * The function finds extents of pages and scan them for all blocks.
2478  */
2479 static int __mpage_da_writepage(struct page *page,
2480                                 struct writeback_control *wbc, void *data)
2481 {
2482         struct mpage_da_data *mpd = data;
2483         struct inode *inode = mpd->inode;
2484         struct buffer_head *bh, *head;
2485         sector_t logical;
2486
2487         /*
2488          * Can we merge this page to current extent?
2489          */
2490         if (mpd->next_page != page->index) {
2491                 /*
2492                  * Nope, we can't. So, we map non-allocated blocks
2493                  * and start IO on them
2494                  */
2495                 if (mpd->next_page != mpd->first_page) {
2496                         mpage_da_map_and_submit(mpd);
2497                         /*
2498                          * skip rest of the page in the page_vec
2499                          */
2500                         redirty_page_for_writepage(wbc, page);
2501                         unlock_page(page);
2502                         return MPAGE_DA_EXTENT_TAIL;
2503                 }
2504
2505                 /*
2506                  * Start next extent of pages ...
2507                  */
2508                 mpd->first_page = page->index;
2509
2510                 /*
2511                  * ... and blocks
2512                  */
2513                 mpd->b_size = 0;
2514                 mpd->b_state = 0;
2515                 mpd->b_blocknr = 0;
2516         }
2517
2518         mpd->next_page = page->index + 1;
2519         logical = (sector_t) page->index <<
2520                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2521
2522         if (!page_has_buffers(page)) {
2523                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2524                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2525                 if (mpd->io_done)
2526                         return MPAGE_DA_EXTENT_TAIL;
2527         } else {
2528                 /*
2529                  * Page with regular buffer heads, just add all dirty ones
2530                  */
2531                 head = page_buffers(page);
2532                 bh = head;
2533                 do {
2534                         BUG_ON(buffer_locked(bh));
2535                         /*
2536                          * We need to try to allocate
2537                          * unmapped blocks in the same page.
2538                          * Otherwise we won't make progress
2539                          * with the page in ext4_writepage
2540                          */
2541                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2542                                 mpage_add_bh_to_extent(mpd, logical,
2543                                                        bh->b_size,
2544                                                        bh->b_state);
2545                                 if (mpd->io_done)
2546                                         return MPAGE_DA_EXTENT_TAIL;
2547                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2548                                 /*
2549                                  * mapped dirty buffer. We need to update
2550                                  * the b_state because we look at
2551                                  * b_state in mpage_da_map_blocks. We don't
2552                                  * update b_size because if we find an
2553                                  * unmapped buffer_head later we need to
2554                                  * use the b_state flag of that buffer_head.
2555                                  */
2556                                 if (mpd->b_size == 0)
2557                                         mpd->b_state = bh->b_state & BH_FLAGS;
2558                         }
2559                         logical++;
2560                 } while ((bh = bh->b_this_page) != head);
2561         }
2562
2563         return 0;
2564 }
2565
2566 /*
2567  * This is a special get_blocks_t callback which is used by
2568  * ext4_da_write_begin().  It will either return mapped block or
2569  * reserve space for a single block.
2570  *
2571  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2572  * We also have b_blocknr = -1 and b_bdev initialized properly
2573  *
2574  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2575  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2576  * initialized properly.
2577  */
2578 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2579                                   struct buffer_head *bh, int create)
2580 {
2581         struct ext4_map_blocks map;
2582         int ret = 0;
2583         sector_t invalid_block = ~((sector_t) 0xffff);
2584
2585         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2586                 invalid_block = ~0;
2587
2588         BUG_ON(create == 0);
2589         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2590
2591         map.m_lblk = iblock;
2592         map.m_len = 1;
2593
2594         /*
2595          * first, we need to know whether the block is allocated already
2596          * preallocated blocks are unmapped but should treated
2597          * the same as allocated blocks.
2598          */
2599         ret = ext4_map_blocks(NULL, inode, &map, 0);
2600         if (ret < 0)
2601                 return ret;
2602         if (ret == 0) {
2603                 if (buffer_delay(bh))
2604                         return 0; /* Not sure this could or should happen */
2605                 /*
2606                  * XXX: __block_prepare_write() unmaps passed block,
2607                  * is it OK?
2608                  */
2609                 ret = ext4_da_reserve_space(inode, iblock);
2610                 if (ret)
2611                         /* not enough space to reserve */
2612                         return ret;
2613
2614                 map_bh(bh, inode->i_sb, invalid_block);
2615                 set_buffer_new(bh);
2616                 set_buffer_delay(bh);
2617                 return 0;
2618         }
2619
2620         map_bh(bh, inode->i_sb, map.m_pblk);
2621         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2622
2623         if (buffer_unwritten(bh)) {
2624                 /* A delayed write to unwritten bh should be marked
2625                  * new and mapped.  Mapped ensures that we don't do
2626                  * get_block multiple times when we write to the same
2627                  * offset and new ensures that we do proper zero out
2628                  * for partial write.
2629                  */
2630                 set_buffer_new(bh);
2631                 set_buffer_mapped(bh);
2632         }
2633         return 0;
2634 }
2635
2636 /*
2637  * This function is used as a standard get_block_t calback function
2638  * when there is no desire to allocate any blocks.  It is used as a
2639  * callback function for block_prepare_write() and block_write_full_page().
2640  * These functions should only try to map a single block at a time.
2641  *
2642  * Since this function doesn't do block allocations even if the caller
2643  * requests it by passing in create=1, it is critically important that
2644  * any caller checks to make sure that any buffer heads are returned
2645  * by this function are either all already mapped or marked for
2646  * delayed allocation before calling  block_write_full_page().  Otherwise,
2647  * b_blocknr could be left unitialized, and the page write functions will
2648  * be taken by surprise.
2649  */
2650 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2651                                    struct buffer_head *bh_result, int create)
2652 {
2653         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2654         return _ext4_get_block(inode, iblock, bh_result, 0);
2655 }
2656
2657 static int bget_one(handle_t *handle, struct buffer_head *bh)
2658 {
2659         get_bh(bh);
2660         return 0;
2661 }
2662
2663 static int bput_one(handle_t *handle, struct buffer_head *bh)
2664 {
2665         put_bh(bh);
2666         return 0;
2667 }
2668
2669 static int __ext4_journalled_writepage(struct page *page,
2670                                        unsigned int len)
2671 {
2672         struct address_space *mapping = page->mapping;
2673         struct inode *inode = mapping->host;
2674         struct buffer_head *page_bufs;
2675         handle_t *handle = NULL;
2676         int ret = 0;
2677         int err;
2678
2679         ClearPageChecked(page);
2680         page_bufs = page_buffers(page);
2681         BUG_ON(!page_bufs);
2682         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2683         /* As soon as we unlock the page, it can go away, but we have
2684          * references to buffers so we are safe */
2685         unlock_page(page);
2686
2687         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2688         if (IS_ERR(handle)) {
2689                 ret = PTR_ERR(handle);
2690                 goto out;
2691         }
2692
2693         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2694                                 do_journal_get_write_access);
2695
2696         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2697                                 write_end_fn);
2698         if (ret == 0)
2699                 ret = err;
2700         err = ext4_journal_stop(handle);
2701         if (!ret)
2702                 ret = err;
2703
2704         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2705         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2706 out:
2707         return ret;
2708 }
2709
2710 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2711 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2712
2713 /*
2714  * Note that we don't need to start a transaction unless we're journaling data
2715  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2716  * need to file the inode to the transaction's list in ordered mode because if
2717  * we are writing back data added by write(), the inode is already there and if
2718  * we are writing back data modified via mmap(), noone guarantees in which
2719  * transaction the data will hit the disk. In case we are journaling data, we
2720  * cannot start transaction directly because transaction start ranks above page
2721  * lock so we have to do some magic.
2722  *
2723  * This function can get called via...
2724  *   - ext4_da_writepages after taking page lock (have journal handle)
2725  *   - journal_submit_inode_data_buffers (no journal handle)
2726  *   - shrink_page_list via pdflush (no journal handle)
2727  *   - grab_page_cache when doing write_begin (have journal handle)
2728  *
2729  * We don't do any block allocation in this function. If we have page with
2730  * multiple blocks we need to write those buffer_heads that are mapped. This
2731  * is important for mmaped based write. So if we do with blocksize 1K
2732  * truncate(f, 1024);
2733  * a = mmap(f, 0, 4096);
2734  * a[0] = 'a';
2735  * truncate(f, 4096);
2736  * we have in the page first buffer_head mapped via page_mkwrite call back
2737  * but other bufer_heads would be unmapped but dirty(dirty done via the
2738  * do_wp_page). So writepage should write the first block. If we modify
2739  * the mmap area beyond 1024 we will again get a page_fault and the
2740  * page_mkwrite callback will do the block allocation and mark the
2741  * buffer_heads mapped.
2742  *
2743  * We redirty the page if we have any buffer_heads that is either delay or
2744  * unwritten in the page.
2745  *
2746  * We can get recursively called as show below.
2747  *
2748  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2749  *              ext4_writepage()
2750  *
2751  * But since we don't do any block allocation we should not deadlock.
2752  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2753  */
2754 static int ext4_writepage(struct page *page,
2755                           struct writeback_control *wbc)
2756 {
2757         int ret = 0, commit_write = 0;
2758         loff_t size;
2759         unsigned int len;
2760         struct buffer_head *page_bufs = NULL;
2761         struct inode *inode = page->mapping->host;
2762
2763         trace_ext4_writepage(inode, page);
2764         size = i_size_read(inode);
2765         if (page->index == size >> PAGE_CACHE_SHIFT)
2766                 len = size & ~PAGE_CACHE_MASK;
2767         else
2768                 len = PAGE_CACHE_SIZE;
2769
2770         /*
2771          * If the page does not have buffers (for whatever reason),
2772          * try to create them using block_prepare_write.  If this
2773          * fails, redirty the page and move on.
2774          */
2775         if (!page_buffers(page)) {
2776                 if (block_prepare_write(page, 0, len,
2777                                         noalloc_get_block_write)) {
2778                 redirty_page:
2779                         redirty_page_for_writepage(wbc, page);
2780                         unlock_page(page);
2781                         return 0;
2782                 }
2783                 commit_write = 1;
2784         }
2785         page_bufs = page_buffers(page);
2786         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2787                               ext4_bh_delay_or_unwritten)) {
2788                 /*
2789                  * We don't want to do block allocation So redirty the
2790                  * page and return We may reach here when we do a
2791                  * journal commit via
2792                  * journal_submit_inode_data_buffers.  If we don't
2793                  * have mapping block we just ignore them. We can also
2794                  * reach here via shrink_page_list
2795                  */
2796                 goto redirty_page;
2797         }
2798         if (commit_write)
2799                 /* now mark the buffer_heads as dirty and uptodate */
2800                 block_commit_write(page, 0, len);
2801
2802         if (PageChecked(page) && ext4_should_journal_data(inode))
2803                 /*
2804                  * It's mmapped pagecache.  Add buffers and journal it.  There
2805                  * doesn't seem much point in redirtying the page here.
2806                  */
2807                 return __ext4_journalled_writepage(page, len);
2808
2809         if (buffer_uninit(page_bufs)) {
2810                 ext4_set_bh_endio(page_bufs, inode);
2811                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2812                                             wbc, ext4_end_io_buffer_write);
2813         } else
2814                 ret = block_write_full_page(page, noalloc_get_block_write,
2815                                             wbc);
2816
2817         return ret;
2818 }
2819
2820 /*
2821  * This is called via ext4_da_writepages() to
2822  * calulate the total number of credits to reserve to fit
2823  * a single extent allocation into a single transaction,
2824  * ext4_da_writpeages() will loop calling this before
2825  * the block allocation.
2826  */
2827
2828 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2829 {
2830         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2831
2832         /*
2833          * With non-extent format the journal credit needed to
2834          * insert nrblocks contiguous block is dependent on
2835          * number of contiguous block. So we will limit
2836          * number of contiguous block to a sane value
2837          */
2838         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2839             (max_blocks > EXT4_MAX_TRANS_DATA))
2840                 max_blocks = EXT4_MAX_TRANS_DATA;
2841
2842         return ext4_chunk_trans_blocks(inode, max_blocks);
2843 }
2844
2845 /*
2846  * write_cache_pages_da - walk the list of dirty pages of the given
2847  * address space and call the callback function (which usually writes
2848  * the pages).
2849  *
2850  * This is a forked version of write_cache_pages().  Differences:
2851  *      Range cyclic is ignored.
2852  *      no_nrwrite_index_update is always presumed true
2853  */
2854 static int write_cache_pages_da(struct address_space *mapping,
2855                                 struct writeback_control *wbc,
2856                                 struct mpage_da_data *mpd)
2857 {
2858         int ret = 0;
2859         int done = 0;
2860         struct pagevec pvec;
2861         int nr_pages;
2862         pgoff_t index;
2863         pgoff_t end;            /* Inclusive */
2864         long nr_to_write = wbc->nr_to_write;
2865
2866         pagevec_init(&pvec, 0);
2867         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2868         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2869
2870         while (!done && (index <= end)) {
2871                 int i;
2872
2873                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2874                               PAGECACHE_TAG_DIRTY,
2875                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2876                 if (nr_pages == 0)
2877                         break;
2878
2879                 for (i = 0; i < nr_pages; i++) {
2880                         struct page *page = pvec.pages[i];
2881
2882                         /*
2883                          * At this point, the page may be truncated or
2884                          * invalidated (changing page->mapping to NULL), or
2885                          * even swizzled back from swapper_space to tmpfs file
2886                          * mapping. However, page->index will not change
2887                          * because we have a reference on the page.
2888                          */
2889                         if (page->index > end) {
2890                                 done = 1;
2891                                 break;
2892                         }
2893
2894                         lock_page(page);
2895
2896                         /*
2897                          * Page truncated or invalidated. We can freely skip it
2898                          * then, even for data integrity operations: the page
2899                          * has disappeared concurrently, so there could be no
2900                          * real expectation of this data interity operation
2901                          * even if there is now a new, dirty page at the same
2902                          * pagecache address.
2903                          */
2904                         if (unlikely(page->mapping != mapping)) {
2905 continue_unlock:
2906                                 unlock_page(page);
2907                                 continue;
2908                         }
2909
2910                         if (!PageDirty(page)) {
2911                                 /* someone wrote it for us */
2912                                 goto continue_unlock;
2913                         }
2914
2915                         if (PageWriteback(page)) {
2916                                 if (wbc->sync_mode != WB_SYNC_NONE)
2917                                         wait_on_page_writeback(page);
2918                                 else
2919                                         goto continue_unlock;
2920                         }
2921
2922                         BUG_ON(PageWriteback(page));
2923                         if (!clear_page_dirty_for_io(page))
2924                                 goto continue_unlock;
2925
2926                         ret = __mpage_da_writepage(page, wbc, mpd);
2927                         if (unlikely(ret)) {
2928                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2929                                         unlock_page(page);
2930                                         ret = 0;
2931                                 } else {
2932                                         done = 1;
2933                                         break;
2934                                 }
2935                         }
2936
2937                         if (nr_to_write > 0) {
2938                                 nr_to_write--;
2939                                 if (nr_to_write == 0 &&
2940                                     wbc->sync_mode == WB_SYNC_NONE) {
2941                                         /*
2942                                          * We stop writing back only if we are
2943                                          * not doing integrity sync. In case of
2944                                          * integrity sync we have to keep going
2945                                          * because someone may be concurrently
2946                                          * dirtying pages, and we might have
2947                                          * synced a lot of newly appeared dirty
2948                                          * pages, but have not synced all of the
2949                                          * old dirty pages.
