93f16c5e8a8e6fc5466cf7a04fcad65eff4ebb03
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocate.
493  * if create==0 and the blocks are pre-allocated and uninitialized block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EIO;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 ext4_es_lru_add(inode);
532                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533                         map->m_pblk = ext4_es_pblock(&es) +
534                                         map->m_lblk - es.es_lblk;
535                         map->m_flags |= ext4_es_is_written(&es) ?
536                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537                         retval = es.es_len - (map->m_lblk - es.es_lblk);
538                         if (retval > map->m_len)
539                                 retval = map->m_len;
540                         map->m_len = retval;
541                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558                 down_read((&EXT4_I(inode)->i_data_sem));
559         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561                                              EXT4_GET_BLOCKS_KEEP_SIZE);
562         } else {
563                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589                 up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to uninitialized extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_blocks()
628          * with create == 1 flag.
629          */
630         down_write((&EXT4_I(inode)->i_data_sem));
631
632         /*
633          * if the caller is from delayed allocation writeout path
634          * we have already reserved fs blocks for allocation
635          * let the underlying get_block() function know to
636          * avoid double accounting
637          */
638         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640         /*
641          * We need to check for EXT4 here because migrate
642          * could have changed the inode type in between
643          */
644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646         } else {
647                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650                         /*
651                          * We allocated new blocks which will result in
652                          * i_data's format changing.  Force the migrate
653                          * to fail by clearing migrate flags
654                          */
655                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656                 }
657
658                 /*
659                  * Update reserved blocks/metadata blocks after successful
660                  * block allocation which had been deferred till now. We don't
661                  * support fallocate for non extent files. So we can update
662                  * reserve space here.
663                  */
664                 if ((retval > 0) &&
665                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666                         ext4_da_update_reserve_space(inode, retval, 1);
667         }
668         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670
671         if (retval > 0) {
672                 unsigned int status;
673
674                 if (unlikely(retval != map->m_len)) {
675                         ext4_warning(inode->i_sb,
676                                      "ES len assertion failed for inode "
677                                      "%lu: retval %d != map->m_len %d",
678                                      inode->i_ino, retval, map->m_len);
679                         WARN_ON(1);
680                 }
681
682                 /*
683                  * If the extent has been zeroed out, we don't need to update
684                  * extent status tree.
685                  */
686                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688                         if (ext4_es_is_written(&es))
689                                 goto has_zeroout;
690                 }
691                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694                     ext4_find_delalloc_range(inode, map->m_lblk,
695                                              map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0)
700                         retval = ret;
701         }
702
703 has_zeroout:
704         up_write((&EXT4_I(inode)->i_data_sem));
705         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706                 ret = check_block_validity(inode, map);
707                 if (ret != 0)
708                         return ret;
709         }
710         return retval;
711 }
712
713 /* Maximum number of blocks we map for direct IO at once. */
714 #define DIO_MAX_BLOCKS 4096
715
716 static int _ext4_get_block(struct inode *inode, sector_t iblock,
717                            struct buffer_head *bh, int flags)
718 {
719         handle_t *handle = ext4_journal_current_handle();
720         struct ext4_map_blocks map;
721         int ret = 0, started = 0;
722         int dio_credits;
723
724         if (ext4_has_inline_data(inode))
725                 return -ERANGE;
726
727         map.m_lblk = iblock;
728         map.m_len = bh->b_size >> inode->i_blkbits;
729
730         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731                 /* Direct IO write... */
732                 if (map.m_len > DIO_MAX_BLOCKS)
733                         map.m_len = DIO_MAX_BLOCKS;
734                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736                                             dio_credits);
737                 if (IS_ERR(handle)) {
738                         ret = PTR_ERR(handle);
739                         return ret;
740                 }
741                 started = 1;
742         }
743
744         ret = ext4_map_blocks(handle, inode, &map, flags);
745         if (ret > 0) {
746                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
748                 map_bh(bh, inode->i_sb, map.m_pblk);
749                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751                         set_buffer_defer_completion(bh);
752                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753                 ret = 0;
754         }
755         if (started)
756                 ext4_journal_stop(handle);
757         return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761                    struct buffer_head *bh, int create)
762 {
763         return _ext4_get_block(inode, iblock, bh,
764                                create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768  * `handle' can be NULL if create is zero
769  */
770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771                                 ext4_lblk_t block, int create, int *errp)
772 {
773         struct ext4_map_blocks map;
774         struct buffer_head *bh;
775         int fatal = 0, err;
776
777         J_ASSERT(handle != NULL || create == 0);
778
779         map.m_lblk = block;
780         map.m_len = 1;
781         err = ext4_map_blocks(handle, inode, &map,
782                               create ? EXT4_GET_BLOCKS_CREATE : 0);
783
784         /* ensure we send some value back into *errp */
785         *errp = 0;
786
787         if (create && err == 0)
788                 err = -ENOSPC;  /* should never happen */
789         if (err < 0)
790                 *errp = err;
791         if (err <= 0)
792                 return NULL;
793
794         bh = sb_getblk(inode->i_sb, map.m_pblk);
795         if (unlikely(!bh)) {
796                 *errp = -ENOMEM;
797                 return NULL;
798         }
799         if (map.m_flags & EXT4_MAP_NEW) {
800                 J_ASSERT(create != 0);
801                 J_ASSERT(handle != NULL);
802
803                 /*
804                  * Now that we do not always journal data, we should
805                  * keep in mind whether this should always journal the
806                  * new buffer as metadata.  For now, regular file
807                  * writes use ext4_get_block instead, so it's not a
808                  * problem.
809                  */
810                 lock_buffer(bh);
811                 BUFFER_TRACE(bh, "call get_create_access");
812                 fatal = ext4_journal_get_create_access(handle, bh);
813                 if (!fatal && !buffer_uptodate(bh)) {
814                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815                         set_buffer_uptodate(bh);
816                 }
817                 unlock_buffer(bh);
818                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819                 err = ext4_handle_dirty_metadata(handle, inode, bh);
820                 if (!fatal)
821                         fatal = err;
822         } else {
823                 BUFFER_TRACE(bh, "not a new buffer");
824         }
825         if (fatal) {
826                 *errp = fatal;
827                 brelse(bh);
828                 bh = NULL;
829         }
830         return bh;
831 }
832
833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834                                ext4_lblk_t block, int create, int *err)
835 {
836         struct buffer_head *bh;
837
838         bh = ext4_getblk(handle, inode, block, create, err);
839         if (!bh)
840                 return bh;
841         if (buffer_uptodate(bh))
842                 return bh;
843         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844         wait_on_buffer(bh);
845         if (buffer_uptodate(bh))
846                 return bh;
847         put_bh(bh);
848         *err = -EIO;
849         return NULL;
850 }
851
852 int ext4_walk_page_buffers(handle_t *handle,
853                            struct buffer_head *head,
854                            unsigned from,
855                            unsigned to,
856                            int *partial,
857                            int (*fn)(handle_t *handle,
858                                      struct buffer_head *bh))
859 {
860         struct buffer_head *bh;
861         unsigned block_start, block_end;
862         unsigned blocksize = head->b_size;
863         int err, ret = 0;
864         struct buffer_head *next;
865
866         for (bh = head, block_start = 0;
867              ret == 0 && (bh != head || !block_start);
868              block_start = block_end, bh = next) {
869                 next = bh->b_this_page;
870                 block_end = block_start + blocksize;
871                 if (block_end <= from || block_start >= to) {
872                         if (partial && !buffer_uptodate(bh))
873                                 *partial = 1;
874                         continue;
875                 }
876                 err = (*fn)(handle, bh);
877                 if (!ret)
878                         ret = err;
879         }
880         return ret;
881 }
882
883 /*
884  * To preserve ordering, it is essential that the hole instantiation and
885  * the data write be encapsulated in a single transaction.  We cannot
886  * close off a transaction and start a new one between the ext4_get_block()
887  * and the commit_write().  So doing the jbd2_journal_start at the start of
888  * prepare_write() is the right place.
889  *
890  * Also, this function can nest inside ext4_writepage().  In that case, we
891  * *know* that ext4_writepage() has generated enough buffer credits to do the
892  * whole page.  So we won't block on the journal in that case, which is good,
893  * because the caller may be PF_MEMALLOC.
894  *
895  * By accident, ext4 can be reentered when a transaction is open via
896  * quota file writes.  If we were to commit the transaction while thus
897  * reentered, there can be a deadlock - we would be holding a quota
898  * lock, and the commit would never complete if another thread had a
899  * transaction open and was blocking on the quota lock - a ranking
900  * violation.
901  *
902  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903  * will _not_ run commit under these circumstances because handle->h_ref
904  * is elevated.  We'll still have enough credits for the tiny quotafile
905  * write.
906  */
907 int do_journal_get_write_access(handle_t *handle,
908                                 struct buffer_head *bh)
909 {
910         int dirty = buffer_dirty(bh);
911         int ret;
912
913         if (!buffer_mapped(bh) || buffer_freed(bh))
914                 return 0;
915         /*
916          * __block_write_begin() could have dirtied some buffers. Clean
917          * the dirty bit as jbd2_journal_get_write_access() could complain
918          * otherwise about fs integrity issues. Setting of the dirty bit
919          * by __block_write_begin() isn't a real problem here as we clear
920          * the bit before releasing a page lock and thus writeback cannot
921          * ever write the buffer.
922          */
923         if (dirty)
924                 clear_buffer_dirty(bh);
925         ret = ext4_journal_get_write_access(handle, bh);
926         if (!ret && dirty)
927                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928         return ret;
929 }
930
931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932                    struct buffer_head *bh_result, int create);
933 static int ext4_write_begin(struct file *file, struct address_space *mapping,
934                             loff_t pos, unsigned len, unsigned flags,
935                             struct page **pagep, void **fsdata)
936 {
937         struct inode *inode = mapping->host;
938         int ret, needed_blocks;
939         handle_t *handle;
940         int retries = 0;
941         struct page *page;
942         pgoff_t index;
943         unsigned from, to;
944
945         trace_ext4_write_begin(inode, pos, len, flags);
946         /*
947          * Reserve one block more for addition to orphan list in case
948          * we allocate blocks but write fails for some reason
949          */
950         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951         index = pos >> PAGE_CACHE_SHIFT;
952         from = pos & (PAGE_CACHE_SIZE - 1);
953         to = from + len;
954
955         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957                                                     flags, pagep);
958                 if (ret < 0)
959                         return ret;
960                 if (ret == 1)
961                         return 0;
962         }
963
964         /*
965          * grab_cache_page_write_begin() can take a long time if the
966          * system is thrashing due to memory pressure, or if the page
967          * is being written back.  So grab it first before we start
968          * the transaction handle.  This also allows us to allocate
969          * the page (if needed) without using GFP_NOFS.
970          */
971 retry_grab:
972         page = grab_cache_page_write_begin(mapping, index, flags);
973         if (!page)
974                 return -ENOMEM;
975         unlock_page(page);
976
977 retry_journal:
978         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979         if (IS_ERR(handle)) {
980                 page_cache_release(page);
981                 return PTR_ERR(handle);
982         }
983
984         lock_page(page);
985         if (page->mapping != mapping) {
986                 /* The page got truncated from under us */
987                 unlock_page(page);
988                 page_cache_release(page);
989                 ext4_journal_stop(handle);
990                 goto retry_grab;
991         }
992         /* In case writeback began while the page was unlocked */
993         wait_for_stable_page(page);
994
995         if (ext4_should_dioread_nolock(inode))
996                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997         else
998                 ret = __block_write_begin(page, pos, len, ext4_get_block);
999
1000         if (!ret && ext4_should_journal_data(inode)) {
1001                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002                                              from, to, NULL,
1003                                              do_journal_get_write_access);
1004         }
1005
1006         if (ret) {
1007                 unlock_page(page);
1008                 /*
1009                  * __block_write_begin may have instantiated a few blocks
1010                  * outside i_size.  Trim these off again. Don't need
1011                  * i_size_read because we hold i_mutex.
1012                  *
1013                  * Add inode to orphan list in case we crash before
1014                  * truncate finishes
1015                  */
1016                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017                         ext4_orphan_add(handle, inode);
1018
1019                 ext4_journal_stop(handle);
1020                 if (pos + len > inode->i_size) {
1021                         ext4_truncate_failed_write(inode);
1022                         /*
1023                          * If truncate failed early the inode might
1024                          * still be on the orphan list; we need to
1025                          * make sure the inode is removed from the
1026                          * orphan list in that case.
1027                          */
1028                         if (inode->i_nlink)
1029                                 ext4_orphan_del(NULL, inode);
1030                 }
1031
1032                 if (ret == -ENOSPC &&
1033                     ext4_should_retry_alloc(inode->i_sb, &retries))
1034                         goto retry_journal;
1035                 page_cache_release(page);
1036                 return ret;
1037         }
1038         *pagep = page;
1039         return ret;
1040 }
1041
1042 /* For write_end() in data=journal mode */
1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044 {
1045         int ret;
1046         if (!buffer_mapped(bh) || buffer_freed(bh))
1047                 return 0;
1048         set_buffer_uptodate(bh);
1049         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050         clear_buffer_meta(bh);
1051         clear_buffer_prio(bh);
1052         return ret;
1053 }
1054
1055 /*
1056  * We need to pick up the new inode size which generic_commit_write gave us
1057  * `file' can be NULL - eg, when called from page_symlink().
1058  *
1059  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060  * buffers are managed internally.
1061  */
1062 static int ext4_write_end(struct file *file,
1063                           struct address_space *mapping,
1064                           loff_t pos, unsigned len, unsigned copied,
1065                           struct page *page, void *fsdata)
1066 {
1067         handle_t *handle = ext4_journal_current_handle();
1068         struct inode *inode = mapping->host;
1069         int ret = 0, ret2;
1070         int i_size_changed = 0;
1071
1072         trace_ext4_write_end(inode, pos, len, copied);
1073         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074                 ret = ext4_jbd2_file_inode(handle, inode);
1075                 if (ret) {
1076                         unlock_page(page);
1077                         page_cache_release(page);
1078                         goto errout;
1079                 }
1080         }
1081
1082         if (ext4_has_inline_data(inode)) {
1083                 ret = ext4_write_inline_data_end(inode, pos, len,
1084                                                  copied, page);
1085                 if (ret < 0)
1086                         goto errout;
1087                 copied = ret;
1088         } else
1089                 copied = block_write_end(file, mapping, pos,
1090                                          len, copied, page, fsdata);
1091
1092         /*
1093          * No need to use i_size_read() here, the i_size
1094          * cannot change under us because we hole i_mutex.
1095          *
1096          * But it's important to update i_size while still holding page lock:
1097          * page writeout could otherwise come in and zero beyond i_size.
1098          */
1099         if (pos + copied > inode->i_size) {
1100                 i_size_write(inode, pos + copied);
1101                 i_size_changed = 1;
1102         }
1103
1104         if (pos + copied > EXT4_I(inode)->i_disksize) {
1105                 /* We need to mark inode dirty even if
1106                  * new_i_size is less that inode->i_size
1107                  * but greater than i_disksize. (hint delalloc)
1108                  */
1109                 ext4_update_i_disksize(inode, (pos + copied));
1110                 i_size_changed = 1;
1111         }
1112         unlock_page(page);
1113         page_cache_release(page);
1114
1115         /*
1116          * Don't mark the inode dirty under page lock. First, it unnecessarily
1117          * makes the holding time of page lock longer. Second, it forces lock
1118          * ordering of page lock and transaction start for journaling
1119          * filesystems.
1120          */
1121         if (i_size_changed)
1122                 ext4_mark_inode_dirty(handle, inode);
1123
1124         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125                 /* if we have allocated more blocks and copied
1126                  * less. We will have blocks allocated outside
1127                  * inode->i_size. So truncate them
1128                  */
1129                 ext4_orphan_add(handle, inode);
1130 errout:
1131         ret2 = ext4_journal_stop(handle);
1132         if (!ret)
1133                 ret = ret2;
1134
1135         if (pos + len > inode->i_size) {
1136                 ext4_truncate_failed_write(inode);
1137                 /*
1138                  * If truncate failed early the inode might still be
1139                  * on the orphan list; we need to make sure the inode
1140                  * is removed from the orphan list in that case.
1141                  */
1142                 if (inode->i_nlink)
1143                         ext4_orphan_del(NULL, inode);
1144         }
1145
1146         return ret ? ret : copied;
1147 }
1148
1149 static int ext4_journalled_write_end(struct file *file,
1150                                      struct address_space *mapping,
1151                                      loff_t pos, unsigned len, unsigned copied,
1152                                      struct page *page, void *fsdata)
1153 {
1154         handle_t *handle = ext4_journal_current_handle();
1155         struct inode *inode = mapping->host;
1156         int ret = 0, ret2;
1157         int partial = 0;
1158         unsigned from, to;
1159         loff_t new_i_size;
1160
1161         trace_ext4_journalled_write_end(inode, pos, len, copied);
1162         from = pos & (PAGE_CACHE_SIZE - 1);
1163         to = from + len;
1164
1165         BUG_ON(!ext4_handle_valid(handle));
1166
1167         if (ext4_has_inline_data(inode))
1168                 copied = ext4_write_inline_data_end(inode, pos, len,
1169                                                     copied, page);
1170         else {
1171                 if (copied < len) {
1172                         if (!PageUptodate(page))
1173                                 copied = 0;
1174                         page_zero_new_buffers(page, from+copied, to);
1175                 }
1176
1177                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178                                              to, &partial, write_end_fn);
1179                 if (!partial)
1180                         SetPageUptodate(page);
1181         }
1182         new_i_size = pos + copied;
1183         if (new_i_size > inode->i_size)
1184                 i_size_write(inode, pos+copied);
1185         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187         if (new_i_size > EXT4_I(inode)->i_disksize) {
1188                 ext4_update_i_disksize(inode, new_i_size);
1189                 ret2 = ext4_mark_inode_dirty(handle, inode);
1190                 if (!ret)
1191                         ret = ret2;
1192         }
1193
1194         unlock_page(page);
1195         page_cache_release(page);
1196         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197                 /* if we have allocated more blocks and copied
1198                  * less. We will have blocks allocated outside
1199                  * inode->i_size. So truncate them
1200                  */
1201                 ext4_orphan_add(handle, inode);
1202
1203         ret2 = ext4_journal_stop(handle);
1204         if (!ret)
1205                 ret = ret2;
1206         if (pos + len > inode->i_size) {
1207                 ext4_truncate_failed_write(inode);
1208                 /*
1209                  * If truncate failed early the inode might still be
1210                  * on the orphan list; we need to make sure the inode
1211                  * is removed from the orphan list in that case.
