fc9c0439caa314e131e1c23c384884b71bf84fb1
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64         struct btrfs_key *location;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_path *path, int extent_inserted,
130                                 struct btrfs_root *root, struct inode *inode,
131                                 u64 start, size_t size, size_t compressed_size,
132                                 int compress_type,
133                                 struct page **compressed_pages)
134 {
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         unsigned long offset;
144
145         if (compressed_size && compressed_pages)
146                 cur_size = compressed_size;
147
148         inode_add_bytes(inode, size);
149
150         if (!extent_inserted) {
151                 struct btrfs_key key;
152                 size_t datasize;
153
154                 key.objectid = btrfs_ino(inode);
155                 key.offset = start;
156                 key.type = BTRFS_EXTENT_DATA_KEY;
157
158                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159                 path->leave_spinning = 1;
160                 ret = btrfs_insert_empty_item(trans, root, path, &key,
161                                               datasize);
162                 if (ret) {
163                         err = ret;
164                         goto fail;
165                 }
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_release_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         return err;
223 }
224
225
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232                                           struct inode *inode, u64 start,
233                                           u64 end, size_t compressed_size,
234                                           int compress_type,
235                                           struct page **compressed_pages)
236 {
237         struct btrfs_trans_handle *trans;
238         u64 isize = i_size_read(inode);
239         u64 actual_end = min(end + 1, isize);
240         u64 inline_len = actual_end - start;
241         u64 aligned_end = ALIGN(end, root->sectorsize);
242         u64 data_len = inline_len;
243         int ret;
244         struct btrfs_path *path;
245         int extent_inserted = 0;
246         u32 extent_item_size;
247
248         if (compressed_size)
249                 data_len = compressed_size;
250
251         if (start > 0 ||
252             actual_end > PAGE_CACHE_SIZE ||
253             data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254             (!compressed_size &&
255             (actual_end & (root->sectorsize - 1)) == 0) ||
256             end + 1 < isize ||
257             data_len > root->fs_info->max_inline) {
258                 return 1;
259         }
260
261         path = btrfs_alloc_path();
262         if (!path)
263                 return -ENOMEM;
264
265         trans = btrfs_join_transaction(root);
266         if (IS_ERR(trans)) {
267                 btrfs_free_path(path);
268                 return PTR_ERR(trans);
269         }
270         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272         if (compressed_size && compressed_pages)
273                 extent_item_size = btrfs_file_extent_calc_inline_size(
274                    compressed_size);
275         else
276                 extent_item_size = btrfs_file_extent_calc_inline_size(
277                     inline_len);
278
279         ret = __btrfs_drop_extents(trans, root, inode, path,
280                                    start, aligned_end, NULL,
281                                    1, 1, extent_item_size, &extent_inserted);
282         if (ret) {
283                 btrfs_abort_transaction(trans, root, ret);
284                 goto out;
285         }
286
287         if (isize > actual_end)
288                 inline_len = min_t(u64, isize, actual_end);
289         ret = insert_inline_extent(trans, path, extent_inserted,
290                                    root, inode, start,
291                                    inline_len, compressed_size,
292                                    compress_type, compressed_pages);
293         if (ret && ret != -ENOSPC) {
294                 btrfs_abort_transaction(trans, root, ret);
295                 goto out;
296         } else if (ret == -ENOSPC) {
297                 ret = 1;
298                 goto out;
299         }
300
301         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302         btrfs_delalloc_release_metadata(inode, end + 1 - start);
303         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305         btrfs_free_path(path);
306         btrfs_end_transaction(trans, root);
307         return ret;
308 }
309
310 struct async_extent {
311         u64 start;
312         u64 ram_size;
313         u64 compressed_size;
314         struct page **pages;
315         unsigned long nr_pages;
316         int compress_type;
317         struct list_head list;
318 };
319
320 struct async_cow {
321         struct inode *inode;
322         struct btrfs_root *root;
323         struct page *locked_page;
324         u64 start;
325         u64 end;
326         struct list_head extents;
327         struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331                                      u64 start, u64 ram_size,
332                                      u64 compressed_size,
333                                      struct page **pages,
334                                      unsigned long nr_pages,
335                                      int compress_type)
336 {
337         struct async_extent *async_extent;
338
339         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340         BUG_ON(!async_extent); /* -ENOMEM */
341         async_extent->start = start;
342         async_extent->ram_size = ram_size;
343         async_extent->compressed_size = compressed_size;
344         async_extent->pages = pages;
345         async_extent->nr_pages = nr_pages;
346         async_extent->compress_type = compress_type;
347         list_add_tail(&async_extent->list, &cow->extents);
348         return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353         struct btrfs_root *root = BTRFS_I(inode)->root;
354
355         /* force compress */
356         if (btrfs_test_opt(root, FORCE_COMPRESS))
357                 return 1;
358         /* bad compression ratios */
359         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360                 return 0;
361         if (btrfs_test_opt(root, COMPRESS) ||
362             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363             BTRFS_I(inode)->force_compress)
364                 return 1;
365         return 0;
366 }
367
368 /*
369  * we create compressed extents in two phases.  The first
370  * phase compresses a range of pages that have already been
371  * locked (both pages and state bits are locked).
372  *
373  * This is done inside an ordered work queue, and the compression
374  * is spread across many cpus.  The actual IO submission is step
375  * two, and the ordered work queue takes care of making sure that
376  * happens in the same order things were put onto the queue by
377  * writepages and friends.
378  *
379  * If this code finds it can't get good compression, it puts an
380  * entry onto the work queue to write the uncompressed bytes.  This
381  * makes sure that both compressed inodes and uncompressed inodes
382  * are written in the same order that the flusher thread sent them
383  * down.
384  */
385 static noinline int compress_file_range(struct inode *inode,
386                                         struct page *locked_page,
387                                         u64 start, u64 end,
388                                         struct async_cow *async_cow,
389                                         int *num_added)
390 {
391         struct btrfs_root *root = BTRFS_I(inode)->root;
392         u64 num_bytes;
393         u64 blocksize = root->sectorsize;
394         u64 actual_end;
395         u64 isize = i_size_read(inode);
396         int ret = 0;
397         struct page **pages = NULL;
398         unsigned long nr_pages;
399         unsigned long nr_pages_ret = 0;
400         unsigned long total_compressed = 0;
401         unsigned long total_in = 0;
402         unsigned long max_compressed = 128 * 1024;
403         unsigned long max_uncompressed = 128 * 1024;
404         int i;
405         int will_compress;
406         int compress_type = root->fs_info->compress_type;
407         int redirty = 0;
408
409         /* if this is a small write inside eof, kick off a defrag */
410         if ((end - start + 1) < 16 * 1024 &&
411             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412                 btrfs_add_inode_defrag(NULL, inode);
413
414         /*
415          * skip compression for a small file range(<=blocksize) that
416          * isn't an inline extent, since it dosen't save disk space at all.
417          */
418         if ((end - start + 1) <= blocksize &&
419             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420                 goto cleanup_and_bail_uncompressed;
421
422         actual_end = min_t(u64, isize, end + 1);
423 again:
424         will_compress = 0;
425         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427
428         /*
429          * we don't want to send crud past the end of i_size through
430          * compression, that's just a waste of CPU time.  So, if the
431          * end of the file is before the start of our current
432          * requested range of bytes, we bail out to the uncompressed
433          * cleanup code that can deal with all of this.
434          *
435          * It isn't really the fastest way to fix things, but this is a
436          * very uncommon corner.
437          */
438         if (actual_end <= start)
439                 goto cleanup_and_bail_uncompressed;
440
441         total_compressed = actual_end - start;
442
443         /* we want to make sure that amount of ram required to uncompress
444          * an extent is reasonable, so we limit the total size in ram
445          * of a compressed extent to 128k.  This is a crucial number
446          * because it also controls how easily we can spread reads across
447          * cpus for decompression.
448          *
449          * We also want to make sure the amount of IO required to do
450          * a random read is reasonably small, so we limit the size of
451          * a compressed extent to 128k.
452          */
453         total_compressed = min(total_compressed, max_uncompressed);
454         num_bytes = ALIGN(end - start + 1, blocksize);
455         num_bytes = max(blocksize,  num_bytes);
456         total_in = 0;
457         ret = 0;
458
459         /*
460          * we do compression for mount -o compress and when the
461          * inode has not been flagged as nocompress.  This flag can
462          * change at any time if we discover bad compression ratios.
463          */
464         if (inode_need_compress(inode)) {
465                 WARN_ON(pages);
466                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467                 if (!pages) {
468                         /* just bail out to the uncompressed code */
469                         goto cont;
470                 }
471
472                 if (BTRFS_I(inode)->force_compress)
473                         compress_type = BTRFS_I(inode)->force_compress;
474
475                 /*
476                  * we need to call clear_page_dirty_for_io on each
477                  * page in the range.  Otherwise applications with the file
478                  * mmap'd can wander in and change the page contents while
479                  * we are compressing them.
480                  *
481                  * If the compression fails for any reason, we set the pages
482                  * dirty again later on.
483                  */
484                 extent_range_clear_dirty_for_io(inode, start, end);
485                 redirty = 1;
486                 ret = btrfs_compress_pages(compress_type,
487                                            inode->i_mapping, start,
488                                            total_compressed, pages,
489                                            nr_pages, &nr_pages_ret,
490                                            &total_in,
491                                            &total_compressed,
492                                            max_compressed);
493
494                 if (!ret) {
495                         unsigned long offset = total_compressed &
496                                 (PAGE_CACHE_SIZE - 1);
497                         struct page *page = pages[nr_pages_ret - 1];
498                         char *kaddr;
499
500                         /* zero the tail end of the last page, we might be
501                          * sending it down to disk
502                          */
503                         if (offset) {
504                                 kaddr = kmap_atomic(page);
505                                 memset(kaddr + offset, 0,
506                                        PAGE_CACHE_SIZE - offset);
507                                 kunmap_atomic(kaddr);
508                         }
509                         will_compress = 1;
510                 }
511         }
512 cont:
513         if (start == 0) {
514                 /* lets try to make an inline extent */
515                 if (ret || total_in < (actual_end - start)) {
516                         /* we didn't compress the entire range, try
517                          * to make an uncompressed inline extent.
518                          */
519                         ret = cow_file_range_inline(root, inode, start, end,
520                                                     0, 0, NULL);
521                 } else {
522                         /* try making a compressed inline extent */
523                         ret = cow_file_range_inline(root, inode, start, end,
524                                                     total_compressed,
525                                                     compress_type, pages);
526                 }
527                 if (ret <= 0) {
528                         unsigned long clear_flags = EXTENT_DELALLOC |
529                                 EXTENT_DEFRAG;
530                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
531
532                         /*
533                          * inline extent creation worked or returned error,
534                          * we don't need to create any more async work items.
535                          * Unlock and free up our temp pages.
536                          */
537                         extent_clear_unlock_delalloc(inode, start, end, NULL,
538                                                      clear_flags, PAGE_UNLOCK |
539                                                      PAGE_CLEAR_DIRTY |
540                                                      PAGE_SET_WRITEBACK |
541                                                      PAGE_END_WRITEBACK);
542                         goto free_pages_out;
543                 }
544         }
545
546         if (will_compress) {
547                 /*
548                  * we aren't doing an inline extent round the compressed size
549                  * up to a block size boundary so the allocator does sane
550                  * things
551                  */
552                 total_compressed = ALIGN(total_compressed, blocksize);
553
554                 /*
555                  * one last check to make sure the compression is really a
556                  * win, compare the page count read with the blocks on disk
557                  */
558                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
559                 if (total_compressed >= total_in) {
560                         will_compress = 0;
561                 } else {
562                         num_bytes = total_in;
563                 }
564         }
565         if (!will_compress && pages) {
566                 /*
567                  * the compression code ran but failed to make things smaller,
568                  * free any pages it allocated and our page pointer array
569                  */
570                 for (i = 0; i < nr_pages_ret; i++) {
571                         WARN_ON(pages[i]->mapping);
572                         page_cache_release(pages[i]);
573                 }
574                 kfree(pages);
575                 pages = NULL;
576                 total_compressed = 0;
577                 nr_pages_ret = 0;
578
579                 /* flag the file so we don't compress in the future */
580                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
581                     !(BTRFS_I(inode)->force_compress)) {
582                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
583                 }
584         }
585         if (will_compress) {
586                 *num_added += 1;
587
588                 /* the async work queues will take care of doing actual
589                  * allocation on disk for these compressed pages,
590                  * and will submit them to the elevator.
591                  */
592                 add_async_extent(async_cow, start, num_bytes,
593                                  total_compressed, pages, nr_pages_ret,
594                                  compress_type);
595
596                 if (start + num_bytes < end) {
597                         start += num_bytes;
598                         pages = NULL;
599                         cond_resched();
600                         goto again;
601                 }
602         } else {
603 cleanup_and_bail_uncompressed:
604                 /*
605                  * No compression, but we still need to write the pages in
606                  * the file we've been given so far.  redirty the locked
607                  * page if it corresponds to our extent and set things up
608                  * for the async work queue to run cow_file_range to do
609                  * the normal delalloc dance
610                  */
611                 if (page_offset(locked_page) >= start &&
612                     page_offset(locked_page) <= end) {
613                         __set_page_dirty_nobuffers(locked_page);
614                         /* unlocked later on in the async handlers */
615                 }
616                 if (redirty)
617                         extent_range_redirty_for_io(inode, start, end);
618                 add_async_extent(async_cow, start, end - start + 1,
619                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
620                 *num_added += 1;
621         }
622
623 out:
624         return ret;
625
626 free_pages_out:
627         for (i = 0; i < nr_pages_ret; i++) {
628                 WARN_ON(pages[i]->mapping);
629                 page_cache_release(pages[i]);
630         }
631         kfree(pages);
632
633         goto out;
634 }
635
636 /*
637  * phase two of compressed writeback.  This is the ordered portion
638  * of the code, which only gets called in the order the work was
639  * queued.  We walk all the async extents created by compress_file_range
640  * and send them down to the disk.
