972ec5ae2ac41c784b9cffdcee23f37761d47863
[pandora-kernel.git] / fs / ceph / mds_client.c
1 #include "ceph_debug.h"
2
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6
7 #include "mds_client.h"
8 #include "mon_client.h"
9 #include "super.h"
10 #include "messenger.h"
11 #include "decode.h"
12 #include "auth.h"
13 #include "pagelist.h"
14
15 /*
16  * A cluster of MDS (metadata server) daemons is responsible for
17  * managing the file system namespace (the directory hierarchy and
18  * inodes) and for coordinating shared access to storage.  Metadata is
19  * partitioning hierarchically across a number of servers, and that
20  * partition varies over time as the cluster adjusts the distribution
21  * in order to balance load.
22  *
23  * The MDS client is primarily responsible to managing synchronous
24  * metadata requests for operations like open, unlink, and so forth.
25  * If there is a MDS failure, we find out about it when we (possibly
26  * request and) receive a new MDS map, and can resubmit affected
27  * requests.
28  *
29  * For the most part, though, we take advantage of a lossless
30  * communications channel to the MDS, and do not need to worry about
31  * timing out or resubmitting requests.
32  *
33  * We maintain a stateful "session" with each MDS we interact with.
34  * Within each session, we sent periodic heartbeat messages to ensure
35  * any capabilities or leases we have been issues remain valid.  If
36  * the session times out and goes stale, our leases and capabilities
37  * are no longer valid.
38  */
39
40 static void __wake_requests(struct ceph_mds_client *mdsc,
41                             struct list_head *head);
42
43 const static struct ceph_connection_operations mds_con_ops;
44
45
46 /*
47  * mds reply parsing
48  */
49
50 /*
51  * parse individual inode info
52  */
53 static int parse_reply_info_in(void **p, void *end,
54                                struct ceph_mds_reply_info_in *info)
55 {
56         int err = -EIO;
57
58         info->in = *p;
59         *p += sizeof(struct ceph_mds_reply_inode) +
60                 sizeof(*info->in->fragtree.splits) *
61                 le32_to_cpu(info->in->fragtree.nsplits);
62
63         ceph_decode_32_safe(p, end, info->symlink_len, bad);
64         ceph_decode_need(p, end, info->symlink_len, bad);
65         info->symlink = *p;
66         *p += info->symlink_len;
67
68         ceph_decode_32_safe(p, end, info->xattr_len, bad);
69         ceph_decode_need(p, end, info->xattr_len, bad);
70         info->xattr_data = *p;
71         *p += info->xattr_len;
72         return 0;
73 bad:
74         return err;
75 }
76
77 /*
78  * parse a normal reply, which may contain a (dir+)dentry and/or a
79  * target inode.
80  */
81 static int parse_reply_info_trace(void **p, void *end,
82                                   struct ceph_mds_reply_info_parsed *info)
83 {
84         int err;
85
86         if (info->head->is_dentry) {
87                 err = parse_reply_info_in(p, end, &info->diri);
88                 if (err < 0)
89                         goto out_bad;
90
91                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
92                         goto bad;
93                 info->dirfrag = *p;
94                 *p += sizeof(*info->dirfrag) +
95                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
96                 if (unlikely(*p > end))
97                         goto bad;
98
99                 ceph_decode_32_safe(p, end, info->dname_len, bad);
100                 ceph_decode_need(p, end, info->dname_len, bad);
101                 info->dname = *p;
102                 *p += info->dname_len;
103                 info->dlease = *p;
104                 *p += sizeof(*info->dlease);
105         }
106
107         if (info->head->is_target) {
108                 err = parse_reply_info_in(p, end, &info->targeti);
109                 if (err < 0)
110                         goto out_bad;
111         }
112
113         if (unlikely(*p != end))
114                 goto bad;
115         return 0;
116
117 bad:
118         err = -EIO;
119 out_bad:
120         pr_err("problem parsing mds trace %d\n", err);
121         return err;
122 }
123
124 /*
125  * parse readdir results
126  */
127 static int parse_reply_info_dir(void **p, void *end,
128                                 struct ceph_mds_reply_info_parsed *info)
129 {
130         u32 num, i = 0;
131         int err;
132
133         info->dir_dir = *p;
134         if (*p + sizeof(*info->dir_dir) > end)
135                 goto bad;
136         *p += sizeof(*info->dir_dir) +
137                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
138         if (*p > end)
139                 goto bad;
140
141         ceph_decode_need(p, end, sizeof(num) + 2, bad);
142         num = ceph_decode_32(p);
143         info->dir_end = ceph_decode_8(p);
144         info->dir_complete = ceph_decode_8(p);
145         if (num == 0)
146                 goto done;
147
148         /* alloc large array */
149         info->dir_nr = num;
150         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
151                                sizeof(*info->dir_dname) +
152                                sizeof(*info->dir_dname_len) +
153                                sizeof(*info->dir_dlease),
154                                GFP_NOFS);
155         if (info->dir_in == NULL) {
156                 err = -ENOMEM;
157                 goto out_bad;
158         }
159         info->dir_dname = (void *)(info->dir_in + num);
160         info->dir_dname_len = (void *)(info->dir_dname + num);
161         info->dir_dlease = (void *)(info->dir_dname_len + num);
162
163         while (num) {
164                 /* dentry */
165                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
166                 info->dir_dname_len[i] = ceph_decode_32(p);
167                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
168                 info->dir_dname[i] = *p;
169                 *p += info->dir_dname_len[i];
170                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
171                      info->dir_dname[i]);
172                 info->dir_dlease[i] = *p;
173                 *p += sizeof(struct ceph_mds_reply_lease);
174
175                 /* inode */
176                 err = parse_reply_info_in(p, end, &info->dir_in[i]);
177                 if (err < 0)
178                         goto out_bad;
179                 i++;
180                 num--;
181         }
182
183 done:
184         if (*p != end)
185                 goto bad;
186         return 0;
187
188 bad:
189         err = -EIO;
190 out_bad:
191         pr_err("problem parsing dir contents %d\n", err);
192         return err;
193 }
194
195 /*
196  * parse entire mds reply
197  */
198 static int parse_reply_info(struct ceph_msg *msg,
199                             struct ceph_mds_reply_info_parsed *info)
200 {
201         void *p, *end;
202         u32 len;
203         int err;
204
205         info->head = msg->front.iov_base;
206         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
207         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
208
209         /* trace */
210         ceph_decode_32_safe(&p, end, len, bad);
211         if (len > 0) {
212                 err = parse_reply_info_trace(&p, p+len, info);
213                 if (err < 0)
214                         goto out_bad;
215         }
216
217         /* dir content */
218         ceph_decode_32_safe(&p, end, len, bad);
219         if (len > 0) {
220                 err = parse_reply_info_dir(&p, p+len, info);
221                 if (err < 0)
222                         goto out_bad;
223         }
224
225         /* snap blob */
226         ceph_decode_32_safe(&p, end, len, bad);
227         info->snapblob_len = len;
228         info->snapblob = p;
229         p += len;
230
231         if (p != end)
232                 goto bad;
233         return 0;
234
235 bad:
236         err = -EIO;
237 out_bad:
238         pr_err("mds parse_reply err %d\n", err);
239         return err;
240 }
241
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
243 {
244         kfree(info->dir_in);
245 }
246
247
248 /*
249  * sessions
250  */
251 static const char *session_state_name(int s)
252 {
253         switch (s) {
254         case CEPH_MDS_SESSION_NEW: return "new";
255         case CEPH_MDS_SESSION_OPENING: return "opening";
256         case CEPH_MDS_SESSION_OPEN: return "open";
257         case CEPH_MDS_SESSION_HUNG: return "hung";
258         case CEPH_MDS_SESSION_CLOSING: return "closing";
259         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
260         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
261         default: return "???";
262         }
263 }
264
265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
266 {
267         if (atomic_inc_not_zero(&s->s_ref)) {
268                 dout("mdsc get_session %p %d -> %d\n", s,
269                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
270                 return s;
271         } else {
272                 dout("mdsc get_session %p 0 -- FAIL", s);
273                 return NULL;
274         }
275 }
276
277 void ceph_put_mds_session(struct ceph_mds_session *s)
278 {
279         dout("mdsc put_session %p %d -> %d\n", s,
280              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
281         if (atomic_dec_and_test(&s->s_ref)) {
282                 if (s->s_authorizer)
283                         s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
284                                 s->s_mdsc->client->monc.auth, s->s_authorizer);
285                 kfree(s);
286         }
287 }
288
289 /*
290  * called under mdsc->mutex
291  */
292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
293                                                    int mds)
294 {
295         struct ceph_mds_session *session;
296
297         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
298                 return NULL;
299         session = mdsc->sessions[mds];
300         dout("lookup_mds_session %p %d\n", session,
301              atomic_read(&session->s_ref));
302         get_session(session);
303         return session;
304 }
305
306 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
307 {
308         if (mds >= mdsc->max_sessions)
309                 return false;
310         return mdsc->sessions[mds];
311 }
312
313 static int __verify_registered_session(struct ceph_mds_client *mdsc,
314                                        struct ceph_mds_session *s)
315 {
316         if (s->s_mds >= mdsc->max_sessions ||
317             mdsc->sessions[s->s_mds] != s)
318                 return -ENOENT;
319         return 0;
320 }
321
322 /*
323  * create+register a new session for given mds.
324  * called under mdsc->mutex.
325  */
326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
327                                                  int mds)
328 {
329         struct ceph_mds_session *s;
330
331         s = kzalloc(sizeof(*s), GFP_NOFS);
332         if (!s)
333                 return ERR_PTR(-ENOMEM);
334         s->s_mdsc = mdsc;
335         s->s_mds = mds;
336         s->s_state = CEPH_MDS_SESSION_NEW;
337         s->s_ttl = 0;
338         s->s_seq = 0;
339         mutex_init(&s->s_mutex);
340
341         ceph_con_init(mdsc->client->msgr, &s->s_con);
342         s->s_con.private = s;
343         s->s_con.ops = &mds_con_ops;
344         s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
345         s->s_con.peer_name.num = cpu_to_le64(mds);
346
347         spin_lock_init(&s->s_cap_lock);
348         s->s_cap_gen = 0;
349         s->s_cap_ttl = 0;
350         s->s_renew_requested = 0;
351         s->s_renew_seq = 0;
352         INIT_LIST_HEAD(&s->s_caps);
353         s->s_nr_caps = 0;
354         s->s_trim_caps = 0;
355         atomic_set(&s->s_ref, 1);
356         INIT_LIST_HEAD(&s->s_waiting);
357         INIT_LIST_HEAD(&s->s_unsafe);
358         s->s_num_cap_releases = 0;
359         s->s_cap_iterator = NULL;
360         INIT_LIST_HEAD(&s->s_cap_releases);
361         INIT_LIST_HEAD(&s->s_cap_releases_done);
362         INIT_LIST_HEAD(&s->s_cap_flushing);
363         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
364
365         dout("register_session mds%d\n", mds);
366         if (mds >= mdsc->max_sessions) {
367                 int newmax = 1 << get_count_order(mds+1);
368                 struct ceph_mds_session **sa;
369
370                 dout("register_session realloc to %d\n", newmax);
371                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
372                 if (sa == NULL)
373                         goto fail_realloc;
374                 if (mdsc->sessions) {
375                         memcpy(sa, mdsc->sessions,
376                                mdsc->max_sessions * sizeof(void *));
377                         kfree(mdsc->sessions);
378                 }
379                 mdsc->sessions = sa;
380                 mdsc->max_sessions = newmax;
381         }
382         mdsc->sessions[mds] = s;
383         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
384
385         ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
386
387         return s;
388
389 fail_realloc:
390         kfree(s);
391         return ERR_PTR(-ENOMEM);
392 }
393
394 /*
395  * called under mdsc->mutex
396  */
397 static void __unregister_session(struct ceph_mds_client *mdsc,
398                                struct ceph_mds_session *s)
399 {
400         dout("__unregister_session mds%d %p\n", s->s_mds, s);
401         BUG_ON(mdsc->sessions[s->s_mds] != s);
402         mdsc->sessions[s->s_mds] = NULL;
403         ceph_con_close(&s->s_con);
404         ceph_put_mds_session(s);
405 }
406
407 /*
408  * drop session refs in request.