1212                  */
1213                 if (inode->i_nlink)
1214                         ext4_orphan_del(NULL, inode);
1215         }
1216
1217         return ret ? ret : copied;
1218 }
1219
1220 /*
1221  * Reserve a metadata for a single block located at lblock
1222  */
1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224 {
1225         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226         struct ext4_inode_info *ei = EXT4_I(inode);
1227         unsigned int md_needed;
1228         ext4_lblk_t save_last_lblock;
1229         int save_len;
1230
1231         /*
1232          * recalculate the amount of metadata blocks to reserve
1233          * in order to allocate nrblocks
1234          * worse case is one extent per block
1235          */
1236         spin_lock(&ei->i_block_reservation_lock);
1237         /*
1238          * ext4_calc_metadata_amount() has side effects, which we have
1239          * to be prepared undo if we fail to claim space.
1240          */
1241         save_len = ei->i_da_metadata_calc_len;
1242         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243         md_needed = EXT4_NUM_B2C(sbi,
1244                                  ext4_calc_metadata_amount(inode, lblock));
1245         trace_ext4_da_reserve_space(inode, md_needed);
1246
1247         /*
1248          * We do still charge estimated metadata to the sb though;
1249          * we cannot afford to run out of free blocks.
1250          */
1251         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252                 ei->i_da_metadata_calc_len = save_len;
1253                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254                 spin_unlock(&ei->i_block_reservation_lock);
1255                 return -ENOSPC;
1256         }
1257         ei->i_reserved_meta_blocks += md_needed;
1258         spin_unlock(&ei->i_block_reservation_lock);
1259
1260         return 0;       /* success */
1261 }
1262
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269         struct ext4_inode_info *ei = EXT4_I(inode);
1270         unsigned int md_needed;
1271         int ret;
1272         ext4_lblk_t save_last_lblock;
1273         int save_len;
1274
1275         /*
1276          * We will charge metadata quota at writeout time; this saves
1277          * us from metadata over-estimation, though we may go over by
1278          * a small amount in the end.  Here we just reserve for data.
1279          */
1280         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281         if (ret)
1282                 return ret;
1283
1284         /*
1285          * recalculate the amount of metadata blocks to reserve
1286          * in order to allocate nrblocks
1287          * worse case is one extent per block
1288          */
1289         spin_lock(&ei->i_block_reservation_lock);
1290         /*
1291          * ext4_calc_metadata_amount() has side effects, which we have
1292          * to be prepared undo if we fail to claim space.
1293          */
1294         save_len = ei->i_da_metadata_calc_len;
1295         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296         md_needed = EXT4_NUM_B2C(sbi,
1297                                  ext4_calc_metadata_amount(inode, lblock));
1298         trace_ext4_da_reserve_space(inode, md_needed);
1299
1300         /*
1301          * We do still charge estimated metadata to the sb though;
1302          * we cannot afford to run out of free blocks.
1303          */
1304         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305                 ei->i_da_metadata_calc_len = save_len;
1306                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307                 spin_unlock(&ei->i_block_reservation_lock);
1308                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309                 return -ENOSPC;
1310         }
1311         ei->i_reserved_data_blocks++;
1312         ei->i_reserved_meta_blocks += md_needed;
1313         spin_unlock(&ei->i_block_reservation_lock);
1314
1315         return 0;       /* success */
1316 }
1317
1318 static void ext4_da_release_space(struct inode *inode, int to_free)
1319 {
1320         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321         struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323         if (!to_free)
1324                 return;         /* Nothing to release, exit */
1325
1326         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328         trace_ext4_da_release_space(inode, to_free);
1329         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330                 /*
1331                  * if there aren't enough reserved blocks, then the
1332                  * counter is messed up somewhere.  Since this
1333                  * function is called from invalidate page, it's
1334                  * harmless to return without any action.
1335                  */
1336                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337                          "ino %lu, to_free %d with only %d reserved "
1338                          "data blocks", inode->i_ino, to_free,
1339                          ei->i_reserved_data_blocks);
1340                 WARN_ON(1);
1341                 to_free = ei->i_reserved_data_blocks;
1342         }
1343         ei->i_reserved_data_blocks -= to_free;
1344
1345         if (ei->i_reserved_data_blocks == 0) {
1346                 /*
1347                  * We can release all of the reserved metadata blocks
1348                  * only when we have written all of the delayed
1349                  * allocation blocks.
1350                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1351                  * i_reserved_data_blocks, etc. refer to number of clusters.
1352                  */
1353                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354                                    ei->i_reserved_meta_blocks);
1355                 ei->i_reserved_meta_blocks = 0;
1356                 ei->i_da_metadata_calc_len = 0;
1357         }
1358
1359         /* update fs dirty data blocks counter */
1360         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365 }
1366
1367 static void ext4_da_page_release_reservation(struct page *page,
1368                                              unsigned int offset,
1369                                              unsigned int length)
1370 {
1371         int to_release = 0;
1372         struct buffer_head *head, *bh;
1373         unsigned int curr_off = 0;
1374         struct inode *inode = page->mapping->host;
1375         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376         unsigned int stop = offset + length;
1377         int num_clusters;
1378         ext4_fsblk_t lblk;
1379
1380         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382         head = page_buffers(page);
1383         bh = head;
1384         do {
1385                 unsigned int next_off = curr_off + bh->b_size;
1386
1387                 if (next_off > stop)
1388                         break;
1389
1390                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391                         to_release++;
1392                         clear_buffer_delay(bh);
1393                 }
1394                 curr_off = next_off;
1395         } while ((bh = bh->b_this_page) != head);
1396
1397         if (to_release) {
1398                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399                 ext4_es_remove_extent(inode, lblk, to_release);
1400         }
1401
1402         /* If we have released all the blocks belonging to a cluster, then we
1403          * need to release the reserved space for that cluster. */
1404         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405         while (num_clusters > 0) {
1406                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407                         ((num_clusters - 1) << sbi->s_cluster_bits);
1408                 if (sbi->s_cluster_ratio == 1 ||
1409                     !ext4_find_delalloc_cluster(inode, lblk))
1410                         ext4_da_release_space(inode, 1);
1411
1412                 num_clusters--;
1413         }
1414 }
1415
1416 /*
1417  * Delayed allocation stuff
1418  */
1419
1420 struct mpage_da_data {
1421         struct inode *inode;
1422         struct writeback_control *wbc;
1423
1424         pgoff_t first_page;     /* The first page to write */
1425         pgoff_t next_page;      /* Current page to examine */
1426         pgoff_t last_page;      /* Last page to examine */
1427         /*
1428          * Extent to map - this can be after first_page because that can be
1429          * fully mapped. We somewhat abuse m_flags to store whether the extent
1430          * is delalloc or unwritten.
1431          */
1432         struct ext4_map_blocks map;
1433         struct ext4_io_submit io_submit;        /* IO submission data */
1434 };
1435
1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437                                        bool invalidate)
1438 {
1439         int nr_pages, i;
1440         pgoff_t index, end;
1441         struct pagevec pvec;
1442         struct inode *inode = mpd->inode;
1443         struct address_space *mapping = inode->i_mapping;
1444
1445         /* This is necessary when next_page == 0. */
1446         if (mpd->first_page >= mpd->next_page)
1447                 return;
1448
1449         index = mpd->first_page;
1450         end   = mpd->next_page - 1;
1451         if (invalidate) {
1452                 ext4_lblk_t start, last;
1453                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455                 ext4_es_remove_extent(inode, start, last - start + 1);
1456         }
1457
1458         pagevec_init(&pvec, 0);
1459         while (index <= end) {
1460                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461                 if (nr_pages == 0)
1462                         break;
1463                 for (i = 0; i < nr_pages; i++) {
1464                         struct page *page = pvec.pages[i];
1465                         if (page->index > end)
1466                                 break;
1467                         BUG_ON(!PageLocked(page));
1468                         BUG_ON(PageWriteback(page));
1469                         if (invalidate) {
1470                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471                                 ClearPageUptodate(page);
1472                         }
1473                         unlock_page(page);
1474                 }
1475                 index = pvec.pages[nr_pages - 1]->index + 1;
1476                 pagevec_release(&pvec);
1477         }
1478 }
1479
1480 static void ext4_print_free_blocks(struct inode *inode)
1481 {
1482         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483         struct super_block *sb = inode->i_sb;
1484         struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487                EXT4_C2B(EXT4_SB(inode->i_sb),
1488                         ext4_count_free_clusters(sb)));
1489         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491                (long long) EXT4_C2B(EXT4_SB(sb),
1492                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494                (long long) EXT4_C2B(EXT4_SB(sb),
1495                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498                  ei->i_reserved_data_blocks);
1499         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500                ei->i_reserved_meta_blocks);
1501         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502                ei->i_allocated_meta_blocks);
1503         return;
1504 }
1505
1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510
1511 /*
1512  * This function is grabs code from the very beginning of
1513  * ext4_map_blocks, but assumes that the caller is from delayed write
1514  * time. This function looks up the requested blocks and sets the
1515  * buffer delay bit under the protection of i_data_sem.
1516  */
1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518                               struct ext4_map_blocks *map,
1519                               struct buffer_head *bh)
1520 {
1521         struct extent_status es;
1522         int retval;
1523         sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525         struct ext4_map_blocks orig_map;
1526
1527         memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529
1530         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531                 invalid_block = ~0;
1532
1533         map->m_flags = 0;
1534         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535                   "logical block %lu\n", inode->i_ino, map->m_len,
1536                   (unsigned long) map->m_lblk);
1537
1538         /* Lookup extent status tree firstly */
1539         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540                 ext4_es_lru_add(inode);
1541                 if (ext4_es_is_hole(&es)) {
1542                         retval = 0;
1543                         down_read((&EXT4_I(inode)->i_data_sem));
1544                         goto add_delayed;
1545                 }
1546
1547                 /*
1548                  * Delayed extent could be allocated by fallocate.
1549                  * So we need to check it.
1550                  */
1551                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552                         map_bh(bh, inode->i_sb, invalid_block);
1553                         set_buffer_new(bh);
1554                         set_buffer_delay(bh);
1555                         return 0;
1556                 }
1557
1558                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559                 retval = es.es_len - (iblock - es.es_lblk);
1560                 if (retval > map->m_len)
1561                         retval = map->m_len;
1562                 map->m_len = retval;
1563                 if (ext4_es_is_written(&es))
1564                         map->m_flags |= EXT4_MAP_MAPPED;
1565                 else if (ext4_es_is_unwritten(&es))
1566                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1567                 else
1568                         BUG_ON(1);
1569
1570 #ifdef ES_AGGRESSIVE_TEST
1571                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573                 return retval;
1574         }
1575
1576         /*
1577          * Try to see if we can get the block without requesting a new
1578          * file system block.
1579          */
1580         down_read((&EXT4_I(inode)->i_data_sem));
1581         if (ext4_has_inline_data(inode)) {
1582                 /*
1583                  * We will soon create blocks for this page, and let
1584                  * us pretend as if the blocks aren't allocated yet.
1585                  * In case of clusters, we have to handle the work
1586                  * of mapping from cluster so that the reserved space
1587                  * is calculated properly.
1588                  */
1589                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1591                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592                 retval = 0;
1593         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594                 retval = ext4_ext_map_blocks(NULL, inode, map,
1595                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596         else
1597                 retval = ext4_ind_map_blocks(NULL, inode, map,
1598                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600 add_delayed:
1601         if (retval == 0) {
1602                 int ret;
1603                 /*
1604                  * XXX: __block_prepare_write() unmaps passed block,
1605                  * is it OK?
1606                  */
1607                 /*
1608                  * If the block was allocated from previously allocated cluster,
1609                  * then we don't need to reserve it again. However we still need
1610                  * to reserve metadata for every block we're going to write.
1611                  */
1612                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613                         ret = ext4_da_reserve_space(inode, iblock);
1614                         if (ret) {
1615                                 /* not enough space to reserve */
1616                                 retval = ret;
1617                                 goto out_unlock;
1618                         }
1619                 } else {
1620                         ret = ext4_da_reserve_metadata(inode, iblock);
1621                         if (ret) {
1622                                 /* not enough space to reserve */
1623                                 retval = ret;
1624                                 goto out_unlock;
1625                         }
1626                 }
1627
1628                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629                                             ~0, EXTENT_STATUS_DELAYED);
1630                 if (ret) {
1631                         retval = ret;
1632                         goto out_unlock;
1633                 }
1634
1635                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636                  * and it should not appear on the bh->b_state.
1637                  */
1638                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640                 map_bh(bh, inode->i_sb, invalid_block);
1641                 set_buffer_new(bh);
1642                 set_buffer_delay(bh);
1643         } else if (retval > 0) {
1644                 int ret;
1645                 unsigned int status;
1646
1647                 if (unlikely(retval != map->m_len)) {
1648                         ext4_warning(inode->i_sb,
1649                                      "ES len assertion failed for inode "
1650                                      "%lu: retval %d != map->m_len %d",
1651                                      inode->i_ino, retval, map->m_len);
1652                         WARN_ON(1);
1653                 }
1654
1655                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658                                             map->m_pblk, status);
1659                 if (ret != 0)
1660                         retval = ret;
1661         }
1662
1663 out_unlock:
1664         up_read((&EXT4_I(inode)->i_data_sem));
1665
1666         return retval;
1667 }
1668
1669 /*
1670  * This is a special get_blocks_t callback which is used by
1671  * ext4_da_write_begin().  It will either return mapped block or
1672  * reserve space for a single block.
1673  *
1674  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675  * We also have b_blocknr = -1 and b_bdev initialized properly
1676  *
1677  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679  * initialized properly.
1680  */
1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682                            struct buffer_head *bh, int create)
1683 {
1684         struct ext4_map_blocks map;
1685         int ret = 0;
1686
1687         BUG_ON(create == 0);
1688         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690         map.m_lblk = iblock;
1691         map.m_len = 1;
1692
1693         /*
1694          * first, we need to know whether the block is allocated already
1695          * preallocated blocks are unmapped but should treated
1696          * the same as allocated blocks.
1697          */
1698         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699         if (ret <= 0)
1700                 return ret;
1701
1702         map_bh(bh, inode->i_sb, map.m_pblk);
1703         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705         if (buffer_unwritten(bh)) {
1706                 /* A delayed write to unwritten bh should be marked
1707                  * new and mapped.  Mapped ensures that we don't do
1708                  * get_block multiple times when we write to the same
1709                  * offset and new ensures that we do proper zero out
1710                  * for partial write.
1711                  */
1712                 set_buffer_new(bh);
1713                 set_buffer_mapped(bh);
1714         }
1715         return 0;
1716 }
1717
1718 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720         get_bh(bh);
1721         return 0;
1722 }
1723
1724 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 {
1726         put_bh(bh);
1727         return 0;
1728 }
1729
1730 static int __ext4_journalled_writepage(struct page *page,
1731                                        unsigned int len)
1732 {
1733         struct address_space *mapping = page->mapping;
1734         struct inode *inode = mapping->host;
1735         struct buffer_head *page_bufs = NULL;
1736         handle_t *handle = NULL;
1737         int ret = 0, err = 0;
1738         int inline_data = ext4_has_inline_data(inode);
1739         struct buffer_head *inode_bh = NULL;
1740
1741         ClearPageChecked(page);
1742
1743         if (inline_data) {
1744                 BUG_ON(page->index != 0);
1745                 BUG_ON(len > ext4_get_max_inline_size(inode));
1746                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747                 if (inode_bh == NULL)
1748                         goto out;
1749         } else {
1750                 page_bufs = page_buffers(page);
1751                 if (!page_bufs) {
1752                         BUG();
1753                         goto out;
1754                 }
1755                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756                                        NULL, bget_one);
1757         }
1758         /* As soon as we unlock the page, it can go away, but we have
1759          * references to buffers so we are safe */
1760         unlock_page(page);
1761
1762         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763                                     ext4_writepage_trans_blocks(inode));
1764         if (IS_ERR(handle)) {
1765                 ret = PTR_ERR(handle);
1766                 goto out;
1767         }
1768
1769         BUG_ON(!ext4_handle_valid(handle));
1770
1771         if (inline_data) {
1772                 ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776         } else {
1777                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778                                              do_journal_get_write_access);
1779
1780                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781                                              write_end_fn);
1782         }
1783         if (ret == 0)
1784                 ret = err;
1785         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786         err = ext4_journal_stop(handle);
1787         if (!ret)
1788                 ret = err;
1789
1790         if (!ext4_has_inline_data(inode))
1791                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792                                        NULL, bput_one);
1793         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794 out:
1795         brelse(inode_bh);
1796         return ret;
1797 }
1798
1799 /*
1800  * Note that we don't need to start a transaction unless we're journaling data
1801  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802  * need to file the inode to the transaction's list in ordered mode because if
1803  * we are writing back data added by write(), the inode is already there and if
1804  * we are writing back data modified via mmap(), no one guarantees in which
1805  * transaction the data will hit the disk. In case we are journaling data, we
1806  * cannot start transaction directly because transaction start ranks above page
1807  * lock so we have to do some magic.
1808  *
1809  * This function can get called via...
1810  *   - ext4_writepages after taking page lock (have journal handle)
1811  *   - journal_submit_inode_data_buffers (no journal handle)
1812  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813  *   - grab_page_cache when doing write_begin (have journal handle)
1814  *
1815  * We don't do any block allocation in this function. If we have page with
1816  * multiple blocks we need to write those buffer_heads that are mapped. This
1817  * is important for mmaped based write. So if we do with blocksize 1K
1818  * truncate(f, 1024);
1819  * a = mmap(f, 0, 4096);
1820  * a[0] = 'a';
1821  * truncate(f, 4096);
1822  * we have in the page first buffer_head mapped via page_mkwrite call back
1823  * but other buffer_heads would be unmapped but dirty (dirty done via the
1824  * do_wp_page). So writepage should write the first block. If we modify
1825  * the mmap area beyond 1024 we will again get a page_fault and the
1826  * page_mkwrite callback will do the block allocation and mark the
1827  * buffer_heads mapped.