641  */
642 static noinline int submit_compressed_extents(struct inode *inode,
643                                               struct async_cow *async_cow)
644 {
645         struct async_extent *async_extent;
646         u64 alloc_hint = 0;
647         struct btrfs_key ins;
648         struct extent_map *em;
649         struct btrfs_root *root = BTRFS_I(inode)->root;
650         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
651         struct extent_io_tree *io_tree;
652         int ret = 0;
653
654         if (list_empty(&async_cow->extents))
655                 return 0;
656
657 again:
658         while (!list_empty(&async_cow->extents)) {
659                 async_extent = list_entry(async_cow->extents.next,
660                                           struct async_extent, list);
661                 list_del(&async_extent->list);
662
663                 io_tree = &BTRFS_I(inode)->io_tree;
664
665 retry:
666                 /* did the compression code fall back to uncompressed IO? */
667                 if (!async_extent->pages) {
668                         int page_started = 0;
669                         unsigned long nr_written = 0;
670
671                         lock_extent(io_tree, async_extent->start,
672                                          async_extent->start +
673                                          async_extent->ram_size - 1);
674
675                         /* allocate blocks */
676                         ret = cow_file_range(inode, async_cow->locked_page,
677                                              async_extent->start,
678                                              async_extent->start +
679                                              async_extent->ram_size - 1,
680                                              &page_started, &nr_written, 0);
681
682                         /* JDM XXX */
683
684                         /*
685                          * if page_started, cow_file_range inserted an
686                          * inline extent and took care of all the unlocking
687                          * and IO for us.  Otherwise, we need to submit
688                          * all those pages down to the drive.
689                          */
690                         if (!page_started && !ret)
691                                 extent_write_locked_range(io_tree,
692                                                   inode, async_extent->start,
693                                                   async_extent->start +
694                                                   async_extent->ram_size - 1,
695                                                   btrfs_get_extent,
696                                                   WB_SYNC_ALL);
697                         else if (ret)
698                                 unlock_page(async_cow->locked_page);
699                         kfree(async_extent);
700                         cond_resched();
701                         continue;
702                 }
703
704                 lock_extent(io_tree, async_extent->start,
705                             async_extent->start + async_extent->ram_size - 1);
706
707                 ret = btrfs_reserve_extent(root,
708                                            async_extent->compressed_size,
709                                            async_extent->compressed_size,
710                                            0, alloc_hint, &ins, 1, 1);
711                 if (ret) {
712                         int i;
713
714                         for (i = 0; i < async_extent->nr_pages; i++) {
715                                 WARN_ON(async_extent->pages[i]->mapping);
716                                 page_cache_release(async_extent->pages[i]);
717                         }
718                         kfree(async_extent->pages);
719                         async_extent->nr_pages = 0;
720                         async_extent->pages = NULL;
721
722                         if (ret == -ENOSPC) {
723                                 unlock_extent(io_tree, async_extent->start,
724                                               async_extent->start +
725                                               async_extent->ram_size - 1);
726
727                                 /*
728                                  * we need to redirty the pages if we decide to
729                                  * fallback to uncompressed IO, otherwise we
730                                  * will not submit these pages down to lower
731                                  * layers.
732                                  */
733                                 extent_range_redirty_for_io(inode,
734                                                 async_extent->start,
735                                                 async_extent->start +
736                                                 async_extent->ram_size - 1);
737
738                                 goto retry;
739                         }
740                         goto out_free;
741                 }
742
743                 /*
744                  * here we're doing allocation and writeback of the
745                  * compressed pages
746                  */
747                 btrfs_drop_extent_cache(inode, async_extent->start,
748                                         async_extent->start +
749                                         async_extent->ram_size - 1, 0);
750
751                 em = alloc_extent_map();
752                 if (!em) {
753                         ret = -ENOMEM;
754                         goto out_free_reserve;
755                 }
756                 em->start = async_extent->start;
757                 em->len = async_extent->ram_size;
758                 em->orig_start = em->start;
759                 em->mod_start = em->start;
760                 em->mod_len = em->len;
761
762                 em->block_start = ins.objectid;
763                 em->block_len = ins.offset;
764                 em->orig_block_len = ins.offset;
765                 em->ram_bytes = async_extent->ram_size;
766                 em->bdev = root->fs_info->fs_devices->latest_bdev;
767                 em->compress_type = async_extent->compress_type;
768                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
769                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
770                 em->generation = -1;
771
772                 while (1) {
773                         write_lock(&em_tree->lock);
774                         ret = add_extent_mapping(em_tree, em, 1);
775                         write_unlock(&em_tree->lock);
776                         if (ret != -EEXIST) {
777                                 free_extent_map(em);
778                                 break;
779                         }
780                         btrfs_drop_extent_cache(inode, async_extent->start,
781                                                 async_extent->start +
782                                                 async_extent->ram_size - 1, 0);
783                 }
784
785                 if (ret)
786                         goto out_free_reserve;
787
788                 ret = btrfs_add_ordered_extent_compress(inode,
789                                                 async_extent->start,
790                                                 ins.objectid,
791                                                 async_extent->ram_size,
792                                                 ins.offset,
793                                                 BTRFS_ORDERED_COMPRESSED,
794                                                 async_extent->compress_type);
795                 if (ret) {
796                         btrfs_drop_extent_cache(inode, async_extent->start,
797                                                 async_extent->start +
798                                                 async_extent->ram_size - 1, 0);
799                         goto out_free_reserve;
800                 }
801
802                 /*
803                  * clear dirty, set writeback and unlock the pages.
804                  */
805                 extent_clear_unlock_delalloc(inode, async_extent->start,
806                                 async_extent->start +
807                                 async_extent->ram_size - 1,
808                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
809                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
810                                 PAGE_SET_WRITEBACK);
811                 ret = btrfs_submit_compressed_write(inode,
812                                     async_extent->start,
813                                     async_extent->ram_size,
814                                     ins.objectid,
815                                     ins.offset, async_extent->pages,
816                                     async_extent->nr_pages);
817                 alloc_hint = ins.objectid + ins.offset;
818                 kfree(async_extent);
819                 if (ret)
820                         goto out;
821                 cond_resched();
822         }
823         ret = 0;
824 out:
825         return ret;
826 out_free_reserve:
827         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
828 out_free:
829         extent_clear_unlock_delalloc(inode, async_extent->start,
830                                      async_extent->start +
831                                      async_extent->ram_size - 1,
832                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
833                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
834                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
835                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
836         kfree(async_extent);
837         goto again;
838 }
839
840 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
841                                       u64 num_bytes)
842 {
843         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844         struct extent_map *em;
845         u64 alloc_hint = 0;
846
847         read_lock(&em_tree->lock);
848         em = search_extent_mapping(em_tree, start, num_bytes);
849         if (em) {
850                 /*
851                  * if block start isn't an actual block number then find the
852                  * first block in this inode and use that as a hint.  If that
853                  * block is also bogus then just don't worry about it.
854                  */
855                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856                         free_extent_map(em);
857                         em = search_extent_mapping(em_tree, 0, 0);
858                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
859                                 alloc_hint = em->block_start;
860                         if (em)
861                                 free_extent_map(em);
862                 } else {
863                         alloc_hint = em->block_start;
864                         free_extent_map(em);
865                 }
866         }
867         read_unlock(&em_tree->lock);
868
869         return alloc_hint;
870 }
871
872 /*
873  * when extent_io.c finds a delayed allocation range in the file,
874  * the call backs end up in this code.  The basic idea is to
875  * allocate extents on disk for the range, and create ordered data structs
876  * in ram to track those extents.
877  *
878  * locked_page is the page that writepage had locked already.  We use
879  * it to make sure we don't do extra locks or unlocks.
880  *
881  * *page_started is set to one if we unlock locked_page and do everything
882  * required to start IO on it.  It may be clean and already done with
883  * IO when we return.
884  */
885 static noinline int cow_file_range(struct inode *inode,
886                                    struct page *locked_page,
887                                    u64 start, u64 end, int *page_started,
888                                    unsigned long *nr_written,
889                                    int unlock)
890 {
891         struct btrfs_root *root = BTRFS_I(inode)->root;
892         u64 alloc_hint = 0;
893         u64 num_bytes;
894         unsigned long ram_size;
895         u64 disk_num_bytes;
896         u64 cur_alloc_size;
897         u64 blocksize = root->sectorsize;
898         struct btrfs_key ins;
899         struct extent_map *em;
900         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901         int ret = 0;
902
903         if (btrfs_is_free_space_inode(inode)) {
904                 WARN_ON_ONCE(1);
905                 ret = -EINVAL;
906                 goto out_unlock;
907         }
908
909         num_bytes = ALIGN(end - start + 1, blocksize);
910         num_bytes = max(blocksize,  num_bytes);
911         disk_num_bytes = num_bytes;
912
913         /* if this is a small write inside eof, kick off defrag */
914         if (num_bytes < 64 * 1024 &&
915             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
916                 btrfs_add_inode_defrag(NULL, inode);
917
918         if (start == 0) {
919                 /* lets try to make an inline extent */
920                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
921                                             NULL);
922                 if (ret == 0) {
923                         extent_clear_unlock_delalloc(inode, start, end, NULL,
924                                      EXTENT_LOCKED | EXTENT_DELALLOC |
925                                      EXTENT_DEFRAG, PAGE_UNLOCK |
926                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
927                                      PAGE_END_WRITEBACK);
928
929                         *nr_written = *nr_written +
930                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
931                         *page_started = 1;
932                         goto out;
933                 } else if (ret < 0) {
934                         goto out_unlock;
935                 }
936         }
937
938         BUG_ON(disk_num_bytes >
939                btrfs_super_total_bytes(root->fs_info->super_copy));
940
941         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
942         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
943
944         while (disk_num_bytes > 0) {
945                 unsigned long op;
946
947                 cur_alloc_size = disk_num_bytes;
948                 ret = btrfs_reserve_extent(root, cur_alloc_size,
949                                            root->sectorsize, 0, alloc_hint,
950                                            &ins, 1, 1);
951                 if (ret < 0)
952                         goto out_unlock;
953
954                 em = alloc_extent_map();
955                 if (!em) {
956                         ret = -ENOMEM;
957                         goto out_reserve;
958                 }
959                 em->start = start;
960                 em->orig_start = em->start;
961                 ram_size = ins.offset;
962                 em->len = ins.offset;
963                 em->mod_start = em->start;
964                 em->mod_len = em->len;
965
966                 em->block_start = ins.objectid;
967                 em->block_len = ins.offset;
968                 em->orig_block_len = ins.offset;
969                 em->ram_bytes = ram_size;
970                 em->bdev = root->fs_info->fs_devices->latest_bdev;
971                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
972                 em->generation = -1;
973
974                 while (1) {
975                         write_lock(&em_tree->lock);
976                         ret = add_extent_mapping(em_tree, em, 1);
977                         write_unlock(&em_tree->lock);
978                         if (ret != -EEXIST) {
979                                 free_extent_map(em);
980                                 break;
981                         }
982                         btrfs_drop_extent_cache(inode, start,
983                                                 start + ram_size - 1, 0);
984                 }
985                 if (ret)
986                         goto out_reserve;
987
988                 cur_alloc_size = ins.offset;
989                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
990                                                ram_size, cur_alloc_size, 0);
991                 if (ret)
992                         goto out_drop_extent_cache;
993
994                 if (root->root_key.objectid ==
995                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
996                         ret = btrfs_reloc_clone_csums(inode, start,
997                                                       cur_alloc_size);
998                         if (ret)
999                                 goto out_drop_extent_cache;
1000                 }
1001
1002                 if (disk_num_bytes < cur_alloc_size)
1003                         break;
1004
1005                 /* we're not doing compressed IO, don't unlock the first
1006                  * page (which the caller expects to stay locked), don't
1007                  * clear any dirty bits and don't set any writeback bits
1008                  *
1009                  * Do set the Private2 bit so we know this page was properly
1010                  * setup for writepage
1011                  */
1012                 op = unlock ? PAGE_UNLOCK : 0;
1013                 op |= PAGE_SET_PRIVATE2;
1014
1015                 extent_clear_unlock_delalloc(inode, start,
1016                                              start + ram_size - 1, locked_page,
1017                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1018                                              op);
1019                 disk_num_bytes -= cur_alloc_size;
1020                 num_bytes -= cur_alloc_size;
1021                 alloc_hint = ins.objectid + ins.offset;
1022                 start += cur_alloc_size;
1023         }
1024 out:
1025         return ret;
1026
1027 out_drop_extent_cache:
1028         btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1029 out_reserve:
1030         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1031 out_unlock:
1032         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1033                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
1035                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1037         goto out;
1038 }
1039
1040 /*
1041  * work queue call back to started compression on a file and pages
1042  */
1043 static noinline void async_cow_start(struct btrfs_work *work)
1044 {
1045         struct async_cow *async_cow;
1046         int num_added = 0;
1047         async_cow = container_of(work, struct async_cow, work);
1048
1049         compress_file_range(async_cow->inode, async_cow->locked_page,
1050                             async_cow->start, async_cow->end, async_cow,
1051                             &num_added);
1052         if (num_added == 0) {
1053                 btrfs_add_delayed_iput(async_cow->inode);
1054                 async_cow->inode = NULL;
1055         }
1056 }
1057
1058 /*
1059  * work queue call back to submit previously compressed pages
1060  */
1061 static noinline void async_cow_submit(struct btrfs_work *work)
1062 {
1063         struct async_cow *async_cow;
1064         struct btrfs_root *root;
1065         unsigned long nr_pages;
1066
1067         async_cow = container_of(work, struct async_cow, work);
1068
1069         root = async_cow->root;
1070         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071                 PAGE_CACHE_SHIFT;
1072
1073         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1074             5 * 1024 * 1024 &&
1075             waitqueue_active(&root->fs_info->async_submit_wait))
1076                 wake_up(&root->fs_info->async_submit_wait);
1077
1078         if (async_cow->inode)
1079                 submit_compressed_extents(async_cow->inode, async_cow);
1080 }
1081
1082 static noinline void async_cow_free(struct btrfs_work *work)
1083 {
1084         struct async_cow *async_cow;
1085         async_cow = container_of(work, struct async_cow, work);
1086         if (async_cow->inode)
1087                 btrfs_add_delayed_iput(async_cow->inode);
1088         kfree(async_cow);
1089 }
1090
1091 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092                                 u64 start, u64 end, int *page_started,
1093                                 unsigned long *nr_written)
1094 {
1095         struct async_cow *async_cow;
1096         struct btrfs_root *root = BTRFS_I(inode)->root;
1097         unsigned long nr_pages;
1098         u64 cur_end;
1099         int limit = 10 * 1024 * 1024;
1100
1101         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102                          1, 0, NULL, GFP_NOFS);
1103         while (start < end) {
1104                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1105                 BUG_ON(!async_cow); /* -ENOMEM */
1106                 async_cow->inode = igrab(inode);
1107                 async_cow->root = root;
1108                 async_cow->locked_page = locked_page;
1109                 async_cow->start = start;
1110
1111                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112                     !btrfs_test_opt(root, FORCE_COMPRESS))
1113                         cur_end = end;
1114                 else
1115                         cur_end = min(end, start + 512 * 1024 - 1);
1116
1117                 async_cow->end = cur_end;
1118                 INIT_LIST_HEAD(&async_cow->extents);
1119
1120                 btrfs_init_work(&async_cow->work,
1121                                 btrfs_delalloc_helper,
1122                                 async_cow_start, async_cow_submit,
1123                                 async_cow_free);
1124
1125                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126                         PAGE_CACHE_SHIFT;
1127                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
1129                 btrfs_queue_work(root->fs_info->delalloc_workers,
1130                                  &async_cow->work);
1131
1132                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133                         wait_event(root->fs_info->async_submit_wait,
1134                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1135                             limit));
1136                 }
1137
1138                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1139                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1140                         wait_event(root->fs_info->async_submit_wait,
1141                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142                            0));
1143                 }
1144
1145                 *nr_written += nr_pages;
1146                 start = cur_end + 1;
1147         }
1148         *page_started = 1;
1149         return 0;
1150 }
1151
1152 static noinline int csum_exist_in_range(struct btrfs_root *root,
1153                                         u64 bytenr, u64 num_bytes)
1154 {
1155         int ret;
1156         struct btrfs_ordered_sum *sums;
1157         LIST_HEAD(list);
1158
1159         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160                                        bytenr + num_bytes - 1, &list, 0);
1161         if (ret == 0 && list_empty(&list))
1162                 return 0;
1163
1164         while (!list_empty(&list)) {
1165                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166                 list_del(&sums->list);
1167                 kfree(sums);
1168         }
1169         return 1;
1170 }
1171
1172 /*
1173  * when nowcow writeback call back.  This checks for snapshots or COW copies
1174  * of the extents that exist in the file, and COWs the file as required.