2950                                          */
2951                                         done = 1;
2952                                         break;
2953                                 }
2954                         }
2955                 }
2956                 pagevec_release(&pvec);
2957                 cond_resched();
2958         }
2959         return ret;
2960 }
2961
2962
2963 static int ext4_da_writepages(struct address_space *mapping,
2964                               struct writeback_control *wbc)
2965 {
2966         pgoff_t index;
2967         int range_whole = 0;
2968         handle_t *handle = NULL;
2969         struct mpage_da_data mpd;
2970         struct inode *inode = mapping->host;
2971         int pages_written = 0;
2972         long pages_skipped;
2973         unsigned int max_pages;
2974         int range_cyclic, cycled = 1, io_done = 0;
2975         int needed_blocks, ret = 0;
2976         long desired_nr_to_write, nr_to_writebump = 0;
2977         loff_t range_start = wbc->range_start;
2978         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2979
2980         trace_ext4_da_writepages(inode, wbc);
2981
2982         /*
2983          * No pages to write? This is mainly a kludge to avoid starting
2984          * a transaction for special inodes like journal inode on last iput()
2985          * because that could violate lock ordering on umount
2986          */
2987         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2988                 return 0;
2989
2990         /*
2991          * If the filesystem has aborted, it is read-only, so return
2992          * right away instead of dumping stack traces later on that
2993          * will obscure the real source of the problem.  We test
2994          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2995          * the latter could be true if the filesystem is mounted
2996          * read-only, and in that case, ext4_da_writepages should
2997          * *never* be called, so if that ever happens, we would want
2998          * the stack trace.
2999          */
3000         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
3001                 return -EROFS;
3002
3003         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3004                 range_whole = 1;
3005
3006         range_cyclic = wbc->range_cyclic;
3007         if (wbc->range_cyclic) {
3008                 index = mapping->writeback_index;
3009                 if (index)
3010                         cycled = 0;
3011                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3012                 wbc->range_end  = LLONG_MAX;
3013                 wbc->range_cyclic = 0;
3014         } else
3015                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3016
3017         /*
3018          * This works around two forms of stupidity.  The first is in
3019          * the writeback code, which caps the maximum number of pages
3020          * written to be 1024 pages.  This is wrong on multiple
3021          * levels; different architectues have a different page size,
3022          * which changes the maximum amount of data which gets
3023          * written.  Secondly, 4 megabytes is way too small.  XFS
3024          * forces this value to be 16 megabytes by multiplying
3025          * nr_to_write parameter by four, and then relies on its
3026          * allocator to allocate larger extents to make them
3027          * contiguous.  Unfortunately this brings us to the second
3028          * stupidity, which is that ext4's mballoc code only allocates
3029          * at most 2048 blocks.  So we force contiguous writes up to
3030          * the number of dirty blocks in the inode, or
3031          * sbi->max_writeback_mb_bump whichever is smaller.
3032          */
3033         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3034         if (!range_cyclic && range_whole) {
3035                 if (wbc->nr_to_write == LONG_MAX)
3036                         desired_nr_to_write = wbc->nr_to_write;
3037                 else
3038                         desired_nr_to_write = wbc->nr_to_write * 8;
3039         } else
3040                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3041                                                            max_pages);
3042         if (desired_nr_to_write > max_pages)
3043                 desired_nr_to_write = max_pages;
3044
3045         if (wbc->nr_to_write < desired_nr_to_write) {
3046                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3047                 wbc->nr_to_write = desired_nr_to_write;
3048         }
3049
3050         mpd.wbc = wbc;
3051         mpd.inode = mapping->host;
3052
3053         pages_skipped = wbc->pages_skipped;
3054
3055 retry:
3056         while (!ret && wbc->nr_to_write > 0) {
3057
3058                 /*
3059                  * we  insert one extent at a time. So we need
3060                  * credit needed for single extent allocation.
3061                  * journalled mode is currently not supported
3062                  * by delalloc
3063                  */
3064                 BUG_ON(ext4_should_journal_data(inode));
3065                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3066
3067                 /* start a new transaction*/
3068                 handle = ext4_journal_start(inode, needed_blocks);
3069                 if (IS_ERR(handle)) {
3070                         ret = PTR_ERR(handle);
3071                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3072                                "%ld pages, ino %lu; err %d", __func__,
3073                                 wbc->nr_to_write, inode->i_ino, ret);
3074                         goto out_writepages;
3075                 }
3076
3077                 /*
3078                  * Now call __mpage_da_writepage to find the next
3079                  * contiguous region of logical blocks that need
3080                  * blocks to be allocated by ext4.  We don't actually
3081                  * submit the blocks for I/O here, even though
3082                  * write_cache_pages thinks it will, and will set the
3083                  * pages as clean for write before calling
3084                  * __mpage_da_writepage().
3085                  */
3086                 mpd.b_size = 0;
3087                 mpd.b_state = 0;
3088                 mpd.b_blocknr = 0;
3089                 mpd.first_page = 0;
3090                 mpd.next_page = 0;
3091                 mpd.io_done = 0;
3092                 mpd.pages_written = 0;
3093                 mpd.retval = 0;
3094                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3095                 /*
3096                  * If we have a contiguous extent of pages and we
3097                  * haven't done the I/O yet, map the blocks and submit
3098                  * them for I/O.
3099                  */
3100                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3101                         mpage_da_map_and_submit(&mpd);
3102                         ret = MPAGE_DA_EXTENT_TAIL;
3103                 }
3104                 trace_ext4_da_write_pages(inode, &mpd);
3105                 wbc->nr_to_write -= mpd.pages_written;
3106
3107                 ext4_journal_stop(handle);
3108
3109                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3110                         /* commit the transaction which would
3111                          * free blocks released in the transaction
3112                          * and try again
3113                          */
3114                         jbd2_journal_force_commit_nested(sbi->s_journal);
3115                         wbc->pages_skipped = pages_skipped;
3116                         ret = 0;
3117                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3118                         /*
3119                          * got one extent now try with
3120                          * rest of the pages
3121                          */
3122                         pages_written += mpd.pages_written;
3123                         wbc->pages_skipped = pages_skipped;
3124                         ret = 0;
3125                         io_done = 1;
3126                 } else if (wbc->nr_to_write)
3127                         /*
3128                          * There is no more writeout needed
3129                          * or we requested for a noblocking writeout
3130                          * and we found the device congested
3131                          */
3132                         break;
3133         }
3134         if (!io_done && !cycled) {
3135                 cycled = 1;
3136                 index = 0;
3137                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3138                 wbc->range_end  = mapping->writeback_index - 1;
3139                 goto retry;
3140         }
3141         if (pages_skipped != wbc->pages_skipped)
3142                 ext4_msg(inode->i_sb, KERN_CRIT,
3143                          "This should not happen leaving %s "
3144                          "with nr_to_write = %ld ret = %d",
3145                          __func__, wbc->nr_to_write, ret);
3146
3147         /* Update index */
3148         index += pages_written;
3149         wbc->range_cyclic = range_cyclic;
3150         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3151                 /*
3152                  * set the writeback_index so that range_cyclic
3153                  * mode will write it back later
3154                  */
3155                 mapping->writeback_index = index;
3156
3157 out_writepages:
3158         wbc->nr_to_write -= nr_to_writebump;
3159         wbc->range_start = range_start;
3160         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3161         return ret;
3162 }
3163
3164 #define FALL_BACK_TO_NONDELALLOC 1
3165 static int ext4_nonda_switch(struct super_block *sb)
3166 {
3167         s64 free_blocks, dirty_blocks;
3168         struct ext4_sb_info *sbi = EXT4_SB(sb);
3169
3170         /*
3171          * switch to non delalloc mode if we are running low
3172          * on free block. The free block accounting via percpu
3173          * counters can get slightly wrong with percpu_counter_batch getting
3174          * accumulated on each CPU without updating global counters
3175          * Delalloc need an accurate free block accounting. So switch
3176          * to non delalloc when we are near to error range.
3177          */
3178         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3179         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3180         if (2 * free_blocks < 3 * dirty_blocks ||
3181                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3182                 /*
3183                  * free block count is less than 150% of dirty blocks
3184                  * or free blocks is less than watermark
3185                  */
3186                 return 1;
3187         }
3188         /*
3189          * Even if we don't switch but are nearing capacity,
3190          * start pushing delalloc when 1/2 of free blocks are dirty.
3191          */
3192         if (free_blocks < 2 * dirty_blocks)
3193                 writeback_inodes_sb_if_idle(sb);
3194
3195         return 0;
3196 }
3197
3198 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3199                                loff_t pos, unsigned len, unsigned flags,
3200                                struct page **pagep, void **fsdata)
3201 {
3202         int ret, retries = 0;
3203         struct page *page;
3204         pgoff_t index;
3205         struct inode *inode = mapping->host;
3206         handle_t *handle;
3207
3208         index = pos >> PAGE_CACHE_SHIFT;
3209
3210         if (ext4_nonda_switch(inode->i_sb)) {
3211                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3212                 return ext4_write_begin(file, mapping, pos,
3213                                         len, flags, pagep, fsdata);
3214         }
3215         *fsdata = (void *)0;
3216         trace_ext4_da_write_begin(inode, pos, len, flags);
3217 retry:
3218         /*
3219          * With delayed allocation, we don't log the i_disksize update
3220          * if there is delayed block allocation. But we still need
3221          * to journalling the i_disksize update if writes to the end
3222          * of file which has an already mapped buffer.
3223          */
3224         handle = ext4_journal_start(inode, 1);
3225         if (IS_ERR(handle)) {
3226                 ret = PTR_ERR(handle);
3227                 goto out;
3228         }
3229         /* We cannot recurse into the filesystem as the transaction is already
3230          * started */
3231         flags |= AOP_FLAG_NOFS;
3232
3233         page = grab_cache_page_write_begin(mapping, index, flags);
3234         if (!page) {
3235                 ext4_journal_stop(handle);
3236                 ret = -ENOMEM;
3237                 goto out;
3238         }
3239         *pagep = page;
3240
3241         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3242         if (ret < 0) {
3243                 unlock_page(page);
3244                 ext4_journal_stop(handle);
3245                 page_cache_release(page);
3246                 /*
3247                  * block_write_begin may have instantiated a few blocks
3248                  * outside i_size.  Trim these off again. Don't need
3249                  * i_size_read because we hold i_mutex.
3250                  */
3251                 if (pos + len > inode->i_size)
3252                         ext4_truncate_failed_write(inode);
3253         }
3254
3255         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3256                 goto retry;
3257 out:
3258         return ret;
3259 }
3260
3261 /*
3262  * Check if we should update i_disksize
3263  * when write to the end of file but not require block allocation
3264  */
3265 static int ext4_da_should_update_i_disksize(struct page *page,
3266                                             unsigned long offset)
3267 {
3268         struct buffer_head *bh;
3269         struct inode *inode = page->mapping->host;
3270         unsigned int idx;
3271         int i;
3272
3273         bh = page_buffers(page);
3274         idx = offset >> inode->i_blkbits;
3275
3276         for (i = 0; i < idx; i++)
3277                 bh = bh->b_this_page;
3278
3279         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3280                 return 0;
3281         return 1;
3282 }
3283
3284 static int ext4_da_write_end(struct file *file,
3285                              struct address_space *mapping,
3286                              loff_t pos, unsigned len, unsigned copied,
3287                              struct page *page, void *fsdata)
3288 {
3289         struct inode *inode = mapping->host;
3290         int ret = 0, ret2;
3291         handle_t *handle = ext4_journal_current_handle();
3292         loff_t new_i_size;
3293         unsigned long start, end;
3294         int write_mode = (int)(unsigned long)fsdata;
3295
3296         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3297                 if (ext4_should_order_data(inode)) {
3298                         return ext4_ordered_write_end(file, mapping, pos,
3299                                         len, copied, page, fsdata);
3300                 } else if (ext4_should_writeback_data(inode)) {
3301                         return ext4_writeback_write_end(file, mapping, pos,
3302                                         len, copied, page, fsdata);
3303                 } else {
3304                         BUG();
3305                 }
3306         }
3307
3308         trace_ext4_da_write_end(inode, pos, len, copied);
3309         start = pos & (PAGE_CACHE_SIZE - 1);
3310         end = start + copied - 1;
3311
3312         /*
3313          * generic_write_end() will run mark_inode_dirty() if i_size
3314          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3315          * into that.
3316          */
3317
3318         new_i_size = pos + copied;
3319         if (new_i_size > EXT4_I(inode)->i_disksize) {
3320                 if (ext4_da_should_update_i_disksize(page, end)) {
3321                         down_write(&EXT4_I(inode)->i_data_sem);
3322                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3323                                 /*
3324                                  * Updating i_disksize when extending file
3325                                  * without needing block allocation
3326                                  */
3327                                 if (ext4_should_order_data(inode))
3328                                         ret = ext4_jbd2_file_inode(handle,
3329                                                                    inode);
3330
3331                                 EXT4_I(inode)->i_disksize = new_i_size;
3332                         }
3333                         up_write(&EXT4_I(inode)->i_data_sem);
3334                         /* We need to mark inode dirty even if
3335                          * new_i_size is less that inode->i_size
3336                          * bu greater than i_disksize.(hint delalloc)
3337                          */
3338                         ext4_mark_inode_dirty(handle, inode);
3339                 }
3340         }
3341         ret2 = generic_write_end(file, mapping, pos, len, copied,
3342                                                         page, fsdata);
3343         copied = ret2;
3344         if (ret2 < 0)
3345                 ret = ret2;
3346         ret2 = ext4_journal_stop(handle);
3347         if (!ret)
3348                 ret = ret2;
3349
3350         return ret ? ret : copied;
3351 }
3352
3353 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3354 {
3355         /*
3356          * Drop reserved blocks
3357          */
3358         BUG_ON(!PageLocked(page));
3359         if (!page_has_buffers(page))
3360                 goto out;
3361
3362         ext4_da_page_release_reservation(page, offset);
3363
3364 out:
3365         ext4_invalidatepage(page, offset);
3366
3367         return;
3368 }
3369
3370 /*
3371  * Force all delayed allocation blocks to be allocated for a given inode.