1828  *
1829  * We redirty the page if we have any buffer_heads that is either delay or
1830  * unwritten in the page.
1831  *
1832  * We can get recursively called as show below.
1833  *
1834  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835  *              ext4_writepage()
1836  *
1837  * But since we don't do any block allocation we should not deadlock.
1838  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839  */
1840 static int ext4_writepage(struct page *page,
1841                           struct writeback_control *wbc)
1842 {
1843         int ret = 0;
1844         loff_t size;
1845         unsigned int len;
1846         struct buffer_head *page_bufs = NULL;
1847         struct inode *inode = page->mapping->host;
1848         struct ext4_io_submit io_submit;
1849
1850         trace_ext4_writepage(page);
1851         size = i_size_read(inode);
1852         if (page->index == size >> PAGE_CACHE_SHIFT)
1853                 len = size & ~PAGE_CACHE_MASK;
1854         else
1855                 len = PAGE_CACHE_SIZE;
1856
1857         page_bufs = page_buffers(page);
1858         /*
1859          * We cannot do block allocation or other extent handling in this
1860          * function. If there are buffers needing that, we have to redirty
1861          * the page. But we may reach here when we do a journal commit via
1862          * journal_submit_inode_data_buffers() and in that case we must write
1863          * allocated buffers to achieve data=ordered mode guarantees.
1864          */
1865         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866                                    ext4_bh_delay_or_unwritten)) {
1867                 redirty_page_for_writepage(wbc, page);
1868                 if (current->flags & PF_MEMALLOC) {
1869                         /*
1870                          * For memory cleaning there's no point in writing only
1871                          * some buffers. So just bail out. Warn if we came here
1872                          * from direct reclaim.
1873                          */
1874                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875                                                         == PF_MEMALLOC);
1876                         unlock_page(page);
1877                         return 0;
1878                 }
1879         }
1880
1881         if (PageChecked(page) && ext4_should_journal_data(inode))
1882                 /*
1883                  * It's mmapped pagecache.  Add buffers and journal it.  There
1884                  * doesn't seem much point in redirtying the page here.
1885                  */
1886                 return __ext4_journalled_writepage(page, len);
1887
1888         ext4_io_submit_init(&io_submit, wbc);
1889         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890         if (!io_submit.io_end) {
1891                 redirty_page_for_writepage(wbc, page);
1892                 unlock_page(page);
1893                 return -ENOMEM;
1894         }
1895         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896         ext4_io_submit(&io_submit);
1897         /* Drop io_end reference we got from init */
1898         ext4_put_io_end_defer(io_submit.io_end);
1899         return ret;
1900 }
1901
1902 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903 {
1904         int len;
1905         loff_t size = i_size_read(mpd->inode);
1906         int err;
1907
1908         BUG_ON(page->index != mpd->first_page);
1909         if (page->index == size >> PAGE_CACHE_SHIFT)
1910                 len = size & ~PAGE_CACHE_MASK;
1911         else
1912                 len = PAGE_CACHE_SIZE;
1913         clear_page_dirty_for_io(page);
1914         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915         if (!err)
1916                 mpd->wbc->nr_to_write--;
1917         mpd->first_page++;
1918
1919         return err;
1920 }
1921
1922 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924 /*
1925  * mballoc gives us at most this number of blocks...
1926  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927  * The rest of mballoc seems to handle chunks up to full group size.
1928  */
1929 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931 /*
1932  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933  *
1934  * @mpd - extent of blocks
1935  * @lblk - logical number of the block in the file
1936  * @bh - buffer head we want to add to the extent
1937  *
1938  * The function is used to collect contig. blocks in the same state. If the
1939  * buffer doesn't require mapping for writeback and we haven't started the
1940  * extent of buffers to map yet, the function returns 'true' immediately - the
1941  * caller can write the buffer right away. Otherwise the function returns true
1942  * if the block has been added to the extent, false if the block couldn't be
1943  * added.
1944  */
1945 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946                                    struct buffer_head *bh)
1947 {
1948         struct ext4_map_blocks *map = &mpd->map;
1949
1950         /* Buffer that doesn't need mapping for writeback? */
1951         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953                 /* So far no extent to map => we write the buffer right away */
1954                 if (map->m_len == 0)
1955                         return true;
1956                 return false;
1957         }
1958
1959         /* First block in the extent? */
1960         if (map->m_len == 0) {
1961                 map->m_lblk = lblk;
1962                 map->m_len = 1;
1963                 map->m_flags = bh->b_state & BH_FLAGS;
1964                 return true;
1965         }
1966
1967         /* Don't go larger than mballoc is willing to allocate */
1968         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969                 return false;
1970
1971         /* Can we merge the block to our big extent? */
1972         if (lblk == map->m_lblk + map->m_len &&
1973             (bh->b_state & BH_FLAGS) == map->m_flags) {
1974                 map->m_len++;
1975                 return true;
1976         }
1977         return false;
1978 }
1979
1980 /*
1981  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982  *
1983  * @mpd - extent of blocks for mapping
1984  * @head - the first buffer in the page
1985  * @bh - buffer we should start processing from
1986  * @lblk - logical number of the block in the file corresponding to @bh
1987  *
1988  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989  * the page for IO if all buffers in this page were mapped and there's no
1990  * accumulated extent of buffers to map or add buffers in the page to the
1991  * extent of buffers to map. The function returns 1 if the caller can continue
1992  * by processing the next page, 0 if it should stop adding buffers to the
1993  * extent to map because we cannot extend it anymore. It can also return value
1994  * < 0 in case of error during IO submission.
1995  */
1996 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997                                    struct buffer_head *head,
1998                                    struct buffer_head *bh,
1999                                    ext4_lblk_t lblk)
2000 {
2001         struct inode *inode = mpd->inode;
2002         int err;
2003         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004                                                         >> inode->i_blkbits;
2005
2006         do {
2007                 BUG_ON(buffer_locked(bh));
2008
2009                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010                         /* Found extent to map? */
2011                         if (mpd->map.m_len)
2012                                 return 0;
2013                         /* Everything mapped so far and we hit EOF */
2014                         break;
2015                 }
2016         } while (lblk++, (bh = bh->b_this_page) != head);
2017         /* So far everything mapped? Submit the page for IO. */
2018         if (mpd->map.m_len == 0) {
2019                 err = mpage_submit_page(mpd, head->b_page);
2020                 if (err < 0)
2021                         return err;
2022         }
2023         return lblk < blocks;
2024 }
2025
2026 /*
2027  * mpage_map_buffers - update buffers corresponding to changed extent and
2028  *                     submit fully mapped pages for IO
2029  *
2030  * @mpd - description of extent to map, on return next extent to map
2031  *
2032  * Scan buffers corresponding to changed extent (we expect corresponding pages
2033  * to be already locked) and update buffer state according to new extent state.
2034  * We map delalloc buffers to their physical location, clear unwritten bits,
2035  * and mark buffers as uninit when we perform writes to uninitialized extents
2036  * and do extent conversion after IO is finished. If the last page is not fully
2037  * mapped, we update @map to the next extent in the last page that needs
2038  * mapping. Otherwise we submit the page for IO.
2039  */
2040 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041 {
2042         struct pagevec pvec;
2043         int nr_pages, i;
2044         struct inode *inode = mpd->inode;
2045         struct buffer_head *head, *bh;
2046         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047         pgoff_t start, end;
2048         ext4_lblk_t lblk;
2049         sector_t pblock;
2050         int err;
2051
2052         start = mpd->map.m_lblk >> bpp_bits;
2053         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054         lblk = start << bpp_bits;
2055         pblock = mpd->map.m_pblk;
2056
2057         pagevec_init(&pvec, 0);
2058         while (start <= end) {
2059                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060                                           PAGEVEC_SIZE);
2061                 if (nr_pages == 0)
2062                         break;
2063                 for (i = 0; i < nr_pages; i++) {
2064                         struct page *page = pvec.pages[i];
2065
2066                         if (page->index > end)
2067                                 break;
2068                         /* Up to 'end' pages must be contiguous */
2069                         BUG_ON(page->index != start);
2070                         bh = head = page_buffers(page);
2071                         do {
2072                                 if (lblk < mpd->map.m_lblk)
2073                                         continue;
2074                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075                                         /*
2076                                          * Buffer after end of mapped extent.
2077                                          * Find next buffer in the page to map.
2078                                          */
2079                                         mpd->map.m_len = 0;
2080                                         mpd->map.m_flags = 0;
2081                                         /*
2082                                          * FIXME: If dioread_nolock supports
2083                                          * blocksize < pagesize, we need to make
2084                                          * sure we add size mapped so far to
2085                                          * io_end->size as the following call
2086                                          * can submit the page for IO.
2087                                          */
2088                                         err = mpage_process_page_bufs(mpd, head,
2089                                                                       bh, lblk);
2090                                         pagevec_release(&pvec);
2091                                         if (err > 0)
2092                                                 err = 0;
2093                                         return err;
2094                                 }
2095                                 if (buffer_delay(bh)) {
2096                                         clear_buffer_delay(bh);
2097                                         bh->b_blocknr = pblock++;
2098                                 }
2099                                 clear_buffer_unwritten(bh);
2100                         } while (lblk++, (bh = bh->b_this_page) != head);
2101
2102                         /*
2103                          * FIXME: This is going to break if dioread_nolock
2104                          * supports blocksize < pagesize as we will try to
2105                          * convert potentially unmapped parts of inode.
2106                          */
2107                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108                         /* Page fully mapped - let IO run! */
2109                         err = mpage_submit_page(mpd, page);
2110                         if (err < 0) {
2111                                 pagevec_release(&pvec);
2112                                 return err;
2113                         }
2114                         start++;
2115                 }
2116                 pagevec_release(&pvec);
2117         }
2118         /* Extent fully mapped and matches with page boundary. We are done. */
2119         mpd->map.m_len = 0;
2120         mpd->map.m_flags = 0;
2121         return 0;
2122 }
2123
2124 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125 {
2126         struct inode *inode = mpd->inode;
2127         struct ext4_map_blocks *map = &mpd->map;
2128         int get_blocks_flags;
2129         int err;
2130
2131         trace_ext4_da_write_pages_extent(inode, map);
2132         /*
2133          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134          * to convert an uninitialized extent to be initialized (in the case
2135          * where we have written into one or more preallocated blocks).  It is
2136          * possible that we're going to need more metadata blocks than
2137          * previously reserved. However we must not fail because we're in
2138          * writeback and there is nothing we can do about it so it might result
2139          * in data loss.  So use reserved blocks to allocate metadata if
2140          * possible.
2141          *
2142          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143          * in question are delalloc blocks.  This affects functions in many
2144          * different parts of the allocation call path.  This flag exists
2145          * primarily because we don't want to change *many* call functions, so
2146          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147          * once the inode's allocation semaphore is taken.
2148          */
2149         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151         if (ext4_should_dioread_nolock(inode))
2152                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153         if (map->m_flags & (1 << BH_Delay))
2154                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155
2156         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157         if (err < 0)
2158                 return err;
2159         if (map->m_flags & EXT4_MAP_UNINIT) {
2160                 if (!mpd->io_submit.io_end->handle &&
2161                     ext4_handle_valid(handle)) {
2162                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163                         handle->h_rsv_handle = NULL;
2164                 }
2165                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2166         }
2167
2168         BUG_ON(map->m_len == 0);
2169         if (map->m_flags & EXT4_MAP_NEW) {
2170                 struct block_device *bdev = inode->i_sb->s_bdev;
2171                 int i;
2172
2173                 for (i = 0; i < map->m_len; i++)
2174                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2175         }
2176         return 0;
2177 }
2178
2179 /*
2180  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181  *                               mpd->len and submit pages underlying it for IO
2182  *
2183  * @handle - handle for journal operations
2184  * @mpd - extent to map
2185  * @give_up_on_write - we set this to true iff there is a fatal error and there
2186  *                     is no hope of writing the data. The caller should discard
2187  *                     dirty pages to avoid infinite loops.
2188  *
2189  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191  * them to initialized or split the described range from larger unwritten
2192  * extent. Note that we need not map all the described range since allocation
2193  * can return less blocks or the range is covered by more unwritten extents. We
2194  * cannot map more because we are limited by reserved transaction credits. On
2195  * the other hand we always make sure that the last touched page is fully
2196  * mapped so that it can be written out (and thus forward progress is
2197  * guaranteed). After mapping we submit all mapped pages for IO.
2198  */
2199 static int mpage_map_and_submit_extent(handle_t *handle,
2200                                        struct mpage_da_data *mpd,
2201                                        bool *give_up_on_write)
2202 {
2203         struct inode *inode = mpd->inode;
2204         struct ext4_map_blocks *map = &mpd->map;
2205         int err;
2206         loff_t disksize;
2207
2208         mpd->io_submit.io_end->offset =
2209                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2210         do {
2211                 err = mpage_map_one_extent(handle, mpd);
2212                 if (err < 0) {
2213                         struct super_block *sb = inode->i_sb;
2214
2215                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216                                 goto invalidate_dirty_pages;
2217                         /*
2218                          * Let the uper layers retry transient errors.
2219                          * In the case of ENOSPC, if ext4_count_free_blocks()
2220                          * is non-zero, a commit should free up blocks.
2221                          */
2222                         if ((err == -ENOMEM) ||
2223                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2224                                 return err;
2225                         ext4_msg(sb, KERN_CRIT,
2226                                  "Delayed block allocation failed for "
2227                                  "inode %lu at logical offset %llu with"
2228                                  " max blocks %u with error %d",
2229                                  inode->i_ino,
2230                                  (unsigned long long)map->m_lblk,
2231                                  (unsigned)map->m_len, -err);
2232                         ext4_msg(sb, KERN_CRIT,
2233                                  "This should not happen!! Data will "
2234                                  "be lost\n");
2235                         if (err == -ENOSPC)
2236                                 ext4_print_free_blocks(inode);
2237                 invalidate_dirty_pages:
2238                         *give_up_on_write = true;
2239                         return err;
2240                 }
2241                 /*
2242                  * Update buffer state, submit mapped pages, and get us new
2243                  * extent to map
2244                  */
2245                 err = mpage_map_and_submit_buffers(mpd);
2246                 if (err < 0)
2247                         return err;
2248         } while (map->m_len);
2249
2250         /* Update on-disk size after IO is submitted */
2251         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2252         if (disksize > EXT4_I(inode)->i_disksize) {
2253                 int err2;
2254
2255                 ext4_wb_update_i_disksize(inode, disksize);
2256                 err2 = ext4_mark_inode_dirty(handle, inode);
2257                 if (err2)
2258                         ext4_error(inode->i_sb,
2259                                    "Failed to mark inode %lu dirty",
2260                                    inode->i_ino);
2261                 if (!err)
2262                         err = err2;
2263         }
2264         return err;
2265 }
2266
2267 /*
2268  * Calculate the total number of credits to reserve for one writepages
2269  * iteration. This is called from ext4_writepages(). We map an extent of
2270  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2271  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2272  * bpp - 1 blocks in bpp different extents.
2273  */
2274 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2275 {
2276         int bpp = ext4_journal_blocks_per_page(inode);
2277
2278         return ext4_meta_trans_blocks(inode,
2279                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2280 }
2281
2282 /*
2283  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2284  *                               and underlying extent to map
2285  *
2286  * @mpd - where to look for pages
2287  *
2288  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2289  * IO immediately. When we find a page which isn't mapped we start accumulating
2290  * extent of buffers underlying these pages that needs mapping (formed by
2291  * either delayed or unwritten buffers). We also lock the pages containing
2292  * these buffers. The extent found is returned in @mpd structure (starting at
2293  * mpd->lblk with length mpd->len blocks).
2294  *
2295  * Note that this function can attach bios to one io_end structure which are
2296  * neither logically nor physically contiguous. Although it may seem as an
2297  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2298  * case as we need to track IO to all buffers underlying a page in one io_end.
2299  */
2300 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2301 {
2302         struct address_space *mapping = mpd->inode->i_mapping;
2303         struct pagevec pvec;
2304         unsigned int nr_pages;
2305         long left = mpd->wbc->nr_to_write;
2306         pgoff_t index = mpd->first_page;
2307         pgoff_t end = mpd->last_page;
2308         int tag;
2309         int i, err = 0;
2310         int blkbits = mpd->inode->i_blkbits;
2311         ext4_lblk_t lblk;
2312         struct buffer_head *head;
2313
2314         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2315                 tag = PAGECACHE_TAG_TOWRITE;
2316         else
2317                 tag = PAGECACHE_TAG_DIRTY;
2318
2319         pagevec_init(&pvec, 0);
2320         mpd->map.m_len = 0;
2321         mpd->next_page = index;
2322         while (index <= end) {
2323                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2324                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2325                 if (nr_pages == 0)
2326                         goto out;
2327
2328                 for (i = 0; i < nr_pages; i++) {
2329                         struct page *page = pvec.pages[i];
2330
2331                         /*
2332                          * At this point, the page may be truncated or
2333                          * invalidated (changing page->mapping to NULL), or
2334                          * even swizzled back from swapper_space to tmpfs file
2335                          * mapping. However, page->index will not change
2336                          * because we have a reference on the page.
2337                          */
2338                         if (page->index > end)
2339                                 goto out;
2340
2341                         /*
2342                          * Accumulated enough dirty pages? This doesn't apply
2343                          * to WB_SYNC_ALL mode. For integrity sync we have to
2344                          * keep going because someone may be concurrently
2345                          * dirtying pages, and we might have synced a lot of
2346                          * newly appeared dirty pages, but have not synced all
2347                          * of the old dirty pages.