1175  *
1176  * If no cow copies or snapshots exist, we write directly to the existing
1177  * blocks on disk
1178  */
1179 static noinline int run_delalloc_nocow(struct inode *inode,
1180                                        struct page *locked_page,
1181                               u64 start, u64 end, int *page_started, int force,
1182                               unsigned long *nr_written)
1183 {
1184         struct btrfs_root *root = BTRFS_I(inode)->root;
1185         struct btrfs_trans_handle *trans;
1186         struct extent_buffer *leaf;
1187         struct btrfs_path *path;
1188         struct btrfs_file_extent_item *fi;
1189         struct btrfs_key found_key;
1190         u64 cow_start;
1191         u64 cur_offset;
1192         u64 extent_end;
1193         u64 extent_offset;
1194         u64 disk_bytenr;
1195         u64 num_bytes;
1196         u64 disk_num_bytes;
1197         u64 ram_bytes;
1198         int extent_type;
1199         int ret, err;
1200         int type;
1201         int nocow;
1202         int check_prev = 1;
1203         bool nolock;
1204         u64 ino = btrfs_ino(inode);
1205
1206         path = btrfs_alloc_path();
1207         if (!path) {
1208                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1210                                              EXTENT_DO_ACCOUNTING |
1211                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1212                                              PAGE_CLEAR_DIRTY |
1213                                              PAGE_SET_WRITEBACK |
1214                                              PAGE_END_WRITEBACK);
1215                 return -ENOMEM;
1216         }
1217
1218         nolock = btrfs_is_free_space_inode(inode);
1219
1220         if (nolock)
1221                 trans = btrfs_join_transaction_nolock(root);
1222         else
1223                 trans = btrfs_join_transaction(root);
1224
1225         if (IS_ERR(trans)) {
1226                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1228                                              EXTENT_DO_ACCOUNTING |
1229                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1230                                              PAGE_CLEAR_DIRTY |
1231                                              PAGE_SET_WRITEBACK |
1232                                              PAGE_END_WRITEBACK);
1233                 btrfs_free_path(path);
1234                 return PTR_ERR(trans);
1235         }
1236
1237         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1238
1239         cow_start = (u64)-1;
1240         cur_offset = start;
1241         while (1) {
1242                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1243                                                cur_offset, 0);
1244                 if (ret < 0)
1245                         goto error;
1246                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247                         leaf = path->nodes[0];
1248                         btrfs_item_key_to_cpu(leaf, &found_key,
1249                                               path->slots[0] - 1);
1250                         if (found_key.objectid == ino &&
1251                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1252                                 path->slots[0]--;
1253                 }
1254                 check_prev = 0;
1255 next_slot:
1256                 leaf = path->nodes[0];
1257                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258                         ret = btrfs_next_leaf(root, path);
1259                         if (ret < 0)
1260                                 goto error;
1261                         if (ret > 0)
1262                                 break;
1263                         leaf = path->nodes[0];
1264                 }
1265
1266                 nocow = 0;
1267                 disk_bytenr = 0;
1268                 num_bytes = 0;
1269                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
1271                 if (found_key.objectid > ino ||
1272                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273                     found_key.offset > end)
1274                         break;
1275
1276                 if (found_key.offset > cur_offset) {
1277                         extent_end = found_key.offset;
1278                         extent_type = 0;
1279                         goto out_check;
1280                 }
1281
1282                 fi = btrfs_item_ptr(leaf, path->slots[0],
1283                                     struct btrfs_file_extent_item);
1284                 extent_type = btrfs_file_extent_type(leaf, fi);
1285
1286                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1287                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1289                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1290                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1291                         extent_end = found_key.offset +
1292                                 btrfs_file_extent_num_bytes(leaf, fi);
1293                         disk_num_bytes =
1294                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1295                         if (extent_end <= start) {
1296                                 path->slots[0]++;
1297                                 goto next_slot;
1298                         }
1299                         if (disk_bytenr == 0)
1300                                 goto out_check;
1301                         if (btrfs_file_extent_compression(leaf, fi) ||
1302                             btrfs_file_extent_encryption(leaf, fi) ||
1303                             btrfs_file_extent_other_encoding(leaf, fi))
1304                                 goto out_check;
1305                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306                                 goto out_check;
1307                         if (btrfs_extent_readonly(root, disk_bytenr))
1308                                 goto out_check;
1309                         if (btrfs_cross_ref_exist(trans, root, ino,
1310                                                   found_key.offset -
1311                                                   extent_offset, disk_bytenr))
1312                                 goto out_check;
1313                         disk_bytenr += extent_offset;
1314                         disk_bytenr += cur_offset - found_key.offset;
1315                         num_bytes = min(end + 1, extent_end) - cur_offset;
1316                         /*
1317                          * if there are pending snapshots for this root,
1318                          * we fall into common COW way.
1319                          */
1320                         if (!nolock) {
1321                                 err = btrfs_start_nocow_write(root);
1322                                 if (!err)
1323                                         goto out_check;
1324                         }
1325                         /*
1326                          * force cow if csum exists in the range.
1327                          * this ensure that csum for a given extent are
1328                          * either valid or do not exist.
1329                          */
1330                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331                                 goto out_check;
1332                         nocow = 1;
1333                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334                         extent_end = found_key.offset +
1335                                 btrfs_file_extent_inline_len(leaf,
1336                                                      path->slots[0], fi);
1337                         extent_end = ALIGN(extent_end, root->sectorsize);
1338                 } else {
1339                         BUG_ON(1);
1340                 }
1341 out_check:
1342                 if (extent_end <= start) {
1343                         path->slots[0]++;
1344                         if (!nolock && nocow)
1345                                 btrfs_end_nocow_write(root);
1346                         goto next_slot;
1347                 }
1348                 if (!nocow) {
1349                         if (cow_start == (u64)-1)
1350                                 cow_start = cur_offset;
1351                         cur_offset = extent_end;
1352                         if (cur_offset > end)
1353                                 break;
1354                         path->slots[0]++;
1355                         goto next_slot;
1356                 }
1357
1358                 btrfs_release_path(path);
1359                 if (cow_start != (u64)-1) {
1360                         ret = cow_file_range(inode, locked_page,
1361                                              cow_start, found_key.offset - 1,
1362                                              page_started, nr_written, 1);
1363                         if (ret) {
1364                                 if (!nolock && nocow)
1365                                         btrfs_end_nocow_write(root);
1366                                 goto error;
1367                         }
1368                         cow_start = (u64)-1;
1369                 }
1370
1371                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372                         struct extent_map *em;
1373                         struct extent_map_tree *em_tree;
1374                         em_tree = &BTRFS_I(inode)->extent_tree;
1375                         em = alloc_extent_map();
1376                         BUG_ON(!em); /* -ENOMEM */
1377                         em->start = cur_offset;
1378                         em->orig_start = found_key.offset - extent_offset;
1379                         em->len = num_bytes;
1380                         em->block_len = num_bytes;
1381                         em->block_start = disk_bytenr;
1382                         em->orig_block_len = disk_num_bytes;
1383                         em->ram_bytes = ram_bytes;
1384                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1385                         em->mod_start = em->start;
1386                         em->mod_len = em->len;
1387                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1388                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1389                         em->generation = -1;
1390                         while (1) {
1391                                 write_lock(&em_tree->lock);
1392                                 ret = add_extent_mapping(em_tree, em, 1);
1393                                 write_unlock(&em_tree->lock);
1394                                 if (ret != -EEXIST) {
1395                                         free_extent_map(em);
1396                                         break;
1397                                 }
1398                                 btrfs_drop_extent_cache(inode, em->start,
1399                                                 em->start + em->len - 1, 0);
1400                         }
1401                         type = BTRFS_ORDERED_PREALLOC;
1402                 } else {
1403                         type = BTRFS_ORDERED_NOCOW;
1404                 }
1405
1406                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1407                                                num_bytes, num_bytes, type);
1408                 BUG_ON(ret); /* -ENOMEM */
1409
1410                 if (root->root_key.objectid ==
1411                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413                                                       num_bytes);
1414                         if (ret) {
1415                                 if (!nolock && nocow)
1416                                         btrfs_end_nocow_write(root);
1417                                 goto error;
1418                         }
1419                 }
1420
1421                 extent_clear_unlock_delalloc(inode, cur_offset,
1422                                              cur_offset + num_bytes - 1,
1423                                              locked_page, EXTENT_LOCKED |
1424                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1425                                              PAGE_SET_PRIVATE2);
1426                 if (!nolock && nocow)
1427                         btrfs_end_nocow_write(root);
1428                 cur_offset = extent_end;
1429                 if (cur_offset > end)
1430                         break;
1431         }
1432         btrfs_release_path(path);
1433
1434         if (cur_offset <= end && cow_start == (u64)-1) {
1435                 cow_start = cur_offset;
1436                 cur_offset = end;
1437         }
1438
1439         if (cow_start != (u64)-1) {
1440                 ret = cow_file_range(inode, locked_page, cow_start, end,
1441                                      page_started, nr_written, 1);
1442                 if (ret)
1443                         goto error;
1444         }
1445
1446 error:
1447         err = btrfs_end_transaction(trans, root);
1448         if (!ret)
1449                 ret = err;
1450
1451         if (ret && cur_offset < end)
1452                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1453                                              locked_page, EXTENT_LOCKED |
1454                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1455                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456                                              PAGE_CLEAR_DIRTY |
1457                                              PAGE_SET_WRITEBACK |
1458                                              PAGE_END_WRITEBACK);
1459         btrfs_free_path(path);
1460         return ret;
1461 }
1462
1463 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464 {
1465
1466         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468                 return 0;
1469
1470         /*
1471          * @defrag_bytes is a hint value, no spinlock held here,
1472          * if is not zero, it means the file is defragging.
1473          * Force cow if given extent needs to be defragged.
1474          */
1475         if (BTRFS_I(inode)->defrag_bytes &&
1476             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477                            EXTENT_DEFRAG, 0, NULL))
1478                 return 1;
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * extent_io.c call back to do delayed allocation processing
1485  */
1486 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1487                               u64 start, u64 end, int *page_started,
1488                               unsigned long *nr_written)
1489 {
1490         int ret;
1491         int force_cow = need_force_cow(inode, start, end);
1492
1493         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1494                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1495                                          page_started, 1, nr_written);
1496         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1497                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1498                                          page_started, 0, nr_written);
1499         } else if (!inode_need_compress(inode)) {
1500                 ret = cow_file_range(inode, locked_page, start, end,
1501                                       page_started, nr_written, 1);
1502         } else {
1503                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504                         &BTRFS_I(inode)->runtime_flags);
1505                 ret = cow_file_range_async(inode, locked_page, start, end,
1506                                            page_started, nr_written);
1507         }
1508         return ret;
1509 }
1510
1511 static void btrfs_split_extent_hook(struct inode *inode,
1512                                     struct extent_state *orig, u64 split)
1513 {
1514         /* not delalloc, ignore it */
1515         if (!(orig->state & EXTENT_DELALLOC))
1516                 return;
1517
1518         spin_lock(&BTRFS_I(inode)->lock);
1519         BTRFS_I(inode)->outstanding_extents++;
1520         spin_unlock(&BTRFS_I(inode)->lock);
1521 }
1522
1523 /*
1524  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525  * extents so we can keep track of new extents that are just merged onto old
1526  * extents, such as when we are doing sequential writes, so we can properly
1527  * account for the metadata space we'll need.