409  *
410  * should be last request ref, or hold mdsc->mutex
411  */
412 static void put_request_session(struct ceph_mds_request *req)
413 {
414         if (req->r_session) {
415                 ceph_put_mds_session(req->r_session);
416                 req->r_session = NULL;
417         }
418 }
419
420 void ceph_mdsc_release_request(struct kref *kref)
421 {
422         struct ceph_mds_request *req = container_of(kref,
423                                                     struct ceph_mds_request,
424                                                     r_kref);
425         if (req->r_request)
426                 ceph_msg_put(req->r_request);
427         if (req->r_reply) {
428                 ceph_msg_put(req->r_reply);
429                 destroy_reply_info(&req->r_reply_info);
430         }
431         if (req->r_inode) {
432                 ceph_put_cap_refs(ceph_inode(req->r_inode),
433                                   CEPH_CAP_PIN);
434                 iput(req->r_inode);
435         }
436         if (req->r_locked_dir)
437                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
438                                   CEPH_CAP_PIN);
439         if (req->r_target_inode)
440                 iput(req->r_target_inode);
441         if (req->r_dentry)
442                 dput(req->r_dentry);
443         if (req->r_old_dentry) {
444                 ceph_put_cap_refs(
445                         ceph_inode(req->r_old_dentry->d_parent->d_inode),
446                         CEPH_CAP_PIN);
447                 dput(req->r_old_dentry);
448         }
449         kfree(req->r_path1);
450         kfree(req->r_path2);
451         put_request_session(req);
452         ceph_unreserve_caps(&req->r_caps_reservation);
453         kfree(req);
454 }
455
456 /*
457  * lookup session, bump ref if found.
458  *
459  * called under mdsc->mutex.
460  */
461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
462                                              u64 tid)
463 {
464         struct ceph_mds_request *req;
465         struct rb_node *n = mdsc->request_tree.rb_node;
466
467         while (n) {
468                 req = rb_entry(n, struct ceph_mds_request, r_node);
469                 if (tid < req->r_tid)
470                         n = n->rb_left;
471                 else if (tid > req->r_tid)
472                         n = n->rb_right;
473                 else {
474                         ceph_mdsc_get_request(req);
475                         return req;
476                 }
477         }
478         return NULL;
479 }
480
481 static void __insert_request(struct ceph_mds_client *mdsc,
482                              struct ceph_mds_request *new)
483 {
484         struct rb_node **p = &mdsc->request_tree.rb_node;
485         struct rb_node *parent = NULL;
486         struct ceph_mds_request *req = NULL;
487
488         while (*p) {
489                 parent = *p;
490                 req = rb_entry(parent, struct ceph_mds_request, r_node);
491                 if (new->r_tid < req->r_tid)
492                         p = &(*p)->rb_left;
493                 else if (new->r_tid > req->r_tid)
494                         p = &(*p)->rb_right;
495                 else
496                         BUG();
497         }
498
499         rb_link_node(&new->r_node, parent, p);
500         rb_insert_color(&new->r_node, &mdsc->request_tree);
501 }
502
503 /*
504  * Register an in-flight request, and assign a tid.  Link to directory
505  * are modifying (if any).
506  *
507  * Called under mdsc->mutex.
508  */
509 static void __register_request(struct ceph_mds_client *mdsc,
510                                struct ceph_mds_request *req,
511                                struct inode *dir)
512 {
513         req->r_tid = ++mdsc->last_tid;
514         if (req->r_num_caps)
515                 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
516         dout("__register_request %p tid %lld\n", req, req->r_tid);
517         ceph_mdsc_get_request(req);
518         __insert_request(mdsc, req);
519
520         if (dir) {
521                 struct ceph_inode_info *ci = ceph_inode(dir);
522
523                 spin_lock(&ci->i_unsafe_lock);
524                 req->r_unsafe_dir = dir;
525                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
526                 spin_unlock(&ci->i_unsafe_lock);
527         }
528 }
529
530 static void __unregister_request(struct ceph_mds_client *mdsc,
531                                  struct ceph_mds_request *req)
532 {
533         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
534         rb_erase(&req->r_node, &mdsc->request_tree);
535         RB_CLEAR_NODE(&req->r_node);
536
537         if (req->r_unsafe_dir) {
538                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
539
540                 spin_lock(&ci->i_unsafe_lock);
541                 list_del_init(&req->r_unsafe_dir_item);
542                 spin_unlock(&ci->i_unsafe_lock);
543         }
544
545         ceph_mdsc_put_request(req);
546 }
547
548 /*
549  * Choose mds to send request to next.  If there is a hint set in the
550  * request (e.g., due to a prior forward hint from the mds), use that.
551  * Otherwise, consult frag tree and/or caps to identify the
552  * appropriate mds.  If all else fails, choose randomly.
553  *
554  * Called under mdsc->mutex.
555  */
556 static int __choose_mds(struct ceph_mds_client *mdsc,
557                         struct ceph_mds_request *req)
558 {
559         struct inode *inode;
560         struct ceph_inode_info *ci;
561         struct ceph_cap *cap;
562         int mode = req->r_direct_mode;
563         int mds = -1;
564         u32 hash = req->r_direct_hash;
565         bool is_hash = req->r_direct_is_hash;
566
567         /*
568          * is there a specific mds we should try?  ignore hint if we have
569          * no session and the mds is not up (active or recovering).
570          */
571         if (req->r_resend_mds >= 0 &&
572             (__have_session(mdsc, req->r_resend_mds) ||
573              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
574                 dout("choose_mds using resend_mds mds%d\n",
575                      req->r_resend_mds);
576                 return req->r_resend_mds;
577         }
578
579         if (mode == USE_RANDOM_MDS)
580                 goto random;
581
582         inode = NULL;
583         if (req->r_inode) {
584                 inode = req->r_inode;
585         } else if (req->r_dentry) {
586                 if (req->r_dentry->d_inode) {
587                         inode = req->r_dentry->d_inode;
588                 } else {
589                         inode = req->r_dentry->d_parent->d_inode;
590                         hash = req->r_dentry->d_name.hash;
591                         is_hash = true;
592                 }
593         }
594         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
595              (int)hash, mode);
596         if (!inode)
597                 goto random;
598         ci = ceph_inode(inode);
599
600         if (is_hash && S_ISDIR(inode->i_mode)) {
601                 struct ceph_inode_frag frag;
602                 int found;
603
604                 ceph_choose_frag(ci, hash, &frag, &found);
605                 if (found) {
606                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
607                                 u8 r;
608
609                                 /* choose a random replica */
610                                 get_random_bytes(&r, 1);
611                                 r %= frag.ndist;
612                                 mds = frag.dist[r];
613                                 dout("choose_mds %p %llx.%llx "
614                                      "frag %u mds%d (%d/%d)\n",
615                                      inode, ceph_vinop(inode),
616                                      frag.frag, frag.mds,
617                                      (int)r, frag.ndist);
618                                 return mds;
619                         }
620
621                         /* since this file/dir wasn't known to be
622                          * replicated, then we want to look for the
623                          * authoritative mds. */
624                         mode = USE_AUTH_MDS;
625                         if (frag.mds >= 0) {
626                                 /* choose auth mds */
627                                 mds = frag.mds;
628                                 dout("choose_mds %p %llx.%llx "
629                                      "frag %u mds%d (auth)\n",
630                                      inode, ceph_vinop(inode), frag.frag, mds);
631                                 return mds;
632                         }
633                 }
634         }
635
636         spin_lock(&inode->i_lock);
637         cap = NULL;
638         if (mode == USE_AUTH_MDS)
639                 cap = ci->i_auth_cap;
640         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
641                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
642         if (!cap) {
643                 spin_unlock(&inode->i_lock);
644                 goto random;
645         }
646         mds = cap->session->s_mds;
647         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648              inode, ceph_vinop(inode), mds,
649              cap == ci->i_auth_cap ? "auth " : "", cap);
650         spin_unlock(&inode->i_lock);
651         return mds;
652
653 random:
654         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
655         dout("choose_mds chose random mds%d\n", mds);
656         return mds;
657 }
658
659
660 /*
661  * session messages
662  */
663 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
664 {
665         struct ceph_msg *msg;
666         struct ceph_mds_session_head *h;
667
668         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h));
669         if (!msg) {
670                 pr_err("create_session_msg ENOMEM creating msg\n");
671                 return NULL;
672         }
673         h = msg->front.iov_base;
674         h->op = cpu_to_le32(op);
675         h->seq = cpu_to_le64(seq);
676         return msg;
677 }
678
679 /*
680  * send session open request.
681  *
682  * called under mdsc->mutex
683  */
684 static int __open_session(struct ceph_mds_client *mdsc,
685                           struct ceph_mds_session *session)
686 {
687         struct ceph_msg *msg;
688         int mstate;
689         int mds = session->s_mds;
690
691         /* wait for mds to go active? */
692         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
693         dout("open_session to mds%d (%s)\n", mds,
694              ceph_mds_state_name(mstate));
695         session->s_state = CEPH_MDS_SESSION_OPENING;
696         session->s_renew_requested = jiffies;
697
698         /* send connect message */
699         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
700         if (!msg)
701                 return -ENOMEM;
702         ceph_con_send(&session->s_con, msg);
703         return 0;
704 }
705
706 /*
707  * session caps
708  */
709
710 /*
711  * Free preallocated cap messages assigned to this session
712  */
713 static void cleanup_cap_releases(struct ceph_mds_session *session)
714 {
715         struct ceph_msg *msg;
716
717         spin_lock(&session->s_cap_lock);
718         while (!list_empty(&session->s_cap_releases)) {
719                 msg = list_first_entry(&session->s_cap_releases,
720                                        struct ceph_msg, list_head);
721                 list_del_init(&msg->list_head);
722                 ceph_msg_put(msg);
723         }
724         while (!list_empty(&session->s_cap_releases_done)) {
725                 msg = list_first_entry(&session->s_cap_releases_done,
726                                        struct ceph_msg, list_head);
727                 list_del_init(&msg->list_head);
728                 ceph_msg_put(msg);
729         }
730         spin_unlock(&session->s_cap_lock);
731 }
732
733 /*
734  * Helper to safely iterate over all caps associated with a session, with
735  * special care taken to handle a racing __ceph_remove_cap().
736  *
737  * Caller must hold session s_mutex.
738  */
739 static int iterate_session_caps(struct ceph_mds_session *session,
740                                  int (*cb)(struct inode *, struct ceph_cap *,
741                                             void *), void *arg)
742 {
743         struct list_head *p;
744         struct ceph_cap *cap;
745         struct inode *inode, *last_inode = NULL;
746         struct ceph_cap *old_cap = NULL;
747         int ret;
748
749         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
750         spin_lock(&session->s_cap_lock);
751         p = session->s_caps.next;
752         while (p != &session->s_caps) {
753                 cap = list_entry(p, struct ceph_cap, session_caps);
754                 inode = igrab(&cap->ci->vfs_inode);
755                 if (!inode) {
756                         p = p->next;
757                         continue;
758                 }
759                 session->s_cap_iterator = cap;
760                 spin_unlock(&session->s_cap_lock);
761
762                 if (last_inode) {
763                         iput(last_inode);
764                         last_inode = NULL;
765                 }
766                 if (old_cap) {
767                         ceph_put_cap(old_cap);
768                         old_cap = NULL;
769                 }
770
771                 ret = cb(inode, cap, arg);
772                 last_inode = inode;
773
774                 spin_lock(&session->s_cap_lock);
775                 p = p->next;
776                 if (cap->ci == NULL) {
777                         dout("iterate_session_caps  finishing cap %p removal\n",
778                              cap);
779                         BUG_ON(cap->session != session);
780                         list_del_init(&cap->session_caps);
781                         session->s_nr_caps--;
782                         cap->session = NULL;
783                         old_cap = cap;  /* put_cap it w/o locks held */
784                 }
785                 if (ret < 0)
786                         goto out;
787         }
788         ret = 0;
789 out:
790         session->s_cap_iterator = NULL;
791         spin_unlock(&session->s_cap_lock);
792
793         if (last_inode)
794                 iput(last_inode);
795         if (old_cap)
796                 ceph_put_cap(old_cap);
797
798         return ret;
799 }
800
801 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
802                                    void *arg)
803 {
804         struct ceph_inode_info *ci = ceph_inode(inode);
805         dout("removing cap %p, ci is %p, inode is %p\n",
806              cap, ci, &ci->vfs_inode);
807         ceph_remove_cap(cap);
808         return 0;
809 }
810
811 /*
812  * caller must hold session s_mutex
813  */
814 static void remove_session_caps(struct ceph_mds_session *session)
815 {
816         dout("remove_session_caps on %p\n", session);
817         iterate_session_caps(session, remove_session_caps_cb, NULL);
818         BUG_ON(session->s_nr_caps > 0);
819         cleanup_cap_releases(session);
820 }
821
822 /*
823  * wake up any threads waiting on this session's caps.  if the cap is
824  * old (didn't get renewed on the client reconnect), remove it now.