2348                          */
2349                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2350                                 goto out;
2351
2352                         /* If we can't merge this page, we are done. */
2353                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2354                                 goto out;
2355
2356                         lock_page(page);
2357                         /*
2358                          * If the page is no longer dirty, or its mapping no
2359                          * longer corresponds to inode we are writing (which
2360                          * means it has been truncated or invalidated), or the
2361                          * page is already under writeback and we are not doing
2362                          * a data integrity writeback, skip the page
2363                          */
2364                         if (!PageDirty(page) ||
2365                             (PageWriteback(page) &&
2366                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2367                             unlikely(page->mapping != mapping)) {
2368                                 unlock_page(page);
2369                                 continue;
2370                         }
2371
2372                         wait_on_page_writeback(page);
2373                         BUG_ON(PageWriteback(page));
2374
2375                         if (mpd->map.m_len == 0)
2376                                 mpd->first_page = page->index;
2377                         mpd->next_page = page->index + 1;
2378                         /* Add all dirty buffers to mpd */
2379                         lblk = ((ext4_lblk_t)page->index) <<
2380                                 (PAGE_CACHE_SHIFT - blkbits);
2381                         head = page_buffers(page);
2382                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2383                         if (err <= 0)
2384                                 goto out;
2385                         err = 0;
2386                         left--;
2387                 }
2388                 pagevec_release(&pvec);
2389                 cond_resched();
2390         }
2391         return 0;
2392 out:
2393         pagevec_release(&pvec);
2394         return err;
2395 }
2396
2397 static int __writepage(struct page *page, struct writeback_control *wbc,
2398                        void *data)
2399 {
2400         struct address_space *mapping = data;
2401         int ret = ext4_writepage(page, wbc);
2402         mapping_set_error(mapping, ret);
2403         return ret;
2404 }
2405
2406 static int ext4_writepages(struct address_space *mapping,
2407                            struct writeback_control *wbc)
2408 {
2409         pgoff_t writeback_index = 0;
2410         long nr_to_write = wbc->nr_to_write;
2411         int range_whole = 0;
2412         int cycled = 1;
2413         handle_t *handle = NULL;
2414         struct mpage_da_data mpd;
2415         struct inode *inode = mapping->host;
2416         int needed_blocks, rsv_blocks = 0, ret = 0;
2417         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2418         bool done;
2419         struct blk_plug plug;
2420         bool give_up_on_write = false;
2421
2422         trace_ext4_writepages(inode, wbc);
2423
2424         /*
2425          * No pages to write? This is mainly a kludge to avoid starting
2426          * a transaction for special inodes like journal inode on last iput()
2427          * because that could violate lock ordering on umount
2428          */
2429         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2430                 goto out_writepages;
2431
2432         if (ext4_should_journal_data(inode)) {
2433                 struct blk_plug plug;
2434
2435                 blk_start_plug(&plug);
2436                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2437                 blk_finish_plug(&plug);
2438                 goto out_writepages;
2439         }
2440
2441         /*
2442          * If the filesystem has aborted, it is read-only, so return
2443          * right away instead of dumping stack traces later on that
2444          * will obscure the real source of the problem.  We test
2445          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2446          * the latter could be true if the filesystem is mounted
2447          * read-only, and in that case, ext4_writepages should
2448          * *never* be called, so if that ever happens, we would want
2449          * the stack trace.
2450          */
2451         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2452                 ret = -EROFS;
2453                 goto out_writepages;
2454         }
2455
2456         if (ext4_should_dioread_nolock(inode)) {
2457                 /*
2458                  * We may need to convert up to one extent per block in
2459                  * the page and we may dirty the inode.
2460                  */
2461                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2462         }
2463
2464         /*
2465          * If we have inline data and arrive here, it means that
2466          * we will soon create the block for the 1st page, so
2467          * we'd better clear the inline data here.
2468          */
2469         if (ext4_has_inline_data(inode)) {
2470                 /* Just inode will be modified... */
2471                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2472                 if (IS_ERR(handle)) {
2473                         ret = PTR_ERR(handle);
2474                         goto out_writepages;
2475                 }
2476                 BUG_ON(ext4_test_inode_state(inode,
2477                                 EXT4_STATE_MAY_INLINE_DATA));
2478                 ext4_destroy_inline_data(handle, inode);
2479                 ext4_journal_stop(handle);
2480         }
2481
2482         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2483                 range_whole = 1;
2484
2485         if (wbc->range_cyclic) {
2486                 writeback_index = mapping->writeback_index;
2487                 if (writeback_index)
2488                         cycled = 0;
2489                 mpd.first_page = writeback_index;
2490                 mpd.last_page = -1;
2491         } else {
2492                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2493                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2494         }
2495
2496         mpd.inode = inode;
2497         mpd.wbc = wbc;
2498         ext4_io_submit_init(&mpd.io_submit, wbc);
2499 retry:
2500         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2501                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2502         done = false;
2503         blk_start_plug(&plug);
2504         while (!done && mpd.first_page <= mpd.last_page) {
2505                 /* For each extent of pages we use new io_end */
2506                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2507                 if (!mpd.io_submit.io_end) {
2508                         ret = -ENOMEM;
2509                         break;
2510                 }
2511
2512                 /*
2513                  * We have two constraints: We find one extent to map and we
2514                  * must always write out whole page (makes a difference when
2515                  * blocksize < pagesize) so that we don't block on IO when we
2516                  * try to write out the rest of the page. Journalled mode is
2517                  * not supported by delalloc.
2518                  */
2519                 BUG_ON(ext4_should_journal_data(inode));
2520                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2521
2522                 /* start a new transaction */
2523                 handle = ext4_journal_start_with_reserve(inode,
2524                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2525                 if (IS_ERR(handle)) {
2526                         ret = PTR_ERR(handle);
2527                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2528                                "%ld pages, ino %lu; err %d", __func__,
2529                                 wbc->nr_to_write, inode->i_ino, ret);
2530                         /* Release allocated io_end */
2531                         ext4_put_io_end(mpd.io_submit.io_end);
2532                         break;
2533                 }
2534
2535                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2536                 ret = mpage_prepare_extent_to_map(&mpd);
2537                 if (!ret) {
2538                         if (mpd.map.m_len)
2539                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2540                                         &give_up_on_write);
2541                         else {
2542                                 /*
2543                                  * We scanned the whole range (or exhausted
2544                                  * nr_to_write), submitted what was mapped and
2545                                  * didn't find anything needing mapping. We are
2546                                  * done.
2547                                  */
2548                                 done = true;
2549                         }
2550                 }
2551                 ext4_journal_stop(handle);
2552                 /* Submit prepared bio */
2553                 ext4_io_submit(&mpd.io_submit);
2554                 /* Unlock pages we didn't use */
2555                 mpage_release_unused_pages(&mpd, give_up_on_write);
2556                 /* Drop our io_end reference we got from init */
2557                 ext4_put_io_end(mpd.io_submit.io_end);
2558
2559                 if (ret == -ENOSPC && sbi->s_journal) {
2560                         /*
2561                          * Commit the transaction which would
2562                          * free blocks released in the transaction
2563                          * and try again
2564                          */
2565                         jbd2_journal_force_commit_nested(sbi->s_journal);
2566                         ret = 0;
2567                         continue;
2568                 }
2569                 /* Fatal error - ENOMEM, EIO... */
2570                 if (ret)
2571                         break;
2572         }
2573         blk_finish_plug(&plug);
2574         if (!ret && !cycled && wbc->nr_to_write > 0) {
2575                 cycled = 1;
2576                 mpd.last_page = writeback_index - 1;
2577                 mpd.first_page = 0;
2578                 goto retry;
2579         }
2580
2581         /* Update index */
2582         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2583                 /*
2584                  * Set the writeback_index so that range_cyclic
2585                  * mode will write it back later
2586                  */
2587                 mapping->writeback_index = mpd.first_page;
2588
2589 out_writepages:
2590         trace_ext4_writepages_result(inode, wbc, ret,
2591                                      nr_to_write - wbc->nr_to_write);
2592         return ret;
2593 }
2594
2595 static int ext4_nonda_switch(struct super_block *sb)
2596 {
2597         s64 free_clusters, dirty_clusters;
2598         struct ext4_sb_info *sbi = EXT4_SB(sb);
2599
2600         /*
2601          * switch to non delalloc mode if we are running low
2602          * on free block. The free block accounting via percpu
2603          * counters can get slightly wrong with percpu_counter_batch getting
2604          * accumulated on each CPU without updating global counters
2605          * Delalloc need an accurate free block accounting. So switch
2606          * to non delalloc when we are near to error range.
2607          */
2608         free_clusters =
2609                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2610         dirty_clusters =
2611                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2612         /*
2613          * Start pushing delalloc when 1/2 of free blocks are dirty.
2614          */
2615         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2616                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2617
2618         if (2 * free_clusters < 3 * dirty_clusters ||
2619             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2620                 /*
2621                  * free block count is less than 150% of dirty blocks
2622                  * or free blocks is less than watermark
2623                  */
2624                 return 1;
2625         }
2626         return 0;
2627 }
2628
2629 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2630                                loff_t pos, unsigned len, unsigned flags,
2631                                struct page **pagep, void **fsdata)
2632 {
2633         int ret, retries = 0;
2634         struct page *page;
2635         pgoff_t index;
2636         struct inode *inode = mapping->host;
2637         handle_t *handle;
2638
2639         index = pos >> PAGE_CACHE_SHIFT;
2640
2641         if (ext4_nonda_switch(inode->i_sb)) {
2642                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2643                 return ext4_write_begin(file, mapping, pos,
2644                                         len, flags, pagep, fsdata);
2645         }
2646         *fsdata = (void *)0;
2647         trace_ext4_da_write_begin(inode, pos, len, flags);
2648
2649         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2650                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2651                                                       pos, len, flags,
2652                                                       pagep, fsdata);
2653                 if (ret < 0)
2654                         return ret;
2655                 if (ret == 1)
2656                         return 0;
2657         }
2658
2659         /*
2660          * grab_cache_page_write_begin() can take a long time if the
2661          * system is thrashing due to memory pressure, or if the page
2662          * is being written back.  So grab it first before we start
2663          * the transaction handle.  This also allows us to allocate
2664          * the page (if needed) without using GFP_NOFS.
2665          */
2666 retry_grab:
2667         page = grab_cache_page_write_begin(mapping, index, flags);
2668         if (!page)
2669                 return -ENOMEM;
2670         unlock_page(page);
2671
2672         /*
2673          * With delayed allocation, we don't log the i_disksize update
2674          * if there is delayed block allocation. But we still need
2675          * to journalling the i_disksize update if writes to the end
2676          * of file which has an already mapped buffer.
2677          */
2678 retry_journal:
2679         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2680         if (IS_ERR(handle)) {
2681                 page_cache_release(page);
2682                 return PTR_ERR(handle);
2683         }
2684
2685         lock_page(page);
2686         if (page->mapping != mapping) {
2687                 /* The page got truncated from under us */
2688                 unlock_page(page);
2689                 page_cache_release(page);
2690                 ext4_journal_stop(handle);
2691                 goto retry_grab;
2692         }
2693         /* In case writeback began while the page was unlocked */
2694         wait_for_stable_page(page);
2695
2696         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2697         if (ret < 0) {
2698                 unlock_page(page);
2699                 ext4_journal_stop(handle);
2700                 /*
2701                  * block_write_begin may have instantiated a few blocks
2702                  * outside i_size.  Trim these off again. Don't need
2703                  * i_size_read because we hold i_mutex.
2704                  */
2705                 if (pos + len > inode->i_size)
2706                         ext4_truncate_failed_write(inode);
2707
2708                 if (ret == -ENOSPC &&
2709                     ext4_should_retry_alloc(inode->i_sb, &retries))
2710                         goto retry_journal;
2711
2712                 page_cache_release(page);
2713                 return ret;
2714         }
2715
2716         *pagep = page;
2717         return ret;
2718 }
2719
2720 /*
2721  * Check if we should update i_disksize
2722  * when write to the end of file but not require block allocation
2723  */
2724 static int ext4_da_should_update_i_disksize(struct page *page,
2725                                             unsigned long offset)
2726 {
2727         struct buffer_head *bh;
2728         struct inode *inode = page->mapping->host;
2729         unsigned int idx;
2730         int i;
2731
2732         bh = page_buffers(page);
2733         idx = offset >> inode->i_blkbits;
2734
2735         for (i = 0; i < idx; i++)
2736                 bh = bh->b_this_page;
2737
2738         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2739                 return 0;
2740         return 1;
2741 }
2742
2743 static int ext4_da_write_end(struct file *file,
2744                              struct address_space *mapping,
2745                              loff_t pos, unsigned len, unsigned copied,
2746                              struct page *page, void *fsdata)
2747 {
2748         struct inode *inode = mapping->host;
2749         int ret = 0, ret2;
2750         handle_t *handle = ext4_journal_current_handle();
2751         loff_t new_i_size;
2752         unsigned long start, end;
2753         int write_mode = (int)(unsigned long)fsdata;
2754
2755         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2756                 return ext4_write_end(file, mapping, pos,
2757                                       len, copied, page, fsdata);
2758
2759         trace_ext4_da_write_end(inode, pos, len, copied);
2760         start = pos & (PAGE_CACHE_SIZE - 1);
2761         end = start + copied - 1;
2762
2763         /*
2764          * generic_write_end() will run mark_inode_dirty() if i_size
2765          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2766          * into that.
2767          */
2768         new_i_size = pos + copied;
2769         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2770                 if (ext4_has_inline_data(inode) ||
2771                     ext4_da_should_update_i_disksize(page, end)) {
2772                         down_write(&EXT4_I(inode)->i_data_sem);
2773                         if (new_i_size > EXT4_I(inode)->i_disksize)
2774                                 EXT4_I(inode)->i_disksize = new_i_size;
2775                         up_write(&EXT4_I(inode)->i_data_sem);
2776                         /* We need to mark inode dirty even if
2777                          * new_i_size is less that inode->i_size
2778                          * bu greater than i_disksize.(hint delalloc)
2779                          */
2780                         ext4_mark_inode_dirty(handle, inode);
2781                 }
2782         }
2783
2784         if (write_mode != CONVERT_INLINE_DATA &&
2785             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2786             ext4_has_inline_data(inode))
2787                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2788                                                      page);
2789         else
2790                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2791                                                         page, fsdata);
2792
2793         copied = ret2;
2794         if (ret2 < 0)
2795                 ret = ret2;
2796         ret2 = ext4_journal_stop(handle);
2797         if (!ret)
2798                 ret = ret2;
2799
2800         return ret ? ret : copied;
2801 }
2802
2803 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2804                                    unsigned int length)
2805 {
2806         /*
2807          * Drop reserved blocks
2808          */
2809         BUG_ON(!PageLocked(page));
2810         if (!page_has_buffers(page))
2811                 goto out;
2812
2813         ext4_da_page_release_reservation(page, offset, length);
2814
2815 out:
2816         ext4_invalidatepage(page, offset, length);
2817
2818         return;
2819 }
2820
2821 /*
2822  * Force all delayed allocation blocks to be allocated for a given inode.
2823  */
2824 int ext4_alloc_da_blocks(struct inode *inode)
2825 {
2826         trace_ext4_alloc_da_blocks(inode);
2827
2828         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2829             !EXT4_I(inode)->i_reserved_meta_blocks)
2830                 return 0;
2831
2832         /*
2833          * We do something simple for now.  The filemap_flush() will
2834          * also start triggering a write of the data blocks, which is
2835          * not strictly speaking necessary (and for users of
2836          * laptop_mode, not even desirable).  However, to do otherwise
2837          * would require replicating code paths in:
2838          *
2839          * ext4_writepages() ->
2840          *    write_cache_pages() ---> (via passed in callback function)
2841          *        __mpage_da_writepage() -->
2842          *           mpage_add_bh_to_extent()
2843          *           mpage_da_map_blocks()
2844          *
2845          * The problem is that write_cache_pages(), located in
2846          * mm/page-writeback.c, marks pages clean in preparation for
2847          * doing I/O, which is not desirable if we're not planning on
2848          * doing I/O at all.
2849          *
2850          * We could call write_cache_pages(), and then redirty all of
2851          * the pages by calling redirty_page_for_writepage() but that
2852          * would be ugly in the extreme.  So instead we would need to
2853          * replicate parts of the code in the above functions,
2854          * simplifying them because we wouldn't actually intend to
2855          * write out the pages, but rather only collect contiguous
2856          * logical block extents, call the multi-block allocator, and
2857          * then update the buffer heads with the block allocations.
2858          *
2859          * For now, though, we'll cheat by calling filemap_flush(),
2860          * which will map the blocks, and start the I/O, but not
2861          * actually wait for the I/O to complete.
2862          */
2863         return filemap_flush(inode->i_mapping);
2864 }
2865
2866 /*
2867  * bmap() is special.  It gets used by applications such as lilo and by
2868  * the swapper to find the on-disk block of a specific piece of data.
2869  *
2870  * Naturally, this is dangerous if the block concerned is still in the
2871  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2872  * filesystem and enables swap, then they may get a nasty shock when the
2873  * data getting swapped to that swapfile suddenly gets overwritten by
2874  * the original zero's written out previously to the journal and
2875  * awaiting writeback in the kernel's buffer cache.
2876  *
2877  * So, if we see any bmap calls here on a modified, data-journaled file,
2878  * take extra steps to flush any blocks which might be in the cache.
2879  */
2880 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2881 {
2882         struct inode *inode = mapping->host;
2883         journal_t *journal;
2884         int err;
2885
2886         /*
2887          * We can get here for an inline file via the FIBMAP ioctl
2888          */
2889         if (ext4_has_inline_data(inode))
2890                 return 0;
2891
2892         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2893                         test_opt(inode->i_sb, DELALLOC)) {
2894                 /*
2895                  * With delalloc we want to sync the file
2896                  * so that we can make sure we allocate
2897                  * blocks for file
2898                  */
2899                 filemap_write_and_wait(mapping);
2900         }
2901
2902         if (EXT4_JOURNAL(inode) &&
2903             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2904                 /*
2905                  * This is a REALLY heavyweight approach, but the use of
2906                  * bmap on dirty files is expected to be extremely rare:
2907                  * only if we run lilo or swapon on a freshly made file
2908                  * do we expect this to happen.
2909                  *
2910                  * (bmap requires CAP_SYS_RAWIO so this does not
2911                  * represent an unprivileged user DOS attack --- we'd be
2912                  * in trouble if mortal users could trigger this path at
2913                  * will.)
2914                  *
2915                  * NB. EXT4_STATE_JDATA is not set on files other than
2916                  * regular files.  If somebody wants to bmap a directory
2917                  * or symlink and gets confused because the buffer
2918                  * hasn't yet been flushed to disk, they deserve
2919                  * everything they get.