1528  */
1529 static void btrfs_merge_extent_hook(struct inode *inode,
1530                                     struct extent_state *new,
1531                                     struct extent_state *other)
1532 {
1533         /* not delalloc, ignore it */
1534         if (!(other->state & EXTENT_DELALLOC))
1535                 return;
1536
1537         spin_lock(&BTRFS_I(inode)->lock);
1538         BTRFS_I(inode)->outstanding_extents--;
1539         spin_unlock(&BTRFS_I(inode)->lock);
1540 }
1541
1542 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543                                       struct inode *inode)
1544 {
1545         spin_lock(&root->delalloc_lock);
1546         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548                               &root->delalloc_inodes);
1549                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550                         &BTRFS_I(inode)->runtime_flags);
1551                 root->nr_delalloc_inodes++;
1552                 if (root->nr_delalloc_inodes == 1) {
1553                         spin_lock(&root->fs_info->delalloc_root_lock);
1554                         BUG_ON(!list_empty(&root->delalloc_root));
1555                         list_add_tail(&root->delalloc_root,
1556                                       &root->fs_info->delalloc_roots);
1557                         spin_unlock(&root->fs_info->delalloc_root_lock);
1558                 }
1559         }
1560         spin_unlock(&root->delalloc_lock);
1561 }
1562
1563 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564                                      struct inode *inode)
1565 {
1566         spin_lock(&root->delalloc_lock);
1567         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570                           &BTRFS_I(inode)->runtime_flags);
1571                 root->nr_delalloc_inodes--;
1572                 if (!root->nr_delalloc_inodes) {
1573                         spin_lock(&root->fs_info->delalloc_root_lock);
1574                         BUG_ON(list_empty(&root->delalloc_root));
1575                         list_del_init(&root->delalloc_root);
1576                         spin_unlock(&root->fs_info->delalloc_root_lock);
1577                 }
1578         }
1579         spin_unlock(&root->delalloc_lock);
1580 }
1581
1582 /*
1583  * extent_io.c set_bit_hook, used to track delayed allocation
1584  * bytes in this file, and to maintain the list of inodes that
1585  * have pending delalloc work to be done.
1586  */
1587 static void btrfs_set_bit_hook(struct inode *inode,
1588                                struct extent_state *state, unsigned long *bits)
1589 {
1590
1591         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592                 WARN_ON(1);
1593         /*
1594          * set_bit and clear bit hooks normally require _irqsave/restore
1595          * but in this case, we are only testing for the DELALLOC
1596          * bit, which is only set or cleared with irqs on
1597          */
1598         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1599                 struct btrfs_root *root = BTRFS_I(inode)->root;
1600                 u64 len = state->end + 1 - state->start;
1601                 bool do_list = !btrfs_is_free_space_inode(inode);
1602
1603                 if (*bits & EXTENT_FIRST_DELALLOC) {
1604                         *bits &= ~EXTENT_FIRST_DELALLOC;
1605                 } else {
1606                         spin_lock(&BTRFS_I(inode)->lock);
1607                         BTRFS_I(inode)->outstanding_extents++;
1608                         spin_unlock(&BTRFS_I(inode)->lock);
1609                 }
1610
1611                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612                                      root->fs_info->delalloc_batch);
1613                 spin_lock(&BTRFS_I(inode)->lock);
1614                 BTRFS_I(inode)->delalloc_bytes += len;
1615                 if (*bits & EXTENT_DEFRAG)
1616                         BTRFS_I(inode)->defrag_bytes += len;
1617                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1618                                          &BTRFS_I(inode)->runtime_flags))
1619                         btrfs_add_delalloc_inodes(root, inode);
1620                 spin_unlock(&BTRFS_I(inode)->lock);
1621         }
1622 }
1623
1624 /*
1625  * extent_io.c clear_bit_hook, see set_bit_hook for why
1626  */
1627 static void btrfs_clear_bit_hook(struct inode *inode,
1628                                  struct extent_state *state,
1629                                  unsigned long *bits)
1630 {
1631         u64 len = state->end + 1 - state->start;
1632
1633         spin_lock(&BTRFS_I(inode)->lock);
1634         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635                 BTRFS_I(inode)->defrag_bytes -= len;
1636         spin_unlock(&BTRFS_I(inode)->lock);
1637
1638         /*
1639          * set_bit and clear bit hooks normally require _irqsave/restore
1640          * but in this case, we are only testing for the DELALLOC
1641          * bit, which is only set or cleared with irqs on
1642          */
1643         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1644                 struct btrfs_root *root = BTRFS_I(inode)->root;
1645                 bool do_list = !btrfs_is_free_space_inode(inode);
1646
1647                 if (*bits & EXTENT_FIRST_DELALLOC) {
1648                         *bits &= ~EXTENT_FIRST_DELALLOC;
1649                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650                         spin_lock(&BTRFS_I(inode)->lock);
1651                         BTRFS_I(inode)->outstanding_extents--;
1652                         spin_unlock(&BTRFS_I(inode)->lock);
1653                 }
1654
1655                 /*
1656                  * We don't reserve metadata space for space cache inodes so we
1657                  * don't need to call dellalloc_release_metadata if there is an
1658                  * error.
1659                  */
1660                 if (*bits & EXTENT_DO_ACCOUNTING &&
1661                     root != root->fs_info->tree_root)
1662                         btrfs_delalloc_release_metadata(inode, len);
1663
1664                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1665                     && do_list && !(state->state & EXTENT_NORESERVE))
1666                         btrfs_free_reserved_data_space(inode, len);
1667
1668                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669                                      root->fs_info->delalloc_batch);
1670                 spin_lock(&BTRFS_I(inode)->lock);
1671                 BTRFS_I(inode)->delalloc_bytes -= len;
1672                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1673                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1674                              &BTRFS_I(inode)->runtime_flags))
1675                         btrfs_del_delalloc_inode(root, inode);
1676                 spin_unlock(&BTRFS_I(inode)->lock);
1677         }
1678 }
1679
1680 /*
1681  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682  * we don't create bios that span stripes or chunks
1683  */
1684 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1685                          size_t size, struct bio *bio,
1686                          unsigned long bio_flags)
1687 {
1688         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1689         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1690         u64 length = 0;
1691         u64 map_length;
1692         int ret;
1693
1694         if (bio_flags & EXTENT_BIO_COMPRESSED)
1695                 return 0;
1696
1697         length = bio->bi_iter.bi_size;
1698         map_length = length;
1699         ret = btrfs_map_block(root->fs_info, rw, logical,
1700                               &map_length, NULL, 0);
1701         /* Will always return 0 with map_multi == NULL */
1702         BUG_ON(ret < 0);
1703         if (map_length < length + size)
1704                 return 1;
1705         return 0;
1706 }
1707
1708 /*
1709  * in order to insert checksums into the metadata in large chunks,
1710  * we wait until bio submission time.   All the pages in the bio are
1711  * checksummed and sums are attached onto the ordered extent record.
1712  *
1713  * At IO completion time the cums attached on the ordered extent record
1714  * are inserted into the btree
1715  */
1716 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717                                     struct bio *bio, int mirror_num,
1718                                     unsigned long bio_flags,
1719                                     u64 bio_offset)
1720 {
1721         struct btrfs_root *root = BTRFS_I(inode)->root;
1722         int ret = 0;
1723
1724         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1725         BUG_ON(ret); /* -ENOMEM */
1726         return 0;
1727 }
1728
1729 /*
1730  * in order to insert checksums into the metadata in large chunks,
1731  * we wait until bio submission time.   All the pages in the bio are
1732  * checksummed and sums are attached onto the ordered extent record.
1733  *
1734  * At IO completion time the cums attached on the ordered extent record
1735  * are inserted into the btree
1736  */
1737 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1738                           int mirror_num, unsigned long bio_flags,
1739                           u64 bio_offset)
1740 {
1741         struct btrfs_root *root = BTRFS_I(inode)->root;
1742         int ret;
1743
1744         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745         if (ret)
1746                 bio_endio(bio, ret);
1747         return ret;
1748 }
1749
1750 /*
1751  * extent_io.c submission hook. This does the right thing for csum calculation
1752  * on write, or reading the csums from the tree before a read
1753  */
1754 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1755                           int mirror_num, unsigned long bio_flags,
1756                           u64 bio_offset)
1757 {
1758         struct btrfs_root *root = BTRFS_I(inode)->root;
1759         int ret = 0;
1760         int skip_sum;
1761         int metadata = 0;
1762         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1763
1764         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1765
1766         if (btrfs_is_free_space_inode(inode))
1767                 metadata = 2;
1768
1769         if (!(rw & REQ_WRITE)) {
1770                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771                 if (ret)
1772                         goto out;
1773
1774                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1775                         ret = btrfs_submit_compressed_read(inode, bio,
1776                                                            mirror_num,
1777                                                            bio_flags);
1778                         goto out;
1779                 } else if (!skip_sum) {
1780                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781                         if (ret)
1782                                 goto out;
1783                 }
1784                 goto mapit;
1785         } else if (async && !skip_sum) {
1786                 /* csum items have already been cloned */
1787                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788                         goto mapit;
1789                 /* we're doing a write, do the async checksumming */
1790                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1791                                    inode, rw, bio, mirror_num,
1792                                    bio_flags, bio_offset,
1793                                    __btrfs_submit_bio_start,
1794                                    __btrfs_submit_bio_done);
1795                 goto out;
1796         } else if (!skip_sum) {
1797                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798                 if (ret)
1799                         goto out;
1800         }
1801
1802 mapit:
1803         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804
1805 out:
1806         if (ret < 0)
1807                 bio_endio(bio, ret);
1808         return ret;
1809 }
1810
1811 /*
1812  * given a list of ordered sums record them in the inode.  This happens
1813  * at IO completion time based on sums calculated at bio submission time.
1814  */
1815 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1816                              struct inode *inode, u64 file_offset,
1817                              struct list_head *list)
1818 {
1819         struct btrfs_ordered_sum *sum;
1820
1821         list_for_each_entry(sum, list, list) {
1822                 trans->adding_csums = 1;
1823                 btrfs_csum_file_blocks(trans,
1824                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1825                 trans->adding_csums = 0;
1826         }
1827         return 0;
1828 }
1829
1830 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831                               struct extent_state **cached_state)
1832 {
1833         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1834         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1835                                    cached_state, GFP_NOFS);
1836 }
1837
1838 /* see btrfs_writepage_start_hook for details on why this is required */
1839 struct btrfs_writepage_fixup {
1840         struct page *page;
1841         struct btrfs_work work;
1842 };
1843
1844 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1845 {
1846         struct btrfs_writepage_fixup *fixup;
1847         struct btrfs_ordered_extent *ordered;
1848         struct extent_state *cached_state = NULL;
1849         struct page *page;
1850         struct inode *inode;
1851         u64 page_start;
1852         u64 page_end;
1853         int ret;
1854
1855         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856         page = fixup->page;
1857 again:
1858         lock_page(page);
1859         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860                 ClearPageChecked(page);
1861                 goto out_page;
1862         }
1863
1864         inode = page->mapping->host;
1865         page_start = page_offset(page);
1866         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867
1868         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1869                          &cached_state);
1870
1871         /* already ordered? We're done */
1872         if (PagePrivate2(page))
1873                 goto out;
1874
1875         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876         if (ordered) {
1877                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878                                      page_end, &cached_state, GFP_NOFS);
1879                 unlock_page(page);
1880                 btrfs_start_ordered_extent(inode, ordered, 1);
1881                 btrfs_put_ordered_extent(ordered);
1882                 goto again;
1883         }
1884
1885         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886         if (ret) {
1887                 mapping_set_error(page->mapping, ret);
1888                 end_extent_writepage(page, ret, page_start, page_end);
1889                 ClearPageChecked(page);
1890                 goto out;
1891          }
1892
1893         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1894         ClearPageChecked(page);
1895         set_page_dirty(page);
1896 out:
1897         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898                              &cached_state, GFP_NOFS);
1899 out_page:
1900         unlock_page(page);
1901         page_cache_release(page);
1902         kfree(fixup);
1903 }
1904
1905 /*
1906  * There are a few paths in the higher layers of the kernel that directly
1907  * set the page dirty bit without asking the filesystem if it is a
1908  * good idea.  This causes problems because we want to make sure COW
1909  * properly happens and the data=ordered rules are followed.
1910  *
1911  * In our case any range that doesn't have the ORDERED bit set
1912  * hasn't been properly setup for IO.  We kick off an async process
1913  * to fix it up.  The async helper will wait for ordered extents, set
1914  * the delalloc bit and make it safe to write the page.
1915  */
1916 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1917 {
1918         struct inode *inode = page->mapping->host;
1919         struct btrfs_writepage_fixup *fixup;
1920         struct btrfs_root *root = BTRFS_I(inode)->root;
1921
1922         /* this page is properly in the ordered list */
1923         if (TestClearPagePrivate2(page))
1924                 return 0;
1925
1926         if (PageChecked(page))
1927                 return -EAGAIN;
1928
1929         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930         if (!fixup)
1931                 return -EAGAIN;
1932
1933         SetPageChecked(page);
1934         page_cache_get(page);
1935         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936                         btrfs_writepage_fixup_worker, NULL, NULL);
1937         fixup->page = page;
1938         btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1939         return -EBUSY;
1940 }
1941
1942 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943                                        struct inode *inode, u64 file_pos,
1944                                        u64 disk_bytenr, u64 disk_num_bytes,
1945                                        u64 num_bytes, u64 ram_bytes,
1946                                        u8 compression, u8 encryption,
1947                                        u16 other_encoding, int extent_type)
1948 {
1949         struct btrfs_root *root = BTRFS_I(inode)->root;
1950         struct btrfs_file_extent_item *fi;
1951         struct btrfs_path *path;
1952         struct extent_buffer *leaf;
1953         struct btrfs_key ins;
1954         int extent_inserted = 0;
1955         int ret;
1956
1957         path = btrfs_alloc_path();
1958         if (!path)
1959                 return -ENOMEM;
1960
1961         /*
1962          * we may be replacing one extent in the tree with another.
1963          * The new extent is pinned in the extent map, and we don't want
1964          * to drop it from the cache until it is completely in the btree.
1965          *
1966          * So, tell btrfs_drop_extents to leave this extent in the cache.
1967          * the caller is expected to unpin it and allow it to be merged
1968          * with the others.