3372  */
3373 int ext4_alloc_da_blocks(struct inode *inode)
3374 {
3375         trace_ext4_alloc_da_blocks(inode);
3376
3377         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3378             !EXT4_I(inode)->i_reserved_meta_blocks)
3379                 return 0;
3380
3381         /*
3382          * We do something simple for now.  The filemap_flush() will
3383          * also start triggering a write of the data blocks, which is
3384          * not strictly speaking necessary (and for users of
3385          * laptop_mode, not even desirable).  However, to do otherwise
3386          * would require replicating code paths in:
3387          *
3388          * ext4_da_writepages() ->
3389          *    write_cache_pages() ---> (via passed in callback function)
3390          *        __mpage_da_writepage() -->
3391          *           mpage_add_bh_to_extent()
3392          *           mpage_da_map_blocks()
3393          *
3394          * The problem is that write_cache_pages(), located in
3395          * mm/page-writeback.c, marks pages clean in preparation for
3396          * doing I/O, which is not desirable if we're not planning on
3397          * doing I/O at all.
3398          *
3399          * We could call write_cache_pages(), and then redirty all of
3400          * the pages by calling redirty_page_for_writeback() but that
3401          * would be ugly in the extreme.  So instead we would need to
3402          * replicate parts of the code in the above functions,
3403          * simplifying them becuase we wouldn't actually intend to
3404          * write out the pages, but rather only collect contiguous
3405          * logical block extents, call the multi-block allocator, and
3406          * then update the buffer heads with the block allocations.
3407          *
3408          * For now, though, we'll cheat by calling filemap_flush(),
3409          * which will map the blocks, and start the I/O, but not
3410          * actually wait for the I/O to complete.
3411          */
3412         return filemap_flush(inode->i_mapping);
3413 }
3414
3415 /*
3416  * bmap() is special.  It gets used by applications such as lilo and by
3417  * the swapper to find the on-disk block of a specific piece of data.
3418  *
3419  * Naturally, this is dangerous if the block concerned is still in the
3420  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3421  * filesystem and enables swap, then they may get a nasty shock when the
3422  * data getting swapped to that swapfile suddenly gets overwritten by
3423  * the original zero's written out previously to the journal and
3424  * awaiting writeback in the kernel's buffer cache.
3425  *
3426  * So, if we see any bmap calls here on a modified, data-journaled file,
3427  * take extra steps to flush any blocks which might be in the cache.
3428  */
3429 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3430 {
3431         struct inode *inode = mapping->host;
3432         journal_t *journal;
3433         int err;
3434
3435         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3436                         test_opt(inode->i_sb, DELALLOC)) {
3437                 /*
3438                  * With delalloc we want to sync the file
3439                  * so that we can make sure we allocate
3440                  * blocks for file
3441                  */
3442                 filemap_write_and_wait(mapping);
3443         }
3444
3445         if (EXT4_JOURNAL(inode) &&
3446             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3447                 /*
3448                  * This is a REALLY heavyweight approach, but the use of
3449                  * bmap on dirty files is expected to be extremely rare:
3450                  * only if we run lilo or swapon on a freshly made file
3451                  * do we expect this to happen.
3452                  *
3453                  * (bmap requires CAP_SYS_RAWIO so this does not
3454                  * represent an unprivileged user DOS attack --- we'd be
3455                  * in trouble if mortal users could trigger this path at
3456                  * will.)
3457                  *
3458                  * NB. EXT4_STATE_JDATA is not set on files other than
3459                  * regular files.  If somebody wants to bmap a directory
3460                  * or symlink and gets confused because the buffer
3461                  * hasn't yet been flushed to disk, they deserve
3462                  * everything they get.
3463                  */
3464
3465                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3466                 journal = EXT4_JOURNAL(inode);
3467                 jbd2_journal_lock_updates(journal);
3468                 err = jbd2_journal_flush(journal);
3469                 jbd2_journal_unlock_updates(journal);
3470
3471                 if (err)
3472                         return 0;
3473         }
3474
3475         return generic_block_bmap(mapping, block, ext4_get_block);
3476 }
3477
3478 static int ext4_readpage(struct file *file, struct page *page)
3479 {
3480         return mpage_readpage(page, ext4_get_block);
3481 }
3482
3483 static int
3484 ext4_readpages(struct file *file, struct address_space *mapping,
3485                 struct list_head *pages, unsigned nr_pages)
3486 {
3487         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3488 }
3489
3490 static void ext4_free_io_end(ext4_io_end_t *io)
3491 {
3492         BUG_ON(!io);
3493         if (io->page)
3494                 put_page(io->page);
3495         iput(io->inode);
3496         kfree(io);
3497 }
3498
3499 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3500 {
3501         struct buffer_head *head, *bh;
3502         unsigned int curr_off = 0;
3503
3504         if (!page_has_buffers(page))
3505                 return;
3506         head = bh = page_buffers(page);
3507         do {
3508                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3509                                         && bh->b_private) {
3510                         ext4_free_io_end(bh->b_private);
3511                         bh->b_private = NULL;
3512                         bh->b_end_io = NULL;
3513                 }
3514                 curr_off = curr_off + bh->b_size;
3515                 bh = bh->b_this_page;
3516         } while (bh != head);
3517 }
3518
3519 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3520 {
3521         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3522
3523         /*
3524          * free any io_end structure allocated for buffers to be discarded
3525          */
3526         if (ext4_should_dioread_nolock(page->mapping->host))
3527                 ext4_invalidatepage_free_endio(page, offset);
3528         /*
3529          * If it's a full truncate we just forget about the pending dirtying
3530          */
3531         if (offset == 0)
3532                 ClearPageChecked(page);
3533
3534         if (journal)
3535                 jbd2_journal_invalidatepage(journal, page, offset);
3536         else
3537                 block_invalidatepage(page, offset);
3538 }
3539
3540 static int ext4_releasepage(struct page *page, gfp_t wait)
3541 {
3542         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3543
3544         WARN_ON(PageChecked(page));
3545         if (!page_has_buffers(page))
3546                 return 0;
3547         if (journal)
3548                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3549         else
3550                 return try_to_free_buffers(page);
3551 }
3552
3553 /*
3554  * O_DIRECT for ext3 (or indirect map) based files
3555  *
3556  * If the O_DIRECT write will extend the file then add this inode to the
3557  * orphan list.  So recovery will truncate it back to the original size
3558  * if the machine crashes during the write.
3559  *
3560  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3561  * crashes then stale disk data _may_ be exposed inside the file. But current
3562  * VFS code falls back into buffered path in that case so we are safe.
3563  */
3564 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3565                               const struct iovec *iov, loff_t offset,
3566                               unsigned long nr_segs)
3567 {
3568         struct file *file = iocb->ki_filp;
3569         struct inode *inode = file->f_mapping->host;
3570         struct ext4_inode_info *ei = EXT4_I(inode);
3571         handle_t *handle;
3572         ssize_t ret;
3573         int orphan = 0;
3574         size_t count = iov_length(iov, nr_segs);
3575         int retries = 0;
3576
3577         if (rw == WRITE) {
3578                 loff_t final_size = offset + count;
3579
3580                 if (final_size > inode->i_size) {
3581                         /* Credits for sb + inode write */
3582                         handle = ext4_journal_start(inode, 2);
3583                         if (IS_ERR(handle)) {
3584                                 ret = PTR_ERR(handle);
3585                                 goto out;
3586                         }
3587                         ret = ext4_orphan_add(handle, inode);
3588                         if (ret) {
3589                                 ext4_journal_stop(handle);
3590                                 goto out;
3591                         }
3592                         orphan = 1;
3593                         ei->i_disksize = inode->i_size;
3594                         ext4_journal_stop(handle);
3595                 }
3596         }
3597
3598 retry:
3599         if (rw == READ && ext4_should_dioread_nolock(inode))
3600                 ret = __blockdev_direct_IO(rw, iocb, inode,
3601                                  inode->i_sb->s_bdev, iov,
3602                                  offset, nr_segs,
3603                                  ext4_get_block, NULL, NULL, 0);
3604         else {
3605                 ret = blockdev_direct_IO(rw, iocb, inode,
3606                                  inode->i_sb->s_bdev, iov,
3607                                  offset, nr_segs,
3608                                  ext4_get_block, NULL);
3609
3610                 if (unlikely((rw & WRITE) && ret < 0)) {
3611                         loff_t isize = i_size_read(inode);
3612                         loff_t end = offset + iov_length(iov, nr_segs);
3613
3614                         if (end > isize)
3615                                 vmtruncate(inode, isize);
3616                 }
3617         }
3618         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3619                 goto retry;
3620
3621         if (orphan) {
3622                 int err;
3623
3624                 /* Credits for sb + inode write */
3625                 handle = ext4_journal_start(inode, 2);
3626                 if (IS_ERR(handle)) {
3627                         /* This is really bad luck. We've written the data
3628                          * but cannot extend i_size. Bail out and pretend
3629                          * the write failed... */
3630                         ret = PTR_ERR(handle);
3631                         if (inode->i_nlink)
3632                                 ext4_orphan_del(NULL, inode);
3633
3634                         goto out;
3635                 }
3636                 if (inode->i_nlink)
3637                         ext4_orphan_del(handle, inode);
3638                 if (ret > 0) {
3639                         loff_t end = offset + ret;
3640                         if (end > inode->i_size) {
3641                                 ei->i_disksize = end;
3642                                 i_size_write(inode, end);
3643                                 /*
3644                                  * We're going to return a positive `ret'
3645                                  * here due to non-zero-length I/O, so there's
3646                                  * no way of reporting error returns from
3647                                  * ext4_mark_inode_dirty() to userspace.  So
3648                                  * ignore it.
3649                                  */
3650                                 ext4_mark_inode_dirty(handle, inode);
3651                         }
3652                 }
3653                 err = ext4_journal_stop(handle);
3654                 if (ret == 0)
3655                         ret = err;
3656         }
3657 out:
3658         return ret;
3659 }
3660
3661 /*
3662  * ext4_get_block used when preparing for a DIO write or buffer write.
3663  * We allocate an uinitialized extent if blocks haven't been allocated.
3664  * The extent will be converted to initialized after the IO is complete.
3665  */
3666 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3667                    struct buffer_head *bh_result, int create)
3668 {
3669         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3670                    inode->i_ino, create);
3671         return _ext4_get_block(inode, iblock, bh_result,
3672                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3673 }
3674
3675 static void dump_completed_IO(struct inode * inode)
3676 {
3677 #ifdef  EXT4_DEBUG
3678         struct list_head *cur, *before, *after;
3679         ext4_io_end_t *io, *io0, *io1;
3680         unsigned long flags;
3681
3682         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3683                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3684                 return;
3685         }
3686
3687         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3688         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3689         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3690                 cur = &io->list;
3691                 before = cur->prev;
3692                 io0 = container_of(before, ext4_io_end_t, list);
3693                 after = cur->next;
3694                 io1 = container_of(after, ext4_io_end_t, list);
3695
3696                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3697                             io, inode->i_ino, io0, io1);
3698         }
3699         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3700 #endif
3701 }
3702
3703 /*
3704  * check a range of space and convert unwritten extents to written.
3705  */
3706 static int ext4_end_io_nolock(ext4_io_end_t *io)
3707 {
3708         struct inode *inode = io->inode;
3709         loff_t offset = io->offset;
3710         ssize_t size = io->size;
3711         int ret = 0;
3712
3713         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3714                    "list->prev 0x%p\n",
3715                    io, inode->i_ino, io->list.next, io->list.prev);
3716
3717         if (list_empty(&io->list))
3718                 return ret;
3719
3720         if (io->flag != EXT4_IO_UNWRITTEN)
3721                 return ret;
3722
3723         ret = ext4_convert_unwritten_extents(inode, offset, size);
3724         if (ret < 0) {
3725                 printk(KERN_EMERG "%s: failed to convert unwritten"
3726                         "extents to written extents, error is %d"
3727                         " io is still on inode %lu aio dio list\n",
3728                        __func__, ret, inode->i_ino);
3729                 return ret;
3730         }
3731
3732         if (io->iocb)
3733                 aio_complete(io->iocb, io->result, 0);
3734         /* clear the DIO AIO unwritten flag */
3735         io->flag = 0;
3736         return ret;
3737 }
3738
3739 /*
3740  * work on completed aio dio IO, to convert unwritten extents to extents
3741  */
3742 static void ext4_end_io_work(struct work_struct *work)
3743 {
3744         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3745         struct inode            *inode = io->inode;
3746         struct ext4_inode_info  *ei = EXT4_I(inode);
3747         unsigned long           flags;
3748         int                     ret;
3749
3750         mutex_lock(&inode->i_mutex);
3751         ret = ext4_end_io_nolock(io);
3752         if (ret < 0) {
3753                 mutex_unlock(&inode->i_mutex);
3754                 return;
3755         }
3756
3757         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3758         if (!list_empty(&io->list))
3759                 list_del_init(&io->list);
3760         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3761         mutex_unlock(&inode->i_mutex);
3762         ext4_free_io_end(io);
3763 }
3764
3765 /*
3766  * This function is called from ext4_sync_file().
3767  *
3768  * When IO is completed, the work to convert unwritten extents to
3769  * written is queued on workqueue but may not get immediately
3770  * scheduled. When fsync is called, we need to ensure the
3771  * conversion is complete before fsync returns.
3772  * The inode keeps track of a list of pending/completed IO that
3773  * might needs to do the conversion. This function walks through
3774  * the list and convert the related unwritten extents for completed IO
3775  * to written.
3776  * The function return the number of pending IOs on success.
3777  */
3778 int flush_completed_IO(struct inode *inode)
3779 {
3780         ext4_io_end_t *io;
3781         struct ext4_inode_info *ei = EXT4_I(inode);
3782         unsigned long flags;
3783         int ret = 0;
3784         int ret2 = 0;
3785
3786         if (list_empty(&ei->i_completed_io_list))
3787                 return ret;
3788
3789         dump_completed_IO(inode);
3790         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3791         while (!list_empty(&ei->i_completed_io_list)){
3792                 io = list_entry(ei->i_completed_io_list.next,
3793                                 ext4_io_end_t, list);
3794                 /*
3795                  * Calling ext4_end_io_nolock() to convert completed
3796                  * IO to written.
3797                  *
3798                  * When ext4_sync_file() is called, run_queue() may already
3799                  * about to flush the work corresponding to this io structure.
3800                  * It will be upset if it founds the io structure related
3801                  * to the work-to-be schedule is freed.
3802                  *
3803                  * Thus we need to keep the io structure still valid here after
3804                  * convertion finished. The io structure has a flag to
3805                  * avoid double converting from both fsync and background work
3806                  * queue work.