825  *
826  * caller must hold s_mutex.
827  */
828 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
829                               void *arg)
830 {
831         struct ceph_inode_info *ci = ceph_inode(inode);
832
833         wake_up(&ci->i_cap_wq);
834         if (arg) {
835                 spin_lock(&inode->i_lock);
836                 ci->i_wanted_max_size = 0;
837                 ci->i_requested_max_size = 0;
838                 spin_unlock(&inode->i_lock);
839         }
840         return 0;
841 }
842
843 static void wake_up_session_caps(struct ceph_mds_session *session,
844                                  int reconnect)
845 {
846         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
847         iterate_session_caps(session, wake_up_session_cb,
848                              (void *)(unsigned long)reconnect);
849 }
850
851 /*
852  * Send periodic message to MDS renewing all currently held caps.  The
853  * ack will reset the expiration for all caps from this session.
854  *
855  * caller holds s_mutex
856  */
857 static int send_renew_caps(struct ceph_mds_client *mdsc,
858                            struct ceph_mds_session *session)
859 {
860         struct ceph_msg *msg;
861         int state;
862
863         if (time_after_eq(jiffies, session->s_cap_ttl) &&
864             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
865                 pr_info("mds%d caps stale\n", session->s_mds);
866         session->s_renew_requested = jiffies;
867
868         /* do not try to renew caps until a recovering mds has reconnected
869          * with its clients. */
870         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
871         if (state < CEPH_MDS_STATE_RECONNECT) {
872                 dout("send_renew_caps ignoring mds%d (%s)\n",
873                      session->s_mds, ceph_mds_state_name(state));
874                 return 0;
875         }
876
877         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
878                 ceph_mds_state_name(state));
879         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
880                                  ++session->s_renew_seq);
881         if (!msg)
882                 return -ENOMEM;
883         ceph_con_send(&session->s_con, msg);
884         return 0;
885 }
886
887 /*
888  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
889  *
890  * Called under session->s_mutex
891  */
892 static void renewed_caps(struct ceph_mds_client *mdsc,
893                          struct ceph_mds_session *session, int is_renew)
894 {
895         int was_stale;
896         int wake = 0;
897
898         spin_lock(&session->s_cap_lock);
899         was_stale = is_renew && (session->s_cap_ttl == 0 ||
900                                  time_after_eq(jiffies, session->s_cap_ttl));
901
902         session->s_cap_ttl = session->s_renew_requested +
903                 mdsc->mdsmap->m_session_timeout*HZ;
904
905         if (was_stale) {
906                 if (time_before(jiffies, session->s_cap_ttl)) {
907                         pr_info("mds%d caps renewed\n", session->s_mds);
908                         wake = 1;
909                 } else {
910                         pr_info("mds%d caps still stale\n", session->s_mds);
911                 }
912         }
913         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
914              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
915              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
916         spin_unlock(&session->s_cap_lock);
917
918         if (wake)
919                 wake_up_session_caps(session, 0);
920 }
921
922 /*
923  * send a session close request
924  */
925 static int request_close_session(struct ceph_mds_client *mdsc,
926                                  struct ceph_mds_session *session)
927 {
928         struct ceph_msg *msg;
929
930         dout("request_close_session mds%d state %s seq %lld\n",
931              session->s_mds, session_state_name(session->s_state),
932              session->s_seq);
933         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
934         if (!msg)
935                 return -ENOMEM;
936         ceph_con_send(&session->s_con, msg);
937         return 0;
938 }
939
940 /*
941  * Called with s_mutex held.
942  */
943 static int __close_session(struct ceph_mds_client *mdsc,
944                          struct ceph_mds_session *session)
945 {
946         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
947                 return 0;
948         session->s_state = CEPH_MDS_SESSION_CLOSING;
949         return request_close_session(mdsc, session);
950 }
951
952 /*
953  * Trim old(er) caps.
954  *
955  * Because we can't cache an inode without one or more caps, we do
956  * this indirectly: if a cap is unused, we prune its aliases, at which
957  * point the inode will hopefully get dropped to.
958  *
959  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
960  * memory pressure from the MDS, though, so it needn't be perfect.
961  */
962 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
963 {
964         struct ceph_mds_session *session = arg;
965         struct ceph_inode_info *ci = ceph_inode(inode);
966         int used, oissued, mine;
967
968         if (session->s_trim_caps <= 0)
969                 return -1;
970
971         spin_lock(&inode->i_lock);
972         mine = cap->issued | cap->implemented;
973         used = __ceph_caps_used(ci);
974         oissued = __ceph_caps_issued_other(ci, cap);
975
976         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
977              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
978              ceph_cap_string(used));
979         if (ci->i_dirty_caps)
980                 goto out;   /* dirty caps */
981         if ((used & ~oissued) & mine)
982                 goto out;   /* we need these caps */
983
984         session->s_trim_caps--;
985         if (oissued) {
986                 /* we aren't the only cap.. just remove us */
987                 __ceph_remove_cap(cap);
988         } else {
989                 /* try to drop referring dentries */
990                 spin_unlock(&inode->i_lock);
991                 d_prune_aliases(inode);
992                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
993                      inode, cap, atomic_read(&inode->i_count));
994                 return 0;
995         }
996
997 out:
998         spin_unlock(&inode->i_lock);
999         return 0;
1000 }
1001
1002 /*
1003  * Trim session cap count down to some max number.
1004  */
1005 static int trim_caps(struct ceph_mds_client *mdsc,
1006                      struct ceph_mds_session *session,
1007                      int max_caps)
1008 {
1009         int trim_caps = session->s_nr_caps - max_caps;
1010
1011         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1012              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1013         if (trim_caps > 0) {
1014                 session->s_trim_caps = trim_caps;
1015                 iterate_session_caps(session, trim_caps_cb, session);
1016                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1017                      session->s_mds, session->s_nr_caps, max_caps,
1018                         trim_caps - session->s_trim_caps);
1019                 session->s_trim_caps = 0;
1020         }
1021         return 0;
1022 }
1023
1024 /*
1025  * Allocate cap_release messages.  If there is a partially full message
1026  * in the queue, try to allocate enough to cover it's remainder, so that
1027  * we can send it immediately.
1028  *
1029  * Called under s_mutex.
1030  */
1031 static int add_cap_releases(struct ceph_mds_client *mdsc,
1032                             struct ceph_mds_session *session,
1033                             int extra)
1034 {
1035         struct ceph_msg *msg;
1036         struct ceph_mds_cap_release *head;
1037         int err = -ENOMEM;
1038
1039         if (extra < 0)
1040                 extra = mdsc->client->mount_args->cap_release_safety;
1041
1042         spin_lock(&session->s_cap_lock);
1043
1044         if (!list_empty(&session->s_cap_releases)) {
1045                 msg = list_first_entry(&session->s_cap_releases,
1046                                        struct ceph_msg,
1047                                  list_head);
1048                 head = msg->front.iov_base;
1049                 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1050         }
1051
1052         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1053                 spin_unlock(&session->s_cap_lock);
1054                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE);
1055                 if (!msg)
1056                         goto out_unlocked;
1057                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1058                      (int)msg->front.iov_len);
1059                 head = msg->front.iov_base;
1060                 head->num = cpu_to_le32(0);
1061                 msg->front.iov_len = sizeof(*head);
1062                 spin_lock(&session->s_cap_lock);
1063                 list_add(&msg->list_head, &session->s_cap_releases);
1064                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1065         }
1066
1067         if (!list_empty(&session->s_cap_releases)) {
1068                 msg = list_first_entry(&session->s_cap_releases,
1069                                        struct ceph_msg,
1070                                        list_head);
1071                 head = msg->front.iov_base;
1072                 if (head->num) {
1073                         dout(" queueing non-full %p (%d)\n", msg,
1074                              le32_to_cpu(head->num));
1075                         list_move_tail(&msg->list_head,
1076                                       &session->s_cap_releases_done);
1077                         session->s_num_cap_releases -=
1078                                 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1079                 }
1080         }
1081         err = 0;
1082         spin_unlock(&session->s_cap_lock);
1083 out_unlocked:
1084         return err;
1085 }
1086
1087 /*
1088  * flush all dirty inode data to disk.
1089  *
1090  * returns true if we've flushed through want_flush_seq
1091  */
1092 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1093 {
1094         int mds, ret = 1;
1095
1096         dout("check_cap_flush want %lld\n", want_flush_seq);
1097         mutex_lock(&mdsc->mutex);
1098         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1099                 struct ceph_mds_session *session = mdsc->sessions[mds];
1100
1101                 if (!session)
1102                         continue;
1103                 get_session(session);
1104                 mutex_unlock(&mdsc->mutex);
1105
1106                 mutex_lock(&session->s_mutex);
1107                 if (!list_empty(&session->s_cap_flushing)) {
1108                         struct ceph_inode_info *ci =
1109                                 list_entry(session->s_cap_flushing.next,
1110                                            struct ceph_inode_info,
1111                                            i_flushing_item);
1112                         struct inode *inode = &ci->vfs_inode;
1113
1114                         spin_lock(&inode->i_lock);
1115                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1116                                 dout("check_cap_flush still flushing %p "
1117                                      "seq %lld <= %lld to mds%d\n", inode,
1118                                      ci->i_cap_flush_seq, want_flush_seq,
1119                                      session->s_mds);
1120                                 ret = 0;
1121                         }
1122                         spin_unlock(&inode->i_lock);
1123                 }
1124                 mutex_unlock(&session->s_mutex);
1125                 ceph_put_mds_session(session);
1126
1127                 if (!ret)
1128                         return ret;
1129                 mutex_lock(&mdsc->mutex);
1130         }
1131
1132         mutex_unlock(&mdsc->mutex);
1133         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1134         return ret;
1135 }
1136
1137 /*
1138  * called under s_mutex
1139  */
1140 static void send_cap_releases(struct ceph_mds_client *mdsc,
1141                        struct ceph_mds_session *session)
1142 {
1143         struct ceph_msg *msg;
1144
1145         dout("send_cap_releases mds%d\n", session->s_mds);
1146         spin_lock(&session->s_cap_lock);
1147         while (!list_empty(&session->s_cap_releases_done)) {
1148                 msg = list_first_entry(&session->s_cap_releases_done,
1149                                  struct ceph_msg, list_head);
1150                 list_del_init(&msg->list_head);
1151                 spin_unlock(&session->s_cap_lock);
1152                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1153                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1154                 ceph_con_send(&session->s_con, msg);
1155                 spin_lock(&session->s_cap_lock);
1156         }
1157         spin_unlock(&session->s_cap_lock);
1158 }
1159
1160 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1161                                  struct ceph_mds_session *session)
1162 {
1163         struct ceph_msg *msg;
1164         struct ceph_mds_cap_release *head;
1165         unsigned num;
1166
1167         dout("discard_cap_releases mds%d\n", session->s_mds);
1168         spin_lock(&session->s_cap_lock);
1169
1170         /* zero out the in-progress message */
1171         msg = list_first_entry(&session->s_cap_releases,
1172                                struct ceph_msg, list_head);
1173         head = msg->front.iov_base;
1174         num = le32_to_cpu(head->num);
1175         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1176         head->num = cpu_to_le32(0);
1177         session->s_num_cap_releases += num;
1178
1179         /* requeue completed messages */
1180         while (!list_empty(&session->s_cap_releases_done)) {
1181                 msg = list_first_entry(&session->s_cap_releases_done,
1182                                  struct ceph_msg, list_head);
1183                 list_del_init(&msg->list_head);
1184
1185                 head = msg->front.iov_base;
1186                 num = le32_to_cpu(head->num);
1187                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1188                      num);
1189                 session->s_num_cap_releases += num;
1190                 head->num = cpu_to_le32(0);
1191                 msg->front.iov_len = sizeof(*head);
1192                 list_add(&msg->list_head, &session->s_cap_releases);
1193         }
1194
1195         spin_unlock(&session->s_cap_lock);
1196 }
1197
1198 /*
1199  * requests
1200  */
1201
1202 /*
1203  * Create an mds request.