1969          */
1970         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971                                    file_pos + num_bytes, NULL, 0,
1972                                    1, sizeof(*fi), &extent_inserted);
1973         if (ret)
1974                 goto out;
1975
1976         if (!extent_inserted) {
1977                 ins.objectid = btrfs_ino(inode);
1978                 ins.offset = file_pos;
1979                 ins.type = BTRFS_EXTENT_DATA_KEY;
1980
1981                 path->leave_spinning = 1;
1982                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983                                               sizeof(*fi));
1984                 if (ret)
1985                         goto out;
1986         }
1987         leaf = path->nodes[0];
1988         fi = btrfs_item_ptr(leaf, path->slots[0],
1989                             struct btrfs_file_extent_item);
1990         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991         btrfs_set_file_extent_type(leaf, fi, extent_type);
1992         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994         btrfs_set_file_extent_offset(leaf, fi, 0);
1995         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997         btrfs_set_file_extent_compression(leaf, fi, compression);
1998         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2000
2001         btrfs_mark_buffer_dirty(leaf);
2002         btrfs_release_path(path);
2003
2004         inode_add_bytes(inode, num_bytes);
2005
2006         ins.objectid = disk_bytenr;
2007         ins.offset = disk_num_bytes;
2008         ins.type = BTRFS_EXTENT_ITEM_KEY;
2009         ret = btrfs_alloc_reserved_file_extent(trans, root,
2010                                         root->root_key.objectid,
2011                                         btrfs_ino(inode), file_pos, &ins);
2012 out:
2013         btrfs_free_path(path);
2014
2015         return ret;
2016 }
2017
2018 /* snapshot-aware defrag */
2019 struct sa_defrag_extent_backref {
2020         struct rb_node node;
2021         struct old_sa_defrag_extent *old;
2022         u64 root_id;
2023         u64 inum;
2024         u64 file_pos;
2025         u64 extent_offset;
2026         u64 num_bytes;
2027         u64 generation;
2028 };
2029
2030 struct old_sa_defrag_extent {
2031         struct list_head list;
2032         struct new_sa_defrag_extent *new;
2033
2034         u64 extent_offset;
2035         u64 bytenr;
2036         u64 offset;
2037         u64 len;
2038         int count;
2039 };
2040
2041 struct new_sa_defrag_extent {
2042         struct rb_root root;
2043         struct list_head head;
2044         struct btrfs_path *path;
2045         struct inode *inode;
2046         u64 file_pos;
2047         u64 len;
2048         u64 bytenr;
2049         u64 disk_len;
2050         u8 compress_type;
2051 };
2052
2053 static int backref_comp(struct sa_defrag_extent_backref *b1,
2054                         struct sa_defrag_extent_backref *b2)
2055 {
2056         if (b1->root_id < b2->root_id)
2057                 return -1;
2058         else if (b1->root_id > b2->root_id)
2059                 return 1;
2060
2061         if (b1->inum < b2->inum)
2062                 return -1;
2063         else if (b1->inum > b2->inum)
2064                 return 1;
2065
2066         if (b1->file_pos < b2->file_pos)
2067                 return -1;
2068         else if (b1->file_pos > b2->file_pos)
2069                 return 1;
2070
2071         /*
2072          * [------------------------------] ===> (a range of space)
2073          *     |<--->|   |<---->| =============> (fs/file tree A)
2074          * |<---------------------------->| ===> (fs/file tree B)
2075          *
2076          * A range of space can refer to two file extents in one tree while
2077          * refer to only one file extent in another tree.
2078          *
2079          * So we may process a disk offset more than one time(two extents in A)
2080          * and locate at the same extent(one extent in B), then insert two same
2081          * backrefs(both refer to the extent in B).
2082          */
2083         return 0;
2084 }
2085
2086 static void backref_insert(struct rb_root *root,
2087                            struct sa_defrag_extent_backref *backref)
2088 {
2089         struct rb_node **p = &root->rb_node;
2090         struct rb_node *parent = NULL;
2091         struct sa_defrag_extent_backref *entry;
2092         int ret;
2093
2094         while (*p) {
2095                 parent = *p;
2096                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097
2098                 ret = backref_comp(backref, entry);
2099                 if (ret < 0)
2100                         p = &(*p)->rb_left;
2101                 else
2102                         p = &(*p)->rb_right;
2103         }
2104
2105         rb_link_node(&backref->node, parent, p);
2106         rb_insert_color(&backref->node, root);
2107 }
2108
2109 /*
2110  * Note the backref might has changed, and in this case we just return 0.
2111  */
2112 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113                                        void *ctx)
2114 {
2115         struct btrfs_file_extent_item *extent;
2116         struct btrfs_fs_info *fs_info;
2117         struct old_sa_defrag_extent *old = ctx;
2118         struct new_sa_defrag_extent *new = old->new;
2119         struct btrfs_path *path = new->path;
2120         struct btrfs_key key;
2121         struct btrfs_root *root;
2122         struct sa_defrag_extent_backref *backref;
2123         struct extent_buffer *leaf;
2124         struct inode *inode = new->inode;
2125         int slot;
2126         int ret;
2127         u64 extent_offset;
2128         u64 num_bytes;
2129
2130         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131             inum == btrfs_ino(inode))
2132                 return 0;
2133
2134         key.objectid = root_id;
2135         key.type = BTRFS_ROOT_ITEM_KEY;
2136         key.offset = (u64)-1;
2137
2138         fs_info = BTRFS_I(inode)->root->fs_info;
2139         root = btrfs_read_fs_root_no_name(fs_info, &key);
2140         if (IS_ERR(root)) {
2141                 if (PTR_ERR(root) == -ENOENT)
2142                         return 0;
2143                 WARN_ON(1);
2144                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145                          inum, offset, root_id);
2146                 return PTR_ERR(root);
2147         }
2148
2149         key.objectid = inum;
2150         key.type = BTRFS_EXTENT_DATA_KEY;
2151         if (offset > (u64)-1 << 32)
2152                 key.offset = 0;
2153         else
2154                 key.offset = offset;
2155
2156         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157         if (WARN_ON(ret < 0))
2158                 return ret;
2159         ret = 0;
2160
2161         while (1) {
2162                 cond_resched();
2163
2164                 leaf = path->nodes[0];
2165                 slot = path->slots[0];
2166
2167                 if (slot >= btrfs_header_nritems(leaf)) {
2168                         ret = btrfs_next_leaf(root, path);
2169                         if (ret < 0) {
2170                                 goto out;
2171                         } else if (ret > 0) {
2172                                 ret = 0;
2173                                 goto out;
2174                         }
2175                         continue;
2176                 }
2177
2178                 path->slots[0]++;
2179
2180                 btrfs_item_key_to_cpu(leaf, &key, slot);
2181
2182                 if (key.objectid > inum)
2183                         goto out;
2184
2185                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186                         continue;
2187
2188                 extent = btrfs_item_ptr(leaf, slot,
2189                                         struct btrfs_file_extent_item);
2190
2191                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192                         continue;
2193
2194                 /*
2195                  * 'offset' refers to the exact key.offset,
2196                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197                  * (key.offset - extent_offset).
2198                  */
2199                 if (key.offset != offset)
2200                         continue;
2201
2202                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2203                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2204
2205                 if (extent_offset >= old->extent_offset + old->offset +
2206                     old->len || extent_offset + num_bytes <=
2207                     old->extent_offset + old->offset)
2208                         continue;
2209                 break;
2210         }
2211
2212         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213         if (!backref) {
2214                 ret = -ENOENT;
2215                 goto out;
2216         }
2217
2218         backref->root_id = root_id;
2219         backref->inum = inum;
2220         backref->file_pos = offset;
2221         backref->num_bytes = num_bytes;
2222         backref->extent_offset = extent_offset;
2223         backref->generation = btrfs_file_extent_generation(leaf, extent);
2224         backref->old = old;
2225         backref_insert(&new->root, backref);
2226         old->count++;
2227 out:
2228         btrfs_release_path(path);
2229         WARN_ON(ret);
2230         return ret;
2231 }
2232
2233 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234                                    struct new_sa_defrag_extent *new)
2235 {
2236         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237         struct old_sa_defrag_extent *old, *tmp;
2238         int ret;
2239
2240         new->path = path;
2241
2242         list_for_each_entry_safe(old, tmp, &new->head, list) {
2243                 ret = iterate_inodes_from_logical(old->bytenr +
2244                                                   old->extent_offset, fs_info,
2245                                                   path, record_one_backref,
2246                                                   old);
2247                 if (ret < 0 && ret != -ENOENT)
2248                         return false;
2249
2250                 /* no backref to be processed for this extent */
2251                 if (!old->count) {
2252                         list_del(&old->list);
2253                         kfree(old);
2254                 }
2255         }
2256
2257         if (list_empty(&new->head))
2258                 return false;
2259
2260         return true;
2261 }
2262
2263 static int relink_is_mergable(struct extent_buffer *leaf,
2264                               struct btrfs_file_extent_item *fi,
2265                               struct new_sa_defrag_extent *new)
2266 {
2267         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2268                 return 0;
2269
2270         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271                 return 0;
2272
2273         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274                 return 0;
2275
2276         if (btrfs_file_extent_encryption(leaf, fi) ||
2277             btrfs_file_extent_other_encoding(leaf, fi))
2278                 return 0;
2279
2280         return 1;
2281 }
2282
2283 /*
2284  * Note the backref might has changed, and in this case we just return 0.
2285  */
2286 static noinline int relink_extent_backref(struct btrfs_path *path,
2287                                  struct sa_defrag_extent_backref *prev,
2288                                  struct sa_defrag_extent_backref *backref)
2289 {
2290         struct btrfs_file_extent_item *extent;
2291         struct btrfs_file_extent_item *item;
2292         struct btrfs_ordered_extent *ordered;
2293         struct btrfs_trans_handle *trans;
2294         struct btrfs_fs_info *fs_info;
2295         struct btrfs_root *root;
2296         struct btrfs_key key;
2297         struct extent_buffer *leaf;
2298         struct old_sa_defrag_extent *old = backref->old;
2299         struct new_sa_defrag_extent *new = old->new;
2300         struct inode *src_inode = new->inode;
2301         struct inode *inode;
2302         struct extent_state *cached = NULL;
2303         int ret = 0;
2304         u64 start;
2305         u64 len;
2306         u64 lock_start;
2307         u64 lock_end;
2308         bool merge = false;
2309         int index;
2310
2311         if (prev && prev->root_id == backref->root_id &&
2312             prev->inum == backref->inum &&
2313             prev->file_pos + prev->num_bytes == backref->file_pos)
2314                 merge = true;
2315
2316         /* step 1: get root */
2317         key.objectid = backref->root_id;
2318         key.type = BTRFS_ROOT_ITEM_KEY;
2319         key.offset = (u64)-1;
2320
2321         fs_info = BTRFS_I(src_inode)->root->fs_info;
2322         index = srcu_read_lock(&fs_info->subvol_srcu);
2323
2324         root = btrfs_read_fs_root_no_name(fs_info, &key);
2325         if (IS_ERR(root)) {
2326                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2327                 if (PTR_ERR(root) == -ENOENT)
2328                         return 0;
2329                 return PTR_ERR(root);
2330         }
2331
2332         if (btrfs_root_readonly(root)) {
2333                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2334                 return 0;
2335         }
2336
2337         /* step 2: get inode */
2338         key.objectid = backref->inum;
2339         key.type = BTRFS_INODE_ITEM_KEY;
2340         key.offset = 0;
2341
2342         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343         if (IS_ERR(inode)) {
2344                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2345                 return 0;
2346         }
2347
2348         srcu_read_unlock(&fs_info->subvol_srcu, index);
2349
2350         /* step 3: relink backref */
2351         lock_start = backref->file_pos;
2352         lock_end = backref->file_pos + backref->num_bytes - 1;
2353         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354                          0, &cached);
2355
2356         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357         if (ordered) {
2358                 btrfs_put_ordered_extent(ordered);
2359                 goto out_unlock;
2360         }
2361
2362         trans = btrfs_join_transaction(root);
2363         if (IS_ERR(trans)) {
2364                 ret = PTR_ERR(trans);
2365                 goto out_unlock;
2366         }
2367
2368         key.objectid = backref->inum;
2369         key.type = BTRFS_EXTENT_DATA_KEY;
2370         key.offset = backref->file_pos;
2371
2372         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373         if (ret < 0) {
2374                 goto out_free_path;
2375         } else if (ret > 0) {
2376                 ret = 0;
2377                 goto out_free_path;
2378         }
2379
2380         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381                                 struct btrfs_file_extent_item);
2382
2383         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384             backref->generation)
2385                 goto out_free_path;
2386
2387         btrfs_release_path(path);
2388
2389         start = backref->file_pos;
2390         if (backref->extent_offset < old->extent_offset + old->offset)
2391                 start += old->extent_offset + old->offset -
2392                          backref->extent_offset;
2393
2394         len = min(backref->extent_offset + backref->num_bytes,
2395                   old->extent_offset + old->offset + old->len);
2396         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397
2398         ret = btrfs_drop_extents(trans, root, inode, start,
2399                                  start + len, 1);
2400         if (ret)
2401                 goto out_free_path;
2402 again:
2403         key.objectid = btrfs_ino(inode);
2404         key.type = BTRFS_EXTENT_DATA_KEY;
2405         key.offset = start;
2406
2407         path->leave_spinning = 1;
2408         if (merge) {
2409                 struct btrfs_file_extent_item *fi;
2410                 u64 extent_len;
2411                 struct btrfs_key found_key;
2412
2413                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2414                 if (ret < 0)
2415                         goto out_free_path;
2416
2417                 path->slots[0]--;
2418                 leaf = path->nodes[0];
2419                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420
2421                 fi = btrfs_item_ptr(leaf, path->slots[0],
2422                                     struct btrfs_file_extent_item);
2423                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424
2425                 if (extent_len + found_key.offset == start &&
2426                     relink_is_mergable(leaf, fi, new)) {
2427                         btrfs_set_file_extent_num_bytes(leaf, fi,
2428                                                         extent_len + len);
2429                         btrfs_mark_buffer_dirty(leaf);
2430                         inode_add_bytes(inode, len);
2431
2432                         ret = 1;
2433                         goto out_free_path;
2434                 } else {
2435                         merge = false;
2436                         btrfs_release_path(path);
2437                         goto again;
2438                 }
2439         }
2440
2441         ret = btrfs_insert_empty_item(trans, root, path, &key,
2442                                         sizeof(*extent));
2443         if (ret) {
2444                 btrfs_abort_transaction(trans, root, ret);
2445                 goto out_free_path;
2446         }
2447
2448         leaf = path->nodes[0];
2449         item = btrfs_item_ptr(leaf, path->slots[0],
2450                                 struct btrfs_file_extent_item);
2451         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454         btrfs_set_file_extent_num_bytes(leaf, item, len);
2455         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459         btrfs_set_file_extent_encryption(leaf, item, 0);
2460         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461
2462         btrfs_mark_buffer_dirty(leaf);
2463         inode_add_bytes(inode, len);
2464         btrfs_release_path(path);
2465
2466         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467                         new->disk_len, 0,
2468                         backref->root_id, backref->inum,
2469                         new->file_pos, 0);      /* start - extent_offset */
2470         if (ret) {
2471                 btrfs_abort_transaction(trans, root, ret);