3807                  */
3808                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3809                 ret = ext4_end_io_nolock(io);
3810                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3811                 if (ret < 0)
3812                         ret2 = ret;
3813                 else
3814                         list_del_init(&io->list);
3815         }
3816         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3817         return (ret2 < 0) ? ret2 : 0;
3818 }
3819
3820 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3821 {
3822         ext4_io_end_t *io = NULL;
3823
3824         io = kmalloc(sizeof(*io), flags);
3825
3826         if (io) {
3827                 igrab(inode);
3828                 io->inode = inode;
3829                 io->flag = 0;
3830                 io->offset = 0;
3831                 io->size = 0;
3832                 io->page = NULL;
3833                 io->iocb = NULL;
3834                 io->result = 0;
3835                 INIT_WORK(&io->work, ext4_end_io_work);
3836                 INIT_LIST_HEAD(&io->list);
3837         }
3838
3839         return io;
3840 }
3841
3842 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3843                             ssize_t size, void *private, int ret,
3844                             bool is_async)
3845 {
3846         ext4_io_end_t *io_end = iocb->private;
3847         struct workqueue_struct *wq;
3848         unsigned long flags;
3849         struct ext4_inode_info *ei;
3850
3851         /* if not async direct IO or dio with 0 bytes write, just return */
3852         if (!io_end || !size)
3853                 goto out;
3854
3855         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3856                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3857                   iocb->private, io_end->inode->i_ino, iocb, offset,
3858                   size);
3859
3860         /* if not aio dio with unwritten extents, just free io and return */
3861         if (io_end->flag != EXT4_IO_UNWRITTEN){
3862                 ext4_free_io_end(io_end);
3863                 iocb->private = NULL;
3864 out:
3865                 if (is_async)
3866                         aio_complete(iocb, ret, 0);
3867                 return;
3868         }
3869
3870         io_end->offset = offset;
3871         io_end->size = size;
3872         if (is_async) {
3873                 io_end->iocb = iocb;
3874                 io_end->result = ret;
3875         }
3876         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3877
3878         /* Add the io_end to per-inode completed aio dio list*/
3879         ei = EXT4_I(io_end->inode);
3880         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3881         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3882         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3883
3884         /* queue the work to convert unwritten extents to written */
3885         queue_work(wq, &io_end->work);
3886         iocb->private = NULL;
3887 }
3888
3889 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3890 {
3891         ext4_io_end_t *io_end = bh->b_private;
3892         struct workqueue_struct *wq;
3893         struct inode *inode;
3894         unsigned long flags;
3895
3896         if (!test_clear_buffer_uninit(bh) || !io_end)
3897                 goto out;
3898
3899         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3900                 printk("sb umounted, discard end_io request for inode %lu\n",
3901                         io_end->inode->i_ino);
3902                 ext4_free_io_end(io_end);
3903                 goto out;
3904         }
3905
3906         io_end->flag = EXT4_IO_UNWRITTEN;
3907         inode = io_end->inode;
3908
3909         /* Add the io_end to per-inode completed io list*/
3910         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3911         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3912         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3913
3914         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3915         /* queue the work to convert unwritten extents to written */
3916         queue_work(wq, &io_end->work);
3917 out:
3918         bh->b_private = NULL;
3919         bh->b_end_io = NULL;
3920         clear_buffer_uninit(bh);
3921         end_buffer_async_write(bh, uptodate);
3922 }
3923
3924 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3925 {
3926         ext4_io_end_t *io_end;
3927         struct page *page = bh->b_page;
3928         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3929         size_t size = bh->b_size;
3930
3931 retry:
3932         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3933         if (!io_end) {
3934                 if (printk_ratelimit())
3935                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3936                 schedule();
3937                 goto retry;
3938         }
3939         io_end->offset = offset;
3940         io_end->size = size;
3941         /*
3942          * We need to hold a reference to the page to make sure it
3943          * doesn't get evicted before ext4_end_io_work() has a chance
3944          * to convert the extent from written to unwritten.
3945          */
3946         io_end->page = page;
3947         get_page(io_end->page);
3948
3949         bh->b_private = io_end;
3950         bh->b_end_io = ext4_end_io_buffer_write;
3951         return 0;
3952 }
3953
3954 /*
3955  * For ext4 extent files, ext4 will do direct-io write to holes,
3956  * preallocated extents, and those write extend the file, no need to
3957  * fall back to buffered IO.
3958  *
3959  * For holes, we fallocate those blocks, mark them as unintialized
3960  * If those blocks were preallocated, we mark sure they are splited, but
3961  * still keep the range to write as unintialized.
3962  *
3963  * The unwrritten extents will be converted to written when DIO is completed.
3964  * For async direct IO, since the IO may still pending when return, we
3965  * set up an end_io call back function, which will do the convertion
3966  * when async direct IO completed.
3967  *
3968  * If the O_DIRECT write will extend the file then add this inode to the
3969  * orphan list.  So recovery will truncate it back to the original size
3970  * if the machine crashes during the write.
3971  *
3972  */
3973 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3974                               const struct iovec *iov, loff_t offset,
3975                               unsigned long nr_segs)
3976 {
3977         struct file *file = iocb->ki_filp;
3978         struct inode *inode = file->f_mapping->host;
3979         ssize_t ret;
3980         size_t count = iov_length(iov, nr_segs);
3981
3982         loff_t final_size = offset + count;
3983         if (rw == WRITE && final_size <= inode->i_size) {
3984                 /*
3985                  * We could direct write to holes and fallocate.
3986                  *
3987                  * Allocated blocks to fill the hole are marked as uninitialized
3988                  * to prevent paralel buffered read to expose the stale data
3989                  * before DIO complete the data IO.
3990                  *
3991                  * As to previously fallocated extents, ext4 get_block
3992                  * will just simply mark the buffer mapped but still
3993                  * keep the extents uninitialized.
3994                  *
3995                  * for non AIO case, we will convert those unwritten extents
3996                  * to written after return back from blockdev_direct_IO.
3997                  *
3998                  * for async DIO, the conversion needs to be defered when
3999                  * the IO is completed. The ext4 end_io callback function
4000                  * will be called to take care of the conversion work.
4001                  * Here for async case, we allocate an io_end structure to
4002                  * hook to the iocb.
4003                  */
4004                 iocb->private = NULL;
4005                 EXT4_I(inode)->cur_aio_dio = NULL;
4006                 if (!is_sync_kiocb(iocb)) {
4007                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
4008                         if (!iocb->private)
4009                                 return -ENOMEM;
4010                         /*
4011                          * we save the io structure for current async
4012                          * direct IO, so that later ext4_map_blocks()
4013                          * could flag the io structure whether there
4014                          * is a unwritten extents needs to be converted
4015                          * when IO is completed.
4016                          */
4017                         EXT4_I(inode)->cur_aio_dio = iocb->private;
4018                 }
4019
4020                 ret = blockdev_direct_IO(rw, iocb, inode,
4021                                          inode->i_sb->s_bdev, iov,
4022                                          offset, nr_segs,
4023                                          ext4_get_block_write,
4024                                          ext4_end_io_dio);
4025                 if (iocb->private)
4026                         EXT4_I(inode)->cur_aio_dio = NULL;
4027                 /*
4028                  * The io_end structure takes a reference to the inode,
4029                  * that structure needs to be destroyed and the
4030                  * reference to the inode need to be dropped, when IO is
4031                  * complete, even with 0 byte write, or failed.
4032                  *
4033                  * In the successful AIO DIO case, the io_end structure will be
4034                  * desctroyed and the reference to the inode will be dropped
4035                  * after the end_io call back function is called.
4036                  *
4037                  * In the case there is 0 byte write, or error case, since
4038                  * VFS direct IO won't invoke the end_io call back function,
4039                  * we need to free the end_io structure here.
4040                  */
4041                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4042                         ext4_free_io_end(iocb->private);
4043                         iocb->private = NULL;
4044                 } else if (ret > 0 && ext4_test_inode_state(inode,
4045                                                 EXT4_STATE_DIO_UNWRITTEN)) {
4046                         int err;
4047                         /*
4048                          * for non AIO case, since the IO is already
4049                          * completed, we could do the convertion right here
4050                          */
4051                         err = ext4_convert_unwritten_extents(inode,
4052                                                              offset, ret);
4053                         if (err < 0)
4054                                 ret = err;
4055                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4056                 }
4057                 return ret;
4058         }
4059
4060         /* for write the the end of file case, we fall back to old way */
4061         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4062 }
4063
4064 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4065                               const struct iovec *iov, loff_t offset,
4066                               unsigned long nr_segs)
4067 {
4068         struct file *file = iocb->ki_filp;
4069         struct inode *inode = file->f_mapping->host;
4070
4071         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4072                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4073
4074         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4075 }
4076
4077 /*
4078  * Pages can be marked dirty completely asynchronously from ext4's journalling
4079  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4080  * much here because ->set_page_dirty is called under VFS locks.  The page is
4081  * not necessarily locked.
4082  *
4083  * We cannot just dirty the page and leave attached buffers clean, because the
4084  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4085  * or jbddirty because all the journalling code will explode.
4086  *
4087  * So what we do is to mark the page "pending dirty" and next time writepage
4088  * is called, propagate that into the buffers appropriately.
4089  */
4090 static int ext4_journalled_set_page_dirty(struct page *page)
4091 {
4092         SetPageChecked(page);
4093         return __set_page_dirty_nobuffers(page);
4094 }
4095
4096 static const struct address_space_operations ext4_ordered_aops = {
4097         .readpage               = ext4_readpage,
4098         .readpages              = ext4_readpages,
4099         .writepage              = ext4_writepage,
4100         .sync_page              = block_sync_page,
4101         .write_begin            = ext4_write_begin,
4102         .write_end              = ext4_ordered_write_end,
4103         .bmap                   = ext4_bmap,
4104         .invalidatepage         = ext4_invalidatepage,
4105         .releasepage            = ext4_releasepage,
4106         .direct_IO              = ext4_direct_IO,
4107         .migratepage            = buffer_migrate_page,
4108         .is_partially_uptodate  = block_is_partially_uptodate,
4109         .error_remove_page      = generic_error_remove_page,
4110 };
4111
4112 static const struct address_space_operations ext4_writeback_aops = {
4113         .readpage               = ext4_readpage,
4114         .readpages              = ext4_readpages,
4115         .writepage              = ext4_writepage,
4116         .sync_page              = block_sync_page,
4117         .write_begin            = ext4_write_begin,
4118         .write_end              = ext4_writeback_write_end,
4119         .bmap                   = ext4_bmap,
4120         .invalidatepage         = ext4_invalidatepage,
4121         .releasepage            = ext4_releasepage,
4122         .direct_IO              = ext4_direct_IO,
4123         .migratepage            = buffer_migrate_page,
4124         .is_partially_uptodate  = block_is_partially_uptodate,
4125         .error_remove_page      = generic_error_remove_page,
4126 };
4127
4128 static const struct address_space_operations ext4_journalled_aops = {
4129         .readpage               = ext4_readpage,
4130         .readpages              = ext4_readpages,
4131         .writepage              = ext4_writepage,
4132         .sync_page              = block_sync_page,
4133         .write_begin            = ext4_write_begin,
4134         .write_end              = ext4_journalled_write_end,
4135         .set_page_dirty         = ext4_journalled_set_page_dirty,
4136         .bmap                   = ext4_bmap,
4137         .invalidatepage         = ext4_invalidatepage,
4138         .releasepage            = ext4_releasepage,
4139         .is_partially_uptodate  = block_is_partially_uptodate,
4140         .error_remove_page      = generic_error_remove_page,
4141 };
4142
4143 static const struct address_space_operations ext4_da_aops = {
4144         .readpage               = ext4_readpage,
4145         .readpages              = ext4_readpages,
4146         .writepage              = ext4_writepage,
4147         .writepages             = ext4_da_writepages,
4148         .sync_page              = block_sync_page,
4149         .write_begin            = ext4_da_write_begin,
4150         .write_end              = ext4_da_write_end,
4151         .bmap                   = ext4_bmap,
4152         .invalidatepage         = ext4_da_invalidatepage,
4153         .releasepage            = ext4_releasepage,
4154         .direct_IO              = ext4_direct_IO,
4155         .migratepage            = buffer_migrate_page,
4156         .is_partially_uptodate  = block_is_partially_uptodate,
4157         .error_remove_page      = generic_error_remove_page,
4158 };
4159
4160 void ext4_set_aops(struct inode *inode)
4161 {
4162         if (ext4_should_order_data(inode) &&
4163                 test_opt(inode->i_sb, DELALLOC))
4164                 inode->i_mapping->a_ops = &ext4_da_aops;
4165         else if (ext4_should_order_data(inode))
4166                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4167         else if (ext4_should_writeback_data(inode) &&
4168                  test_opt(inode->i_sb, DELALLOC))
4169                 inode->i_mapping->a_ops = &ext4_da_aops;
4170         else if (ext4_should_writeback_data(inode))
4171                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4172         else
4173                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4174 }
4175
4176 /*
4177  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4178  * up to the end of the block which corresponds to `from'.
4179  * This required during truncate. We need to physically zero the tail end
4180  * of that block so it doesn't yield old data if the file is later grown.
4181  */
4182 int ext4_block_truncate_page(handle_t *handle,
4183                 struct address_space *mapping, loff_t from)
4184 {
4185         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4186         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4187         unsigned blocksize, length, pos;
4188         ext4_lblk_t iblock;
4189         struct inode *inode = mapping->host;
4190         struct buffer_head *bh;
4191         struct page *page;
4192         int err = 0;
4193
4194         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4195                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4196         if (!page)
4197                 return -EINVAL;
4198
4199         blocksize = inode->i_sb->s_blocksize;
4200         length = blocksize - (offset & (blocksize - 1));
4201         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4202
4203         if (!page_has_buffers(page))
4204                 create_empty_buffers(page, blocksize, 0);
4205
4206         /* Find the buffer that contains "offset" */
4207         bh = page_buffers(page);
4208         pos = blocksize;
4209         while (offset >= pos) {
4210                 bh = bh->b_this_page;
4211                 iblock++;
4212                 pos += blocksize;
4213         }
4214
4215         err = 0;
4216         if (buffer_freed(bh)) {
4217                 BUFFER_TRACE(bh, "freed: skip");
4218                 goto unlock;
4219         }
4220
4221         if (!buffer_mapped(bh)) {
4222                 BUFFER_TRACE(bh, "unmapped");
4223                 ext4_get_block(inode, iblock, bh, 0);
4224                 /* unmapped? It's a hole - nothing to do */
4225                 if (!buffer_mapped(bh)) {
4226                         BUFFER_TRACE(bh, "still unmapped");
4227                         goto unlock;
4228                 }
4229         }
4230
4231         /* Ok, it's mapped. Make sure it's up-to-date */
4232         if (PageUptodate(page))
4233                 set_buffer_uptodate(bh);
4234
4235         if (!buffer_uptodate(bh)) {
4236                 err = -EIO;
4237                 ll_rw_block(READ, 1, &bh);
4238                 wait_on_buffer(bh);
4239                 /* Uhhuh. Read error. Complain and punt. */
4240                 if (!buffer_uptodate(bh))
4241                         goto unlock;
4242         }
4243
4244         if (ext4_should_journal_data(inode)) {
4245                 BUFFER_TRACE(bh, "get write access");
4246                 err = ext4_journal_get_write_access(handle, bh);
4247                 if (err)
4248                         goto unlock;
4249         }
4250
4251         zero_user(page, offset, length);
4252
4253         BUFFER_TRACE(bh, "zeroed end of block");
4254
4255         err = 0;
4256         if (ext4_should_journal_data(inode)) {
4257                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4258         } else {
4259                 if (ext4_should_order_data(inode))
4260                         err = ext4_jbd2_file_inode(handle, inode);
4261                 mark_buffer_dirty(bh);
4262         }
4263
4264 unlock:
4265         unlock_page(page);
4266         page_cache_release(page);
4267         return err;
4268 }
4269
4270 /*
4271  * Probably it should be a library function... search for first non-zero word
4272  * or memcmp with zero_page, whatever is better for particular architecture.