2920                  */
2921
2922                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2923                 journal = EXT4_JOURNAL(inode);
2924                 jbd2_journal_lock_updates(journal);
2925                 err = jbd2_journal_flush(journal);
2926                 jbd2_journal_unlock_updates(journal);
2927
2928                 if (err)
2929                         return 0;
2930         }
2931
2932         return generic_block_bmap(mapping, block, ext4_get_block);
2933 }
2934
2935 static int ext4_readpage(struct file *file, struct page *page)
2936 {
2937         int ret = -EAGAIN;
2938         struct inode *inode = page->mapping->host;
2939
2940         trace_ext4_readpage(page);
2941
2942         if (ext4_has_inline_data(inode))
2943                 ret = ext4_readpage_inline(inode, page);
2944
2945         if (ret == -EAGAIN)
2946                 return mpage_readpage(page, ext4_get_block);
2947
2948         return ret;
2949 }
2950
2951 static int
2952 ext4_readpages(struct file *file, struct address_space *mapping,
2953                 struct list_head *pages, unsigned nr_pages)
2954 {
2955         struct inode *inode = mapping->host;
2956
2957         /* If the file has inline data, no need to do readpages. */
2958         if (ext4_has_inline_data(inode))
2959                 return 0;
2960
2961         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2962 }
2963
2964 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2965                                 unsigned int length)
2966 {
2967         trace_ext4_invalidatepage(page, offset, length);
2968
2969         /* No journalling happens on data buffers when this function is used */
2970         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2971
2972         block_invalidatepage(page, offset, length);
2973 }
2974
2975 static int __ext4_journalled_invalidatepage(struct page *page,
2976                                             unsigned int offset,
2977                                             unsigned int length)
2978 {
2979         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2980
2981         trace_ext4_journalled_invalidatepage(page, offset, length);
2982
2983         /*
2984          * If it's a full truncate we just forget about the pending dirtying
2985          */
2986         if (offset == 0 && length == PAGE_CACHE_SIZE)
2987                 ClearPageChecked(page);
2988
2989         return jbd2_journal_invalidatepage(journal, page, offset, length);
2990 }
2991
2992 /* Wrapper for aops... */
2993 static void ext4_journalled_invalidatepage(struct page *page,
2994                                            unsigned int offset,
2995                                            unsigned int length)
2996 {
2997         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2998 }
2999
3000 static int ext4_releasepage(struct page *page, gfp_t wait)
3001 {
3002         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3003
3004         trace_ext4_releasepage(page);
3005
3006         /* Page has dirty journalled data -> cannot release */
3007         if (PageChecked(page))
3008                 return 0;
3009         if (journal)
3010                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3011         else
3012                 return try_to_free_buffers(page);
3013 }
3014
3015 /*
3016  * ext4_get_block used when preparing for a DIO write or buffer write.
3017  * We allocate an uinitialized extent if blocks haven't been allocated.
3018  * The extent will be converted to initialized after the IO is complete.
3019  */
3020 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3021                    struct buffer_head *bh_result, int create)
3022 {
3023         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3024                    inode->i_ino, create);
3025         return _ext4_get_block(inode, iblock, bh_result,
3026                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3027 }
3028
3029 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3030                    struct buffer_head *bh_result, int create)
3031 {
3032         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3033                    inode->i_ino, create);
3034         return _ext4_get_block(inode, iblock, bh_result,
3035                                EXT4_GET_BLOCKS_NO_LOCK);
3036 }
3037
3038 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3039                             ssize_t size, void *private)
3040 {
3041         ext4_io_end_t *io_end = iocb->private;
3042
3043         /* if not async direct IO just return */
3044         if (!io_end)
3045                 return;
3046
3047         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3048                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3049                   iocb->private, io_end->inode->i_ino, iocb, offset,
3050                   size);
3051
3052         iocb->private = NULL;
3053         io_end->offset = offset;
3054         io_end->size = size;
3055         ext4_put_io_end(io_end);
3056 }
3057
3058 /*
3059  * For ext4 extent files, ext4 will do direct-io write to holes,
3060  * preallocated extents, and those write extend the file, no need to
3061  * fall back to buffered IO.
3062  *
3063  * For holes, we fallocate those blocks, mark them as uninitialized
3064  * If those blocks were preallocated, we mark sure they are split, but
3065  * still keep the range to write as uninitialized.
3066  *
3067  * The unwritten extents will be converted to written when DIO is completed.
3068  * For async direct IO, since the IO may still pending when return, we
3069  * set up an end_io call back function, which will do the conversion
3070  * when async direct IO completed.
3071  *
3072  * If the O_DIRECT write will extend the file then add this inode to the
3073  * orphan list.  So recovery will truncate it back to the original size
3074  * if the machine crashes during the write.
3075  *
3076  */
3077 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3078                               const struct iovec *iov, loff_t offset,
3079                               unsigned long nr_segs)
3080 {
3081         struct file *file = iocb->ki_filp;
3082         struct inode *inode = file->f_mapping->host;
3083         ssize_t ret;
3084         size_t count = iov_length(iov, nr_segs);
3085         int overwrite = 0;
3086         get_block_t *get_block_func = NULL;
3087         int dio_flags = 0;
3088         loff_t final_size = offset + count;
3089         ext4_io_end_t *io_end = NULL;
3090
3091         /* Use the old path for reads and writes beyond i_size. */
3092         if (rw != WRITE || final_size > inode->i_size)
3093                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3094
3095         BUG_ON(iocb->private == NULL);
3096
3097         /*
3098          * Make all waiters for direct IO properly wait also for extent
3099          * conversion. This also disallows race between truncate() and
3100          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3101          */
3102         if (rw == WRITE)
3103                 atomic_inc(&inode->i_dio_count);
3104
3105         /* If we do a overwrite dio, i_mutex locking can be released */
3106         overwrite = *((int *)iocb->private);
3107
3108         if (overwrite) {
3109                 down_read(&EXT4_I(inode)->i_data_sem);
3110                 mutex_unlock(&inode->i_mutex);
3111         }
3112
3113         /*
3114          * We could direct write to holes and fallocate.
3115          *
3116          * Allocated blocks to fill the hole are marked as
3117          * uninitialized to prevent parallel buffered read to expose
3118          * the stale data before DIO complete the data IO.
3119          *
3120          * As to previously fallocated extents, ext4 get_block will
3121          * just simply mark the buffer mapped but still keep the
3122          * extents uninitialized.
3123          *
3124          * For non AIO case, we will convert those unwritten extents
3125          * to written after return back from blockdev_direct_IO.
3126          *
3127          * For async DIO, the conversion needs to be deferred when the
3128          * IO is completed. The ext4 end_io callback function will be
3129          * called to take care of the conversion work.  Here for async
3130          * case, we allocate an io_end structure to hook to the iocb.
3131          */
3132         iocb->private = NULL;
3133         ext4_inode_aio_set(inode, NULL);
3134         if (!is_sync_kiocb(iocb)) {
3135                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3136                 if (!io_end) {
3137                         ret = -ENOMEM;
3138                         goto retake_lock;
3139                 }
3140                 /*
3141                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3142                  */
3143                 iocb->private = ext4_get_io_end(io_end);
3144                 /*
3145                  * we save the io structure for current async direct
3146                  * IO, so that later ext4_map_blocks() could flag the
3147                  * io structure whether there is a unwritten extents
3148                  * needs to be converted when IO is completed.
3149                  */
3150                 ext4_inode_aio_set(inode, io_end);
3151         }
3152
3153         if (overwrite) {
3154                 get_block_func = ext4_get_block_write_nolock;
3155         } else {
3156                 get_block_func = ext4_get_block_write;
3157                 dio_flags = DIO_LOCKING;
3158         }
3159         ret = __blockdev_direct_IO(rw, iocb, inode,
3160                                    inode->i_sb->s_bdev, iov,
3161                                    offset, nr_segs,
3162                                    get_block_func,
3163                                    ext4_end_io_dio,
3164                                    NULL,
3165                                    dio_flags);
3166
3167         /*
3168          * Put our reference to io_end. This can free the io_end structure e.g.
3169          * in sync IO case or in case of error. It can even perform extent
3170          * conversion if all bios we submitted finished before we got here.
3171          * Note that in that case iocb->private can be already set to NULL
3172          * here.
3173          */
3174         if (io_end) {
3175                 ext4_inode_aio_set(inode, NULL);
3176                 ext4_put_io_end(io_end);
3177                 /*
3178                  * When no IO was submitted ext4_end_io_dio() was not
3179                  * called so we have to put iocb's reference.
3180                  */
3181                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3182                         WARN_ON(iocb->private != io_end);
3183                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3184                         ext4_put_io_end(io_end);
3185                         iocb->private = NULL;
3186                 }
3187         }
3188         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3189                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3190                 int err;
3191                 /*
3192                  * for non AIO case, since the IO is already
3193                  * completed, we could do the conversion right here
3194                  */
3195                 err = ext4_convert_unwritten_extents(NULL, inode,
3196                                                      offset, ret);
3197                 if (err < 0)
3198                         ret = err;
3199                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3200         }
3201
3202 retake_lock:
3203         if (rw == WRITE)
3204                 inode_dio_done(inode);
3205         /* take i_mutex locking again if we do a ovewrite dio */
3206         if (overwrite) {
3207                 up_read(&EXT4_I(inode)->i_data_sem);
3208                 mutex_lock(&inode->i_mutex);
3209         }
3210
3211         return ret;
3212 }
3213
3214 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3215                               const struct iovec *iov, loff_t offset,
3216                               unsigned long nr_segs)
3217 {
3218         struct file *file = iocb->ki_filp;
3219         struct inode *inode = file->f_mapping->host;
3220         ssize_t ret;
3221
3222         /*
3223          * If we are doing data journalling we don't support O_DIRECT
3224          */
3225         if (ext4_should_journal_data(inode))
3226                 return 0;
3227
3228         /* Let buffer I/O handle the inline data case. */
3229         if (ext4_has_inline_data(inode))
3230                 return 0;
3231
3232         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3233         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3234                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3235         else
3236                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3237         trace_ext4_direct_IO_exit(inode, offset,
3238                                 iov_length(iov, nr_segs), rw, ret);
3239         return ret;
3240 }
3241
3242 /*
3243  * Pages can be marked dirty completely asynchronously from ext4's journalling
3244  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3245  * much here because ->set_page_dirty is called under VFS locks.  The page is
3246  * not necessarily locked.
3247  *
3248  * We cannot just dirty the page and leave attached buffers clean, because the
3249  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3250  * or jbddirty because all the journalling code will explode.
3251  *
3252  * So what we do is to mark the page "pending dirty" and next time writepage
3253  * is called, propagate that into the buffers appropriately.
3254  */
3255 static int ext4_journalled_set_page_dirty(struct page *page)
3256 {
3257         SetPageChecked(page);
3258         return __set_page_dirty_nobuffers(page);
3259 }
3260
3261 static const struct address_space_operations ext4_aops = {
3262         .readpage               = ext4_readpage,
3263         .readpages              = ext4_readpages,
3264         .writepage              = ext4_writepage,
3265         .writepages             = ext4_writepages,
3266         .write_begin            = ext4_write_begin,
3267         .write_end              = ext4_write_end,
3268         .bmap                   = ext4_bmap,
3269         .invalidatepage         = ext4_invalidatepage,
3270         .releasepage            = ext4_releasepage,
3271         .direct_IO              = ext4_direct_IO,
3272         .migratepage            = buffer_migrate_page,
3273         .is_partially_uptodate  = block_is_partially_uptodate,
3274         .error_remove_page      = generic_error_remove_page,
3275 };
3276
3277 static const struct address_space_operations ext4_journalled_aops = {
3278         .readpage               = ext4_readpage,
3279         .readpages              = ext4_readpages,
3280         .writepage              = ext4_writepage,
3281         .writepages             = ext4_writepages,
3282         .write_begin            = ext4_write_begin,
3283         .write_end              = ext4_journalled_write_end,
3284         .set_page_dirty         = ext4_journalled_set_page_dirty,
3285         .bmap                   = ext4_bmap,
3286         .invalidatepage         = ext4_journalled_invalidatepage,
3287         .releasepage            = ext4_releasepage,
3288         .direct_IO              = ext4_direct_IO,
3289         .is_partially_uptodate  = block_is_partially_uptodate,
3290         .error_remove_page      = generic_error_remove_page,
3291 };
3292
3293 static const struct address_space_operations ext4_da_aops = {
3294         .readpage               = ext4_readpage,
3295         .readpages              = ext4_readpages,
3296         .writepage              = ext4_writepage,
3297         .writepages             = ext4_writepages,
3298         .write_begin            = ext4_da_write_begin,
3299         .write_end              = ext4_da_write_end,
3300         .bmap                   = ext4_bmap,
3301         .invalidatepage         = ext4_da_invalidatepage,
3302         .releasepage            = ext4_releasepage,
3303         .direct_IO              = ext4_direct_IO,
3304         .migratepage            = buffer_migrate_page,
3305         .is_partially_uptodate  = block_is_partially_uptodate,
3306         .error_remove_page      = generic_error_remove_page,
3307 };
3308
3309 void ext4_set_aops(struct inode *inode)
3310 {
3311         switch (ext4_inode_journal_mode(inode)) {
3312         case EXT4_INODE_ORDERED_DATA_MODE:
3313                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3314                 break;
3315         case EXT4_INODE_WRITEBACK_DATA_MODE:
3316                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3317                 break;
3318         case EXT4_INODE_JOURNAL_DATA_MODE:
3319                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3320                 return;
3321         default:
3322                 BUG();
3323         }
3324         if (test_opt(inode->i_sb, DELALLOC))
3325                 inode->i_mapping->a_ops = &ext4_da_aops;
3326         else
3327                 inode->i_mapping->a_ops = &ext4_aops;
3328 }
3329
3330 /*
3331  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3332  * starting from file offset 'from'.  The range to be zero'd must
3333  * be contained with in one block.  If the specified range exceeds
3334  * the end of the block it will be shortened to end of the block
3335  * that cooresponds to 'from'
3336  */
3337 static int ext4_block_zero_page_range(handle_t *handle,
3338                 struct address_space *mapping, loff_t from, loff_t length)
3339 {
3340         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3341         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3342         unsigned blocksize, max, pos;
3343         ext4_lblk_t iblock;
3344         struct inode *inode = mapping->host;
3345         struct buffer_head *bh;
3346         struct page *page;
3347         int err = 0;
3348
3349         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3350                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3351         if (!page)
3352                 return -ENOMEM;
3353
3354         blocksize = inode->i_sb->s_blocksize;
3355         max = blocksize - (offset & (blocksize - 1));
3356
3357         /*
3358          * correct length if it does not fall between
3359          * 'from' and the end of the block
3360          */
3361         if (length > max || length < 0)
3362                 length = max;
3363
3364         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3365
3366         if (!page_has_buffers(page))
3367                 create_empty_buffers(page, blocksize, 0);
3368
3369         /* Find the buffer that contains "offset" */
3370         bh = page_buffers(page);
3371         pos = blocksize;
3372         while (offset >= pos) {
3373                 bh = bh->b_this_page;
3374                 iblock++;
3375                 pos += blocksize;
3376         }
3377         if (buffer_freed(bh)) {
3378                 BUFFER_TRACE(bh, "freed: skip");
3379                 goto unlock;
3380         }
3381         if (!buffer_mapped(bh)) {
3382                 BUFFER_TRACE(bh, "unmapped");
3383                 ext4_get_block(inode, iblock, bh, 0);
3384                 /* unmapped? It's a hole - nothing to do */
3385                 if (!buffer_mapped(bh)) {
3386                         BUFFER_TRACE(bh, "still unmapped");
3387                         goto unlock;
3388                 }
3389         }
3390
3391         /* Ok, it's mapped. Make sure it's up-to-date */
3392         if (PageUptodate(page))
3393                 set_buffer_uptodate(bh);
3394
3395         if (!buffer_uptodate(bh)) {
3396                 err = -EIO;
3397                 ll_rw_block(READ, 1, &bh);
3398                 wait_on_buffer(bh);
3399                 /* Uhhuh. Read error. Complain and punt. */
3400                 if (!buffer_uptodate(bh))
3401                         goto unlock;
3402         }
3403         if (ext4_should_journal_data(inode)) {
3404                 BUFFER_TRACE(bh, "get write access");
3405                 err = ext4_journal_get_write_access(handle, bh);
3406                 if (err)
3407                         goto unlock;
3408         }
3409         zero_user(page, offset, length);
3410         BUFFER_TRACE(bh, "zeroed end of block");
3411
3412         if (ext4_should_journal_data(inode)) {
3413                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3414         } else {
3415                 err = 0;
3416                 mark_buffer_dirty(bh);
3417                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3418                         err = ext4_jbd2_file_inode(handle, inode);
3419         }
3420
3421 unlock:
3422         unlock_page(page);
3423         page_cache_release(page);
3424         return err;
3425 }
3426
3427 /*
3428  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3429  * up to the end of the block which corresponds to `from'.
3430  * This required during truncate. We need to physically zero the tail end
3431  * of that block so it doesn't yield old data if the file is later grown.