2472                 goto out_free_path;
2473         }
2474
2475         ret = 1;
2476 out_free_path:
2477         btrfs_release_path(path);
2478         path->leave_spinning = 0;
2479         btrfs_end_transaction(trans, root);
2480 out_unlock:
2481         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482                              &cached, GFP_NOFS);
2483         iput(inode);
2484         return ret;
2485 }
2486
2487 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488 {
2489         struct old_sa_defrag_extent *old, *tmp;
2490
2491         if (!new)
2492                 return;
2493
2494         list_for_each_entry_safe(old, tmp, &new->head, list) {
2495                 list_del(&old->list);
2496                 kfree(old);
2497         }
2498         kfree(new);
2499 }
2500
2501 static void relink_file_extents(struct new_sa_defrag_extent *new)
2502 {
2503         struct btrfs_path *path;
2504         struct sa_defrag_extent_backref *backref;
2505         struct sa_defrag_extent_backref *prev = NULL;
2506         struct inode *inode;
2507         struct btrfs_root *root;
2508         struct rb_node *node;
2509         int ret;
2510
2511         inode = new->inode;
2512         root = BTRFS_I(inode)->root;
2513
2514         path = btrfs_alloc_path();
2515         if (!path)
2516                 return;
2517
2518         if (!record_extent_backrefs(path, new)) {
2519                 btrfs_free_path(path);
2520                 goto out;
2521         }
2522         btrfs_release_path(path);
2523
2524         while (1) {
2525                 node = rb_first(&new->root);
2526                 if (!node)
2527                         break;
2528                 rb_erase(node, &new->root);
2529
2530                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531
2532                 ret = relink_extent_backref(path, prev, backref);
2533                 WARN_ON(ret < 0);
2534
2535                 kfree(prev);
2536
2537                 if (ret == 1)
2538                         prev = backref;
2539                 else
2540                         prev = NULL;
2541                 cond_resched();
2542         }
2543         kfree(prev);
2544
2545         btrfs_free_path(path);
2546 out:
2547         free_sa_defrag_extent(new);
2548
2549         atomic_dec(&root->fs_info->defrag_running);
2550         wake_up(&root->fs_info->transaction_wait);
2551 }
2552
2553 static struct new_sa_defrag_extent *
2554 record_old_file_extents(struct inode *inode,
2555                         struct btrfs_ordered_extent *ordered)
2556 {
2557         struct btrfs_root *root = BTRFS_I(inode)->root;
2558         struct btrfs_path *path;
2559         struct btrfs_key key;
2560         struct old_sa_defrag_extent *old;
2561         struct new_sa_defrag_extent *new;
2562         int ret;
2563
2564         new = kmalloc(sizeof(*new), GFP_NOFS);
2565         if (!new)
2566                 return NULL;
2567
2568         new->inode = inode;
2569         new->file_pos = ordered->file_offset;
2570         new->len = ordered->len;
2571         new->bytenr = ordered->start;
2572         new->disk_len = ordered->disk_len;
2573         new->compress_type = ordered->compress_type;
2574         new->root = RB_ROOT;
2575         INIT_LIST_HEAD(&new->head);
2576
2577         path = btrfs_alloc_path();
2578         if (!path)
2579                 goto out_kfree;
2580
2581         key.objectid = btrfs_ino(inode);
2582         key.type = BTRFS_EXTENT_DATA_KEY;
2583         key.offset = new->file_pos;
2584
2585         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586         if (ret < 0)
2587                 goto out_free_path;
2588         if (ret > 0 && path->slots[0] > 0)
2589                 path->slots[0]--;
2590
2591         /* find out all the old extents for the file range */
2592         while (1) {
2593                 struct btrfs_file_extent_item *extent;
2594                 struct extent_buffer *l;
2595                 int slot;
2596                 u64 num_bytes;
2597                 u64 offset;
2598                 u64 end;
2599                 u64 disk_bytenr;
2600                 u64 extent_offset;
2601
2602                 l = path->nodes[0];
2603                 slot = path->slots[0];
2604
2605                 if (slot >= btrfs_header_nritems(l)) {
2606                         ret = btrfs_next_leaf(root, path);
2607                         if (ret < 0)
2608                                 goto out_free_path;
2609                         else if (ret > 0)
2610                                 break;
2611                         continue;
2612                 }
2613
2614                 btrfs_item_key_to_cpu(l, &key, slot);
2615
2616                 if (key.objectid != btrfs_ino(inode))
2617                         break;
2618                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2619                         break;
2620                 if (key.offset >= new->file_pos + new->len)
2621                         break;
2622
2623                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624
2625                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626                 if (key.offset + num_bytes < new->file_pos)
2627                         goto next;
2628
2629                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630                 if (!disk_bytenr)
2631                         goto next;
2632
2633                 extent_offset = btrfs_file_extent_offset(l, extent);
2634
2635                 old = kmalloc(sizeof(*old), GFP_NOFS);
2636                 if (!old)
2637                         goto out_free_path;
2638
2639                 offset = max(new->file_pos, key.offset);
2640                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2641
2642                 old->bytenr = disk_bytenr;
2643                 old->extent_offset = extent_offset;
2644                 old->offset = offset - key.offset;
2645                 old->len = end - offset;
2646                 old->new = new;
2647                 old->count = 0;
2648                 list_add_tail(&old->list, &new->head);
2649 next:
2650                 path->slots[0]++;
2651                 cond_resched();
2652         }
2653
2654         btrfs_free_path(path);
2655         atomic_inc(&root->fs_info->defrag_running);
2656
2657         return new;
2658
2659 out_free_path:
2660         btrfs_free_path(path);
2661 out_kfree:
2662         free_sa_defrag_extent(new);
2663         return NULL;
2664 }
2665
2666 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667                                          u64 start, u64 len)
2668 {
2669         struct btrfs_block_group_cache *cache;
2670
2671         cache = btrfs_lookup_block_group(root->fs_info, start);
2672         ASSERT(cache);
2673
2674         spin_lock(&cache->lock);
2675         cache->delalloc_bytes -= len;
2676         spin_unlock(&cache->lock);
2677
2678         btrfs_put_block_group(cache);
2679 }
2680
2681 /* as ordered data IO finishes, this gets called so we can finish
2682  * an ordered extent if the range of bytes in the file it covers are
2683  * fully written.
2684  */
2685 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2686 {
2687         struct inode *inode = ordered_extent->inode;
2688         struct btrfs_root *root = BTRFS_I(inode)->root;
2689         struct btrfs_trans_handle *trans = NULL;
2690         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2691         struct extent_state *cached_state = NULL;
2692         struct new_sa_defrag_extent *new = NULL;
2693         int compress_type = 0;
2694         int ret = 0;
2695         u64 logical_len = ordered_extent->len;
2696         bool nolock;
2697         bool truncated = false;
2698
2699         nolock = btrfs_is_free_space_inode(inode);
2700
2701         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702                 ret = -EIO;
2703                 goto out;
2704         }
2705
2706         btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2707                                      ordered_extent->file_offset +
2708                                      ordered_extent->len - 1);
2709
2710         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2711                 truncated = true;
2712                 logical_len = ordered_extent->truncated_len;
2713                 /* Truncated the entire extent, don't bother adding */
2714                 if (!logical_len)
2715                         goto out;
2716         }
2717
2718         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2719                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2720                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2721                 if (nolock)
2722                         trans = btrfs_join_transaction_nolock(root);
2723                 else
2724                         trans = btrfs_join_transaction(root);
2725                 if (IS_ERR(trans)) {
2726                         ret = PTR_ERR(trans);
2727                         trans = NULL;
2728                         goto out;
2729                 }
2730                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2731                 ret = btrfs_update_inode_fallback(trans, root, inode);
2732                 if (ret) /* -ENOMEM or corruption */
2733                         btrfs_abort_transaction(trans, root, ret);
2734                 goto out;
2735         }
2736
2737         lock_extent_bits(io_tree, ordered_extent->file_offset,
2738                          ordered_extent->file_offset + ordered_extent->len - 1,
2739                          0, &cached_state);
2740
2741         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2742                         ordered_extent->file_offset + ordered_extent->len - 1,
2743                         EXTENT_DEFRAG, 1, cached_state);
2744         if (ret) {
2745                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2746                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2747                         /* the inode is shared */
2748                         new = record_old_file_extents(inode, ordered_extent);
2749
2750                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2751                         ordered_extent->file_offset + ordered_extent->len - 1,
2752                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2753         }
2754
2755         if (nolock)
2756                 trans = btrfs_join_transaction_nolock(root);
2757         else
2758                 trans = btrfs_join_transaction(root);
2759         if (IS_ERR(trans)) {
2760                 ret = PTR_ERR(trans);
2761                 trans = NULL;
2762                 goto out_unlock;
2763         }
2764
2765         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2766
2767         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2768                 compress_type = ordered_extent->compress_type;
2769         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2770                 BUG_ON(compress_type);
2771                 ret = btrfs_mark_extent_written(trans, inode,
2772                                                 ordered_extent->file_offset,
2773                                                 ordered_extent->file_offset +
2774                                                 logical_len);
2775         } else {
2776                 BUG_ON(root == root->fs_info->tree_root);
2777                 ret = insert_reserved_file_extent(trans, inode,
2778                                                 ordered_extent->file_offset,
2779                                                 ordered_extent->start,
2780                                                 ordered_extent->disk_len,
2781                                                 logical_len, logical_len,
2782                                                 compress_type, 0, 0,
2783                                                 BTRFS_FILE_EXTENT_REG);
2784                 if (!ret)
2785                         btrfs_release_delalloc_bytes(root,
2786                                                      ordered_extent->start,
2787                                                      ordered_extent->disk_len);
2788         }
2789         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2790                            ordered_extent->file_offset, ordered_extent->len,
2791                            trans->transid);
2792         if (ret < 0) {
2793                 btrfs_abort_transaction(trans, root, ret);
2794                 goto out_unlock;
2795         }
2796
2797         add_pending_csums(trans, inode, ordered_extent->file_offset,
2798                           &ordered_extent->list);
2799
2800         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801         ret = btrfs_update_inode_fallback(trans, root, inode);
2802         if (ret) { /* -ENOMEM or corruption */
2803                 btrfs_abort_transaction(trans, root, ret);
2804                 goto out_unlock;
2805         }
2806         ret = 0;
2807 out_unlock:
2808         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2809                              ordered_extent->file_offset +
2810                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2811 out:
2812         if (root != root->fs_info->tree_root)
2813                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2814         if (trans)
2815                 btrfs_end_transaction(trans, root);
2816
2817         if (ret || truncated) {
2818                 u64 start, end;
2819
2820                 if (truncated)
2821                         start = ordered_extent->file_offset + logical_len;
2822                 else
2823                         start = ordered_extent->file_offset;
2824                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2825                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2826
2827                 /* Drop the cache for the part of the extent we didn't write. */
2828                 btrfs_drop_extent_cache(inode, start, end, 0);
2829
2830                 /*
2831                  * If the ordered extent had an IOERR or something else went
2832                  * wrong we need to return the space for this ordered extent
2833                  * back to the allocator.  We only free the extent in the
2834                  * truncated case if we didn't write out the extent at all.
2835                  */
2836                 if ((ret || !logical_len) &&
2837                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2838                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2839                         btrfs_free_reserved_extent(root, ordered_extent->start,
2840                                                    ordered_extent->disk_len, 1);
2841         }
2842
2843
2844         /*
2845          * This needs to be done to make sure anybody waiting knows we are done
2846          * updating everything for this ordered extent.
2847          */
2848         btrfs_remove_ordered_extent(inode, ordered_extent);
2849
2850         /* for snapshot-aware defrag */
2851         if (new) {
2852                 if (ret) {
2853                         free_sa_defrag_extent(new);
2854                         atomic_dec(&root->fs_info->defrag_running);
2855                 } else {
2856                         relink_file_extents(new);
2857                 }
2858         }
2859
2860         /* once for us */
2861         btrfs_put_ordered_extent(ordered_extent);
2862         /* once for the tree */
2863         btrfs_put_ordered_extent(ordered_extent);
2864
2865         return ret;
2866 }
2867
2868 static void finish_ordered_fn(struct btrfs_work *work)
2869 {
2870         struct btrfs_ordered_extent *ordered_extent;
2871         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2872         btrfs_finish_ordered_io(ordered_extent);
2873 }
2874
2875 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2876                                 struct extent_state *state, int uptodate)
2877 {
2878         struct inode *inode = page->mapping->host;
2879         struct btrfs_root *root = BTRFS_I(inode)->root;
2880         struct btrfs_ordered_extent *ordered_extent = NULL;
2881         struct btrfs_workqueue *wq;
2882         btrfs_work_func_t func;
2883
2884         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2885
2886         ClearPagePrivate2(page);
2887         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2888                                             end - start + 1, uptodate))
2889                 return 0;
2890
2891         if (btrfs_is_free_space_inode(inode)) {
2892                 wq = root->fs_info->endio_freespace_worker;
2893                 func = btrfs_freespace_write_helper;
2894         } else {
2895                 wq = root->fs_info->endio_write_workers;
2896                 func = btrfs_endio_write_helper;
2897         }
2898
2899         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2900                         NULL);
2901         btrfs_queue_work(wq, &ordered_extent->work);
2902
2903         return 0;
2904 }
2905
2906 static int __readpage_endio_check(struct inode *inode,
2907                                   struct btrfs_io_bio *io_bio,
2908                                   int icsum, struct page *page,
2909                                   int pgoff, u64 start, size_t len)
2910 {
2911         char *kaddr;
2912         u32 csum_expected;
2913         u32 csum = ~(u32)0;
2914         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2915                                       DEFAULT_RATELIMIT_BURST);
2916
2917         csum_expected = *(((u32 *)io_bio->csum) + icsum);
2918
2919         kaddr = kmap_atomic(page);
2920         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
2921         btrfs_csum_final(csum, (char *)&csum);
2922         if (csum != csum_expected)
2923                 goto zeroit;
2924
2925         kunmap_atomic(kaddr);
2926         return 0;
2927 zeroit:
2928         if (__ratelimit(&_rs))
2929                 btrfs_info(BTRFS_I(inode)->root->fs_info,
2930                            "csum failed ino %llu off %llu csum %u expected csum %u",
2931                            btrfs_ino(inode), start, csum, csum_expected);
2932         memset(kaddr + pgoff, 1, len);
2933         flush_dcache_page(page);
2934         kunmap_atomic(kaddr);
2935         if (csum_expected == 0)
2936                 return 0;
2937         return -EIO;
2938 }
2939
2940 /*
2941  * when reads are done, we need to check csums to verify the data is correct
2942  * if there's a match, we allow the bio to finish.  If not, the code in
2943  * extent_io.c will try to find good copies for us.