1204  */
1205 struct ceph_mds_request *
1206 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1207 {
1208         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1209
1210         if (!req)
1211                 return ERR_PTR(-ENOMEM);
1212
1213         mutex_init(&req->r_fill_mutex);
1214         req->r_started = jiffies;
1215         req->r_resend_mds = -1;
1216         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1217         req->r_fmode = -1;
1218         kref_init(&req->r_kref);
1219         INIT_LIST_HEAD(&req->r_wait);
1220         init_completion(&req->r_completion);
1221         init_completion(&req->r_safe_completion);
1222         INIT_LIST_HEAD(&req->r_unsafe_item);
1223
1224         req->r_op = op;
1225         req->r_direct_mode = mode;
1226         return req;
1227 }
1228
1229 /*
1230  * return oldest (lowest) request, tid in request tree, 0 if none.
1231  *
1232  * called under mdsc->mutex.
1233  */
1234 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1235 {
1236         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1237                 return NULL;
1238         return rb_entry(rb_first(&mdsc->request_tree),
1239                         struct ceph_mds_request, r_node);
1240 }
1241
1242 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1243 {
1244         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1245
1246         if (req)
1247                 return req->r_tid;
1248         return 0;
1249 }
1250
1251 /*
1252  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1253  * on build_path_from_dentry in fs/cifs/dir.c.
1254  *
1255  * If @stop_on_nosnap, generate path relative to the first non-snapped
1256  * inode.
1257  *
1258  * Encode hidden .snap dirs as a double /, i.e.
1259  *   foo/.snap/bar -> foo//bar
1260  */
1261 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1262                            int stop_on_nosnap)
1263 {
1264         struct dentry *temp;
1265         char *path;
1266         int len, pos;
1267
1268         if (dentry == NULL)
1269                 return ERR_PTR(-EINVAL);
1270
1271 retry:
1272         len = 0;
1273         for (temp = dentry; !IS_ROOT(temp);) {
1274                 struct inode *inode = temp->d_inode;
1275                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1276                         len++;  /* slash only */
1277                 else if (stop_on_nosnap && inode &&
1278                          ceph_snap(inode) == CEPH_NOSNAP)
1279                         break;
1280                 else
1281                         len += 1 + temp->d_name.len;
1282                 temp = temp->d_parent;
1283                 if (temp == NULL) {
1284                         pr_err("build_path_dentry corrupt dentry %p\n", dentry);
1285                         return ERR_PTR(-EINVAL);
1286                 }
1287         }
1288         if (len)
1289                 len--;  /* no leading '/' */
1290
1291         path = kmalloc(len+1, GFP_NOFS);
1292         if (path == NULL)
1293                 return ERR_PTR(-ENOMEM);
1294         pos = len;
1295         path[pos] = 0;  /* trailing null */
1296         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1297                 struct inode *inode = temp->d_inode;
1298
1299                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1300                         dout("build_path path+%d: %p SNAPDIR\n",
1301                              pos, temp);
1302                 } else if (stop_on_nosnap && inode &&
1303                            ceph_snap(inode) == CEPH_NOSNAP) {
1304                         break;
1305                 } else {
1306                         pos -= temp->d_name.len;
1307                         if (pos < 0)
1308                                 break;
1309                         strncpy(path + pos, temp->d_name.name,
1310                                 temp->d_name.len);
1311                 }
1312                 if (pos)
1313                         path[--pos] = '/';
1314                 temp = temp->d_parent;
1315                 if (temp == NULL) {
1316                         pr_err("build_path corrupt dentry\n");
1317                         kfree(path);
1318                         return ERR_PTR(-EINVAL);
1319                 }
1320         }
1321         if (pos != 0) {
1322                 pr_err("build_path did not end path lookup where "
1323                        "expected, namelen is %d, pos is %d\n", len, pos);
1324                 /* presumably this is only possible if racing with a
1325                    rename of one of the parent directories (we can not
1326                    lock the dentries above us to prevent this, but
1327                    retrying should be harmless) */
1328                 kfree(path);
1329                 goto retry;
1330         }
1331
1332         *base = ceph_ino(temp->d_inode);
1333         *plen = len;
1334         dout("build_path on %p %d built %llx '%.*s'\n",
1335              dentry, atomic_read(&dentry->d_count), *base, len, path);
1336         return path;
1337 }
1338
1339 static int build_dentry_path(struct dentry *dentry,
1340                              const char **ppath, int *ppathlen, u64 *pino,
1341                              int *pfreepath)
1342 {
1343         char *path;
1344
1345         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1346                 *pino = ceph_ino(dentry->d_parent->d_inode);
1347                 *ppath = dentry->d_name.name;
1348                 *ppathlen = dentry->d_name.len;
1349                 return 0;
1350         }
1351         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1352         if (IS_ERR(path))
1353                 return PTR_ERR(path);
1354         *ppath = path;
1355         *pfreepath = 1;
1356         return 0;
1357 }
1358
1359 static int build_inode_path(struct inode *inode,
1360                             const char **ppath, int *ppathlen, u64 *pino,
1361                             int *pfreepath)
1362 {
1363         struct dentry *dentry;
1364         char *path;
1365
1366         if (ceph_snap(inode) == CEPH_NOSNAP) {
1367                 *pino = ceph_ino(inode);
1368                 *ppathlen = 0;
1369                 return 0;
1370         }
1371         dentry = d_find_alias(inode);
1372         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1373         dput(dentry);
1374         if (IS_ERR(path))
1375                 return PTR_ERR(path);
1376         *ppath = path;
1377         *pfreepath = 1;
1378         return 0;
1379 }
1380
1381 /*
1382  * request arguments may be specified via an inode *, a dentry *, or
1383  * an explicit ino+path.
1384  */
1385 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1386                                   const char *rpath, u64 rino,
1387                                   const char **ppath, int *pathlen,
1388                                   u64 *ino, int *freepath)
1389 {
1390         int r = 0;
1391
1392         if (rinode) {
1393                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1394                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1395                      ceph_snap(rinode));
1396         } else if (rdentry) {
1397                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1398                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1399                      *ppath);
1400         } else if (rpath) {
1401                 *ino = rino;
1402                 *ppath = rpath;
1403                 *pathlen = strlen(rpath);
1404                 dout(" path %.*s\n", *pathlen, rpath);
1405         }
1406
1407         return r;
1408 }
1409
1410 /*
1411  * called under mdsc->mutex
1412  */
1413 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1414                                                struct ceph_mds_request *req,
1415                                                int mds)
1416 {
1417         struct ceph_msg *msg;
1418         struct ceph_mds_request_head *head;
1419         const char *path1 = NULL;
1420         const char *path2 = NULL;
1421         u64 ino1 = 0, ino2 = 0;
1422         int pathlen1 = 0, pathlen2 = 0;
1423         int freepath1 = 0, freepath2 = 0;
1424         int len;
1425         u16 releases;
1426         void *p, *end;
1427         int ret;
1428
1429         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1430                               req->r_path1, req->r_ino1.ino,
1431                               &path1, &pathlen1, &ino1, &freepath1);
1432         if (ret < 0) {
1433                 msg = ERR_PTR(ret);
1434                 goto out;
1435         }
1436
1437         ret = set_request_path_attr(NULL, req->r_old_dentry,
1438                               req->r_path2, req->r_ino2.ino,
1439                               &path2, &pathlen2, &ino2, &freepath2);
1440         if (ret < 0) {
1441                 msg = ERR_PTR(ret);
1442                 goto out_free1;
1443         }
1444
1445         len = sizeof(*head) +
1446                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1447
1448         /* calculate (max) length for cap releases */
1449         len += sizeof(struct ceph_mds_request_release) *
1450                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1451                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1452         if (req->r_dentry_drop)
1453                 len += req->r_dentry->d_name.len;
1454         if (req->r_old_dentry_drop)
1455                 len += req->r_old_dentry->d_name.len;
1456
1457         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len);
1458         if (!msg) {
1459                 msg = ERR_PTR(-ENOMEM);
1460                 goto out_free2;
1461         }
1462
1463         msg->hdr.tid = cpu_to_le64(req->r_tid);
1464
1465         head = msg->front.iov_base;
1466         p = msg->front.iov_base + sizeof(*head);
1467         end = msg->front.iov_base + msg->front.iov_len;
1468
1469         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1470         head->op = cpu_to_le32(req->r_op);
1471         head->caller_uid = cpu_to_le32(current_fsuid());
1472         head->caller_gid = cpu_to_le32(current_fsgid());
1473         head->args = req->r_args;
1474
1475         ceph_encode_filepath(&p, end, ino1, path1);
1476         ceph_encode_filepath(&p, end, ino2, path2);
1477
1478         /* cap releases */
1479         releases = 0;
1480         if (req->r_inode_drop)
1481                 releases += ceph_encode_inode_release(&p,
1482                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1483                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1484         if (req->r_dentry_drop)
1485                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1486                        mds, req->r_dentry_drop, req->r_dentry_unless);
1487         if (req->r_old_dentry_drop)
1488                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1489                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1490         if (req->r_old_inode_drop)
1491                 releases += ceph_encode_inode_release(&p,
1492                       req->r_old_dentry->d_inode,
1493                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1494         head->num_releases = cpu_to_le16(releases);
1495
1496         BUG_ON(p > end);
1497         msg->front.iov_len = p - msg->front.iov_base;
1498         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1499
1500         msg->pages = req->r_pages;
1501         msg->nr_pages = req->r_num_pages;
1502         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1503         msg->hdr.data_off = cpu_to_le16(0);
1504
1505 out_free2:
1506         if (freepath2)
1507                 kfree((char *)path2);
1508 out_free1:
1509         if (freepath1)
1510                 kfree((char *)path1);
1511 out:
1512         return msg;
1513 }
1514
1515 /*
1516  * called under mdsc->mutex if error, under no mutex if
1517  * success.
1518  */
1519 static void complete_request(struct ceph_mds_client *mdsc,
1520                              struct ceph_mds_request *req)
1521 {
1522         if (req->r_callback)
1523                 req->r_callback(mdsc, req);
1524         else
1525                 complete(&req->r_completion);
1526 }
1527
1528 /*
1529  * called under mdsc->mutex
1530  */
1531 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1532                                   struct ceph_mds_request *req,
1533                                   int mds)
1534 {
1535         struct ceph_mds_request_head *rhead;
1536         struct ceph_msg *msg;
1537         int flags = 0;
1538
1539         req->r_mds = mds;
1540         req->r_attempts++;
1541         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1542              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1543
1544         if (req->r_request) {
1545                 ceph_msg_put(req->r_request);
1546                 req->r_request = NULL;
1547         }
1548         msg = create_request_message(mdsc, req, mds);
1549         if (IS_ERR(msg)) {
1550                 req->r_err = PTR_ERR(msg);
1551                 complete_request(mdsc, req);
1552                 return PTR_ERR(msg);
1553         }
1554         req->r_request = msg;
1555
1556         rhead = msg->front.iov_base;
1557         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1558         if (req->r_got_unsafe)
1559                 flags |= CEPH_MDS_FLAG_REPLAY;
1560         if (req->r_locked_dir)
1561                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1562         rhead->flags = cpu_to_le32(flags);
1563         rhead->num_fwd = req->r_num_fwd;
1564         rhead->num_retry = req->r_attempts - 1;
1565
1566         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1567
1568         if (req->r_target_inode && req->r_got_unsafe)
1569                 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1570         else
1571                 rhead->ino = 0;
1572         return 0;
1573 }
1574
1575 /*
1576  * send request, or put it on the appropriate wait list.