3432  */
3433 int ext4_block_truncate_page(handle_t *handle,
3434                 struct address_space *mapping, loff_t from)
3435 {
3436         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3437         unsigned length;
3438         unsigned blocksize;
3439         struct inode *inode = mapping->host;
3440
3441         blocksize = inode->i_sb->s_blocksize;
3442         length = blocksize - (offset & (blocksize - 1));
3443
3444         return ext4_block_zero_page_range(handle, mapping, from, length);
3445 }
3446
3447 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3448                              loff_t lstart, loff_t length)
3449 {
3450         struct super_block *sb = inode->i_sb;
3451         struct address_space *mapping = inode->i_mapping;
3452         unsigned partial_start, partial_end;
3453         ext4_fsblk_t start, end;
3454         loff_t byte_end = (lstart + length - 1);
3455         int err = 0;
3456
3457         partial_start = lstart & (sb->s_blocksize - 1);
3458         partial_end = byte_end & (sb->s_blocksize - 1);
3459
3460         start = lstart >> sb->s_blocksize_bits;
3461         end = byte_end >> sb->s_blocksize_bits;
3462
3463         /* Handle partial zero within the single block */
3464         if (start == end &&
3465             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3466                 err = ext4_block_zero_page_range(handle, mapping,
3467                                                  lstart, length);
3468                 return err;
3469         }
3470         /* Handle partial zero out on the start of the range */
3471         if (partial_start) {
3472                 err = ext4_block_zero_page_range(handle, mapping,
3473                                                  lstart, sb->s_blocksize);
3474                 if (err)
3475                         return err;
3476         }
3477         /* Handle partial zero out on the end of the range */
3478         if (partial_end != sb->s_blocksize - 1)
3479                 err = ext4_block_zero_page_range(handle, mapping,
3480                                                  byte_end - partial_end,
3481                                                  partial_end + 1);
3482         return err;
3483 }
3484
3485 int ext4_can_truncate(struct inode *inode)
3486 {
3487         if (S_ISREG(inode->i_mode))
3488                 return 1;
3489         if (S_ISDIR(inode->i_mode))
3490                 return 1;
3491         if (S_ISLNK(inode->i_mode))
3492                 return !ext4_inode_is_fast_symlink(inode);
3493         return 0;
3494 }
3495
3496 /*
3497  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3498  * associated with the given offset and length
3499  *
3500  * @inode:  File inode
3501  * @offset: The offset where the hole will begin
3502  * @len:    The length of the hole
3503  *
3504  * Returns: 0 on success or negative on failure
3505  */
3506
3507 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3508 {
3509         struct super_block *sb = inode->i_sb;
3510         ext4_lblk_t first_block, stop_block;
3511         struct address_space *mapping = inode->i_mapping;
3512         loff_t first_block_offset, last_block_offset;
3513         handle_t *handle;
3514         unsigned int credits;
3515         int ret = 0;
3516
3517         if (!S_ISREG(inode->i_mode))
3518                 return -EOPNOTSUPP;
3519
3520         trace_ext4_punch_hole(inode, offset, length, 0);
3521
3522         /*
3523          * Write out all dirty pages to avoid race conditions
3524          * Then release them.
3525          */
3526         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3527                 ret = filemap_write_and_wait_range(mapping, offset,
3528                                                    offset + length - 1);
3529                 if (ret)
3530                         return ret;
3531         }
3532
3533         mutex_lock(&inode->i_mutex);
3534         /* It's not possible punch hole on append only file */
3535         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3536                 ret = -EPERM;
3537                 goto out_mutex;
3538         }
3539         if (IS_SWAPFILE(inode)) {
3540                 ret = -ETXTBSY;
3541                 goto out_mutex;
3542         }
3543
3544         /* No need to punch hole beyond i_size */
3545         if (offset >= inode->i_size)
3546                 goto out_mutex;
3547
3548         /*
3549          * If the hole extends beyond i_size, set the hole
3550          * to end after the page that contains i_size
3551          */
3552         if (offset + length > inode->i_size) {
3553                 length = inode->i_size +
3554                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555                    offset;
3556         }
3557
3558         if (offset & (sb->s_blocksize - 1) ||
3559             (offset + length) & (sb->s_blocksize - 1)) {
3560                 /*
3561                  * Attach jinode to inode for jbd2 if we do any zeroing of
3562                  * partial block
3563                  */
3564                 ret = ext4_inode_attach_jinode(inode);
3565                 if (ret < 0)
3566                         goto out_mutex;
3567
3568         }
3569
3570         first_block_offset = round_up(offset, sb->s_blocksize);
3571         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3572
3573         /* Now release the pages and zero block aligned part of pages*/
3574         if (last_block_offset > first_block_offset)
3575                 truncate_pagecache_range(inode, first_block_offset,
3576                                          last_block_offset);
3577
3578         /* Wait all existing dio workers, newcomers will block on i_mutex */
3579         ext4_inode_block_unlocked_dio(inode);
3580         inode_dio_wait(inode);
3581
3582         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583                 credits = ext4_writepage_trans_blocks(inode);
3584         else
3585                 credits = ext4_blocks_for_truncate(inode);
3586         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587         if (IS_ERR(handle)) {
3588                 ret = PTR_ERR(handle);
3589                 ext4_std_error(sb, ret);
3590                 goto out_dio;
3591         }
3592
3593         ret = ext4_zero_partial_blocks(handle, inode, offset,
3594                                        length);
3595         if (ret)
3596                 goto out_stop;
3597
3598         first_block = (offset + sb->s_blocksize - 1) >>
3599                 EXT4_BLOCK_SIZE_BITS(sb);
3600         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602         /* If there are no blocks to remove, return now */
3603         if (first_block >= stop_block)
3604                 goto out_stop;
3605
3606         down_write(&EXT4_I(inode)->i_data_sem);
3607         ext4_discard_preallocations(inode);
3608
3609         ret = ext4_es_remove_extent(inode, first_block,
3610                                     stop_block - first_block);
3611         if (ret) {
3612                 up_write(&EXT4_I(inode)->i_data_sem);
3613                 goto out_stop;
3614         }
3615
3616         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617                 ret = ext4_ext_remove_space(inode, first_block,
3618                                             stop_block - 1);
3619         else
3620                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3621                                             stop_block);
3622
3623         ext4_discard_preallocations(inode);
3624         up_write(&EXT4_I(inode)->i_data_sem);
3625         if (IS_SYNC(inode))
3626                 ext4_handle_sync(handle);
3627
3628         /* Now release the pages again to reduce race window */
3629         if (last_block_offset > first_block_offset)
3630                 truncate_pagecache_range(inode, first_block_offset,
3631                                          last_block_offset);
3632
3633         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634         ext4_mark_inode_dirty(handle, inode);
3635 out_stop:
3636         ext4_journal_stop(handle);
3637 out_dio:
3638         ext4_inode_resume_unlocked_dio(inode);
3639 out_mutex:
3640         mutex_unlock(&inode->i_mutex);
3641         return ret;
3642 }
3643
3644 int ext4_inode_attach_jinode(struct inode *inode)
3645 {
3646         struct ext4_inode_info *ei = EXT4_I(inode);
3647         struct jbd2_inode *jinode;
3648
3649         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650                 return 0;
3651
3652         jinode = jbd2_alloc_inode(GFP_KERNEL);
3653         spin_lock(&inode->i_lock);
3654         if (!ei->jinode) {
3655                 if (!jinode) {
3656                         spin_unlock(&inode->i_lock);
3657                         return -ENOMEM;
3658                 }
3659                 ei->jinode = jinode;
3660                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661                 jinode = NULL;
3662         }
3663         spin_unlock(&inode->i_lock);
3664         if (unlikely(jinode != NULL))
3665                 jbd2_free_inode(jinode);
3666         return 0;
3667 }
3668
3669 /*
3670  * ext4_truncate()
3671  *
3672  * We block out ext4_get_block() block instantiations across the entire
3673  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674  * simultaneously on behalf of the same inode.
3675  *
3676  * As we work through the truncate and commit bits of it to the journal there
3677  * is one core, guiding principle: the file's tree must always be consistent on
3678  * disk.  We must be able to restart the truncate after a crash.
3679  *
3680  * The file's tree may be transiently inconsistent in memory (although it
3681  * probably isn't), but whenever we close off and commit a journal transaction,
3682  * the contents of (the filesystem + the journal) must be consistent and
3683  * restartable.  It's pretty simple, really: bottom up, right to left (although
3684  * left-to-right works OK too).
3685  *
3686  * Note that at recovery time, journal replay occurs *before* the restart of
3687  * truncate against the orphan inode list.
3688  *
3689  * The committed inode has the new, desired i_size (which is the same as
3690  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3691  * that this inode's truncate did not complete and it will again call
3692  * ext4_truncate() to have another go.  So there will be instantiated blocks
3693  * to the right of the truncation point in a crashed ext4 filesystem.  But
3694  * that's fine - as long as they are linked from the inode, the post-crash
3695  * ext4_truncate() run will find them and release them.
3696  */
3697 void ext4_truncate(struct inode *inode)
3698 {
3699         struct ext4_inode_info *ei = EXT4_I(inode);
3700         unsigned int credits;
3701         handle_t *handle;
3702         struct address_space *mapping = inode->i_mapping;
3703
3704         /*
3705          * There is a possibility that we're either freeing the inode
3706          * or it's a completely new inode. In those cases we might not
3707          * have i_mutex locked because it's not necessary.
3708          */
3709         if (!(inode->i_state & (I_NEW|I_FREEING)))
3710                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3711         trace_ext4_truncate_enter(inode);
3712
3713         if (!ext4_can_truncate(inode))
3714                 return;
3715
3716         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3717
3718         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3719                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3720
3721         if (ext4_has_inline_data(inode)) {
3722                 int has_inline = 1;
3723
3724                 ext4_inline_data_truncate(inode, &has_inline);
3725                 if (has_inline)
3726                         return;
3727         }
3728
3729         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731                 if (ext4_inode_attach_jinode(inode) < 0)
3732                         return;
3733         }
3734
3735         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736                 credits = ext4_writepage_trans_blocks(inode);
3737         else
3738                 credits = ext4_blocks_for_truncate(inode);
3739
3740         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741         if (IS_ERR(handle)) {
3742                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743                 return;
3744         }
3745
3746         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3748
3749         /*
3750          * We add the inode to the orphan list, so that if this
3751          * truncate spans multiple transactions, and we crash, we will
3752          * resume the truncate when the filesystem recovers.  It also
3753          * marks the inode dirty, to catch the new size.
3754          *
3755          * Implication: the file must always be in a sane, consistent
3756          * truncatable state while each transaction commits.
3757          */
3758         if (ext4_orphan_add(handle, inode))
3759                 goto out_stop;
3760
3761         down_write(&EXT4_I(inode)->i_data_sem);
3762
3763         ext4_discard_preallocations(inode);
3764
3765         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3766                 ext4_ext_truncate(handle, inode);
3767         else
3768                 ext4_ind_truncate(handle, inode);
3769
3770         up_write(&ei->i_data_sem);
3771
3772         if (IS_SYNC(inode))
3773                 ext4_handle_sync(handle);
3774
3775 out_stop:
3776         /*
3777          * If this was a simple ftruncate() and the file will remain alive,
3778          * then we need to clear up the orphan record which we created above.
3779          * However, if this was a real unlink then we were called by
3780          * ext4_delete_inode(), and we allow that function to clean up the
3781          * orphan info for us.
3782          */
3783         if (inode->i_nlink)
3784                 ext4_orphan_del(handle, inode);
3785
3786         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787         ext4_mark_inode_dirty(handle, inode);
3788         ext4_journal_stop(handle);
3789
3790         trace_ext4_truncate_exit(inode);
3791 }
3792
3793 /*
3794  * ext4_get_inode_loc returns with an extra refcount against the inode's
3795  * underlying buffer_head on success. If 'in_mem' is true, we have all
3796  * data in memory that is needed to recreate the on-disk version of this
3797  * inode.
3798  */
3799 static int __ext4_get_inode_loc(struct inode *inode,
3800                                 struct ext4_iloc *iloc, int in_mem)
3801 {
3802         struct ext4_group_desc  *gdp;
3803         struct buffer_head      *bh;
3804         struct super_block      *sb = inode->i_sb;
3805         ext4_fsblk_t            block;
3806         int                     inodes_per_block, inode_offset;
3807
3808         iloc->bh = NULL;
3809         if (!ext4_valid_inum(sb, inode->i_ino))
3810                 return -EIO;
3811
3812         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814         if (!gdp)
3815                 return -EIO;
3816
3817         /*
3818          * Figure out the offset within the block group inode table
3819          */
3820         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3821         inode_offset = ((inode->i_ino - 1) %
3822                         EXT4_INODES_PER_GROUP(sb));
3823         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825
3826         bh = sb_getblk(sb, block);
3827         if (unlikely(!bh))
3828                 return -ENOMEM;
3829         if (!buffer_uptodate(bh)) {
3830                 lock_buffer(bh);
3831
3832                 /*
3833                  * If the buffer has the write error flag, we have failed
3834                  * to write out another inode in the same block.  In this
3835                  * case, we don't have to read the block because we may
3836                  * read the old inode data successfully.
3837                  */
3838                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3839                         set_buffer_uptodate(bh);
3840
3841                 if (buffer_uptodate(bh)) {
3842                         /* someone brought it uptodate while we waited */
3843                         unlock_buffer(bh);
3844                         goto has_buffer;
3845                 }
3846
3847                 /*
3848                  * If we have all information of the inode in memory and this
3849                  * is the only valid inode in the block, we need not read the
3850                  * block.
3851                  */
3852                 if (in_mem) {
3853                         struct buffer_head *bitmap_bh;
3854                         int i, start;
3855
3856                         start = inode_offset & ~(inodes_per_block - 1);
3857
3858                         /* Is the inode bitmap in cache? */
3859                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3860                         if (unlikely(!bitmap_bh))
3861                                 goto make_io;
3862
3863                         /*
3864                          * If the inode bitmap isn't in cache then the
3865                          * optimisation may end up performing two reads instead
3866                          * of one, so skip it.
3867                          */
3868                         if (!buffer_uptodate(bitmap_bh)) {
3869                                 brelse(bitmap_bh);
3870                                 goto make_io;
3871                         }
3872                         for (i = start; i < start + inodes_per_block; i++) {
3873                                 if (i == inode_offset)
3874                                         continue;
3875                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3876                                         break;
3877                         }
3878                         brelse(bitmap_bh);
3879                         if (i == start + inodes_per_block) {
3880                                 /* all other inodes are free, so skip I/O */
3881                                 memset(bh->b_data, 0, bh->b_size);
3882                                 set_buffer_uptodate(bh);
3883                                 unlock_buffer(bh);
3884                                 goto has_buffer;
3885                         }
3886                 }
3887
3888 make_io:
3889                 /*
3890                  * If we need to do any I/O, try to pre-readahead extra
3891                  * blocks from the inode table.
3892                  */
3893                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894                         ext4_fsblk_t b, end, table;
3895                         unsigned num;
3896                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3897
3898                         table = ext4_inode_table(sb, gdp);
3899                         /* s_inode_readahead_blks is always a power of 2 */
3900                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3901                         if (table > b)
3902                                 b = table;
3903                         end = b + ra_blks;
3904                         num = EXT4_INODES_PER_GROUP(sb);
3905                         if (ext4_has_group_desc_csum(sb))
3906                                 num -= ext4_itable_unused_count(sb, gdp);
3907                         table += num / inodes_per_block;
3908                         if (end > table)
3909                                 end = table;
3910                         while (b <= end)
3911                                 sb_breadahead(sb, b++);
3912                 }
3913
3914                 /*
3915                  * There are other valid inodes in the buffer, this inode
3916                  * has in-inode xattrs, or we don't have this inode in memory.
3917                  * Read the block from disk.
3918                  */
3919                 trace_ext4_load_inode(inode);
3920                 get_bh(bh);
3921                 bh->b_end_io = end_buffer_read_sync;
3922                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3923                 wait_on_buffer(bh);
3924                 if (!buffer_uptodate(bh)) {
3925                         EXT4_ERROR_INODE_BLOCK(inode, block,
3926                                                "unable to read itable block");
3927                         brelse(bh);
3928                         return -EIO;
3929                 }
3930         }
3931 has_buffer:
3932         iloc->bh = bh;
3933         return 0;
3934 }
3935
3936 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3937 {
3938         /* We have all inode data except xattrs in memory here. */
3939         return __ext4_get_inode_loc(inode, iloc,
3940                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3941 }
3942
3943 void ext4_set_inode_flags(struct inode *inode)
3944 {
3945         unsigned int flags = EXT4_I(inode)->i_flags;
3946         unsigned int new_fl = 0;
3947
3948         if (flags & EXT4_SYNC_FL)
3949                 new_fl |= S_SYNC;
3950         if (flags & EXT4_APPEND_FL)
3951                 new_fl |= S_APPEND;
3952         if (flags & EXT4_IMMUTABLE_FL)
3953                 new_fl |= S_IMMUTABLE;
3954         if (flags & EXT4_NOATIME_FL)
3955                 new_fl |= S_NOATIME;
3956         if (flags & EXT4_DIRSYNC_FL)
3957                 new_fl |= S_DIRSYNC;
3958         inode_set_flags(inode, new_fl,
3959                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3960 }
3961
3962 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964 {
3965         unsigned int vfs_fl;
3966         unsigned long old_fl, new_fl;
3967
3968         do {
3969                 vfs_fl = ei->vfs_inode.i_flags;
3970                 old_fl = ei->i_flags;
3971                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973                                 EXT4_DIRSYNC_FL);
3974                 if (vfs_fl & S_SYNC)
3975                         new_fl |= EXT4_SYNC_FL;
3976                 if (vfs_fl & S_APPEND)
3977                         new_fl |= EXT4_APPEND_FL;
3978                 if (vfs_fl & S_IMMUTABLE)
3979                         new_fl |= EXT4_IMMUTABLE_FL;
3980                 if (vfs_fl & S_NOATIME)
3981                         new_fl |= EXT4_NOATIME_FL;
3982                 if (vfs_fl & S_DIRSYNC)
3983                         new_fl |= EXT4_DIRSYNC_FL;
3984         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3985 }
3986
3987 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3988                                   struct ext4_inode_info *ei)
3989 {
3990         blkcnt_t i_blocks ;
3991         struct inode *inode = &(ei->vfs_inode);
3992         struct super_block *sb = inode->i_sb;
3993
3994         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996                 /* we are using combined 48 bit field */
3997                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998                                         le32_to_cpu(raw_inode->i_blocks_lo);
3999                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4000                         /* i_blocks represent file system block size */
4001                         return i_blocks  << (inode->i_blkbits - 9);
4002                 } else {
4003                         return i_blocks;
4004                 }
4005         } else {
4006                 return le32_to_cpu(raw_inode->i_blocks_lo);
4007         }
4008 }
4009
4010 static inline void ext4_iget_extra_inode(struct inode *inode,
4011                                          struct ext4_inode *raw_inode,
4012                                          struct ext4_inode_info *ei)
4013 {
4014         __le32 *magic = (void *)raw_inode +
4015                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4016         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4017                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4018                 ext4_find_inline_data_nolock(inode);
4019         } else
4020                 EXT4_I(inode)->i_inline_off = 0;
4021 }
4022
4023 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4024 {
4025         struct ext4_iloc iloc;
4026         struct ext4_inode *raw_inode;
4027         struct ext4_inode_info *ei;
4028         struct inode *inode;
4029         journal_t *journal = EXT4_SB(sb)->s_journal;
4030         long ret;
4031         int block;
4032         uid_t i_uid;
4033         gid_t i_gid;
4034
4035         inode = iget_locked(sb, ino);
4036         if (!inode)
4037                 return ERR_PTR(-ENOMEM);
4038         if (!(inode->i_state & I_NEW))
4039                 return inode;
4040
4041         ei = EXT4_I(inode);
4042         iloc.bh = NULL;
4043
4044         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045         if (ret < 0)
4046                 goto bad_inode;
4047         raw_inode = ext4_raw_inode(&iloc);
4048
4049         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052                     EXT4_INODE_SIZE(inode->i_sb)) {
4053                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055                                 EXT4_INODE_SIZE(inode->i_sb));
4056                         ret = -EIO;
4057                         goto bad_inode;
4058                 }
4059         } else
4060                 ei->i_extra_isize = 0;
4061
4062         /* Precompute checksum seed for inode metadata */
4063         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066                 __u32 csum;
4067                 __le32 inum = cpu_to_le32(inode->i_ino);
4068                 __le32 gen = raw_inode->i_generation;
4069                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070                                    sizeof(inum));
4071                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072                                               sizeof(gen));
4073         }
4074
4075         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076                 EXT4_ERROR_INODE(inode, "checksum invalid");
4077                 ret = -EIO;
4078                 goto bad_inode;
4079         }
4080
4081         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084         if (!(test_opt(inode->i_sb, NO_UID32))) {
4085                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087         }
4088         i_uid_write(inode, i_uid);
4089         i_gid_write(inode, i_gid);
4090         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091
4092         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4093         ei->i_inline_off = 0;
4094         ei->i_dir_start_lookup = 0;
4095         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096         /* We now have enough fields to check if the inode was active or not.