2944  */
2945 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2946                                       u64 phy_offset, struct page *page,
2947                                       u64 start, u64 end, int mirror)
2948 {
2949         size_t offset = start - page_offset(page);
2950         struct inode *inode = page->mapping->host;
2951         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2952         struct btrfs_root *root = BTRFS_I(inode)->root;
2953
2954         if (PageChecked(page)) {
2955                 ClearPageChecked(page);
2956                 return 0;
2957         }
2958
2959         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2960                 return 0;
2961
2962         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2963             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2964                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2965                                   GFP_NOFS);
2966                 return 0;
2967         }
2968
2969         phy_offset >>= inode->i_sb->s_blocksize_bits;
2970         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2971                                       start, (size_t)(end - start + 1));
2972 }
2973
2974 struct delayed_iput {
2975         struct list_head list;
2976         struct inode *inode;
2977 };
2978
2979 /* JDM: If this is fs-wide, why can't we add a pointer to
2980  * btrfs_inode instead and avoid the allocation? */
2981 void btrfs_add_delayed_iput(struct inode *inode)
2982 {
2983         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984         struct delayed_iput *delayed;
2985
2986         if (atomic_add_unless(&inode->i_count, -1, 1))
2987                 return;
2988
2989         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2990         delayed->inode = inode;
2991
2992         spin_lock(&fs_info->delayed_iput_lock);
2993         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2994         spin_unlock(&fs_info->delayed_iput_lock);
2995 }
2996
2997 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2998 {
2999         LIST_HEAD(list);
3000         struct btrfs_fs_info *fs_info = root->fs_info;
3001         struct delayed_iput *delayed;
3002         int empty;
3003
3004         spin_lock(&fs_info->delayed_iput_lock);
3005         empty = list_empty(&fs_info->delayed_iputs);
3006         spin_unlock(&fs_info->delayed_iput_lock);
3007         if (empty)
3008                 return;
3009
3010         spin_lock(&fs_info->delayed_iput_lock);
3011         list_splice_init(&fs_info->delayed_iputs, &list);
3012         spin_unlock(&fs_info->delayed_iput_lock);
3013
3014         while (!list_empty(&list)) {
3015                 delayed = list_entry(list.next, struct delayed_iput, list);
3016                 list_del(&delayed->list);
3017                 iput(delayed->inode);
3018                 kfree(delayed);
3019         }
3020 }
3021
3022 /*
3023  * This is called in transaction commit time. If there are no orphan
3024  * files in the subvolume, it removes orphan item and frees block_rsv
3025  * structure.
3026  */
3027 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3028                               struct btrfs_root *root)
3029 {
3030         struct btrfs_block_rsv *block_rsv;
3031         int ret;
3032
3033         if (atomic_read(&root->orphan_inodes) ||
3034             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3035                 return;
3036
3037         spin_lock(&root->orphan_lock);
3038         if (atomic_read(&root->orphan_inodes)) {
3039                 spin_unlock(&root->orphan_lock);
3040                 return;
3041         }
3042
3043         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3044                 spin_unlock(&root->orphan_lock);
3045                 return;
3046         }
3047
3048         block_rsv = root->orphan_block_rsv;
3049         root->orphan_block_rsv = NULL;
3050         spin_unlock(&root->orphan_lock);
3051
3052         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3053             btrfs_root_refs(&root->root_item) > 0) {
3054                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3055                                             root->root_key.objectid);
3056                 if (ret)
3057                         btrfs_abort_transaction(trans, root, ret);
3058                 else
3059                         clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3060                                   &root->state);
3061         }
3062
3063         if (block_rsv) {
3064                 WARN_ON(block_rsv->size > 0);
3065                 btrfs_free_block_rsv(root, block_rsv);
3066         }
3067 }
3068
3069 /*
3070  * This creates an orphan entry for the given inode in case something goes
3071  * wrong in the middle of an unlink/truncate.
3072  *
3073  * NOTE: caller of this function should reserve 5 units of metadata for
3074  *       this function.
3075  */
3076 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3077 {
3078         struct btrfs_root *root = BTRFS_I(inode)->root;
3079         struct btrfs_block_rsv *block_rsv = NULL;
3080         int reserve = 0;
3081         int insert = 0;
3082         int ret;
3083
3084         if (!root->orphan_block_rsv) {
3085                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3086                 if (!block_rsv)
3087                         return -ENOMEM;
3088         }
3089
3090         spin_lock(&root->orphan_lock);
3091         if (!root->orphan_block_rsv) {
3092                 root->orphan_block_rsv = block_rsv;
3093         } else if (block_rsv) {
3094                 btrfs_free_block_rsv(root, block_rsv);
3095                 block_rsv = NULL;
3096         }
3097
3098         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3099                               &BTRFS_I(inode)->runtime_flags)) {
3100 #if 0
3101                 /*
3102                  * For proper ENOSPC handling, we should do orphan
3103                  * cleanup when mounting. But this introduces backward
3104                  * compatibility issue.
3105                  */
3106                 if (!xchg(&root->orphan_item_inserted, 1))
3107                         insert = 2;
3108                 else
3109                         insert = 1;
3110 #endif
3111                 insert = 1;
3112                 atomic_inc(&root->orphan_inodes);
3113         }
3114
3115         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3116                               &BTRFS_I(inode)->runtime_flags))
3117                 reserve = 1;
3118         spin_unlock(&root->orphan_lock);
3119
3120         /* grab metadata reservation from transaction handle */
3121         if (reserve) {
3122                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3123                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3124         }
3125
3126         /* insert an orphan item to track this unlinked/truncated file */
3127         if (insert >= 1) {
3128                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3129                 if (ret) {
3130                         atomic_dec(&root->orphan_inodes);
3131                         if (reserve) {
3132                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3133                                           &BTRFS_I(inode)->runtime_flags);
3134                                 btrfs_orphan_release_metadata(inode);
3135                         }
3136                         if (ret != -EEXIST) {
3137                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3138                                           &BTRFS_I(inode)->runtime_flags);
3139                                 btrfs_abort_transaction(trans, root, ret);
3140                                 return ret;
3141                         }
3142                 }
3143                 ret = 0;
3144         }
3145
3146         /* insert an orphan item to track subvolume contains orphan files */
3147         if (insert >= 2) {
3148                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3149                                                root->root_key.objectid);
3150                 if (ret && ret != -EEXIST) {
3151                         btrfs_abort_transaction(trans, root, ret);
3152                         return ret;
3153                 }
3154         }
3155         return 0;
3156 }
3157
3158 /*
3159  * We have done the truncate/delete so we can go ahead and remove the orphan
3160  * item for this particular inode.
3161  */
3162 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3163                             struct inode *inode)
3164 {
3165         struct btrfs_root *root = BTRFS_I(inode)->root;
3166         int delete_item = 0;
3167         int release_rsv = 0;
3168         int ret = 0;
3169
3170         spin_lock(&root->orphan_lock);
3171         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3172                                &BTRFS_I(inode)->runtime_flags))
3173                 delete_item = 1;
3174
3175         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3176                                &BTRFS_I(inode)->runtime_flags))
3177                 release_rsv = 1;
3178         spin_unlock(&root->orphan_lock);
3179
3180         if (delete_item) {
3181                 atomic_dec(&root->orphan_inodes);
3182                 if (trans)
3183                         ret = btrfs_del_orphan_item(trans, root,
3184                                                     btrfs_ino(inode));
3185         }
3186
3187         if (release_rsv)
3188                 btrfs_orphan_release_metadata(inode);
3189
3190         return ret;
3191 }
3192
3193 /*
3194  * this cleans up any orphans that may be left on the list from the last use
3195  * of this root.
3196  */
3197 int btrfs_orphan_cleanup(struct btrfs_root *root)
3198 {
3199         struct btrfs_path *path;
3200         struct extent_buffer *leaf;
3201         struct btrfs_key key, found_key;
3202         struct btrfs_trans_handle *trans;
3203         struct inode *inode;
3204         u64 last_objectid = 0;
3205         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3206
3207         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3208                 return 0;
3209
3210         path = btrfs_alloc_path();
3211         if (!path) {
3212                 ret = -ENOMEM;
3213                 goto out;
3214         }
3215         path->reada = -1;
3216
3217         key.objectid = BTRFS_ORPHAN_OBJECTID;
3218         key.type = BTRFS_ORPHAN_ITEM_KEY;
3219         key.offset = (u64)-1;
3220
3221         while (1) {
3222                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3223                 if (ret < 0)
3224                         goto out;
3225
3226                 /*
3227                  * if ret == 0 means we found what we were searching for, which
3228                  * is weird, but possible, so only screw with path if we didn't
3229                  * find the key and see if we have stuff that matches
3230                  */
3231                 if (ret > 0) {
3232                         ret = 0;
3233                         if (path->slots[0] == 0)
3234                                 break;
3235                         path->slots[0]--;
3236                 }
3237
3238                 /* pull out the item */
3239                 leaf = path->nodes[0];
3240                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3241
3242                 /* make sure the item matches what we want */
3243                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3244                         break;
3245                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3246                         break;
3247
3248                 /* release the path since we're done with it */
3249                 btrfs_release_path(path);
3250
3251                 /*
3252                  * this is where we are basically btrfs_lookup, without the
3253                  * crossing root thing.  we store the inode number in the
3254                  * offset of the orphan item.
3255                  */
3256
3257                 if (found_key.offset == last_objectid) {
3258                         btrfs_err(root->fs_info,
3259                                 "Error removing orphan entry, stopping orphan cleanup");
3260                         ret = -EINVAL;
3261                         goto out;
3262                 }
3263
3264                 last_objectid = found_key.offset;
3265
3266                 found_key.objectid = found_key.offset;
3267                 found_key.type = BTRFS_INODE_ITEM_KEY;
3268                 found_key.offset = 0;
3269                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3270                 ret = PTR_ERR_OR_ZERO(inode);
3271                 if (ret && ret != -ESTALE)
3272                         goto out;
3273
3274                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3275                         struct btrfs_root *dead_root;
3276                         struct btrfs_fs_info *fs_info = root->fs_info;
3277                         int is_dead_root = 0;
3278
3279                         /*
3280                          * this is an orphan in the tree root. Currently these
3281                          * could come from 2 sources:
3282                          *  a) a snapshot deletion in progress
3283                          *  b) a free space cache inode
3284                          * We need to distinguish those two, as the snapshot
3285                          * orphan must not get deleted.
3286                          * find_dead_roots already ran before us, so if this
3287                          * is a snapshot deletion, we should find the root
3288                          * in the dead_roots list
3289                          */
3290                         spin_lock(&fs_info->trans_lock);
3291                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3292                                             root_list) {
3293                                 if (dead_root->root_key.objectid ==
3294                                     found_key.objectid) {
3295                                         is_dead_root = 1;
3296                                         break;
3297                                 }
3298                         }
3299                         spin_unlock(&fs_info->trans_lock);
3300                         if (is_dead_root) {
3301                                 /* prevent this orphan from being found again */
3302                                 key.offset = found_key.objectid - 1;
3303                                 continue;
3304                         }
3305                 }
3306                 /*
3307                  * Inode is already gone but the orphan item is still there,
3308                  * kill the orphan item.
3309                  */
3310                 if (ret == -ESTALE) {
3311                         trans = btrfs_start_transaction(root, 1);
3312                         if (IS_ERR(trans)) {
3313                                 ret = PTR_ERR(trans);
3314                                 goto out;
3315                         }
3316                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3317                                 found_key.objectid);
3318                         ret = btrfs_del_orphan_item(trans, root,
3319                                                     found_key.objectid);
3320                         btrfs_end_transaction(trans, root);
3321                         if (ret)
3322                                 goto out;
3323                         continue;
3324                 }
3325
3326                 /*
3327                  * add this inode to the orphan list so btrfs_orphan_del does
3328                  * the proper thing when we hit it
3329                  */
3330                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331                         &BTRFS_I(inode)->runtime_flags);
3332                 atomic_inc(&root->orphan_inodes);
3333
3334                 /* if we have links, this was a truncate, lets do that */
3335                 if (inode->i_nlink) {
3336                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3337                                 iput(inode);
3338                                 continue;
3339                         }
3340                         nr_truncate++;
3341
3342                         /* 1 for the orphan item deletion. */
3343                         trans = btrfs_start_transaction(root, 1);
3344                         if (IS_ERR(trans)) {
3345                                 iput(inode);
3346                                 ret = PTR_ERR(trans);
3347                                 goto out;
3348                         }
3349                         ret = btrfs_orphan_add(trans, inode);
3350                         btrfs_end_transaction(trans, root);
3351                         if (ret) {
3352                                 iput(inode);
3353                                 goto out;
3354                         }
3355
3356                         ret = btrfs_truncate(inode);
3357                         if (ret)
3358                                 btrfs_orphan_del(NULL, inode);
3359                 } else {
3360                         nr_unlink++;
3361                 }
3362
3363                 /* this will do delete_inode and everything for us */
3364                 iput(inode);
3365                 if (ret)
3366                         goto out;
3367         }
3368         /* release the path since we're done with it */
3369         btrfs_release_path(path);
3370
3371         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3372
3373         if (root->orphan_block_rsv)
3374                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3375                                         (u64)-1);
3376
3377         if (root->orphan_block_rsv ||
3378             test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3379                 trans = btrfs_join_transaction(root);
3380                 if (!IS_ERR(trans))
3381                         btrfs_end_transaction(trans, root);
3382         }
3383
3384         if (nr_unlink)
3385                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3386         if (nr_truncate)
3387                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3388
3389 out:
3390         if (ret)
3391                 btrfs_crit(root->fs_info,
3392                         "could not do orphan cleanup %d", ret);
3393         btrfs_free_path(path);
3394         return ret;
3395 }
3396
3397 /*
3398  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3399  * don't find any xattrs, we know there can't be any acls.