4273  * Linus?
4274  */
4275 static inline int all_zeroes(__le32 *p, __le32 *q)
4276 {
4277         while (p < q)
4278                 if (*p++)
4279                         return 0;
4280         return 1;
4281 }
4282
4283 /**
4284  *      ext4_find_shared - find the indirect blocks for partial truncation.
4285  *      @inode:   inode in question
4286  *      @depth:   depth of the affected branch
4287  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4288  *      @chain:   place to store the pointers to partial indirect blocks
4289  *      @top:     place to the (detached) top of branch
4290  *
4291  *      This is a helper function used by ext4_truncate().
4292  *
4293  *      When we do truncate() we may have to clean the ends of several
4294  *      indirect blocks but leave the blocks themselves alive. Block is
4295  *      partially truncated if some data below the new i_size is refered
4296  *      from it (and it is on the path to the first completely truncated
4297  *      data block, indeed).  We have to free the top of that path along
4298  *      with everything to the right of the path. Since no allocation
4299  *      past the truncation point is possible until ext4_truncate()
4300  *      finishes, we may safely do the latter, but top of branch may
4301  *      require special attention - pageout below the truncation point
4302  *      might try to populate it.
4303  *
4304  *      We atomically detach the top of branch from the tree, store the
4305  *      block number of its root in *@top, pointers to buffer_heads of
4306  *      partially truncated blocks - in @chain[].bh and pointers to
4307  *      their last elements that should not be removed - in
4308  *      @chain[].p. Return value is the pointer to last filled element
4309  *      of @chain.
4310  *
4311  *      The work left to caller to do the actual freeing of subtrees:
4312  *              a) free the subtree starting from *@top
4313  *              b) free the subtrees whose roots are stored in
4314  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4315  *              c) free the subtrees growing from the inode past the @chain[0].
4316  *                      (no partially truncated stuff there).  */
4317
4318 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4319                                   ext4_lblk_t offsets[4], Indirect chain[4],
4320                                   __le32 *top)
4321 {
4322         Indirect *partial, *p;
4323         int k, err;
4324
4325         *top = 0;
4326         /* Make k index the deepest non-null offset + 1 */
4327         for (k = depth; k > 1 && !offsets[k-1]; k--)
4328                 ;
4329         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4330         /* Writer: pointers */
4331         if (!partial)
4332                 partial = chain + k-1;
4333         /*
4334          * If the branch acquired continuation since we've looked at it -
4335          * fine, it should all survive and (new) top doesn't belong to us.
4336          */
4337         if (!partial->key && *partial->p)
4338                 /* Writer: end */
4339                 goto no_top;
4340         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4341                 ;
4342         /*
4343          * OK, we've found the last block that must survive. The rest of our
4344          * branch should be detached before unlocking. However, if that rest
4345          * of branch is all ours and does not grow immediately from the inode
4346          * it's easier to cheat and just decrement partial->p.
4347          */
4348         if (p == chain + k - 1 && p > chain) {
4349                 p->p--;
4350         } else {
4351                 *top = *p->p;
4352                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4353 #if 0
4354                 *p->p = 0;
4355 #endif
4356         }
4357         /* Writer: end */
4358
4359         while (partial > p) {
4360                 brelse(partial->bh);
4361                 partial--;
4362         }
4363 no_top:
4364         return partial;
4365 }
4366
4367 /*
4368  * Zero a number of block pointers in either an inode or an indirect block.
4369  * If we restart the transaction we must again get write access to the
4370  * indirect block for further modification.
4371  *
4372  * We release `count' blocks on disk, but (last - first) may be greater
4373  * than `count' because there can be holes in there.
4374  */
4375 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4376                              struct buffer_head *bh,
4377                              ext4_fsblk_t block_to_free,
4378                              unsigned long count, __le32 *first,
4379                              __le32 *last)
4380 {
4381         __le32 *p;
4382         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4383
4384         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4385                 flags |= EXT4_FREE_BLOCKS_METADATA;
4386
4387         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4388                                    count)) {
4389                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4390                                  "blocks %llu len %lu",
4391                                  (unsigned long long) block_to_free, count);
4392                 return 1;
4393         }
4394
4395         if (try_to_extend_transaction(handle, inode)) {
4396                 if (bh) {
4397                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4398                         ext4_handle_dirty_metadata(handle, inode, bh);
4399                 }
4400                 ext4_mark_inode_dirty(handle, inode);
4401                 ext4_truncate_restart_trans(handle, inode,
4402                                             blocks_for_truncate(inode));
4403                 if (bh) {
4404                         BUFFER_TRACE(bh, "retaking write access");
4405                         ext4_journal_get_write_access(handle, bh);
4406                 }
4407         }
4408
4409         for (p = first; p < last; p++)
4410                 *p = 0;
4411
4412         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4413         return 0;
4414 }
4415
4416 /**
4417  * ext4_free_data - free a list of data blocks
4418  * @handle:     handle for this transaction
4419  * @inode:      inode we are dealing with
4420  * @this_bh:    indirect buffer_head which contains *@first and *@last
4421  * @first:      array of block numbers
4422  * @last:       points immediately past the end of array
4423  *
4424  * We are freeing all blocks refered from that array (numbers are stored as
4425  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4426  *
4427  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4428  * blocks are contiguous then releasing them at one time will only affect one
4429  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4430  * actually use a lot of journal space.
4431  *
4432  * @this_bh will be %NULL if @first and @last point into the inode's direct
4433  * block pointers.
4434  */
4435 static void ext4_free_data(handle_t *handle, struct inode *inode,
4436                            struct buffer_head *this_bh,
4437                            __le32 *first, __le32 *last)
4438 {
4439         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4440         unsigned long count = 0;            /* Number of blocks in the run */
4441         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4442                                                corresponding to
4443                                                block_to_free */
4444         ext4_fsblk_t nr;                    /* Current block # */
4445         __le32 *p;                          /* Pointer into inode/ind
4446                                                for current block */
4447         int err;
4448
4449         if (this_bh) {                          /* For indirect block */
4450                 BUFFER_TRACE(this_bh, "get_write_access");
4451                 err = ext4_journal_get_write_access(handle, this_bh);
4452                 /* Important: if we can't update the indirect pointers
4453                  * to the blocks, we can't free them. */
4454                 if (err)
4455                         return;
4456         }
4457
4458         for (p = first; p < last; p++) {
4459                 nr = le32_to_cpu(*p);
4460                 if (nr) {
4461                         /* accumulate blocks to free if they're contiguous */
4462                         if (count == 0) {
4463                                 block_to_free = nr;
4464                                 block_to_free_p = p;
4465                                 count = 1;
4466                         } else if (nr == block_to_free + count) {
4467                                 count++;
4468                         } else {
4469                                 if (ext4_clear_blocks(handle, inode, this_bh,
4470                                                       block_to_free, count,
4471                                                       block_to_free_p, p))
4472                                         break;
4473                                 block_to_free = nr;
4474                                 block_to_free_p = p;
4475                                 count = 1;
4476                         }
4477                 }
4478         }
4479
4480         if (count > 0)
4481                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4482                                   count, block_to_free_p, p);
4483
4484         if (this_bh) {
4485                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4486
4487                 /*
4488                  * The buffer head should have an attached journal head at this
4489                  * point. However, if the data is corrupted and an indirect
4490                  * block pointed to itself, it would have been detached when
4491                  * the block was cleared. Check for this instead of OOPSing.
4492                  */
4493                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4494                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4495                 else
4496                         EXT4_ERROR_INODE(inode,
4497                                          "circular indirect block detected at "
4498                                          "block %llu",
4499                                 (unsigned long long) this_bh->b_blocknr);
4500         }
4501 }
4502
4503 /**
4504  *      ext4_free_branches - free an array of branches
4505  *      @handle: JBD handle for this transaction
4506  *      @inode: inode we are dealing with
4507  *      @parent_bh: the buffer_head which contains *@first and *@last
4508  *      @first: array of block numbers
4509  *      @last:  pointer immediately past the end of array
4510  *      @depth: depth of the branches to free
4511  *
4512  *      We are freeing all blocks refered from these branches (numbers are
4513  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4514  *      appropriately.
4515  */
4516 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4517                                struct buffer_head *parent_bh,
4518                                __le32 *first, __le32 *last, int depth)
4519 {
4520         ext4_fsblk_t nr;
4521         __le32 *p;
4522
4523         if (ext4_handle_is_aborted(handle))
4524                 return;
4525
4526         if (depth--) {
4527                 struct buffer_head *bh;
4528                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4529                 p = last;
4530                 while (--p >= first) {
4531                         nr = le32_to_cpu(*p);
4532                         if (!nr)
4533                                 continue;               /* A hole */
4534
4535                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4536                                                    nr, 1)) {
4537                                 EXT4_ERROR_INODE(inode,
4538                                                  "invalid indirect mapped "
4539                                                  "block %lu (level %d)",
4540                                                  (unsigned long) nr, depth);
4541                                 break;
4542                         }
4543
4544                         /* Go read the buffer for the next level down */
4545                         bh = sb_bread(inode->i_sb, nr);
4546
4547                         /*
4548                          * A read failure? Report error and clear slot
4549                          * (should be rare).
4550                          */
4551                         if (!bh) {
4552                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4553                                                        "Read failure");
4554                                 continue;
4555                         }
4556
4557                         /* This zaps the entire block.  Bottom up. */
4558                         BUFFER_TRACE(bh, "free child branches");
4559                         ext4_free_branches(handle, inode, bh,
4560                                         (__le32 *) bh->b_data,
4561                                         (__le32 *) bh->b_data + addr_per_block,
4562                                         depth);
4563
4564                         /*
4565                          * Everything below this this pointer has been
4566                          * released.  Now let this top-of-subtree go.
4567                          *
4568                          * We want the freeing of this indirect block to be
4569                          * atomic in the journal with the updating of the
4570                          * bitmap block which owns it.  So make some room in
4571                          * the journal.
4572                          *
4573                          * We zero the parent pointer *after* freeing its
4574                          * pointee in the bitmaps, so if extend_transaction()
4575                          * for some reason fails to put the bitmap changes and
4576                          * the release into the same transaction, recovery
4577                          * will merely complain about releasing a free block,
4578                          * rather than leaking blocks.
4579                          */
4580                         if (ext4_handle_is_aborted(handle))
4581                                 return;
4582                         if (try_to_extend_transaction(handle, inode)) {
4583                                 ext4_mark_inode_dirty(handle, inode);
4584                                 ext4_truncate_restart_trans(handle, inode,
4585                                             blocks_for_truncate(inode));
4586                         }
4587
4588                         /*
4589                          * The forget flag here is critical because if
4590                          * we are journaling (and not doing data
4591                          * journaling), we have to make sure a revoke
4592                          * record is written to prevent the journal
4593                          * replay from overwriting the (former)
4594                          * indirect block if it gets reallocated as a
4595                          * data block.  This must happen in the same
4596                          * transaction where the data blocks are
4597                          * actually freed.
4598                          */
4599                         ext4_free_blocks(handle, inode, 0, nr, 1,
4600                                          EXT4_FREE_BLOCKS_METADATA|
4601                                          EXT4_FREE_BLOCKS_FORGET);
4602
4603                         if (parent_bh) {
4604                                 /*
4605                                  * The block which we have just freed is
4606                                  * pointed to by an indirect block: journal it
4607                                  */
4608                                 BUFFER_TRACE(parent_bh, "get_write_access");
4609                                 if (!ext4_journal_get_write_access(handle,
4610                                                                    parent_bh)){
4611                                         *p = 0;
4612                                         BUFFER_TRACE(parent_bh,
4613                                         "call ext4_handle_dirty_metadata");
4614                                         ext4_handle_dirty_metadata(handle,
4615                                                                    inode,
4616                                                                    parent_bh);
4617                                 }
4618                         }
4619                 }
4620         } else {
4621                 /* We have reached the bottom of the tree. */
4622                 BUFFER_TRACE(parent_bh, "free data blocks");
4623                 ext4_free_data(handle, inode, parent_bh, first, last);
4624         }
4625 }
4626
4627 int ext4_can_truncate(struct inode *inode)
4628 {
4629         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4630                 return 0;
4631         if (S_ISREG(inode->i_mode))
4632                 return 1;
4633         if (S_ISDIR(inode->i_mode))
4634                 return 1;
4635         if (S_ISLNK(inode->i_mode))
4636                 return !ext4_inode_is_fast_symlink(inode);
4637         return 0;
4638 }
4639
4640 /*
4641  * ext4_truncate()
4642  *
4643  * We block out ext4_get_block() block instantiations across the entire
4644  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4645  * simultaneously on behalf of the same inode.
4646  *
4647  * As we work through the truncate and commmit bits of it to the journal there
4648  * is one core, guiding principle: the file's tree must always be consistent on
4649  * disk.  We must be able to restart the truncate after a crash.
4650  *
4651  * The file's tree may be transiently inconsistent in memory (although it
4652  * probably isn't), but whenever we close off and commit a journal transaction,
4653  * the contents of (the filesystem + the journal) must be consistent and
4654  * restartable.  It's pretty simple, really: bottom up, right to left (although
4655  * left-to-right works OK too).
4656  *
4657  * Note that at recovery time, journal replay occurs *before* the restart of
4658  * truncate against the orphan inode list.
4659  *
4660  * The committed inode has the new, desired i_size (which is the same as
4661  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4662  * that this inode's truncate did not complete and it will again call
4663  * ext4_truncate() to have another go.  So there will be instantiated blocks
4664  * to the right of the truncation point in a crashed ext4 filesystem.  But
4665  * that's fine - as long as they are linked from the inode, the post-crash
4666  * ext4_truncate() run will find them and release them.