1577  */
1578 static int __do_request(struct ceph_mds_client *mdsc,
1579                         struct ceph_mds_request *req)
1580 {
1581         struct ceph_mds_session *session = NULL;
1582         int mds = -1;
1583         int err = -EAGAIN;
1584
1585         if (req->r_err || req->r_got_result)
1586                 goto out;
1587
1588         if (req->r_timeout &&
1589             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1590                 dout("do_request timed out\n");
1591                 err = -EIO;
1592                 goto finish;
1593         }
1594
1595         mds = __choose_mds(mdsc, req);
1596         if (mds < 0 ||
1597             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1598                 dout("do_request no mds or not active, waiting for map\n");
1599                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1600                 goto out;
1601         }
1602
1603         /* get, open session */
1604         session = __ceph_lookup_mds_session(mdsc, mds);
1605         if (!session) {
1606                 session = register_session(mdsc, mds);
1607                 if (IS_ERR(session)) {
1608                         err = PTR_ERR(session);
1609                         goto finish;
1610                 }
1611         }
1612         dout("do_request mds%d session %p state %s\n", mds, session,
1613              session_state_name(session->s_state));
1614         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1615             session->s_state != CEPH_MDS_SESSION_HUNG) {
1616                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1617                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1618                         __open_session(mdsc, session);
1619                 list_add(&req->r_wait, &session->s_waiting);
1620                 goto out_session;
1621         }
1622
1623         /* send request */
1624         req->r_session = get_session(session);
1625         req->r_resend_mds = -1;   /* forget any previous mds hint */
1626
1627         if (req->r_request_started == 0)   /* note request start time */
1628                 req->r_request_started = jiffies;
1629
1630         err = __prepare_send_request(mdsc, req, mds);
1631         if (!err) {
1632                 ceph_msg_get(req->r_request);
1633                 ceph_con_send(&session->s_con, req->r_request);
1634         }
1635
1636 out_session:
1637         ceph_put_mds_session(session);
1638 out:
1639         return err;
1640
1641 finish:
1642         req->r_err = err;
1643         complete_request(mdsc, req);
1644         goto out;
1645 }
1646
1647 /*
1648  * called under mdsc->mutex
1649  */
1650 static void __wake_requests(struct ceph_mds_client *mdsc,
1651                             struct list_head *head)
1652 {
1653         struct ceph_mds_request *req, *nreq;
1654
1655         list_for_each_entry_safe(req, nreq, head, r_wait) {
1656                 list_del_init(&req->r_wait);
1657                 __do_request(mdsc, req);
1658         }
1659 }
1660
1661 /*
1662  * Wake up threads with requests pending for @mds, so that they can
1663  * resubmit their requests to a possibly different mds.
1664  */
1665 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1666 {
1667         struct ceph_mds_request *req;
1668         struct rb_node *p;
1669
1670         dout("kick_requests mds%d\n", mds);
1671         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1672                 req = rb_entry(p, struct ceph_mds_request, r_node);
1673                 if (req->r_got_unsafe)
1674                         continue;
1675                 if (req->r_session &&
1676                     req->r_session->s_mds == mds) {
1677                         dout(" kicking tid %llu\n", req->r_tid);
1678                         put_request_session(req);
1679                         __do_request(mdsc, req);
1680                 }
1681         }
1682 }
1683
1684 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1685                               struct ceph_mds_request *req)
1686 {
1687         dout("submit_request on %p\n", req);
1688         mutex_lock(&mdsc->mutex);
1689         __register_request(mdsc, req, NULL);
1690         __do_request(mdsc, req);
1691         mutex_unlock(&mdsc->mutex);
1692 }
1693
1694 /*
1695  * Synchrously perform an mds request.  Take care of all of the
1696  * session setup, forwarding, retry details.
1697  */
1698 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1699                          struct inode *dir,
1700                          struct ceph_mds_request *req)
1701 {
1702         int err;
1703
1704         dout("do_request on %p\n", req);
1705
1706         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1707         if (req->r_inode)
1708                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1709         if (req->r_locked_dir)
1710                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1711         if (req->r_old_dentry)
1712                 ceph_get_cap_refs(
1713                         ceph_inode(req->r_old_dentry->d_parent->d_inode),
1714                         CEPH_CAP_PIN);
1715
1716         /* issue */
1717         mutex_lock(&mdsc->mutex);
1718         __register_request(mdsc, req, dir);
1719         __do_request(mdsc, req);
1720
1721         if (req->r_err) {
1722                 err = req->r_err;
1723                 __unregister_request(mdsc, req);
1724                 dout("do_request early error %d\n", err);
1725                 goto out;
1726         }
1727
1728         /* wait */
1729         mutex_unlock(&mdsc->mutex);
1730         dout("do_request waiting\n");
1731         if (req->r_timeout) {
1732                 err = (long)wait_for_completion_interruptible_timeout(
1733                         &req->r_completion, req->r_timeout);
1734                 if (err == 0)
1735                         err = -EIO;
1736         } else {
1737                 err = wait_for_completion_interruptible(&req->r_completion);
1738         }
1739         dout("do_request waited, got %d\n", err);
1740         mutex_lock(&mdsc->mutex);
1741
1742         /* only abort if we didn't race with a real reply */
1743         if (req->r_got_result) {
1744                 err = le32_to_cpu(req->r_reply_info.head->result);
1745         } else if (err < 0) {
1746                 dout("aborted request %lld with %d\n", req->r_tid, err);
1747
1748                 /*
1749                  * ensure we aren't running concurrently with
1750                  * ceph_fill_trace or ceph_readdir_prepopulate, which
1751                  * rely on locks (dir mutex) held by our caller.
1752                  */
1753                 mutex_lock(&req->r_fill_mutex);
1754                 req->r_err = err;
1755                 req->r_aborted = true;
1756                 mutex_unlock(&req->r_fill_mutex);
1757
1758                 if (req->r_locked_dir &&
1759                     (req->r_op & CEPH_MDS_OP_WRITE)) {
1760                         struct ceph_inode_info *ci =
1761                                 ceph_inode(req->r_locked_dir);
1762
1763                         dout("aborted, clearing I_COMPLETE on %p, leases\n",
1764                              req->r_locked_dir);
1765                         spin_lock(&req->r_locked_dir->i_lock);
1766                         ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1767                         ci->i_release_count++;
1768                         spin_unlock(&req->r_locked_dir->i_lock);
1769
1770                         if (req->r_dentry)
1771                                 ceph_invalidate_dentry_lease(req->r_dentry);
1772                         if (req->r_old_dentry)
1773                                 ceph_invalidate_dentry_lease(req->r_old_dentry);
1774                 }
1775         } else {
1776                 err = req->r_err;
1777         }
1778
1779 out:
1780         mutex_unlock(&mdsc->mutex);
1781         dout("do_request %p done, result %d\n", req, err);
1782         return err;
1783 }
1784
1785 /*
1786  * Handle mds reply.
1787  *
1788  * We take the session mutex and parse and process the reply immediately.
1789  * This preserves the logical ordering of replies, capabilities, etc., sent
1790  * by the MDS as they are applied to our local cache.
1791  */
1792 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1793 {
1794         struct ceph_mds_client *mdsc = session->s_mdsc;
1795         struct ceph_mds_request *req;
1796         struct ceph_mds_reply_head *head = msg->front.iov_base;
1797         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
1798         u64 tid;
1799         int err, result;
1800         int mds = session->s_mds;
1801
1802         if (msg->front.iov_len < sizeof(*head)) {
1803                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1804                 ceph_msg_dump(msg);
1805                 return;
1806         }
1807
1808         /* get request, session */
1809         tid = le64_to_cpu(msg->hdr.tid);
1810         mutex_lock(&mdsc->mutex);
1811         req = __lookup_request(mdsc, tid);
1812         if (!req) {
1813                 dout("handle_reply on unknown tid %llu\n", tid);
1814                 mutex_unlock(&mdsc->mutex);
1815                 return;
1816         }
1817         dout("handle_reply %p\n", req);
1818
1819         /* correct session? */
1820         if (req->r_session != session) {
1821                 pr_err("mdsc_handle_reply got %llu on session mds%d"
1822                        " not mds%d\n", tid, session->s_mds,
1823                        req->r_session ? req->r_session->s_mds : -1);
1824                 mutex_unlock(&mdsc->mutex);
1825                 goto out;
1826         }
1827
1828         /* dup? */
1829         if ((req->r_got_unsafe && !head->safe) ||
1830             (req->r_got_safe && head->safe)) {
1831                 pr_warning("got a dup %s reply on %llu from mds%d\n",
1832                            head->safe ? "safe" : "unsafe", tid, mds);
1833                 mutex_unlock(&mdsc->mutex);
1834                 goto out;
1835         }
1836
1837         result = le32_to_cpu(head->result);
1838
1839         /*
1840          * Tolerate 2 consecutive ESTALEs from the same mds.
1841          * FIXME: we should be looking at the cap migrate_seq.
1842          */
1843         if (result == -ESTALE) {
1844                 req->r_direct_mode = USE_AUTH_MDS;
1845                 req->r_num_stale++;
1846                 if (req->r_num_stale <= 2) {
1847                         __do_request(mdsc, req);
1848                         mutex_unlock(&mdsc->mutex);
1849                         goto out;
1850                 }
1851         } else {
1852                 req->r_num_stale = 0;
1853         }
1854
1855         if (head->safe) {
1856                 req->r_got_safe = true;
1857                 __unregister_request(mdsc, req);
1858                 complete(&req->r_safe_completion);
1859
1860                 if (req->r_got_unsafe) {
1861                         /*
1862                          * We already handled the unsafe response, now do the
1863                          * cleanup.  No need to examine the response; the MDS
1864                          * doesn't include any result info in the safe
1865                          * response.  And even if it did, there is nothing
1866                          * useful we could do with a revised return value.
1867                          */
1868                         dout("got safe reply %llu, mds%d\n", tid, mds);
1869                         list_del_init(&req->r_unsafe_item);
1870
1871                         /* last unsafe request during umount? */
1872                         if (mdsc->stopping && !__get_oldest_req(mdsc))
1873                                 complete(&mdsc->safe_umount_waiters);
1874                         mutex_unlock(&mdsc->mutex);
1875                         goto out;
1876                 }
1877         } else {
1878                 req->r_got_unsafe = true;
1879                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1880         }
1881
1882         dout("handle_reply tid %lld result %d\n", tid, result);
1883         rinfo = &req->r_reply_info;
1884         err = parse_reply_info(msg, rinfo);
1885         mutex_unlock(&mdsc->mutex);
1886
1887         mutex_lock(&session->s_mutex);
1888         if (err < 0) {
1889                 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1890                 ceph_msg_dump(msg);
1891                 goto out_err;
1892         }
1893
1894         /* snap trace */
1895         if (rinfo->snapblob_len) {
1896                 down_write(&mdsc->snap_rwsem);
1897                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
1898                                rinfo->snapblob + rinfo->snapblob_len,
1899                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1900                 downgrade_write(&mdsc->snap_rwsem);
1901         } else {
1902                 down_read(&mdsc->snap_rwsem);
1903         }
1904
1905         /* insert trace into our cache */
1906         mutex_lock(&req->r_fill_mutex);
1907         err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1908         if (err == 0) {
1909                 if (result == 0 && rinfo->dir_nr)
1910                         ceph_readdir_prepopulate(req, req->r_session);
1911                 ceph_unreserve_caps(&req->r_caps_reservation);
1912         }
1913         mutex_unlock(&req->r_fill_mutex);
1914
1915         up_read(&mdsc->snap_rwsem);
1916 out_err:
1917         mutex_lock(&mdsc->mutex);
1918         if (!req->r_aborted) {
1919                 if (err) {
1920                         req->r_err = err;
1921                 } else {
1922                         req->r_reply = msg;
1923                         ceph_msg_get(msg);
1924                         req->r_got_result = true;
1925                 }
1926         } else {
1927                 dout("reply arrived after request %lld was aborted\n", tid);
1928         }
1929         mutex_unlock(&mdsc->mutex);
1930
1931         add_cap_releases(mdsc, req->r_session, -1);
1932         mutex_unlock(&session->s_mutex);
1933
1934         /* kick calling process */
1935         complete_request(mdsc, req);
1936 out:
1937         ceph_mdsc_put_request(req);
1938         return;
1939 }
1940
1941
1942
1943 /*
1944  * handle mds notification that our request has been forwarded.