4097          * This is needed because nfsd might try to access dead inodes
4098          * the test is that same one that e2fsck uses
4099          * NeilBrown 1999oct15
4100          */
4101         if (inode->i_nlink == 0) {
4102                 if ((inode->i_mode == 0 ||
4103                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104                     ino != EXT4_BOOT_LOADER_INO) {
4105                         /* this inode is deleted */
4106                         ret = -ESTALE;
4107                         goto bad_inode;
4108                 }
4109                 /* The only unlinked inodes we let through here have
4110                  * valid i_mode and are being read by the orphan
4111                  * recovery code: that's fine, we're about to complete
4112                  * the process of deleting those.
4113                  * OR it is the EXT4_BOOT_LOADER_INO which is
4114                  * not initialized on a new filesystem. */
4115         }
4116         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4117         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120                 ei->i_file_acl |=
4121                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122         inode->i_size = ext4_isize(raw_inode);
4123         ei->i_disksize = inode->i_size;
4124 #ifdef CONFIG_QUOTA
4125         ei->i_reserved_quota = 0;
4126 #endif
4127         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128         ei->i_block_group = iloc.block_group;
4129         ei->i_last_alloc_group = ~0;
4130         /*
4131          * NOTE! The in-memory inode i_data array is in little-endian order
4132          * even on big-endian machines: we do NOT byteswap the block numbers!
4133          */
4134         for (block = 0; block < EXT4_N_BLOCKS; block++)
4135                 ei->i_data[block] = raw_inode->i_block[block];
4136         INIT_LIST_HEAD(&ei->i_orphan);
4137
4138         /*
4139          * Set transaction id's of transactions that have to be committed
4140          * to finish f[data]sync. We set them to currently running transaction
4141          * as we cannot be sure that the inode or some of its metadata isn't
4142          * part of the transaction - the inode could have been reclaimed and
4143          * now it is reread from disk.
4144          */
4145         if (journal) {
4146                 transaction_t *transaction;
4147                 tid_t tid;
4148
4149                 read_lock(&journal->j_state_lock);
4150                 if (journal->j_running_transaction)
4151                         transaction = journal->j_running_transaction;
4152                 else
4153                         transaction = journal->j_committing_transaction;
4154                 if (transaction)
4155                         tid = transaction->t_tid;
4156                 else
4157                         tid = journal->j_commit_sequence;
4158                 read_unlock(&journal->j_state_lock);
4159                 ei->i_sync_tid = tid;
4160                 ei->i_datasync_tid = tid;
4161         }
4162
4163         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164                 if (ei->i_extra_isize == 0) {
4165                         /* The extra space is currently unused. Use it. */
4166                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4167                                             EXT4_GOOD_OLD_INODE_SIZE;
4168                 } else {
4169                         ext4_iget_extra_inode(inode, raw_inode, ei);
4170                 }
4171         }
4172
4173         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
4178         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182                                 inode->i_version |=
4183                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184                 }
4185         }
4186
4187         ret = 0;
4188         if (ei->i_file_acl &&
4189             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191                                  ei->i_file_acl);
4192                 ret = -EIO;
4193                 goto bad_inode;
4194         } else if (!ext4_has_inline_data(inode)) {
4195                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197                             (S_ISLNK(inode->i_mode) &&
4198                              !ext4_inode_is_fast_symlink(inode))))
4199                                 /* Validate extent which is part of inode */
4200                                 ret = ext4_ext_check_inode(inode);
4201                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202                            (S_ISLNK(inode->i_mode) &&
4203                             !ext4_inode_is_fast_symlink(inode))) {
4204                         /* Validate block references which are part of inode */
4205                         ret = ext4_ind_check_inode(inode);
4206                 }
4207         }
4208         if (ret)
4209                 goto bad_inode;
4210
4211         if (S_ISREG(inode->i_mode)) {
4212                 inode->i_op = &ext4_file_inode_operations;
4213                 inode->i_fop = &ext4_file_operations;
4214                 ext4_set_aops(inode);
4215         } else if (S_ISDIR(inode->i_mode)) {
4216                 inode->i_op = &ext4_dir_inode_operations;
4217                 inode->i_fop = &ext4_dir_operations;
4218         } else if (S_ISLNK(inode->i_mode)) {
4219                 if (ext4_inode_is_fast_symlink(inode)) {
4220                         inode->i_op = &ext4_fast_symlink_inode_operations;
4221                         nd_terminate_link(ei->i_data, inode->i_size,
4222                                 sizeof(ei->i_data) - 1);
4223                 } else {
4224                         inode->i_op = &ext4_symlink_inode_operations;
4225                         ext4_set_aops(inode);
4226                 }
4227         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229                 inode->i_op = &ext4_special_inode_operations;
4230                 if (raw_inode->i_block[0])
4231                         init_special_inode(inode, inode->i_mode,
4232                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233                 else
4234                         init_special_inode(inode, inode->i_mode,
4235                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236         } else if (ino == EXT4_BOOT_LOADER_INO) {
4237                 make_bad_inode(inode);
4238         } else {
4239                 ret = -EIO;
4240                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241                 goto bad_inode;
4242         }
4243         brelse(iloc.bh);
4244         ext4_set_inode_flags(inode);
4245         unlock_new_inode(inode);
4246         return inode;
4247
4248 bad_inode:
4249         brelse(iloc.bh);
4250         iget_failed(inode);
4251         return ERR_PTR(ret);
4252 }
4253
4254 static int ext4_inode_blocks_set(handle_t *handle,
4255                                 struct ext4_inode *raw_inode,
4256                                 struct ext4_inode_info *ei)
4257 {
4258         struct inode *inode = &(ei->vfs_inode);
4259         u64 i_blocks = inode->i_blocks;
4260         struct super_block *sb = inode->i_sb;
4261
4262         if (i_blocks <= ~0U) {
4263                 /*
4264                  * i_blocks can be represented in a 32 bit variable
4265                  * as multiple of 512 bytes
4266                  */
4267                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268                 raw_inode->i_blocks_high = 0;
4269                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270                 return 0;
4271         }
4272         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273                 return -EFBIG;
4274
4275         if (i_blocks <= 0xffffffffffffULL) {
4276                 /*
4277                  * i_blocks can be represented in a 48 bit variable
4278                  * as multiple of 512 bytes
4279                  */
4280                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283         } else {
4284                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285                 /* i_block is stored in file system block size */
4286                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289         }
4290         return 0;
4291 }
4292
4293 /*
4294  * Post the struct inode info into an on-disk inode location in the
4295  * buffer-cache.  This gobbles the caller's reference to the
4296  * buffer_head in the inode location struct.
4297  *
4298  * The caller must have write access to iloc->bh.
4299  */
4300 static int ext4_do_update_inode(handle_t *handle,
4301                                 struct inode *inode,
4302                                 struct ext4_iloc *iloc)
4303 {
4304         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305         struct ext4_inode_info *ei = EXT4_I(inode);
4306         struct buffer_head *bh = iloc->bh;
4307         int err = 0, rc, block;
4308         int need_datasync = 0;
4309         uid_t i_uid;
4310         gid_t i_gid;
4311
4312         /* For fields not not tracking in the in-memory inode,
4313          * initialise them to zero for new inodes. */
4314         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316
4317         ext4_get_inode_flags(ei);
4318         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319         i_uid = i_uid_read(inode);
4320         i_gid = i_gid_read(inode);
4321         if (!(test_opt(inode->i_sb, NO_UID32))) {
4322                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324 /*
4325  * Fix up interoperability with old kernels. Otherwise, old inodes get
4326  * re-used with the upper 16 bits of the uid/gid intact
4327  */
4328                 if (!ei->i_dtime) {
4329                         raw_inode->i_uid_high =
4330                                 cpu_to_le16(high_16_bits(i_uid));
4331                         raw_inode->i_gid_high =
4332                                 cpu_to_le16(high_16_bits(i_gid));
4333                 } else {
4334                         raw_inode->i_uid_high = 0;
4335                         raw_inode->i_gid_high = 0;
4336                 }
4337         } else {
4338                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340                 raw_inode->i_uid_high = 0;
4341                 raw_inode->i_gid_high = 0;
4342         }
4343         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344
4345         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
4350         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351                 goto out_brelse;
4352         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355                 raw_inode->i_file_acl_high =
4356                         cpu_to_le16(ei->i_file_acl >> 32);
4357         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358         if (ei->i_disksize != ext4_isize(raw_inode)) {
4359                 ext4_isize_set(raw_inode, ei->i_disksize);
4360                 need_datasync = 1;
4361         }
4362         if (ei->i_disksize > 0x7fffffffULL) {
4363                 struct super_block *sb = inode->i_sb;
4364                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366                                 EXT4_SB(sb)->s_es->s_rev_level ==
4367                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368                         /* If this is the first large file
4369                          * created, add a flag to the superblock.
4370                          */
4371                         err = ext4_journal_get_write_access(handle,
4372                                         EXT4_SB(sb)->s_sbh);
4373                         if (err)
4374                                 goto out_brelse;
4375                         ext4_update_dynamic_rev(sb);
4376                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4377                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378                         ext4_handle_sync(handle);
4379                         err = ext4_handle_dirty_super(handle, sb);
4380                 }
4381         }
4382         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384                 if (old_valid_dev(inode->i_rdev)) {
4385                         raw_inode->i_block[0] =
4386                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4387                         raw_inode->i_block[1] = 0;
4388                 } else {
4389                         raw_inode->i_block[0] = 0;
4390                         raw_inode->i_block[1] =
4391                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4392                         raw_inode->i_block[2] = 0;
4393                 }
4394         } else if (!ext4_has_inline_data(inode)) {
4395                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4396                         raw_inode->i_block[block] = ei->i_data[block];
4397         }
4398
4399         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401                 if (ei->i_extra_isize) {
4402                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403                                 raw_inode->i_version_hi =
4404                                         cpu_to_le32(inode->i_version >> 32);
4405                         raw_inode->i_extra_isize =
4406                                 cpu_to_le16(ei->i_extra_isize);
4407                 }
4408         }
4409
4410         ext4_inode_csum_set(inode, raw_inode, ei);
4411
4412         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414         if (!err)
4415                 err = rc;
4416         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417
4418         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4419 out_brelse:
4420         brelse(bh);
4421         ext4_std_error(inode->i_sb, err);
4422         return err;
4423 }
4424
4425 /*
4426  * ext4_write_inode()
4427  *
4428  * We are called from a few places:
4429  *
4430  * - Within generic_file_write() for O_SYNC files.
4431  *   Here, there will be no transaction running. We wait for any running
4432  *   transaction to commit.
4433  *
4434  * - Within sys_sync(), kupdate and such.
4435  *   We wait on commit, if tol to.
4436  *
4437  * - Within prune_icache() (PF_MEMALLOC == true)
4438  *   Here we simply return.  We can't afford to block kswapd on the
4439  *   journal commit.
4440  *
4441  * In all cases it is actually safe for us to return without doing anything,
4442  * because the inode has been copied into a raw inode buffer in
4443  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4444  * knfsd.
4445  *
4446  * Note that we are absolutely dependent upon all inode dirtiers doing the
4447  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4448  * which we are interested.
4449  *
4450  * It would be a bug for them to not do this.  The code:
4451  *
4452  *      mark_inode_dirty(inode)
4453  *      stuff();
4454  *      inode->i_size = expr;
4455  *
4456  * is in error because a kswapd-driven write_inode() could occur while
4457  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4458  * will no longer be on the superblock's dirty inode list.
4459  */
4460 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4461 {
4462         int err;
4463
4464         if (current->flags & PF_MEMALLOC)
4465                 return 0;
4466
4467         if (EXT4_SB(inode->i_sb)->s_journal) {
4468                 if (ext4_journal_current_handle()) {
4469                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4470                         dump_stack();
4471                         return -EIO;
4472                 }
4473
4474                 /*
4475                  * No need to force transaction in WB_SYNC_NONE mode. Also
4476                  * ext4_sync_fs() will force the commit after everything is
4477                  * written.
4478                  */
4479                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4480                         return 0;
4481
4482                 err = ext4_force_commit(inode->i_sb);
4483         } else {
4484                 struct ext4_iloc iloc;
4485
4486                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4487                 if (err)
4488                         return err;
4489                 /*
4490                  * sync(2) will flush the whole buffer cache. No need to do
4491                  * it here separately for each inode.
4492                  */
4493                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4494                         sync_dirty_buffer(iloc.bh);
4495                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4496                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4497                                          "IO error syncing inode");
4498                         err = -EIO;
4499                 }
4500                 brelse(iloc.bh);
4501         }
4502         return err;
4503 }
4504
4505 /*
4506  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4507  * buffers that are attached to a page stradding i_size and are undergoing
4508  * commit. In that case we have to wait for commit to finish and try again.
4509  */
4510 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4511 {
4512         struct page *page;
4513         unsigned offset;
4514         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4515         tid_t commit_tid = 0;
4516         int ret;
4517
4518         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4519         /*
4520          * All buffers in the last page remain valid? Then there's nothing to
4521          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4522          * blocksize case
4523          */
4524         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4525                 return;
4526         while (1) {
4527                 page = find_lock_page(inode->i_mapping,
4528                                       inode->i_size >> PAGE_CACHE_SHIFT);
4529                 if (!page)
4530                         return;
4531                 ret = __ext4_journalled_invalidatepage(page, offset,
4532                                                 PAGE_CACHE_SIZE - offset);
4533                 unlock_page(page);
4534                 page_cache_release(page);
4535                 if (ret != -EBUSY)
4536                         return;
4537                 commit_tid = 0;
4538                 read_lock(&journal->j_state_lock);
4539                 if (journal->j_committing_transaction)
4540                         commit_tid = journal->j_committing_transaction->t_tid;
4541                 read_unlock(&journal->j_state_lock);
4542                 if (commit_tid)
4543                         jbd2_log_wait_commit(journal, commit_tid);
4544         }
4545 }
4546
4547 /*
4548  * ext4_setattr()
4549  *
4550  * Called from notify_change.
4551  *
4552  * We want to trap VFS attempts to truncate the file as soon as
4553  * possible.  In particular, we want to make sure that when the VFS
4554  * shrinks i_size, we put the inode on the orphan list and modify
4555  * i_disksize immediately, so that during the subsequent flushing of
4556  * dirty pages and freeing of disk blocks, we can guarantee that any
4557  * commit will leave the blocks being flushed in an unused state on
4558  * disk.  (On recovery, the inode will get truncated and the blocks will
4559  * be freed, so we have a strong guarantee that no future commit will
4560  * leave these blocks visible to the user.)
4561  *
4562  * Another thing we have to assure is that if we are in ordered mode
4563  * and inode is still attached to the committing transaction, we must
4564  * we start writeout of all the dirty pages which are being truncated.
4565  * This way we are sure that all the data written in the previous
4566  * transaction are already on disk (truncate waits for pages under
4567  * writeback).
4568  *
4569  * Called with inode->i_mutex down.
4570  */
4571 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4572 {
4573         struct inode *inode = dentry->d_inode;
4574         int error, rc = 0;
4575         int orphan = 0;
4576         const unsigned int ia_valid = attr->ia_valid;
4577
4578         error = inode_change_ok(inode, attr);
4579         if (error)
4580                 return error;
4581
4582         if (is_quota_modification(inode, attr))
4583                 dquot_initialize(inode);
4584         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4585             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4586                 handle_t *handle;
4587
4588                 /* (user+group)*(old+new) structure, inode write (sb,
4589                  * inode block, ? - but truncate inode update has it) */
4590                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4591                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4592                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4593                 if (IS_ERR(handle)) {
4594                         error = PTR_ERR(handle);
4595                         goto err_out;
4596                 }
4597                 error = dquot_transfer(inode, attr);
4598                 if (error) {
4599                         ext4_journal_stop(handle);
4600                         return error;
4601                 }
4602                 /* Update corresponding info in inode so that everything is in
4603                  * one transaction */
4604                 if (attr->ia_valid & ATTR_UID)
4605                         inode->i_uid = attr->ia_uid;
4606                 if (attr->ia_valid & ATTR_GID)
4607                         inode->i_gid = attr->ia_gid;
4608                 error = ext4_mark_inode_dirty(handle, inode);
4609                 ext4_journal_stop(handle);
4610         }
4611
4612         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4613                 handle_t *handle;
4614
4615                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4616                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4617
4618                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4619                                 return -EFBIG;
4620                 }
4621
4622                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4623                         inode_inc_iversion(inode);
4624
4625                 if (S_ISREG(inode->i_mode) &&
4626                     (attr->ia_size < inode->i_size)) {
4627                         if (ext4_should_order_data(inode)) {
4628                                 error = ext4_begin_ordered_truncate(inode,
4629                                                             attr->ia_size);
4630                                 if (error)
4631                                         goto err_out;
4632                         }
4633                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4634                         if (IS_ERR(handle)) {
4635                                 error = PTR_ERR(handle);
4636                                 goto err_out;
4637                         }
4638                         if (ext4_handle_valid(handle)) {
4639                                 error = ext4_orphan_add(handle, inode);
4640                                 orphan = 1;
4641                         }
4642                         down_write(&EXT4_I(inode)->i_data_sem);
4643                         EXT4_I(inode)->i_disksize = attr->ia_size;
4644                         rc = ext4_mark_inode_dirty(handle, inode);
4645                         if (!error)
4646                                 error = rc;
4647                         /*
4648                          * We have to update i_size under i_data_sem together
4649                          * with i_disksize to avoid races with writeback code
4650                          * running ext4_wb_update_i_disksize().