4667  */
4668 void ext4_truncate(struct inode *inode)
4669 {
4670         handle_t *handle;
4671         struct ext4_inode_info *ei = EXT4_I(inode);
4672         __le32 *i_data = ei->i_data;
4673         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4674         struct address_space *mapping = inode->i_mapping;
4675         ext4_lblk_t offsets[4];
4676         Indirect chain[4];
4677         Indirect *partial;
4678         __le32 nr = 0;
4679         int n;
4680         ext4_lblk_t last_block;
4681         unsigned blocksize = inode->i_sb->s_blocksize;
4682
4683         if (!ext4_can_truncate(inode))
4684                 return;
4685
4686         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4687
4688         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4689                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4690
4691         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4692                 ext4_ext_truncate(inode);
4693                 return;
4694         }
4695
4696         handle = start_transaction(inode);
4697         if (IS_ERR(handle))
4698                 return;         /* AKPM: return what? */
4699
4700         last_block = (inode->i_size + blocksize-1)
4701                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4702
4703         if (inode->i_size & (blocksize - 1))
4704                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4705                         goto out_stop;
4706
4707         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4708         if (n == 0)
4709                 goto out_stop;  /* error */
4710
4711         /*
4712          * OK.  This truncate is going to happen.  We add the inode to the
4713          * orphan list, so that if this truncate spans multiple transactions,
4714          * and we crash, we will resume the truncate when the filesystem
4715          * recovers.  It also marks the inode dirty, to catch the new size.
4716          *
4717          * Implication: the file must always be in a sane, consistent
4718          * truncatable state while each transaction commits.
4719          */
4720         if (ext4_orphan_add(handle, inode))
4721                 goto out_stop;
4722
4723         /*
4724          * From here we block out all ext4_get_block() callers who want to
4725          * modify the block allocation tree.
4726          */
4727         down_write(&ei->i_data_sem);
4728
4729         ext4_discard_preallocations(inode);
4730
4731         /*
4732          * The orphan list entry will now protect us from any crash which
4733          * occurs before the truncate completes, so it is now safe to propagate
4734          * the new, shorter inode size (held for now in i_size) into the
4735          * on-disk inode. We do this via i_disksize, which is the value which
4736          * ext4 *really* writes onto the disk inode.
4737          */
4738         ei->i_disksize = inode->i_size;
4739
4740         if (n == 1) {           /* direct blocks */
4741                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4742                                i_data + EXT4_NDIR_BLOCKS);
4743                 goto do_indirects;
4744         }
4745
4746         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4747         /* Kill the top of shared branch (not detached) */
4748         if (nr) {
4749                 if (partial == chain) {
4750                         /* Shared branch grows from the inode */
4751                         ext4_free_branches(handle, inode, NULL,
4752                                            &nr, &nr+1, (chain+n-1) - partial);
4753                         *partial->p = 0;
4754                         /*
4755                          * We mark the inode dirty prior to restart,
4756                          * and prior to stop.  No need for it here.
4757                          */
4758                 } else {
4759                         /* Shared branch grows from an indirect block */
4760                         BUFFER_TRACE(partial->bh, "get_write_access");
4761                         ext4_free_branches(handle, inode, partial->bh,
4762                                         partial->p,
4763                                         partial->p+1, (chain+n-1) - partial);
4764                 }
4765         }
4766         /* Clear the ends of indirect blocks on the shared branch */
4767         while (partial > chain) {
4768                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4769                                    (__le32*)partial->bh->b_data+addr_per_block,
4770                                    (chain+n-1) - partial);
4771                 BUFFER_TRACE(partial->bh, "call brelse");
4772                 brelse(partial->bh);
4773                 partial--;
4774         }
4775 do_indirects:
4776         /* Kill the remaining (whole) subtrees */
4777         switch (offsets[0]) {
4778         default:
4779                 nr = i_data[EXT4_IND_BLOCK];
4780                 if (nr) {
4781                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4782                         i_data[EXT4_IND_BLOCK] = 0;
4783                 }
4784         case EXT4_IND_BLOCK:
4785                 nr = i_data[EXT4_DIND_BLOCK];
4786                 if (nr) {
4787                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4788                         i_data[EXT4_DIND_BLOCK] = 0;
4789                 }
4790         case EXT4_DIND_BLOCK:
4791                 nr = i_data[EXT4_TIND_BLOCK];
4792                 if (nr) {
4793                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4794                         i_data[EXT4_TIND_BLOCK] = 0;
4795                 }
4796         case EXT4_TIND_BLOCK:
4797                 ;
4798         }
4799
4800         up_write(&ei->i_data_sem);
4801         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4802         ext4_mark_inode_dirty(handle, inode);
4803
4804         /*
4805          * In a multi-transaction truncate, we only make the final transaction
4806          * synchronous
4807          */
4808         if (IS_SYNC(inode))
4809                 ext4_handle_sync(handle);
4810 out_stop:
4811         /*
4812          * If this was a simple ftruncate(), and the file will remain alive
4813          * then we need to clear up the orphan record which we created above.
4814          * However, if this was a real unlink then we were called by
4815          * ext4_delete_inode(), and we allow that function to clean up the
4816          * orphan info for us.
4817          */
4818         if (inode->i_nlink)
4819                 ext4_orphan_del(handle, inode);
4820
4821         ext4_journal_stop(handle);
4822 }
4823
4824 /*
4825  * ext4_get_inode_loc returns with an extra refcount against the inode's
4826  * underlying buffer_head on success. If 'in_mem' is true, we have all
4827  * data in memory that is needed to recreate the on-disk version of this
4828  * inode.
4829  */
4830 static int __ext4_get_inode_loc(struct inode *inode,
4831                                 struct ext4_iloc *iloc, int in_mem)
4832 {
4833         struct ext4_group_desc  *gdp;
4834         struct buffer_head      *bh;
4835         struct super_block      *sb = inode->i_sb;
4836         ext4_fsblk_t            block;
4837         int                     inodes_per_block, inode_offset;
4838
4839         iloc->bh = NULL;
4840         if (!ext4_valid_inum(sb, inode->i_ino))
4841                 return -EIO;
4842
4843         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4844         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4845         if (!gdp)
4846                 return -EIO;
4847
4848         /*
4849          * Figure out the offset within the block group inode table
4850          */
4851         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4852         inode_offset = ((inode->i_ino - 1) %
4853                         EXT4_INODES_PER_GROUP(sb));
4854         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4855         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4856
4857         bh = sb_getblk(sb, block);
4858         if (!bh) {
4859                 EXT4_ERROR_INODE_BLOCK(inode, block,
4860                                        "unable to read itable block");
4861                 return -EIO;
4862         }
4863         if (!buffer_uptodate(bh)) {
4864                 lock_buffer(bh);
4865
4866                 /*
4867                  * If the buffer has the write error flag, we have failed
4868                  * to write out another inode in the same block.  In this
4869                  * case, we don't have to read the block because we may
4870                  * read the old inode data successfully.
4871                  */
4872                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4873                         set_buffer_uptodate(bh);
4874
4875                 if (buffer_uptodate(bh)) {
4876                         /* someone brought it uptodate while we waited */
4877                         unlock_buffer(bh);
4878                         goto has_buffer;
4879                 }
4880
4881                 /*
4882                  * If we have all information of the inode in memory and this
4883                  * is the only valid inode in the block, we need not read the
4884                  * block.
4885                  */
4886                 if (in_mem) {
4887                         struct buffer_head *bitmap_bh;
4888                         int i, start;
4889
4890                         start = inode_offset & ~(inodes_per_block - 1);
4891
4892                         /* Is the inode bitmap in cache? */
4893                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4894                         if (!bitmap_bh)
4895                                 goto make_io;
4896
4897                         /*
4898                          * If the inode bitmap isn't in cache then the
4899                          * optimisation may end up performing two reads instead
4900                          * of one, so skip it.
4901                          */
4902                         if (!buffer_uptodate(bitmap_bh)) {
4903                                 brelse(bitmap_bh);
4904                                 goto make_io;
4905                         }
4906                         for (i = start; i < start + inodes_per_block; i++) {
4907                                 if (i == inode_offset)
4908                                         continue;
4909                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4910                                         break;
4911                         }
4912                         brelse(bitmap_bh);
4913                         if (i == start + inodes_per_block) {
4914                                 /* all other inodes are free, so skip I/O */
4915                                 memset(bh->b_data, 0, bh->b_size);
4916                                 set_buffer_uptodate(bh);
4917                                 unlock_buffer(bh);
4918                                 goto has_buffer;
4919                         }
4920                 }
4921
4922 make_io:
4923                 /*
4924                  * If we need to do any I/O, try to pre-readahead extra
4925                  * blocks from the inode table.
4926                  */
4927                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4928                         ext4_fsblk_t b, end, table;
4929                         unsigned num;
4930
4931                         table = ext4_inode_table(sb, gdp);
4932                         /* s_inode_readahead_blks is always a power of 2 */
4933                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4934                         if (table > b)
4935                                 b = table;
4936                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4937                         num = EXT4_INODES_PER_GROUP(sb);
4938                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4939                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4940                                 num -= ext4_itable_unused_count(sb, gdp);
4941                         table += num / inodes_per_block;
4942                         if (end > table)
4943                                 end = table;
4944                         while (b <= end)
4945                                 sb_breadahead(sb, b++);
4946                 }
4947
4948                 /*
4949                  * There are other valid inodes in the buffer, this inode
4950                  * has in-inode xattrs, or we don't have this inode in memory.
4951                  * Read the block from disk.
4952                  */
4953                 get_bh(bh);
4954                 bh->b_end_io = end_buffer_read_sync;
4955                 submit_bh(READ_META, bh);
4956                 wait_on_buffer(bh);
4957                 if (!buffer_uptodate(bh)) {
4958                         EXT4_ERROR_INODE_BLOCK(inode, block,
4959                                                "unable to read itable block");
4960                         brelse(bh);
4961                         return -EIO;
4962                 }
4963         }
4964 has_buffer:
4965         iloc->bh = bh;
4966         return 0;
4967 }
4968
4969 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4970 {
4971         /* We have all inode data except xattrs in memory here. */
4972         return __ext4_get_inode_loc(inode, iloc,
4973                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4974 }
4975
4976 void ext4_set_inode_flags(struct inode *inode)
4977 {
4978         unsigned int flags = EXT4_I(inode)->i_flags;
4979
4980         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4981         if (flags & EXT4_SYNC_FL)
4982                 inode->i_flags |= S_SYNC;
4983         if (flags & EXT4_APPEND_FL)
4984                 inode->i_flags |= S_APPEND;
4985         if (flags & EXT4_IMMUTABLE_FL)
4986                 inode->i_flags |= S_IMMUTABLE;
4987         if (flags & EXT4_NOATIME_FL)
4988                 inode->i_flags |= S_NOATIME;
4989         if (flags & EXT4_DIRSYNC_FL)
4990                 inode->i_flags |= S_DIRSYNC;
4991 }
4992
4993 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4994 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4995 {
4996         unsigned int vfs_fl;
4997         unsigned long old_fl, new_fl;
4998
4999         do {
5000                 vfs_fl = ei->vfs_inode.i_flags;
5001                 old_fl = ei->i_flags;
5002                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
5003                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
5004                                 EXT4_DIRSYNC_FL);
5005                 if (vfs_fl & S_SYNC)
5006                         new_fl |= EXT4_SYNC_FL;
5007                 if (vfs_fl & S_APPEND)
5008                         new_fl |= EXT4_APPEND_FL;
5009                 if (vfs_fl & S_IMMUTABLE)
5010                         new_fl |= EXT4_IMMUTABLE_FL;
5011                 if (vfs_fl & S_NOATIME)
5012                         new_fl |= EXT4_NOATIME_FL;
5013                 if (vfs_fl & S_DIRSYNC)
5014                         new_fl |= EXT4_DIRSYNC_FL;
5015         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
5016 }
5017
5018 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5019                                   struct ext4_inode_info *ei)
5020 {
5021         blkcnt_t i_blocks ;
5022         struct inode *inode = &(ei->vfs_inode);
5023         struct super_block *sb = inode->i_sb;
5024
5025         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5026                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
5027                 /* we are using combined 48 bit field */
5028                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5029                                         le32_to_cpu(raw_inode->i_blocks_lo);
5030                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5031                         /* i_blocks represent file system block size */
5032                         return i_blocks  << (inode->i_blkbits - 9);
5033                 } else {
5034                         return i_blocks;
5035                 }
5036         } else {
5037                 return le32_to_cpu(raw_inode->i_blocks_lo);
5038         }
5039 }
5040
5041 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5042 {
5043         struct ext4_iloc iloc;
5044         struct ext4_inode *raw_inode;
5045         struct ext4_inode_info *ei;
5046         struct inode *inode;
5047         journal_t *journal = EXT4_SB(sb)->s_journal;
5048         long ret;
5049         int block;
5050
5051         inode = iget_locked(sb, ino);
5052         if (!inode)
5053                 return ERR_PTR(-ENOMEM);
5054         if (!(inode->i_state & I_NEW))
5055                 return inode;
5056
5057         ei = EXT4_I(inode);
5058         iloc.bh = 0;
5059
5060         ret = __ext4_get_inode_loc(inode, &iloc, 0);
5061         if (ret < 0)
5062                 goto bad_inode;
5063         raw_inode = ext4_raw_inode(&iloc);
5064         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5065         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5066         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5067         if (!(test_opt(inode->i_sb, NO_UID32))) {
5068                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5069                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5070         }
5071         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5072
5073         ei->i_state_flags = 0;
5074         ei->i_dir_start_lookup = 0;
5075         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5076         /* We now have enough fields to check if the inode was active or not.
5077          * This is needed because nfsd might try to access dead inodes
5078          * the test is that same one that e2fsck uses
5079          * NeilBrown 1999oct15
5080          */
5081         if (inode->i_nlink == 0) {
5082                 if (inode->i_mode == 0 ||
5083                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5084                         /* this inode is deleted */
5085                         ret = -ESTALE;
5086                         goto bad_inode;
5087                 }
5088                 /* The only unlinked inodes we let through here have
5089                  * valid i_mode and are being read by the orphan
5090                  * recovery code: that's fine, we're about to complete
5091                  * the process of deleting those. */
5092         }
5093         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5094         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5095         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5096         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5097                 ei->i_file_acl |=
5098                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5099         inode->i_size = ext4_isize(raw_inode);
5100         ei->i_disksize = inode->i_size;
5101 #ifdef CONFIG_QUOTA
5102         ei->i_reserved_quota = 0;
5103 #endif
5104         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5105         ei->i_block_group = iloc.block_group;
5106         ei->i_last_alloc_group = ~0;
5107         /*
5108          * NOTE! The in-memory inode i_data array is in little-endian order
5109          * even on big-endian machines: we do NOT byteswap the block numbers!
5110          */
5111         for (block = 0; block < EXT4_N_BLOCKS; block++)
5112                 ei->i_data[block] = raw_inode->i_block[block];
5113         INIT_LIST_HEAD(&ei->i_orphan);
5114
5115         /*
5116          * Set transaction id's of transactions that have to be committed
5117          * to finish f[data]sync. We set them to currently running transaction
5118          * as we cannot be sure that the inode or some of its metadata isn't
5119          * part of the transaction - the inode could have been reclaimed and
5120          * now it is reread from disk.