1945  */
1946 static void handle_forward(struct ceph_mds_client *mdsc,
1947                            struct ceph_mds_session *session,
1948                            struct ceph_msg *msg)
1949 {
1950         struct ceph_mds_request *req;
1951         u64 tid = le64_to_cpu(msg->hdr.tid);
1952         u32 next_mds;
1953         u32 fwd_seq;
1954         int err = -EINVAL;
1955         void *p = msg->front.iov_base;
1956         void *end = p + msg->front.iov_len;
1957
1958         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
1959         next_mds = ceph_decode_32(&p);
1960         fwd_seq = ceph_decode_32(&p);
1961
1962         mutex_lock(&mdsc->mutex);
1963         req = __lookup_request(mdsc, tid);
1964         if (!req) {
1965                 dout("forward %llu to mds%d - req dne\n", tid, next_mds);
1966                 goto out;  /* dup reply? */
1967         }
1968
1969         if (fwd_seq <= req->r_num_fwd) {
1970                 dout("forward %llu to mds%d - old seq %d <= %d\n",
1971                      tid, next_mds, req->r_num_fwd, fwd_seq);
1972         } else {
1973                 /* resend. forward race not possible; mds would drop */
1974                 dout("forward %llu to mds%d (we resend)\n", tid, next_mds);
1975                 req->r_num_fwd = fwd_seq;
1976                 req->r_resend_mds = next_mds;
1977                 put_request_session(req);
1978                 __do_request(mdsc, req);
1979         }
1980         ceph_mdsc_put_request(req);
1981 out:
1982         mutex_unlock(&mdsc->mutex);
1983         return;
1984
1985 bad:
1986         pr_err("mdsc_handle_forward decode error err=%d\n", err);
1987 }
1988
1989 /*
1990  * handle a mds session control message
1991  */
1992 static void handle_session(struct ceph_mds_session *session,
1993                            struct ceph_msg *msg)
1994 {
1995         struct ceph_mds_client *mdsc = session->s_mdsc;
1996         u32 op;
1997         u64 seq;
1998         int mds = session->s_mds;
1999         struct ceph_mds_session_head *h = msg->front.iov_base;
2000         int wake = 0;
2001
2002         /* decode */
2003         if (msg->front.iov_len != sizeof(*h))
2004                 goto bad;
2005         op = le32_to_cpu(h->op);
2006         seq = le64_to_cpu(h->seq);
2007
2008         mutex_lock(&mdsc->mutex);
2009         if (op == CEPH_SESSION_CLOSE)
2010                 __unregister_session(mdsc, session);
2011         /* FIXME: this ttl calculation is generous */
2012         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2013         mutex_unlock(&mdsc->mutex);
2014
2015         mutex_lock(&session->s_mutex);
2016
2017         dout("handle_session mds%d %s %p state %s seq %llu\n",
2018              mds, ceph_session_op_name(op), session,
2019              session_state_name(session->s_state), seq);
2020
2021         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2022                 session->s_state = CEPH_MDS_SESSION_OPEN;
2023                 pr_info("mds%d came back\n", session->s_mds);
2024         }
2025
2026         switch (op) {
2027         case CEPH_SESSION_OPEN:
2028                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2029                         pr_info("mds%d reconnect success\n", session->s_mds);
2030                 session->s_state = CEPH_MDS_SESSION_OPEN;
2031                 renewed_caps(mdsc, session, 0);
2032                 wake = 1;
2033                 if (mdsc->stopping)
2034                         __close_session(mdsc, session);
2035                 break;
2036
2037         case CEPH_SESSION_RENEWCAPS:
2038                 if (session->s_renew_seq == seq)
2039                         renewed_caps(mdsc, session, 1);
2040                 break;
2041
2042         case CEPH_SESSION_CLOSE:
2043                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2044                         pr_info("mds%d reconnect denied\n", session->s_mds);
2045                 remove_session_caps(session);
2046                 wake = 1; /* for good measure */
2047                 complete(&mdsc->session_close_waiters);
2048                 kick_requests(mdsc, mds);
2049                 break;
2050
2051         case CEPH_SESSION_STALE:
2052                 pr_info("mds%d caps went stale, renewing\n",
2053                         session->s_mds);
2054                 spin_lock(&session->s_cap_lock);
2055                 session->s_cap_gen++;
2056                 session->s_cap_ttl = 0;
2057                 spin_unlock(&session->s_cap_lock);
2058                 send_renew_caps(mdsc, session);
2059                 break;
2060
2061         case CEPH_SESSION_RECALL_STATE:
2062                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2063                 break;
2064
2065         default:
2066                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2067                 WARN_ON(1);
2068         }
2069
2070         mutex_unlock(&session->s_mutex);
2071         if (wake) {
2072                 mutex_lock(&mdsc->mutex);
2073                 __wake_requests(mdsc, &session->s_waiting);
2074                 mutex_unlock(&mdsc->mutex);
2075         }
2076         return;
2077
2078 bad:
2079         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2080                (int)msg->front.iov_len);
2081         ceph_msg_dump(msg);
2082         return;
2083 }
2084
2085
2086 /*
2087  * called under session->mutex.
2088  */
2089 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2090                                    struct ceph_mds_session *session)
2091 {
2092         struct ceph_mds_request *req, *nreq;
2093         int err;
2094
2095         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2096
2097         mutex_lock(&mdsc->mutex);
2098         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2099                 err = __prepare_send_request(mdsc, req, session->s_mds);
2100                 if (!err) {
2101                         ceph_msg_get(req->r_request);
2102                         ceph_con_send(&session->s_con, req->r_request);
2103                 }
2104         }
2105         mutex_unlock(&mdsc->mutex);
2106 }
2107
2108 /*
2109  * Encode information about a cap for a reconnect with the MDS.
2110  */
2111 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2112                           void *arg)
2113 {
2114         struct ceph_mds_cap_reconnect rec;
2115         struct ceph_inode_info *ci;
2116         struct ceph_pagelist *pagelist = arg;
2117         char *path;
2118         int pathlen, err;
2119         u64 pathbase;
2120         struct dentry *dentry;
2121
2122         ci = cap->ci;
2123
2124         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2125              inode, ceph_vinop(inode), cap, cap->cap_id,
2126              ceph_cap_string(cap->issued));
2127         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2128         if (err)
2129                 return err;
2130
2131         dentry = d_find_alias(inode);
2132         if (dentry) {
2133                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2134                 if (IS_ERR(path)) {
2135                         err = PTR_ERR(path);
2136                         BUG_ON(err);
2137                 }
2138         } else {
2139                 path = NULL;
2140                 pathlen = 0;
2141         }
2142         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2143         if (err)
2144                 goto out;
2145
2146         spin_lock(&inode->i_lock);
2147         cap->seq = 0;        /* reset cap seq */
2148         cap->issue_seq = 0;  /* and issue_seq */
2149         rec.cap_id = cpu_to_le64(cap->cap_id);
2150         rec.pathbase = cpu_to_le64(pathbase);
2151         rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2152         rec.issued = cpu_to_le32(cap->issued);
2153         rec.size = cpu_to_le64(inode->i_size);
2154         ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2155         ceph_encode_timespec(&rec.atime, &inode->i_atime);
2156         rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2157         spin_unlock(&inode->i_lock);
2158
2159         err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2160
2161 out:
2162         kfree(path);
2163         dput(dentry);
2164         return err;
2165 }
2166
2167
2168 /*
2169  * If an MDS fails and recovers, clients need to reconnect in order to
2170  * reestablish shared state.  This includes all caps issued through
2171  * this session _and_ the snap_realm hierarchy.  Because it's not
2172  * clear which snap realms the mds cares about, we send everything we
2173  * know about.. that ensures we'll then get any new info the
2174  * recovering MDS might have.
2175  *
2176  * This is a relatively heavyweight operation, but it's rare.
2177  *
2178  * called with mdsc->mutex held.
2179  */
2180 static void send_mds_reconnect(struct ceph_mds_client *mdsc, int mds)
2181 {
2182         struct ceph_mds_session *session = NULL;
2183         struct ceph_msg *reply;
2184         struct rb_node *p;
2185         int err = -ENOMEM;
2186         struct ceph_pagelist *pagelist;
2187
2188         pr_info("reconnect to recovering mds%d\n", mds);
2189
2190         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2191         if (!pagelist)
2192                 goto fail_nopagelist;
2193         ceph_pagelist_init(pagelist);
2194
2195         err = -ENOMEM;
2196         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0);
2197         if (!reply)
2198                 goto fail_nomsg;
2199
2200         /* find session */
2201         session = __ceph_lookup_mds_session(mdsc, mds);
2202         mutex_unlock(&mdsc->mutex);    /* drop lock for duration */
2203
2204         if (session) {
2205                 mutex_lock(&session->s_mutex);
2206
2207                 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2208                 session->s_seq = 0;
2209
2210                 ceph_con_open(&session->s_con,
2211                               ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2212
2213                 /* replay unsafe requests */
2214                 replay_unsafe_requests(mdsc, session);
2215         } else {
2216                 dout("no session for mds%d, will send short reconnect\n",
2217                      mds);
2218         }
2219
2220         down_read(&mdsc->snap_rwsem);
2221
2222         if (!session)
2223                 goto send;
2224         dout("session %p state %s\n", session,
2225              session_state_name(session->s_state));
2226
2227         /* drop old cap expires; we're about to reestablish that state */
2228         discard_cap_releases(mdsc, session);
2229
2230         /* traverse this session's caps */
2231         err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2232         if (err)
2233                 goto fail;
2234         err = iterate_session_caps(session, encode_caps_cb, pagelist);
2235         if (err < 0)
2236                 goto fail;
2237
2238         /*
2239          * snaprealms.  we provide mds with the ino, seq (version), and
2240          * parent for all of our realms.  If the mds has any newer info,
2241          * it will tell us.
2242          */
2243         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2244                 struct ceph_snap_realm *realm =
2245                         rb_entry(p, struct ceph_snap_realm, node);
2246                 struct ceph_mds_snaprealm_reconnect sr_rec;
2247
2248                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2249                      realm->ino, realm->seq, realm->parent_ino);
2250                 sr_rec.ino = cpu_to_le64(realm->ino);
2251                 sr_rec.seq = cpu_to_le64(realm->seq);
2252                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2253                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2254                 if (err)
2255                         goto fail;
2256         }
2257
2258 send:
2259         reply->pagelist = pagelist;
2260         reply->hdr.data_len = cpu_to_le32(pagelist->length);
2261         reply->nr_pages = calc_pages_for(0, pagelist->length);
2262         ceph_con_send(&session->s_con, reply);
2263
2264         mutex_unlock(&session->s_mutex);
2265
2266         mutex_lock(&mdsc->mutex);
2267         __wake_requests(mdsc, &session->s_waiting);
2268         mutex_unlock(&mdsc->mutex);
2269
2270         ceph_put_mds_session(session);
2271
2272         up_read(&mdsc->snap_rwsem);
2273         mutex_lock(&mdsc->mutex);
2274         return;
2275
2276 fail:
2277         ceph_msg_put(reply);
2278         up_read(&mdsc->snap_rwsem);
2279         mutex_unlock(&session->s_mutex);
2280         ceph_put_mds_session(session);
2281 fail_nomsg:
2282         ceph_pagelist_release(pagelist);
2283         kfree(pagelist);
2284 fail_nopagelist:
2285         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2286         mutex_lock(&mdsc->mutex);
2287         return;
2288 }
2289
2290
2291 /*
2292  * compare old and new mdsmaps, kicking requests
2293  * and closing out old connections as necessary
2294  *
2295  * called under mdsc->mutex.
2296  */
2297 static void check_new_map(struct ceph_mds_client *mdsc,
2298                           struct ceph_mdsmap *newmap,
2299                           struct ceph_mdsmap *oldmap)
2300 {
2301         int i;
2302         int oldstate, newstate;
2303         struct ceph_mds_session *s;
2304
2305         dout("check_new_map new %u old %u\n",
2306              newmap->m_epoch, oldmap->m_epoch);
2307
2308         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2309                 if (mdsc->sessions[i] == NULL)
2310                         continue;
2311                 s = mdsc->sessions[i];
2312                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2313                 newstate = ceph_mdsmap_get_state(newmap, i);
2314
2315                 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2316                      i, ceph_mds_state_name(oldstate),
2317                      ceph_mds_state_name(newstate),
2318                      session_state_name(s->s_state));
2319
2320                 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2321                            ceph_mdsmap_get_addr(newmap, i),
2322                            sizeof(struct ceph_entity_addr))) {
2323                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2324                                 /* the session never opened, just close it
2325                                  * out now */
2326                                 __wake_requests(mdsc, &s->s_waiting);
2327                                 __unregister_session(mdsc, s);
2328                         } else {
2329                                 /* just close it */
2330                                 mutex_unlock(&mdsc->mutex);
2331                                 mutex_lock(&s->s_mutex);
2332                                 mutex_lock(&mdsc->mutex);
2333                                 ceph_con_close(&s->s_con);
2334                                 mutex_unlock(&s->s_mutex);
2335                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2336                         }
2337
2338                         /* kick any requests waiting on the recovering mds */
2339                         kick_requests(mdsc, i);
2340                 } else if (oldstate == newstate) {
2341                         continue;  /* nothing new with this mds */
2342                 }
2343
2344                 /*
2345                  * send reconnect?
2346                  */
2347                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2348                     newstate >= CEPH_MDS_STATE_RECONNECT)
2349                         send_mds_reconnect(mdsc, i);
2350
2351                 /*
2352                  * kick request on any mds that has gone active.