4651                          */
4652                         if (!error)
4653                                 i_size_write(inode, attr->ia_size);
4654                         up_write(&EXT4_I(inode)->i_data_sem);
4655                         ext4_journal_stop(handle);
4656                         if (error) {
4657                                 ext4_orphan_del(NULL, inode);
4658                                 goto err_out;
4659                         }
4660                 } else
4661                         i_size_write(inode, attr->ia_size);
4662
4663                 /*
4664                  * Blocks are going to be removed from the inode. Wait
4665                  * for dio in flight.  Temporarily disable
4666                  * dioread_nolock to prevent livelock.
4667                  */
4668                 if (orphan) {
4669                         if (!ext4_should_journal_data(inode)) {
4670                                 ext4_inode_block_unlocked_dio(inode);
4671                                 inode_dio_wait(inode);
4672                                 ext4_inode_resume_unlocked_dio(inode);
4673                         } else
4674                                 ext4_wait_for_tail_page_commit(inode);
4675                 }
4676                 /*
4677                  * Truncate pagecache after we've waited for commit
4678                  * in data=journal mode to make pages freeable.
4679                  */
4680                         truncate_pagecache(inode, inode->i_size);
4681         }
4682         /*
4683          * We want to call ext4_truncate() even if attr->ia_size ==
4684          * inode->i_size for cases like truncation of fallocated space
4685          */
4686         if (attr->ia_valid & ATTR_SIZE)
4687                 ext4_truncate(inode);
4688
4689         if (!rc) {
4690                 setattr_copy(inode, attr);
4691                 mark_inode_dirty(inode);
4692         }
4693
4694         /*
4695          * If the call to ext4_truncate failed to get a transaction handle at
4696          * all, we need to clean up the in-core orphan list manually.
4697          */
4698         if (orphan && inode->i_nlink)
4699                 ext4_orphan_del(NULL, inode);
4700
4701         if (!rc && (ia_valid & ATTR_MODE))
4702                 rc = posix_acl_chmod(inode, inode->i_mode);
4703
4704 err_out:
4705         ext4_std_error(inode->i_sb, error);
4706         if (!error)
4707                 error = rc;
4708         return error;
4709 }
4710
4711 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4712                  struct kstat *stat)
4713 {
4714         struct inode *inode;
4715         unsigned long long delalloc_blocks;
4716
4717         inode = dentry->d_inode;
4718         generic_fillattr(inode, stat);
4719
4720         /*
4721          * If there is inline data in the inode, the inode will normally not
4722          * have data blocks allocated (it may have an external xattr block).
4723          * Report at least one sector for such files, so tools like tar, rsync,
4724          * others doen't incorrectly think the file is completely sparse.
4725          */
4726         if (unlikely(ext4_has_inline_data(inode)))
4727                 stat->blocks += (stat->size + 511) >> 9;
4728
4729         /*
4730          * We can't update i_blocks if the block allocation is delayed
4731          * otherwise in the case of system crash before the real block
4732          * allocation is done, we will have i_blocks inconsistent with
4733          * on-disk file blocks.
4734          * We always keep i_blocks updated together with real
4735          * allocation. But to not confuse with user, stat
4736          * will return the blocks that include the delayed allocation
4737          * blocks for this file.
4738          */
4739         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4740                                    EXT4_I(inode)->i_reserved_data_blocks);
4741         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4742         return 0;
4743 }
4744
4745 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4746                                    int pextents)
4747 {
4748         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4749                 return ext4_ind_trans_blocks(inode, lblocks);
4750         return ext4_ext_index_trans_blocks(inode, pextents);
4751 }
4752
4753 /*
4754  * Account for index blocks, block groups bitmaps and block group
4755  * descriptor blocks if modify datablocks and index blocks
4756  * worse case, the indexs blocks spread over different block groups
4757  *
4758  * If datablocks are discontiguous, they are possible to spread over
4759  * different block groups too. If they are contiguous, with flexbg,
4760  * they could still across block group boundary.
4761  *
4762  * Also account for superblock, inode, quota and xattr blocks
4763  */
4764 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4765                                   int pextents)
4766 {
4767         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4768         int gdpblocks;
4769         int idxblocks;
4770         int ret = 0;
4771
4772         /*
4773          * How many index blocks need to touch to map @lblocks logical blocks
4774          * to @pextents physical extents?
4775          */
4776         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4777
4778         ret = idxblocks;
4779
4780         /*
4781          * Now let's see how many group bitmaps and group descriptors need
4782          * to account
4783          */
4784         groups = idxblocks + pextents;
4785         gdpblocks = groups;
4786         if (groups > ngroups)
4787                 groups = ngroups;
4788         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4789                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4790
4791         /* bitmaps and block group descriptor blocks */
4792         ret += groups + gdpblocks;
4793
4794         /* Blocks for super block, inode, quota and xattr blocks */
4795         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4796
4797         return ret;
4798 }
4799
4800 /*
4801  * Calculate the total number of credits to reserve to fit
4802  * the modification of a single pages into a single transaction,
4803  * which may include multiple chunks of block allocations.
4804  *
4805  * This could be called via ext4_write_begin()
4806  *
4807  * We need to consider the worse case, when
4808  * one new block per extent.
4809  */
4810 int ext4_writepage_trans_blocks(struct inode *inode)
4811 {
4812         int bpp = ext4_journal_blocks_per_page(inode);
4813         int ret;
4814
4815         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4816
4817         /* Account for data blocks for journalled mode */
4818         if (ext4_should_journal_data(inode))
4819                 ret += bpp;
4820         return ret;
4821 }
4822
4823 /*
4824  * Calculate the journal credits for a chunk of data modification.
4825  *
4826  * This is called from DIO, fallocate or whoever calling
4827  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4828  *
4829  * journal buffers for data blocks are not included here, as DIO
4830  * and fallocate do no need to journal data buffers.
4831  */
4832 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4833 {
4834         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4835 }
4836
4837 /*
4838  * The caller must have previously called ext4_reserve_inode_write().
4839  * Give this, we know that the caller already has write access to iloc->bh.
4840  */
4841 int ext4_mark_iloc_dirty(handle_t *handle,
4842                          struct inode *inode, struct ext4_iloc *iloc)
4843 {
4844         int err = 0;
4845
4846         if (IS_I_VERSION(inode))
4847                 inode_inc_iversion(inode);
4848
4849         /* the do_update_inode consumes one bh->b_count */
4850         get_bh(iloc->bh);
4851
4852         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4853         err = ext4_do_update_inode(handle, inode, iloc);
4854         put_bh(iloc->bh);
4855         return err;
4856 }
4857
4858 /*
4859  * On success, We end up with an outstanding reference count against
4860  * iloc->bh.  This _must_ be cleaned up later.
4861  */
4862
4863 int
4864 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4865                          struct ext4_iloc *iloc)
4866 {
4867         int err;
4868
4869         err = ext4_get_inode_loc(inode, iloc);
4870         if (!err) {
4871                 BUFFER_TRACE(iloc->bh, "get_write_access");
4872                 err = ext4_journal_get_write_access(handle, iloc->bh);
4873                 if (err) {
4874                         brelse(iloc->bh);
4875                         iloc->bh = NULL;
4876                 }
4877         }
4878         ext4_std_error(inode->i_sb, err);
4879         return err;
4880 }
4881
4882 /*
4883  * Expand an inode by new_extra_isize bytes.
4884  * Returns 0 on success or negative error number on failure.
4885  */
4886 static int ext4_expand_extra_isize(struct inode *inode,
4887                                    unsigned int new_extra_isize,
4888                                    struct ext4_iloc iloc,
4889                                    handle_t *handle)
4890 {
4891         struct ext4_inode *raw_inode;
4892         struct ext4_xattr_ibody_header *header;
4893
4894         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4895                 return 0;
4896
4897         raw_inode = ext4_raw_inode(&iloc);
4898
4899         header = IHDR(inode, raw_inode);
4900
4901         /* No extended attributes present */
4902         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4903             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4904                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4905                         new_extra_isize);
4906                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4907                 return 0;
4908         }
4909
4910         /* try to expand with EAs present */
4911         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4912                                           raw_inode, handle);
4913 }
4914
4915 /*
4916  * What we do here is to mark the in-core inode as clean with respect to inode
4917  * dirtiness (it may still be data-dirty).
4918  * This means that the in-core inode may be reaped by prune_icache
4919  * without having to perform any I/O.  This is a very good thing,
4920  * because *any* task may call prune_icache - even ones which
4921  * have a transaction open against a different journal.
4922  *
4923  * Is this cheating?  Not really.  Sure, we haven't written the
4924  * inode out, but prune_icache isn't a user-visible syncing function.
4925  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4926  * we start and wait on commits.
4927  */
4928 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4929 {
4930         struct ext4_iloc iloc;
4931         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4932         static unsigned int mnt_count;
4933         int err, ret;
4934
4935         might_sleep();
4936         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4937         err = ext4_reserve_inode_write(handle, inode, &iloc);
4938         if (ext4_handle_valid(handle) &&
4939             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4940             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4941                 /*
4942                  * We need extra buffer credits since we may write into EA block
4943                  * with this same handle. If journal_extend fails, then it will
4944                  * only result in a minor loss of functionality for that inode.
4945                  * If this is felt to be critical, then e2fsck should be run to
4946                  * force a large enough s_min_extra_isize.
4947                  */
4948                 if ((jbd2_journal_extend(handle,
4949                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4950                         ret = ext4_expand_extra_isize(inode,
4951                                                       sbi->s_want_extra_isize,
4952                                                       iloc, handle);
4953                         if (ret) {
4954                                 ext4_set_inode_state(inode,
4955                                                      EXT4_STATE_NO_EXPAND);
4956                                 if (mnt_count !=
4957                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4958                                         ext4_warning(inode->i_sb,
4959                                         "Unable to expand inode %lu. Delete"
4960                                         " some EAs or run e2fsck.",
4961                                         inode->i_ino);
4962                                         mnt_count =
4963                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4964                                 }
4965                         }
4966                 }
4967         }
4968         if (!err)
4969                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4970         return err;
4971 }
4972
4973 /*
4974  * ext4_dirty_inode() is called from __mark_inode_dirty()
4975  *
4976  * We're really interested in the case where a file is being extended.
4977  * i_size has been changed by generic_commit_write() and we thus need
4978  * to include the updated inode in the current transaction.
4979  *
4980  * Also, dquot_alloc_block() will always dirty the inode when blocks
4981  * are allocated to the file.
4982  *
4983  * If the inode is marked synchronous, we don't honour that here - doing
4984  * so would cause a commit on atime updates, which we don't bother doing.
4985  * We handle synchronous inodes at the highest possible level.
4986  */
4987 void ext4_dirty_inode(struct inode *inode, int flags)
4988 {
4989         handle_t *handle;
4990
4991         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4992         if (IS_ERR(handle))
4993                 goto out;
4994
4995         ext4_mark_inode_dirty(handle, inode);
4996
4997         ext4_journal_stop(handle);
4998 out:
4999         return;
5000 }
5001
5002 #if 0
5003 /*
5004  * Bind an inode's backing buffer_head into this transaction, to prevent
5005  * it from being flushed to disk early.  Unlike
5006  * ext4_reserve_inode_write, this leaves behind no bh reference and
5007  * returns no iloc structure, so the caller needs to repeat the iloc
5008  * lookup to mark the inode dirty later.
5009  */
5010 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5011 {
5012         struct ext4_iloc iloc;
5013
5014         int err = 0;
5015         if (handle) {
5016                 err = ext4_get_inode_loc(inode, &iloc);
5017                 if (!err) {
5018                         BUFFER_TRACE(iloc.bh, "get_write_access");
5019                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5020                         if (!err)
5021                                 err = ext4_handle_dirty_metadata(handle,
5022                                                                  NULL,
5023                                                                  iloc.bh);
5024                         brelse(iloc.bh);
5025                 }
5026         }
5027         ext4_std_error(inode->i_sb, err);
5028         return err;
5029 }
5030 #endif
5031
5032 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5033 {
5034         journal_t *journal;
5035         handle_t *handle;
5036         int err;
5037
5038         /*
5039          * We have to be very careful here: changing a data block's
5040          * journaling status dynamically is dangerous.  If we write a
5041          * data block to the journal, change the status and then delete
5042          * that block, we risk forgetting to revoke the old log record
5043          * from the journal and so a subsequent replay can corrupt data.
5044          * So, first we make sure that the journal is empty and that
5045          * nobody is changing anything.
5046          */
5047
5048         journal = EXT4_JOURNAL(inode);
5049         if (!journal)
5050                 return 0;
5051         if (is_journal_aborted(journal))
5052                 return -EROFS;
5053         /* We have to allocate physical blocks for delalloc blocks
5054          * before flushing journal. otherwise delalloc blocks can not
5055          * be allocated any more. even more truncate on delalloc blocks
5056          * could trigger BUG by flushing delalloc blocks in journal.
5057          * There is no delalloc block in non-journal data mode.
5058          */
5059         if (val && test_opt(inode->i_sb, DELALLOC)) {
5060                 err = ext4_alloc_da_blocks(inode);
5061                 if (err < 0)
5062                         return err;
5063         }
5064
5065         /* Wait for all existing dio workers */
5066         ext4_inode_block_unlocked_dio(inode);
5067         inode_dio_wait(inode);
5068
5069         jbd2_journal_lock_updates(journal);
5070
5071         /*
5072          * OK, there are no updates running now, and all cached data is
5073          * synced to disk.  We are now in a completely consistent state
5074          * which doesn't have anything in the journal, and we know that
5075          * no filesystem updates are running, so it is safe to modify
5076          * the inode's in-core data-journaling state flag now.
5077          */
5078
5079         if (val)
5080                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5081         else {
5082                 jbd2_journal_flush(journal);
5083                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5084         }
5085         ext4_set_aops(inode);
5086
5087         jbd2_journal_unlock_updates(journal);
5088         ext4_inode_resume_unlocked_dio(inode);
5089
5090         /* Finally we can mark the inode as dirty. */
5091
5092         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5093         if (IS_ERR(handle))
5094                 return PTR_ERR(handle);
5095
5096         err = ext4_mark_inode_dirty(handle, inode);
5097         ext4_handle_sync(handle);
5098         ext4_journal_stop(handle);
5099         ext4_std_error(inode->i_sb, err);
5100
5101         return err;
5102 }
5103
5104 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5105 {
5106         return !buffer_mapped(bh);
5107 }
5108
5109 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5110 {
5111         struct page *page = vmf->page;
5112         loff_t size;
5113         unsigned long len;
5114         int ret;
5115         struct file *file = vma->vm_file;
5116         struct inode *inode = file_inode(file);
5117         struct address_space *mapping = inode->i_mapping;
5118         handle_t *handle;
5119         get_block_t *get_block;
5120         int retries = 0;
5121
5122         sb_start_pagefault(inode->i_sb);
5123         file_update_time(vma->vm_file);
5124         /* Delalloc case is easy... */
5125         if (test_opt(inode->i_sb, DELALLOC) &&
5126             !ext4_should_journal_data(inode) &&
5127             !ext4_nonda_switch(inode->i_sb)) {
5128                 do {
5129                         ret = __block_page_mkwrite(vma, vmf,
5130                                                    ext4_da_get_block_prep);
5131                 } while (ret == -ENOSPC &&
5132                        ext4_should_retry_alloc(inode->i_sb, &retries));
5133                 goto out_ret;
5134         }
5135
5136         lock_page(page);
5137         size = i_size_read(inode);
5138         /* Page got truncated from under us? */
5139         if (page->mapping != mapping || page_offset(page) > size) {
5140                 unlock_page(page);
5141                 ret = VM_FAULT_NOPAGE;
5142                 goto out;
5143         }
5144
5145         if (page->index == size >> PAGE_CACHE_SHIFT)
5146                 len = size & ~PAGE_CACHE_MASK;
5147         else
5148                 len = PAGE_CACHE_SIZE;
5149         /*
5150          * Return if we have all the buffers mapped. This avoids the need to do
5151          * journal_start/journal_stop which can block and take a long time
5152          */
5153         if (page_has_buffers(page)) {
5154                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5155                                             0, len, NULL,
5156                                             ext4_bh_unmapped)) {
5157                         /* Wait so that we don't change page under IO */
5158                         wait_for_stable_page(page);
5159                         ret = VM_FAULT_LOCKED;
5160                         goto out;
5161                 }
5162         }
5163         unlock_page(page);
5164         /* OK, we need to fill the hole... */
5165         if (ext4_should_dioread_nolock(inode))
5166                 get_block = ext4_get_block_write;
5167         else
5168                 get_block = ext4_get_block;
5169 retry_alloc:
5170         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5171                                     ext4_writepage_trans_blocks(inode));
5172         if (IS_ERR(handle)) {
5173                 ret = VM_FAULT_SIGBUS;
5174                 goto out;
5175         }
5176         ret = __block_page_mkwrite(vma, vmf, get_block);
5177         if (!ret && ext4_should_journal_data(inode)) {
5178                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5179                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5180                         unlock_page(page);
5181                         ret = VM_FAULT_SIGBUS;
5182                         ext4_journal_stop(handle);
5183                         goto out;
5184                 }
5185                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5186         }
5187         ext4_journal_stop(handle);
5188         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5189                 goto retry_alloc;
5190 out_ret:
5191         ret = block_page_mkwrite_return(ret);
5192 out:
5193         sb_end_pagefault(inode->i_sb);
5194         return ret;
5195 }