5121          */
5122         if (journal) {
5123                 transaction_t *transaction;
5124                 tid_t tid;
5125
5126                 read_lock(&journal->j_state_lock);
5127                 if (journal->j_running_transaction)
5128                         transaction = journal->j_running_transaction;
5129                 else
5130                         transaction = journal->j_committing_transaction;
5131                 if (transaction)
5132                         tid = transaction->t_tid;
5133                 else
5134                         tid = journal->j_commit_sequence;
5135                 read_unlock(&journal->j_state_lock);
5136                 ei->i_sync_tid = tid;
5137                 ei->i_datasync_tid = tid;
5138         }
5139
5140         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5141                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5142                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5143                     EXT4_INODE_SIZE(inode->i_sb)) {
5144                         ret = -EIO;
5145                         goto bad_inode;
5146                 }
5147                 if (ei->i_extra_isize == 0) {
5148                         /* The extra space is currently unused. Use it. */
5149                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5150                                             EXT4_GOOD_OLD_INODE_SIZE;
5151                 } else {
5152                         __le32 *magic = (void *)raw_inode +
5153                                         EXT4_GOOD_OLD_INODE_SIZE +
5154                                         ei->i_extra_isize;
5155                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5156                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5157                 }
5158         } else
5159                 ei->i_extra_isize = 0;
5160
5161         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5162         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5163         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5164         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5165
5166         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5167         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5168                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5169                         inode->i_version |=
5170                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5171         }
5172
5173         ret = 0;
5174         if (ei->i_file_acl &&
5175             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5176                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5177                                  ei->i_file_acl);
5178                 ret = -EIO;
5179                 goto bad_inode;
5180         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5181                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5182                     (S_ISLNK(inode->i_mode) &&
5183                      !ext4_inode_is_fast_symlink(inode)))
5184                         /* Validate extent which is part of inode */
5185                         ret = ext4_ext_check_inode(inode);
5186         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5187                    (S_ISLNK(inode->i_mode) &&
5188                     !ext4_inode_is_fast_symlink(inode))) {
5189                 /* Validate block references which are part of inode */
5190                 ret = ext4_check_inode_blockref(inode);
5191         }
5192         if (ret)
5193                 goto bad_inode;
5194
5195         if (S_ISREG(inode->i_mode)) {
5196                 inode->i_op = &ext4_file_inode_operations;
5197                 inode->i_fop = &ext4_file_operations;
5198                 ext4_set_aops(inode);
5199         } else if (S_ISDIR(inode->i_mode)) {
5200                 inode->i_op = &ext4_dir_inode_operations;
5201                 inode->i_fop = &ext4_dir_operations;
5202         } else if (S_ISLNK(inode->i_mode)) {
5203                 if (ext4_inode_is_fast_symlink(inode)) {
5204                         inode->i_op = &ext4_fast_symlink_inode_operations;
5205                         nd_terminate_link(ei->i_data, inode->i_size,
5206                                 sizeof(ei->i_data) - 1);
5207                 } else {
5208                         inode->i_op = &ext4_symlink_inode_operations;
5209                         ext4_set_aops(inode);
5210                 }
5211         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5212               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5213                 inode->i_op = &ext4_special_inode_operations;
5214                 if (raw_inode->i_block[0])
5215                         init_special_inode(inode, inode->i_mode,
5216                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5217                 else
5218                         init_special_inode(inode, inode->i_mode,
5219                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5220         } else {
5221                 ret = -EIO;
5222                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5223                 goto bad_inode;
5224         }
5225         brelse(iloc.bh);
5226         ext4_set_inode_flags(inode);
5227         unlock_new_inode(inode);
5228         return inode;
5229
5230 bad_inode:
5231         brelse(iloc.bh);
5232         iget_failed(inode);
5233         return ERR_PTR(ret);
5234 }
5235
5236 static int ext4_inode_blocks_set(handle_t *handle,
5237                                 struct ext4_inode *raw_inode,
5238                                 struct ext4_inode_info *ei)
5239 {
5240         struct inode *inode = &(ei->vfs_inode);
5241         u64 i_blocks = inode->i_blocks;
5242         struct super_block *sb = inode->i_sb;
5243
5244         if (i_blocks <= ~0U) {
5245                 /*
5246                  * i_blocks can be represnted in a 32 bit variable
5247                  * as multiple of 512 bytes
5248                  */
5249                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5250                 raw_inode->i_blocks_high = 0;
5251                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5252                 return 0;
5253         }
5254         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5255                 return -EFBIG;
5256
5257         if (i_blocks <= 0xffffffffffffULL) {
5258                 /*
5259                  * i_blocks can be represented in a 48 bit variable
5260                  * as multiple of 512 bytes
5261                  */
5262                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5263                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5264                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5265         } else {
5266                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5267                 /* i_block is stored in file system block size */
5268                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5269                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5270                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5271         }
5272         return 0;
5273 }
5274
5275 /*
5276  * Post the struct inode info into an on-disk inode location in the
5277  * buffer-cache.  This gobbles the caller's reference to the
5278  * buffer_head in the inode location struct.
5279  *
5280  * The caller must have write access to iloc->bh.
5281  */
5282 static int ext4_do_update_inode(handle_t *handle,
5283                                 struct inode *inode,
5284                                 struct ext4_iloc *iloc)
5285 {
5286         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5287         struct ext4_inode_info *ei = EXT4_I(inode);
5288         struct buffer_head *bh = iloc->bh;
5289         int err = 0, rc, block;
5290
5291         /* For fields not not tracking in the in-memory inode,
5292          * initialise them to zero for new inodes. */
5293         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5294                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5295
5296         ext4_get_inode_flags(ei);
5297         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5298         if (!(test_opt(inode->i_sb, NO_UID32))) {
5299                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5300                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5301 /*
5302  * Fix up interoperability with old kernels. Otherwise, old inodes get
5303  * re-used with the upper 16 bits of the uid/gid intact
5304  */
5305                 if (!ei->i_dtime) {
5306                         raw_inode->i_uid_high =
5307                                 cpu_to_le16(high_16_bits(inode->i_uid));
5308                         raw_inode->i_gid_high =
5309                                 cpu_to_le16(high_16_bits(inode->i_gid));
5310                 } else {
5311                         raw_inode->i_uid_high = 0;
5312                         raw_inode->i_gid_high = 0;
5313                 }
5314         } else {
5315                 raw_inode->i_uid_low =
5316                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5317                 raw_inode->i_gid_low =
5318                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5319                 raw_inode->i_uid_high = 0;
5320                 raw_inode->i_gid_high = 0;
5321         }
5322         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5323
5324         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5325         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5326         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5327         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5328
5329         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5330                 goto out_brelse;
5331         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5332         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5333         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5334             cpu_to_le32(EXT4_OS_HURD))
5335                 raw_inode->i_file_acl_high =
5336                         cpu_to_le16(ei->i_file_acl >> 32);
5337         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5338         ext4_isize_set(raw_inode, ei->i_disksize);
5339         if (ei->i_disksize > 0x7fffffffULL) {
5340                 struct super_block *sb = inode->i_sb;
5341                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5342                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5343                                 EXT4_SB(sb)->s_es->s_rev_level ==
5344                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5345                         /* If this is the first large file
5346                          * created, add a flag to the superblock.
5347                          */
5348                         err = ext4_journal_get_write_access(handle,
5349                                         EXT4_SB(sb)->s_sbh);
5350                         if (err)
5351                                 goto out_brelse;
5352                         ext4_update_dynamic_rev(sb);
5353                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5354                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5355                         sb->s_dirt = 1;
5356                         ext4_handle_sync(handle);
5357                         err = ext4_handle_dirty_metadata(handle, NULL,
5358                                         EXT4_SB(sb)->s_sbh);
5359                 }
5360         }
5361         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5362         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5363                 if (old_valid_dev(inode->i_rdev)) {
5364                         raw_inode->i_block[0] =
5365                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5366                         raw_inode->i_block[1] = 0;
5367                 } else {
5368                         raw_inode->i_block[0] = 0;
5369                         raw_inode->i_block[1] =
5370                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5371                         raw_inode->i_block[2] = 0;
5372                 }
5373         } else
5374                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5375                         raw_inode->i_block[block] = ei->i_data[block];
5376
5377         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5378         if (ei->i_extra_isize) {
5379                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5380                         raw_inode->i_version_hi =
5381                         cpu_to_le32(inode->i_version >> 32);
5382                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5383         }
5384
5385         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5386         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5387         if (!err)
5388                 err = rc;
5389         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5390
5391         ext4_update_inode_fsync_trans(handle, inode, 0);
5392 out_brelse:
5393         brelse(bh);
5394         ext4_std_error(inode->i_sb, err);
5395         return err;
5396 }
5397
5398 /*
5399  * ext4_write_inode()
5400  *
5401  * We are called from a few places:
5402  *
5403  * - Within generic_file_write() for O_SYNC files.
5404  *   Here, there will be no transaction running. We wait for any running
5405  *   trasnaction to commit.
5406  *
5407  * - Within sys_sync(), kupdate and such.
5408  *   We wait on commit, if tol to.
5409  *
5410  * - Within prune_icache() (PF_MEMALLOC == true)
5411  *   Here we simply return.  We can't afford to block kswapd on the
5412  *   journal commit.
5413  *
5414  * In all cases it is actually safe for us to return without doing anything,
5415  * because the inode has been copied into a raw inode buffer in
5416  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5417  * knfsd.
5418  *
5419  * Note that we are absolutely dependent upon all inode dirtiers doing the
5420  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5421  * which we are interested.
5422  *
5423  * It would be a bug for them to not do this.  The code:
5424  *
5425  *      mark_inode_dirty(inode)
5426  *      stuff();
5427  *      inode->i_size = expr;
5428  *
5429  * is in error because a kswapd-driven write_inode() could occur while
5430  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5431  * will no longer be on the superblock's dirty inode list.
5432  */
5433 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5434 {
5435         int err;
5436
5437         if (current->flags & PF_MEMALLOC)
5438                 return 0;
5439
5440         if (EXT4_SB(inode->i_sb)->s_journal) {
5441                 if (ext4_journal_current_handle()) {
5442                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5443                         dump_stack();
5444                         return -EIO;
5445                 }
5446
5447                 if (wbc->sync_mode != WB_SYNC_ALL)
5448                         return 0;
5449
5450                 err = ext4_force_commit(inode->i_sb);
5451         } else {
5452                 struct ext4_iloc iloc;
5453
5454                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5455                 if (err)
5456                         return err;
5457                 if (wbc->sync_mode == WB_SYNC_ALL)
5458                         sync_dirty_buffer(iloc.bh);
5459                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5460                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5461                                          "IO error syncing inode");
5462                         err = -EIO;
5463                 }
5464                 brelse(iloc.bh);
5465         }
5466         return err;
5467 }
5468
5469 /*
5470  * ext4_setattr()
5471  *
5472  * Called from notify_change.
5473  *
5474  * We want to trap VFS attempts to truncate the file as soon as
5475  * possible.  In particular, we want to make sure that when the VFS
5476  * shrinks i_size, we put the inode on the orphan list and modify
5477  * i_disksize immediately, so that during the subsequent flushing of
5478  * dirty pages and freeing of disk blocks, we can guarantee that any
5479  * commit will leave the blocks being flushed in an unused state on
5480  * disk.  (On recovery, the inode will get truncated and the blocks will
5481  * be freed, so we have a strong guarantee that no future commit will
5482  * leave these blocks visible to the user.)
5483  *
5484  * Another thing we have to assure is that if we are in ordered mode
5485  * and inode is still attached to the committing transaction, we must
5486  * we start writeout of all the dirty pages which are being truncated.
5487  * This way we are sure that all the data written in the previous
5488  * transaction are already on disk (truncate waits for pages under
5489  * writeback).
5490  *
5491  * Called with inode->i_mutex down.
5492  */
5493 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5494 {
5495         struct inode *inode = dentry->d_inode;
5496         int error, rc = 0;
5497         const unsigned int ia_valid = attr->ia_valid;
5498
5499         error = inode_change_ok(inode, attr);
5500         if (error)
5501                 return error;
5502
5503         if (is_quota_modification(inode, attr))
5504                 dquot_initialize(inode);
5505         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5506                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5507                 handle_t *handle;
5508
5509                 /* (user+group)*(old+new) structure, inode write (sb,
5510                  * inode block, ? - but truncate inode update has it) */
5511                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5512                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5513                 if (IS_ERR(handle)) {
5514                         error = PTR_ERR(handle);
5515                         goto err_out;
5516                 }
5517                 error = dquot_transfer(inode, attr);
5518                 if (error) {
5519                         ext4_journal_stop(handle);
5520                         return error;
5521                 }
5522                 /* Update corresponding info in inode so that everything is in
5523                  * one transaction */
5524                 if (attr->ia_valid & ATTR_UID)
5525                         inode->i_uid = attr->ia_uid;
5526                 if (attr->ia_valid & ATTR_GID)
5527                         inode->i_gid = attr->ia_gid;
5528                 error = ext4_mark_inode_dirty(handle, inode);
5529                 ext4_journal_stop(handle);
5530         }
5531
5532         if (attr->ia_valid & ATTR_SIZE) {
5533                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5534                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5535
5536                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5537                                 return -EFBIG;
5538                 }
5539         }
5540
5541         if (S_ISREG(inode->i_mode) &&
5542             attr->ia_valid & ATTR_SIZE &&
5543             (attr->ia_size < inode->i_size ||
5544              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5545                 handle_t *handle;
5546
5547                 handle = ext4_journal_start(inode, 3);
5548                 if (IS_ERR(handle)) {
5549                         error = PTR_ERR(handle);
5550                         goto err_out;
5551                 }
5552
5553                 error = ext4_orphan_add(handle, inode);
5554                 EXT4_I(inode)->i_disksize = attr->ia_size;
5555                 rc = ext4_mark_inode_dirty(handle, inode);
5556                 if (!error)
5557                         error = rc;
5558                 ext4_journal_stop(handle);
5559
5560                 if (ext4_should_order_data(inode)) {
5561                         error = ext4_begin_ordered_truncate(inode,
5562                                                             attr->ia_size);
5563                         if (error) {
5564                                 /* Do as much error cleanup as possible */
5565                                 handle = ext4_journal_start(inode, 3);
5566                                 if (IS_ERR(handle)) {
5567                                         ext4_orphan_del(NULL, inode);
5568                                         goto err_out;
5569                                 }
5570                                 ext4_orphan_del(handle, inode);
5571                                 ext4_journal_stop(handle);
5572                                 goto err_out;
5573                         }
5574                 }
5575                 /* ext4_truncate will clear the flag */
5576                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5577                         ext4_truncate(inode);
5578         }
5579
5580         if ((attr->ia_valid & ATTR_SIZE) &&
5581             attr->ia_size != i_size_read(inode))
5582                 rc = vmtruncate(inode, attr->ia_size);
5583
5584         if (!rc) {
5585                 setattr_copy(inode, attr);
5586                 mark_inode_dirty(inode);
5587         }
5588
5589         /*
5590          * If the call to ext4_truncate failed to get a transaction handle at
5591          * all, we need to clean up the in-core orphan list manually.