2353                  */
2354                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2355                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2356                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2357                             oldstate != CEPH_MDS_STATE_STARTING)
2358                                 pr_info("mds%d recovery completed\n", s->s_mds);
2359                         kick_requests(mdsc, i);
2360                         ceph_kick_flushing_caps(mdsc, s);
2361                         wake_up_session_caps(s, 1);
2362                 }
2363         }
2364 }
2365
2366
2367
2368 /*
2369  * leases
2370  */
2371
2372 /*
2373  * caller must hold session s_mutex, dentry->d_lock
2374  */
2375 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2376 {
2377         struct ceph_dentry_info *di = ceph_dentry(dentry);
2378
2379         ceph_put_mds_session(di->lease_session);
2380         di->lease_session = NULL;
2381 }
2382
2383 static void handle_lease(struct ceph_mds_client *mdsc,
2384                          struct ceph_mds_session *session,
2385                          struct ceph_msg *msg)
2386 {
2387         struct super_block *sb = mdsc->client->sb;
2388         struct inode *inode;
2389         struct ceph_inode_info *ci;
2390         struct dentry *parent, *dentry;
2391         struct ceph_dentry_info *di;
2392         int mds = session->s_mds;
2393         struct ceph_mds_lease *h = msg->front.iov_base;
2394         struct ceph_vino vino;
2395         int mask;
2396         struct qstr dname;
2397         int release = 0;
2398
2399         dout("handle_lease from mds%d\n", mds);
2400
2401         /* decode */
2402         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2403                 goto bad;
2404         vino.ino = le64_to_cpu(h->ino);
2405         vino.snap = CEPH_NOSNAP;
2406         mask = le16_to_cpu(h->mask);
2407         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2408         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2409         if (dname.len != get_unaligned_le32(h+1))
2410                 goto bad;
2411
2412         mutex_lock(&session->s_mutex);
2413         session->s_seq++;
2414
2415         /* lookup inode */
2416         inode = ceph_find_inode(sb, vino);
2417         dout("handle_lease '%s', mask %d, ino %llx %p\n",
2418              ceph_lease_op_name(h->action), mask, vino.ino, inode);
2419         if (inode == NULL) {
2420                 dout("handle_lease no inode %llx\n", vino.ino);
2421                 goto release;
2422         }
2423         ci = ceph_inode(inode);
2424
2425         /* dentry */
2426         parent = d_find_alias(inode);
2427         if (!parent) {
2428                 dout("no parent dentry on inode %p\n", inode);
2429                 WARN_ON(1);
2430                 goto release;  /* hrm... */
2431         }
2432         dname.hash = full_name_hash(dname.name, dname.len);
2433         dentry = d_lookup(parent, &dname);
2434         dput(parent);
2435         if (!dentry)
2436                 goto release;
2437
2438         spin_lock(&dentry->d_lock);
2439         di = ceph_dentry(dentry);
2440         switch (h->action) {
2441         case CEPH_MDS_LEASE_REVOKE:
2442                 if (di && di->lease_session == session) {
2443                         h->seq = cpu_to_le32(di->lease_seq);
2444                         __ceph_mdsc_drop_dentry_lease(dentry);
2445                 }
2446                 release = 1;
2447                 break;
2448
2449         case CEPH_MDS_LEASE_RENEW:
2450                 if (di && di->lease_session == session &&
2451                     di->lease_gen == session->s_cap_gen &&
2452                     di->lease_renew_from &&
2453                     di->lease_renew_after == 0) {
2454                         unsigned long duration =
2455                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2456
2457                         di->lease_seq = le32_to_cpu(h->seq);
2458                         dentry->d_time = di->lease_renew_from + duration;
2459                         di->lease_renew_after = di->lease_renew_from +
2460                                 (duration >> 1);
2461                         di->lease_renew_from = 0;
2462                 }
2463                 break;
2464         }
2465         spin_unlock(&dentry->d_lock);
2466         dput(dentry);
2467
2468         if (!release)
2469                 goto out;
2470
2471 release:
2472         /* let's just reuse the same message */
2473         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2474         ceph_msg_get(msg);
2475         ceph_con_send(&session->s_con, msg);
2476
2477 out:
2478         iput(inode);
2479         mutex_unlock(&session->s_mutex);
2480         return;
2481
2482 bad:
2483         pr_err("corrupt lease message\n");
2484         ceph_msg_dump(msg);
2485 }
2486
2487 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2488                               struct inode *inode,
2489                               struct dentry *dentry, char action,
2490                               u32 seq)
2491 {
2492         struct ceph_msg *msg;
2493         struct ceph_mds_lease *lease;
2494         int len = sizeof(*lease) + sizeof(u32);
2495         int dnamelen = 0;
2496
2497         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2498              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2499         dnamelen = dentry->d_name.len;
2500         len += dnamelen;
2501
2502         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len);
2503         if (!msg)
2504                 return;
2505         lease = msg->front.iov_base;
2506         lease->action = action;
2507         lease->mask = cpu_to_le16(CEPH_LOCK_DN);
2508         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2509         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2510         lease->seq = cpu_to_le32(seq);
2511         put_unaligned_le32(dnamelen, lease + 1);
2512         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2513
2514         /*
2515          * if this is a preemptive lease RELEASE, no need to
2516          * flush request stream, since the actual request will
2517          * soon follow.
2518          */
2519         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2520
2521         ceph_con_send(&session->s_con, msg);
2522 }
2523
2524 /*
2525  * Preemptively release a lease we expect to invalidate anyway.
2526  * Pass @inode always, @dentry is optional.
2527  */
2528 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2529                              struct dentry *dentry, int mask)
2530 {
2531         struct ceph_dentry_info *di;
2532         struct ceph_mds_session *session;
2533         u32 seq;
2534
2535         BUG_ON(inode == NULL);
2536         BUG_ON(dentry == NULL);
2537         BUG_ON(mask != CEPH_LOCK_DN);
2538
2539         /* is dentry lease valid? */
2540         spin_lock(&dentry->d_lock);
2541         di = ceph_dentry(dentry);
2542         if (!di || !di->lease_session ||
2543             di->lease_session->s_mds < 0 ||
2544             di->lease_gen != di->lease_session->s_cap_gen ||
2545             !time_before(jiffies, dentry->d_time)) {
2546                 dout("lease_release inode %p dentry %p -- "
2547                      "no lease on %d\n",
2548                      inode, dentry, mask);
2549                 spin_unlock(&dentry->d_lock);
2550                 return;
2551         }
2552
2553         /* we do have a lease on this dentry; note mds and seq */
2554         session = ceph_get_mds_session(di->lease_session);
2555         seq = di->lease_seq;
2556         __ceph_mdsc_drop_dentry_lease(dentry);
2557         spin_unlock(&dentry->d_lock);
2558
2559         dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2560              inode, dentry, mask, session->s_mds);
2561         ceph_mdsc_lease_send_msg(session, inode, dentry,
2562                                  CEPH_MDS_LEASE_RELEASE, seq);
2563         ceph_put_mds_session(session);
2564 }
2565
2566 /*
2567  * drop all leases (and dentry refs) in preparation for umount
2568  */
2569 static void drop_leases(struct ceph_mds_client *mdsc)
2570 {
2571         int i;
2572
2573         dout("drop_leases\n");
2574         mutex_lock(&mdsc->mutex);
2575         for (i = 0; i < mdsc->max_sessions; i++) {
2576                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2577                 if (!s)
2578                         continue;
2579                 mutex_unlock(&mdsc->mutex);
2580                 mutex_lock(&s->s_mutex);
2581                 mutex_unlock(&s->s_mutex);
2582                 ceph_put_mds_session(s);
2583                 mutex_lock(&mdsc->mutex);
2584         }
2585         mutex_unlock(&mdsc->mutex);
2586 }
2587
2588
2589
2590 /*
2591  * delayed work -- periodically trim expired leases, renew caps with mds
2592  */
2593 static void schedule_delayed(struct ceph_mds_client *mdsc)
2594 {
2595         int delay = 5;
2596         unsigned hz = round_jiffies_relative(HZ * delay);
2597         schedule_delayed_work(&mdsc->delayed_work, hz);
2598 }
2599
2600 static void delayed_work(struct work_struct *work)
2601 {
2602         int i;
2603         struct ceph_mds_client *mdsc =
2604                 container_of(work, struct ceph_mds_client, delayed_work.work);
2605         int renew_interval;
2606         int renew_caps;
2607
2608         dout("mdsc delayed_work\n");
2609         ceph_check_delayed_caps(mdsc);
2610
2611         mutex_lock(&mdsc->mutex);
2612         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2613         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2614                                    mdsc->last_renew_caps);
2615         if (renew_caps)
2616                 mdsc->last_renew_caps = jiffies;
2617
2618         for (i = 0; i < mdsc->max_sessions; i++) {
2619                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2620                 if (s == NULL)
2621                         continue;
2622                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2623                         dout("resending session close request for mds%d\n",
2624                              s->s_mds);
2625                         request_close_session(mdsc, s);
2626                         ceph_put_mds_session(s);
2627                         continue;
2628                 }
2629                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2630                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2631                                 s->s_state = CEPH_MDS_SESSION_HUNG;
2632                                 pr_info("mds%d hung\n", s->s_mds);
2633                         }
2634                 }
2635                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2636                         /* this mds is failed or recovering, just wait */
2637                         ceph_put_mds_session(s);
2638                         continue;
2639                 }
2640                 mutex_unlock(&mdsc->mutex);
2641
2642                 mutex_lock(&s->s_mutex);
2643                 if (renew_caps)
2644                         send_renew_caps(mdsc, s);
2645                 else
2646                         ceph_con_keepalive(&s->s_con);
2647                 add_cap_releases(mdsc, s, -1);
2648                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2649                     s->s_state == CEPH_MDS_SESSION_HUNG)
2650                         send_cap_releases(mdsc, s);
2651                 mutex_unlock(&s->s_mutex);
2652                 ceph_put_mds_session(s);
2653
2654                 mutex_lock(&mdsc->mutex);
2655         }
2656         mutex_unlock(&mdsc->mutex);
2657
2658         schedule_delayed(mdsc);
2659 }
2660
2661
2662 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2663 {
2664         mdsc->client = client;
2665         mutex_init(&mdsc->mutex);
2666         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2667         if (mdsc->mdsmap == NULL)
2668                 return -ENOMEM;
2669
2670         init_completion(&mdsc->safe_umount_waiters);
2671         init_completion(&mdsc->session_close_waiters);
2672         INIT_LIST_HEAD(&mdsc->waiting_for_map);
2673         mdsc->sessions = NULL;
2674         mdsc->max_sessions = 0;
2675         mdsc->stopping = 0;
2676         init_rwsem(&mdsc->snap_rwsem);
2677         mdsc->snap_realms = RB_ROOT;
2678         INIT_LIST_HEAD(&mdsc->snap_empty);
2679         spin_lock_init(&mdsc->snap_empty_lock);
2680         mdsc->last_tid = 0;
2681         mdsc->request_tree = RB_ROOT;
2682         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2683         mdsc->last_renew_caps = jiffies;
2684         INIT_LIST_HEAD(&mdsc->cap_delay_list);
2685         spin_lock_init(&mdsc->cap_delay_lock);
2686         INIT_LIST_HEAD(&mdsc->snap_flush_list);
2687         spin_lock_init(&mdsc->snap_flush_lock);
2688         mdsc->cap_flush_seq = 0;
2689         INIT_LIST_HEAD(&mdsc->cap_dirty);
2690         mdsc->num_cap_flushing = 0;
2691         spin_lock_init(&mdsc->cap_dirty_lock);
2692         init_waitqueue_head(&mdsc->cap_flushing_wq);
2693         spin_lock_init(&mdsc->dentry_lru_lock);
2694         INIT_LIST_HEAD(&mdsc->dentry_lru);
2695
2696         return 0;
2697 }
2698
2699 /*
2700  * Wait for safe replies on open mds requests.  If we time out, drop
2701  * all requests from the tree to avoid dangling dentry refs.
2702  */
2703 static void wait_requests(struct ceph_mds_client *mdsc)
2704 {
2705         struct ceph_mds_request *req;
2706         struct ceph_client *client = mdsc->client;
2707
2708         mutex_lock(&mdsc->mutex);
2709         if (__get_oldest_req(mdsc)) {
2710                 mutex_unlock(&mdsc->mutex);
2711
2712                 dout("wait_requests waiting for requests\n");
2713                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2714                                     client->mount_args->mount_timeout * HZ);
2715
2716                 /* tear down remaining requests */
2717                 mutex_lock(&mdsc->mutex);
2718                 while ((req = __get_oldest_req(mdsc))) {
2719                         dout("wait_requests timed out on tid %llu\n",
2720                              req->r_tid);
2721                         __unregister_request(mdsc, req);
2722                 }
2723         }
2724         mutex_unlock(&mdsc->mutex);
2725         dout("wait_requests done\n");
2726 }
2727
2728 /*
2729  * called before mount is ro, and before dentries are torn down.
2730  * (hmm, does this still race with new lookups?)
2731  */
2732 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2733 {
2734         dout("pre_umount\n");
2735         mdsc->stopping = 1;
2736
2737         drop_leases(mdsc);
2738         ceph_flush_dirty_caps(mdsc);
2739         wait_requests(mdsc);
2740 }
2741
2742 /*
2743  * wait for all write mds requests to flush.
2744  */
2745 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2746 {
2747         struct ceph_mds_request *req = NULL, *nextreq;
2748         struct rb_node *n;
2749
2750         mutex_lock(&mdsc->mutex);
2751         dout("wait_unsafe_requests want %lld\n", want_tid);
2752 restart:
2753         req = __get_oldest_req(mdsc);
2754         while (req && req->r_tid <= want_tid) {
2755                 /* find next request */
2756                 n = rb_next(&req->r_node);
2757                 if (n)
2758                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2759                 else
2760                         nextreq = NULL;
2761                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2762                         /* write op */
2763                         ceph_mdsc_get_request(req);
2764                         if (nextreq)
2765                                 ceph_mdsc_get_request(nextreq);
2766                         mutex_unlock(&mdsc->mutex);
2767                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
2768                              req->r_tid, want_tid);
2769                         wait_for_completion(&req->r_safe_completion);
2770                         mutex_lock(&mdsc->mutex);
2771                         ceph_mdsc_put_request(req);
2772                         if (!nextreq)
2773                                 break;  /* next dne before, so we're done! */
2774                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
2775                                 /* next request was removed from tree */
2776                                 ceph_mdsc_put_request(nextreq);
2777                                 goto restart;
2778                         }
2779                         ceph_mdsc_put_request(nextreq);  /* won't go away */
2780                 }
2781                 req = nextreq;
2782         }
2783         mutex_unlock(&mdsc->mutex);
2784         dout("wait_unsafe_requests done\n");
2785 }
2786
2787 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2788 {
2789         u64 want_tid, want_flush;
2790
2791         if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
2792                 return;
2793
2794         dout("sync\n");
2795         mutex_lock(&mdsc->mutex);
2796         want_tid = mdsc->last_tid;
2797         want_flush = mdsc->cap_flush_seq;
2798         mutex_unlock(&mdsc->mutex);
2799         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2800
2801         ceph_flush_dirty_caps(mdsc);
2802
2803         wait_unsafe_requests(mdsc, want_tid);
2804         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2805 }
2806
2807
2808 /*
2809  * called after sb is ro.
2810  */
2811 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2812 {
2813         struct ceph_mds_session *session;
2814         int i;
2815         int n;
2816         struct ceph_client *client = mdsc->client;
2817         unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2818
2819         dout("close_sessions\n");
2820
2821         mutex_lock(&mdsc->mutex);
2822
2823         /* close sessions */
2824         started = jiffies;
2825         while (time_before(jiffies, started + timeout)) {
2826                 dout("closing sessions\n");
2827                 n = 0;
2828                 for (i = 0; i < mdsc->max_sessions; i++) {
2829                         session = __ceph_lookup_mds_session(mdsc, i);
2830                         if (!session)
2831                                 continue;
2832                         mutex_unlock(&mdsc->mutex);
2833                         mutex_lock(&session->s_mutex);
2834                         __close_session(mdsc, session);
2835                         mutex_unlock(&session->s_mutex);
2836                         ceph_put_mds_session(session);
2837                         mutex_lock(&mdsc->mutex);
2838                         n++;
2839                 }
2840                 if (n == 0)
2841                         break;
2842
2843                 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2844                         break;
2845
2846                 dout("waiting for sessions to close\n");
2847                 mutex_unlock(&mdsc->mutex);
2848                 wait_for_completion_timeout(&mdsc->session_close_waiters,
2849                                             timeout);
2850                 mutex_lock(&mdsc->mutex);
2851         }
2852
2853         /* tear down remaining sessions */
2854         for (i = 0; i < mdsc->max_sessions; i++) {
2855                 if (mdsc->sessions[i]) {
2856                         session = get_session(mdsc->sessions[i]);
2857                         __unregister_session(mdsc, session);
2858                         mutex_unlock(&mdsc->mutex);
2859                         mutex_lock(&session->s_mutex);
2860                         remove_session_caps(session);
2861                         mutex_unlock(&session->s_mutex);
2862                         ceph_put_mds_session(session);
2863                         mutex_lock(&mdsc->mutex);
2864                 }
2865         }
2866
2867         WARN_ON(!list_empty(&mdsc->cap_delay_list));
2868
2869         mutex_unlock(&mdsc->mutex);
2870
2871         ceph_cleanup_empty_realms(mdsc);
2872
2873         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2874
2875         dout("stopped\n");
2876 }
2877
2878 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2879 {
2880         dout("stop\n");
2881         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2882         if (mdsc->mdsmap)
2883                 ceph_mdsmap_destroy(mdsc->mdsmap);
2884         kfree(mdsc->sessions);
2885 }
2886
2887
2888 /*
2889  * handle mds map update.
2890  */
2891 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2892 {
2893         u32 epoch;
2894         u32 maplen;
2895         void *p = msg->front.iov_base;
2896         void *end = p + msg->front.iov_len;
2897         struct ceph_mdsmap *newmap, *oldmap;
2898         struct ceph_fsid fsid;
2899         int err = -EINVAL;
2900
2901         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2902         ceph_decode_copy(&p, &fsid, sizeof(fsid));
2903         if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2904                 return;
2905         epoch = ceph_decode_32(&p);
2906         maplen = ceph_decode_32(&p);
2907         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2908
2909         /* do we need it? */
2910         ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2911         mutex_lock(&mdsc->mutex);
2912         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2913                 dout("handle_map epoch %u <= our %u\n",
2914                      epoch, mdsc->mdsmap->m_epoch);
2915                 mutex_unlock(&mdsc->mutex);
2916                 return;
2917         }
2918
2919         newmap = ceph_mdsmap_decode(&p, end);
2920         if (IS_ERR(newmap)) {
2921                 err = PTR_ERR(newmap);
2922                 goto bad_unlock;
2923         }
2924
2925         /* swap into place */
2926         if (mdsc->mdsmap) {
2927                 oldmap = mdsc->mdsmap;
2928                 mdsc->mdsmap = newmap;
2929                 check_new_map(mdsc, newmap, oldmap);
2930                 ceph_mdsmap_destroy(oldmap);
2931         } else {
2932                 mdsc->mdsmap = newmap;  /* first mds map */
2933         }
2934         mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
2935
2936         __wake_requests(mdsc, &mdsc->waiting_for_map);
2937
2938         mutex_unlock(&mdsc->mutex);
2939         schedule_delayed(mdsc);
2940         return;
2941
2942 bad_unlock:
2943         mutex_unlock(&mdsc->mutex);
2944 bad:
2945         pr_err("error decoding mdsmap %d\n", err);
2946         return;
2947 }
2948
2949 static struct ceph_connection *con_get(struct ceph_connection *con)
2950 {
2951         struct ceph_mds_session *s = con->private;
2952
2953         if (get_session(s)) {
2954                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
2955                 return con;
2956         }
2957         dout("mdsc con_get %p FAIL\n", s);
2958         return NULL;
2959 }
2960
2961 static void con_put(struct ceph_connection *con)
2962 {
2963         struct ceph_mds_session *s = con->private;
2964
2965         ceph_put_mds_session(s);
2966         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
2967 }
2968
2969 /*
2970  * if the client is unresponsive for long enough, the mds will kill
2971  * the session entirely.
2972  */
2973 static void peer_reset(struct ceph_connection *con)
2974 {
2975         struct ceph_mds_session *s = con->private;
2976
2977         pr_err("mds%d gave us the boot.  IMPLEMENT RECONNECT.\n",
2978                s->s_mds);
2979 }
2980
2981 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
2982 {
2983         struct ceph_mds_session *s = con->private;
2984         struct ceph_mds_client *mdsc = s->s_mdsc;
2985         int type = le16_to_cpu(msg->hdr.type);
2986
2987         mutex_lock(&mdsc->mutex);
2988         if (__verify_registered_session(mdsc, s) < 0) {
2989                 mutex_unlock(&mdsc->mutex);
2990                 goto out;
2991         }
2992         mutex_unlock(&mdsc->mutex);
2993
2994         switch (type) {
2995         case CEPH_MSG_MDS_MAP:
2996                 ceph_mdsc_handle_map(mdsc, msg);
2997                 break;
2998         case CEPH_MSG_CLIENT_SESSION:
2999                 handle_session(s, msg);
3000                 break;
3001         case CEPH_MSG_CLIENT_REPLY:
3002                 handle_reply(s, msg);
3003                 break;
3004         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3005                 handle_forward(mdsc, s, msg);
3006                 break;
3007         case CEPH_MSG_CLIENT_CAPS:
3008                 ceph_handle_caps(s, msg);
3009                 break;
3010         case CEPH_MSG_CLIENT_SNAP:
3011                 ceph_handle_snap(mdsc, s, msg);
3012                 break;
3013         case CEPH_MSG_CLIENT_LEASE:
3014                 handle_lease(mdsc, s, msg);
3015                 break;
3016
3017         default:
3018                 pr_err("received unknown message type %d %s\n", type,
3019                        ceph_msg_type_name(type));
3020         }
3021 out:
3022         ceph_msg_put(msg);
3023 }
3024
3025 /*
3026  * authentication
3027  */
3028 static int get_authorizer(struct ceph_connection *con,
3029                           void **buf, int *len, int *proto,
3030                           void **reply_buf, int *reply_len, int force_new)
3031 {
3032         struct ceph_mds_session *s = con->private;
3033         struct ceph_mds_client *mdsc = s->s_mdsc;
3034         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3035         int ret = 0;
3036
3037         if (force_new && s->s_authorizer) {
3038                 ac->ops->destroy_authorizer(ac, s->s_authorizer);
3039                 s->s_authorizer = NULL;
3040         }
3041         if (s->s_authorizer == NULL) {
3042                 if (ac->ops->create_authorizer) {
3043                         ret = ac->ops->create_authorizer(
3044                                 ac, CEPH_ENTITY_TYPE_MDS,
3045                                 &s->s_authorizer,
3046                                 &s->s_authorizer_buf,
3047                                 &s->s_authorizer_buf_len,
3048                                 &s->s_authorizer_reply_buf,
3049                                 &s->s_authorizer_reply_buf_len);
3050                         if (ret)
3051                                 return ret;
3052                 }
3053         }
3054
3055         *proto = ac->protocol;
3056         *buf = s->s_authorizer_buf;
3057         *len = s->s_authorizer_buf_len;
3058         *reply_buf = s->s_authorizer_reply_buf;
3059         *reply_len = s->s_authorizer_reply_buf_len;
3060         return 0;
3061 }
3062
3063
3064 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3065 {
3066         struct ceph_mds_session *s = con->private;
3067         struct ceph_mds_client *mdsc = s->s_mdsc;
3068         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3069
3070         return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3071 }
3072
3073 static int invalidate_authorizer(struct ceph_connection *con)
3074 {
3075         struct ceph_mds_session *s = con->private;
3076         struct ceph_mds_client *mdsc = s->s_mdsc;
3077         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3078
3079         if (ac->ops->invalidate_authorizer)
3080                 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3081
3082         return ceph_monc_validate_auth(&mdsc->client->monc);
3083 }
3084
3085 const static struct ceph_connection_operations mds_con_ops = {
3086         .get = con_get,
3087         .put = con_put,
3088         .dispatch = dispatch,
3089         .get_authorizer = get_authorizer,
3090         .verify_authorizer_reply = verify_authorizer_reply,
3091         .invalidate_authorizer = invalidate_authorizer,
3092         .peer_reset = peer_reset,
3093 };
3094
3095
3096
3097
3098 /* eof */