5592          */
5593         if (inode->i_nlink)
5594                 ext4_orphan_del(NULL, inode);
5595
5596         if (!rc && (ia_valid & ATTR_MODE))
5597                 rc = ext4_acl_chmod(inode);
5598
5599 err_out:
5600         ext4_std_error(inode->i_sb, error);
5601         if (!error)
5602                 error = rc;
5603         return error;
5604 }
5605
5606 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5607                  struct kstat *stat)
5608 {
5609         struct inode *inode;
5610         unsigned long delalloc_blocks;
5611
5612         inode = dentry->d_inode;
5613         generic_fillattr(inode, stat);
5614
5615         /*
5616          * We can't update i_blocks if the block allocation is delayed
5617          * otherwise in the case of system crash before the real block
5618          * allocation is done, we will have i_blocks inconsistent with
5619          * on-disk file blocks.
5620          * We always keep i_blocks updated together with real
5621          * allocation. But to not confuse with user, stat
5622          * will return the blocks that include the delayed allocation
5623          * blocks for this file.
5624          */
5625         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5626         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5627         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5628
5629         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5630         return 0;
5631 }
5632
5633 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5634                                       int chunk)
5635 {
5636         int indirects;
5637
5638         /* if nrblocks are contiguous */
5639         if (chunk) {
5640                 /*
5641                  * With N contiguous data blocks, it need at most
5642                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5643                  * 2 dindirect blocks
5644                  * 1 tindirect block
5645                  */
5646                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5647                 return indirects + 3;
5648         }
5649         /*
5650          * if nrblocks are not contiguous, worse case, each block touch
5651          * a indirect block, and each indirect block touch a double indirect
5652          * block, plus a triple indirect block
5653          */
5654         indirects = nrblocks * 2 + 1;
5655         return indirects;
5656 }
5657
5658 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5659 {
5660         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5661                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5662         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5663 }
5664
5665 /*
5666  * Account for index blocks, block groups bitmaps and block group
5667  * descriptor blocks if modify datablocks and index blocks
5668  * worse case, the indexs blocks spread over different block groups
5669  *
5670  * If datablocks are discontiguous, they are possible to spread over
5671  * different block groups too. If they are contiuguous, with flexbg,
5672  * they could still across block group boundary.
5673  *
5674  * Also account for superblock, inode, quota and xattr blocks
5675  */
5676 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5677 {
5678         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5679         int gdpblocks;
5680         int idxblocks;
5681         int ret = 0;
5682
5683         /*
5684          * How many index blocks need to touch to modify nrblocks?
5685          * The "Chunk" flag indicating whether the nrblocks is
5686          * physically contiguous on disk
5687          *
5688          * For Direct IO and fallocate, they calls get_block to allocate
5689          * one single extent at a time, so they could set the "Chunk" flag
5690          */
5691         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5692
5693         ret = idxblocks;
5694
5695         /*
5696          * Now let's see how many group bitmaps and group descriptors need
5697          * to account
5698          */
5699         groups = idxblocks;
5700         if (chunk)
5701                 groups += 1;
5702         else
5703                 groups += nrblocks;
5704
5705         gdpblocks = groups;
5706         if (groups > ngroups)
5707                 groups = ngroups;
5708         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5709                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5710
5711         /* bitmaps and block group descriptor blocks */
5712         ret += groups + gdpblocks;
5713
5714         /* Blocks for super block, inode, quota and xattr blocks */
5715         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5716
5717         return ret;
5718 }
5719
5720 /*
5721  * Calulate the total number of credits to reserve to fit
5722  * the modification of a single pages into a single transaction,
5723  * which may include multiple chunks of block allocations.
5724  *
5725  * This could be called via ext4_write_begin()
5726  *
5727  * We need to consider the worse case, when
5728  * one new block per extent.
5729  */
5730 int ext4_writepage_trans_blocks(struct inode *inode)
5731 {
5732         int bpp = ext4_journal_blocks_per_page(inode);
5733         int ret;
5734
5735         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5736
5737         /* Account for data blocks for journalled mode */
5738         if (ext4_should_journal_data(inode))
5739                 ret += bpp;
5740         return ret;
5741 }
5742
5743 /*
5744  * Calculate the journal credits for a chunk of data modification.
5745  *
5746  * This is called from DIO, fallocate or whoever calling
5747  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5748  *
5749  * journal buffers for data blocks are not included here, as DIO
5750  * and fallocate do no need to journal data buffers.
5751  */
5752 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5753 {
5754         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5755 }
5756
5757 /*
5758  * The caller must have previously called ext4_reserve_inode_write().
5759  * Give this, we know that the caller already has write access to iloc->bh.
5760  */
5761 int ext4_mark_iloc_dirty(handle_t *handle,
5762                          struct inode *inode, struct ext4_iloc *iloc)
5763 {
5764         int err = 0;
5765
5766         if (test_opt(inode->i_sb, I_VERSION))
5767                 inode_inc_iversion(inode);
5768
5769         /* the do_update_inode consumes one bh->b_count */
5770         get_bh(iloc->bh);
5771
5772         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5773         err = ext4_do_update_inode(handle, inode, iloc);
5774         put_bh(iloc->bh);
5775         return err;
5776 }
5777
5778 /*
5779  * On success, We end up with an outstanding reference count against
5780  * iloc->bh.  This _must_ be cleaned up later.
5781  */
5782
5783 int
5784 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5785                          struct ext4_iloc *iloc)
5786 {
5787         int err;
5788
5789         err = ext4_get_inode_loc(inode, iloc);
5790         if (!err) {
5791                 BUFFER_TRACE(iloc->bh, "get_write_access");
5792                 err = ext4_journal_get_write_access(handle, iloc->bh);
5793                 if (err) {
5794                         brelse(iloc->bh);
5795                         iloc->bh = NULL;
5796                 }
5797         }
5798         ext4_std_error(inode->i_sb, err);
5799         return err;
5800 }
5801
5802 /*
5803  * Expand an inode by new_extra_isize bytes.
5804  * Returns 0 on success or negative error number on failure.
5805  */
5806 static int ext4_expand_extra_isize(struct inode *inode,
5807                                    unsigned int new_extra_isize,
5808                                    struct ext4_iloc iloc,
5809                                    handle_t *handle)
5810 {
5811         struct ext4_inode *raw_inode;
5812         struct ext4_xattr_ibody_header *header;
5813
5814         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5815                 return 0;
5816
5817         raw_inode = ext4_raw_inode(&iloc);
5818
5819         header = IHDR(inode, raw_inode);
5820
5821         /* No extended attributes present */
5822         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5823             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5824                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5825                         new_extra_isize);
5826                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5827                 return 0;
5828         }
5829
5830         /* try to expand with EAs present */
5831         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5832                                           raw_inode, handle);
5833 }
5834
5835 /*
5836  * What we do here is to mark the in-core inode as clean with respect to inode
5837  * dirtiness (it may still be data-dirty).
5838  * This means that the in-core inode may be reaped by prune_icache
5839  * without having to perform any I/O.  This is a very good thing,
5840  * because *any* task may call prune_icache - even ones which
5841  * have a transaction open against a different journal.
5842  *
5843  * Is this cheating?  Not really.  Sure, we haven't written the
5844  * inode out, but prune_icache isn't a user-visible syncing function.
5845  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5846  * we start and wait on commits.
5847  *
5848  * Is this efficient/effective?  Well, we're being nice to the system
5849  * by cleaning up our inodes proactively so they can be reaped
5850  * without I/O.  But we are potentially leaving up to five seconds'
5851  * worth of inodes floating about which prune_icache wants us to
5852  * write out.  One way to fix that would be to get prune_icache()
5853  * to do a write_super() to free up some memory.  It has the desired
5854  * effect.
5855  */
5856 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5857 {
5858         struct ext4_iloc iloc;
5859         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5860         static unsigned int mnt_count;
5861         int err, ret;
5862
5863         might_sleep();
5864         err = ext4_reserve_inode_write(handle, inode, &iloc);
5865         if (ext4_handle_valid(handle) &&
5866             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5867             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5868                 /*
5869                  * We need extra buffer credits since we may write into EA block
5870                  * with this same handle. If journal_extend fails, then it will
5871                  * only result in a minor loss of functionality for that inode.
5872                  * If this is felt to be critical, then e2fsck should be run to
5873                  * force a large enough s_min_extra_isize.
5874                  */
5875                 if ((jbd2_journal_extend(handle,
5876                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5877                         ret = ext4_expand_extra_isize(inode,
5878                                                       sbi->s_want_extra_isize,
5879                                                       iloc, handle);
5880                         if (ret) {
5881                                 ext4_set_inode_state(inode,
5882                                                      EXT4_STATE_NO_EXPAND);
5883                                 if (mnt_count !=
5884                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5885                                         ext4_warning(inode->i_sb,
5886                                         "Unable to expand inode %lu. Delete"
5887                                         " some EAs or run e2fsck.",
5888                                         inode->i_ino);
5889                                         mnt_count =
5890                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5891                                 }
5892                         }
5893                 }
5894         }
5895         if (!err)
5896                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5897         return err;
5898 }
5899
5900 /*
5901  * ext4_dirty_inode() is called from __mark_inode_dirty()
5902  *
5903  * We're really interested in the case where a file is being extended.
5904  * i_size has been changed by generic_commit_write() and we thus need
5905  * to include the updated inode in the current transaction.
5906  *
5907  * Also, dquot_alloc_block() will always dirty the inode when blocks
5908  * are allocated to the file.
5909  *
5910  * If the inode is marked synchronous, we don't honour that here - doing
5911  * so would cause a commit on atime updates, which we don't bother doing.
5912  * We handle synchronous inodes at the highest possible level.
5913  */
5914 void ext4_dirty_inode(struct inode *inode)
5915 {
5916         handle_t *handle;
5917
5918         handle = ext4_journal_start(inode, 2);
5919         if (IS_ERR(handle))
5920                 goto out;
5921
5922         ext4_mark_inode_dirty(handle, inode);
5923
5924         ext4_journal_stop(handle);
5925 out:
5926         return;
5927 }
5928
5929 #if 0
5930 /*
5931  * Bind an inode's backing buffer_head into this transaction, to prevent
5932  * it from being flushed to disk early.  Unlike
5933  * ext4_reserve_inode_write, this leaves behind no bh reference and
5934  * returns no iloc structure, so the caller needs to repeat the iloc
5935  * lookup to mark the inode dirty later.
5936  */
5937 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5938 {
5939         struct ext4_iloc iloc;
5940
5941         int err = 0;
5942         if (handle) {
5943                 err = ext4_get_inode_loc(inode, &iloc);
5944                 if (!err) {
5945                         BUFFER_TRACE(iloc.bh, "get_write_access");
5946                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5947                         if (!err)
5948                                 err = ext4_handle_dirty_metadata(handle,
5949                                                                  NULL,
5950                                                                  iloc.bh);
5951                         brelse(iloc.bh);
5952                 }
5953         }
5954         ext4_std_error(inode->i_sb, err);
5955         return err;
5956 }
5957 #endif
5958
5959 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5960 {
5961         journal_t *journal;
5962         handle_t *handle;
5963         int err;
5964
5965         /*
5966          * We have to be very careful here: changing a data block's
5967          * journaling status dynamically is dangerous.  If we write a
5968          * data block to the journal, change the status and then delete
5969          * that block, we risk forgetting to revoke the old log record
5970          * from the journal and so a subsequent replay can corrupt data.
5971          * So, first we make sure that the journal is empty and that
5972          * nobody is changing anything.
5973          */
5974
5975         journal = EXT4_JOURNAL(inode);
5976         if (!journal)
5977                 return 0;
5978         if (is_journal_aborted(journal))
5979                 return -EROFS;
5980
5981         jbd2_journal_lock_updates(journal);
5982         jbd2_journal_flush(journal);
5983
5984         /*
5985          * OK, there are no updates running now, and all cached data is
5986          * synced to disk.  We are now in a completely consistent state
5987          * which doesn't have anything in the journal, and we know that
5988          * no filesystem updates are running, so it is safe to modify
5989          * the inode's in-core data-journaling state flag now.
5990          */
5991
5992         if (val)
5993                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5994         else
5995                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5996         ext4_set_aops(inode);
5997
5998         jbd2_journal_unlock_updates(journal);
5999
6000         /* Finally we can mark the inode as dirty. */
6001
6002         handle = ext4_journal_start(inode, 1);
6003         if (IS_ERR(handle))
6004                 return PTR_ERR(handle);
6005
6006         err = ext4_mark_inode_dirty(handle, inode);
6007         ext4_handle_sync(handle);
6008         ext4_journal_stop(handle);
6009         ext4_std_error(inode->i_sb, err);
6010
6011         return err;
6012 }
6013
6014 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6015 {
6016         return !buffer_mapped(bh);
6017 }
6018
6019 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6020 {
6021         struct page *page = vmf->page;
6022         loff_t size;
6023         unsigned long len;
6024         int ret = -EINVAL;
6025         void *fsdata;
6026         struct file *file = vma->vm_file;
6027         struct inode *inode = file->f_path.dentry->d_inode;
6028         struct address_space *mapping = inode->i_mapping;
6029
6030         /*
6031          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6032          * get i_mutex because we are already holding mmap_sem.
6033          */
6034         down_read(&inode->i_alloc_sem);
6035         size = i_size_read(inode);
6036         if (page->mapping != mapping || size <= page_offset(page)
6037             || !PageUptodate(page)) {
6038                 /* page got truncated from under us? */
6039                 goto out_unlock;
6040         }
6041         ret = 0;
6042         if (PageMappedToDisk(page))
6043                 goto out_unlock;
6044
6045         if (page->index == size >> PAGE_CACHE_SHIFT)
6046                 len = size & ~PAGE_CACHE_MASK;
6047         else
6048                 len = PAGE_CACHE_SIZE;
6049
6050         lock_page(page);
6051         /*
6052          * return if we have all the buffers mapped. This avoid
6053          * the need to call write_begin/write_end which does a
6054          * journal_start/journal_stop which can block and take
6055          * long time
6056          */
6057         if (page_has_buffers(page)) {
6058                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6059                                         ext4_bh_unmapped)) {
6060                         unlock_page(page);
6061                         goto out_unlock;
6062                 }
6063         }
6064         unlock_page(page);
6065         /*
6066          * OK, we need to fill the hole... Do write_begin write_end
6067          * to do block allocation/reservation.We are not holding
6068          * inode.i__mutex here. That allow * parallel write_begin,
6069          * write_end call. lock_page prevent this from happening
6070          * on the same page though
6071          */
6072         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6073                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6074         if (ret < 0)
6075                 goto out_unlock;
6076         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6077                         len, len, page, fsdata);
6078         if (ret < 0)
6079                 goto out_unlock;
6080         ret = 0;
6081 out_unlock:
6082         if (ret)
6083                 ret = VM_FAULT_SIGBUS;
6084         up_read(&inode->i_alloc_sem);
6085         return ret;
6086 }