3400  *
3401  * slot is the slot the inode is in, objectid is the objectid of the inode
3402  */
3403 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3404                                           int slot, u64 objectid,
3405                                           int *first_xattr_slot)
3406 {
3407         u32 nritems = btrfs_header_nritems(leaf);
3408         struct btrfs_key found_key;
3409         static u64 xattr_access = 0;
3410         static u64 xattr_default = 0;
3411         int scanned = 0;
3412
3413         if (!xattr_access) {
3414                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3415                                         strlen(POSIX_ACL_XATTR_ACCESS));
3416                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3417                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3418         }
3419
3420         slot++;
3421         *first_xattr_slot = -1;
3422         while (slot < nritems) {
3423                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424
3425                 /* we found a different objectid, there must not be acls */
3426                 if (found_key.objectid != objectid)
3427                         return 0;
3428
3429                 /* we found an xattr, assume we've got an acl */
3430                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3431                         if (*first_xattr_slot == -1)
3432                                 *first_xattr_slot = slot;
3433                         if (found_key.offset == xattr_access ||
3434                             found_key.offset == xattr_default)
3435                                 return 1;
3436                 }
3437
3438                 /*
3439                  * we found a key greater than an xattr key, there can't
3440                  * be any acls later on
3441                  */
3442                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3443                         return 0;
3444
3445                 slot++;
3446                 scanned++;
3447
3448                 /*
3449                  * it goes inode, inode backrefs, xattrs, extents,
3450                  * so if there are a ton of hard links to an inode there can
3451                  * be a lot of backrefs.  Don't waste time searching too hard,
3452                  * this is just an optimization
3453                  */
3454                 if (scanned >= 8)
3455                         break;
3456         }
3457         /* we hit the end of the leaf before we found an xattr or
3458          * something larger than an xattr.  We have to assume the inode
3459          * has acls
3460          */
3461         if (*first_xattr_slot == -1)
3462                 *first_xattr_slot = slot;
3463         return 1;
3464 }
3465
3466 /*
3467  * read an inode from the btree into the in-memory inode
3468  */
3469 static void btrfs_read_locked_inode(struct inode *inode)
3470 {
3471         struct btrfs_path *path;
3472         struct extent_buffer *leaf;
3473         struct btrfs_inode_item *inode_item;
3474         struct btrfs_timespec *tspec;
3475         struct btrfs_root *root = BTRFS_I(inode)->root;
3476         struct btrfs_key location;
3477         unsigned long ptr;
3478         int maybe_acls;
3479         u32 rdev;
3480         int ret;
3481         bool filled = false;
3482         int first_xattr_slot;
3483
3484         ret = btrfs_fill_inode(inode, &rdev);
3485         if (!ret)
3486                 filled = true;
3487
3488         path = btrfs_alloc_path();
3489         if (!path)
3490                 goto make_bad;
3491
3492         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3493
3494         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3495         if (ret)
3496                 goto make_bad;
3497
3498         leaf = path->nodes[0];
3499
3500         if (filled)
3501                 goto cache_index;
3502
3503         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3504                                     struct btrfs_inode_item);
3505         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3506         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3507         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3508         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3509         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3510
3511         tspec = btrfs_inode_atime(inode_item);
3512         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514
3515         tspec = btrfs_inode_mtime(inode_item);
3516         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518
3519         tspec = btrfs_inode_ctime(inode_item);
3520         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3521         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3522
3523         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3524         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3525         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3526
3527         /*
3528          * If we were modified in the current generation and evicted from memory
3529          * and then re-read we need to do a full sync since we don't have any
3530          * idea about which extents were modified before we were evicted from
3531          * cache.
3532          */
3533         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3534                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3535                         &BTRFS_I(inode)->runtime_flags);
3536
3537         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3538         inode->i_generation = BTRFS_I(inode)->generation;
3539         inode->i_rdev = 0;
3540         rdev = btrfs_inode_rdev(leaf, inode_item);
3541
3542         BTRFS_I(inode)->index_cnt = (u64)-1;
3543         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3544
3545 cache_index:
3546         path->slots[0]++;
3547         if (inode->i_nlink != 1 ||
3548             path->slots[0] >= btrfs_header_nritems(leaf))
3549                 goto cache_acl;
3550
3551         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3552         if (location.objectid != btrfs_ino(inode))
3553                 goto cache_acl;
3554
3555         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3556         if (location.type == BTRFS_INODE_REF_KEY) {
3557                 struct btrfs_inode_ref *ref;
3558
3559                 ref = (struct btrfs_inode_ref *)ptr;
3560                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3561         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3562                 struct btrfs_inode_extref *extref;
3563
3564                 extref = (struct btrfs_inode_extref *)ptr;
3565                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3566                                                                      extref);
3567         }
3568 cache_acl:
3569         /*
3570          * try to precache a NULL acl entry for files that don't have
3571          * any xattrs or acls
3572          */
3573         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3574                                            btrfs_ino(inode), &first_xattr_slot);
3575         if (first_xattr_slot != -1) {
3576                 path->slots[0] = first_xattr_slot;
3577                 ret = btrfs_load_inode_props(inode, path);
3578                 if (ret)
3579                         btrfs_err(root->fs_info,
3580                                   "error loading props for ino %llu (root %llu): %d",
3581                                   btrfs_ino(inode),
3582                                   root->root_key.objectid, ret);
3583         }
3584         btrfs_free_path(path);
3585
3586         if (!maybe_acls)
3587                 cache_no_acl(inode);
3588
3589         switch (inode->i_mode & S_IFMT) {
3590         case S_IFREG:
3591                 inode->i_mapping->a_ops = &btrfs_aops;
3592                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3593                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3594                 inode->i_fop = &btrfs_file_operations;
3595                 inode->i_op = &btrfs_file_inode_operations;
3596                 break;
3597         case S_IFDIR:
3598                 inode->i_fop = &btrfs_dir_file_operations;
3599                 if (root == root->fs_info->tree_root)
3600                         inode->i_op = &btrfs_dir_ro_inode_operations;
3601                 else
3602                         inode->i_op = &btrfs_dir_inode_operations;
3603                 break;
3604         case S_IFLNK:
3605                 inode->i_op = &btrfs_symlink_inode_operations;
3606                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3607                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3608                 break;
3609         default:
3610                 inode->i_op = &btrfs_special_inode_operations;
3611                 init_special_inode(inode, inode->i_mode, rdev);
3612                 break;
3613         }
3614
3615         btrfs_update_iflags(inode);
3616         return;
3617
3618 make_bad:
3619         btrfs_free_path(path);
3620         make_bad_inode(inode);
3621 }
3622
3623 /*
3624  * given a leaf and an inode, copy the inode fields into the leaf
3625  */
3626 static void fill_inode_item(struct btrfs_trans_handle *trans,
3627                             struct extent_buffer *leaf,
3628                             struct btrfs_inode_item *item,
3629                             struct inode *inode)
3630 {
3631         struct btrfs_map_token token;
3632
3633         btrfs_init_map_token(&token);
3634
3635         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3636         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3637         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3638                                    &token);
3639         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3640         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3641
3642         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3643                                      inode->i_atime.tv_sec, &token);
3644         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3645                                       inode->i_atime.tv_nsec, &token);
3646
3647         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3648                                      inode->i_mtime.tv_sec, &token);
3649         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3650                                       inode->i_mtime.tv_nsec, &token);
3651
3652         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3653                                      inode->i_ctime.tv_sec, &token);
3654         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3655                                       inode->i_ctime.tv_nsec, &token);
3656
3657         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3658                                      &token);
3659         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3660                                          &token);
3661         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3662         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3663         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3664         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3665         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3666 }
3667
3668 /*
3669  * copy everything in the in-memory inode into the btree.
3670  */
3671 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3672                                 struct btrfs_root *root, struct inode *inode)
3673 {
3674         struct btrfs_inode_item *inode_item;
3675         struct btrfs_path *path;
3676         struct extent_buffer *leaf;
3677         int ret;
3678
3679         path = btrfs_alloc_path();
3680         if (!path)
3681                 return -ENOMEM;
3682
3683         path->leave_spinning = 1;
3684         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3685                                  1);
3686         if (ret) {
3687                 if (ret > 0)
3688                         ret = -ENOENT;
3689                 goto failed;
3690         }
3691
3692         leaf = path->nodes[0];
3693         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694                                     struct btrfs_inode_item);
3695
3696         fill_inode_item(trans, leaf, inode_item, inode);
3697         btrfs_mark_buffer_dirty(leaf);
3698         btrfs_set_inode_last_trans(trans, inode);
3699         ret = 0;
3700 failed:
3701         btrfs_free_path(path);
3702         return ret;
3703 }
3704
3705 /*
3706  * copy everything in the in-memory inode into the btree.
3707  */
3708 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3709                                 struct btrfs_root *root, struct inode *inode)
3710 {
3711         int ret;
3712
3713         /*
3714          * If the inode is a free space inode, we can deadlock during commit
3715          * if we put it into the delayed code.
3716          *
3717          * The data relocation inode should also be directly updated
3718          * without delay
3719          */
3720         if (!btrfs_is_free_space_inode(inode)
3721             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3722             && !root->fs_info->log_root_recovering) {
3723                 btrfs_update_root_times(trans, root);
3724
3725                 ret = btrfs_delayed_update_inode(trans, root, inode);
3726                 if (!ret)
3727                         btrfs_set_inode_last_trans(trans, inode);
3728                 return ret;
3729         }
3730
3731         return btrfs_update_inode_item(trans, root, inode);
3732 }
3733
3734 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3735                                          struct btrfs_root *root,
3736                                          struct inode *inode)
3737 {
3738         int ret;
3739
3740         ret = btrfs_update_inode(trans, root, inode);
3741         if (ret == -ENOSPC)
3742                 return btrfs_update_inode_item(trans, root, inode);
3743         return ret;
3744 }
3745
3746 /*
3747  * unlink helper that gets used here in inode.c and in the tree logging
3748  * recovery code.  It remove a link in a directory with a given name, and
3749  * also drops the back refs in the inode to the directory
3750  */
3751 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3752                                 struct btrfs_root *root,
3753                                 struct inode *dir, struct inode *inode,
3754                                 const char *name, int name_len)
3755 {
3756         struct btrfs_path *path;
3757         int ret = 0;
3758         struct extent_buffer *leaf;
3759         struct btrfs_dir_item *di;
3760         struct btrfs_key key;
3761         u64 index;
3762         u64 ino = btrfs_ino(inode);
3763         u64 dir_ino = btrfs_ino(dir);
3764
3765         path = btrfs_alloc_path();
3766         if (!path) {
3767                 ret = -ENOMEM;
3768                 goto out;
3769         }
3770
3771         path->leave_spinning = 1;
3772         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3773                                     name, name_len, -1);
3774         if (IS_ERR(di)) {
3775                 ret = PTR_ERR(di);
3776                 goto err;
3777         }
3778         if (!di) {
3779                 ret = -ENOENT;
3780                 goto err;
3781         }
3782         leaf = path->nodes[0];
3783         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3784         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3785         if (ret)
3786                 goto err;
3787         btrfs_release_path(path);
3788
3789         /*
3790          * If we don't have dir index, we have to get it by looking up
3791          * the inode ref, since we get the inode ref, remove it directly,
3792          * it is unnecessary to do delayed deletion.
3793          *
3794          * But if we have dir index, needn't search inode ref to get it.
3795          * Since the inode ref is close to the inode item, it is better
3796          * that we delay to delete it, and just do this deletion when
3797          * we update the inode item.
3798          */
3799         if (BTRFS_I(inode)->dir_index) {
3800                 ret = btrfs_delayed_delete_inode_ref(inode);
3801                 if (!ret) {
3802                         index = BTRFS_I(inode)->dir_index;
3803                         goto skip_backref;
3804                 }
3805         }
3806
3807         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3808                                   dir_ino, &index);
3809         if (ret) {
3810                 btrfs_info(root->fs_info,
3811                         "failed to delete reference to %.*s, inode %llu parent %llu",
3812                         name_len, name, ino, dir_ino);
3813                 btrfs_abort_transaction(trans, root, ret);
3814                 goto err;
3815         }
3816 skip_backref:
3817         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3818         if (ret) {
3819                 btrfs_abort_transaction(trans, root, ret);
3820                 goto err;
3821         }
3822
3823         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3824                                          inode, dir_ino);
3825         if (ret != 0 && ret != -ENOENT) {
3826                 btrfs_abort_transaction(trans, root, ret);
3827                 goto err;
3828         }
3829
3830         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3831                                            dir, index);
3832         if (ret == -ENOENT)
3833                 ret = 0;
3834         else if (ret)
3835                 btrfs_abort_transaction(trans, root, ret);
3836 err:
3837         btrfs_free_path(path);
3838         if (ret)
3839                 goto out;
3840
3841         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3842         inode_inc_iversion(inode);
3843         inode_inc_iversion(dir);
3844         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3845         ret = btrfs_update_inode(trans, root, dir);
3846 out:
3847         return ret;
3848 }
3849
3850 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3851                        struct btrfs_root *root,
3852                        struct inode *dir, struct inode *inode,
3853                        const char *name, int name_len)
3854 {
3855         int ret;
3856         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3857         if (!ret) {
3858                 drop_nlink(inode);
3859                 ret = btrfs_update_inode(trans, root, inode);
3860         }
3861         return ret;
3862 }
3863
3864 /*
3865  * helper to start transaction for unlink and rmdir.
3866  *
3867  * unlink and rmdir are special in btrfs, they do not always free space, so
3868  * if we cannot make our reservations the normal way try and see if there is
3869  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3870  * allow the unlink to occur.
3871  */
3872 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3873 {
3874         struct btrfs_trans_handle *trans;
3875         struct btrfs_root *root = BTRFS_I(dir)->root;
3876         int ret;
3877
3878         /*
3879          * 1 for the possible orphan item
3880          * 1 for the dir item
3881          * 1 for the dir index
3882          * 1 for the inode ref
3883          * 1 for the inode
3884          */
3885         trans = btrfs_start_transaction(root, 5);
3886         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3887                 return trans;
3888
3889         if (PTR_ERR(trans) == -ENOSPC) {
3890                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3891
3892                 trans = btrfs_start_transaction(root, 0);
3893                 if (IS_ERR(trans))
3894                         return trans;
3895                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3896                                                &root->fs_info->trans_block_rsv,
3897                                                num_bytes, 5);
3898                 if (ret) {
3899                         btrfs_end_transaction(trans, root);
3900                         return ERR_PTR(ret);
3901                 }
3902                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3903                 trans->bytes_reserved = num_bytes;
3904         }
3905         return trans;
3906 }
3907
3908 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3909 {
3910         struct btrfs_root *root = BTRFS_I(dir)->root;
3911         struct btrfs_trans_handle *trans;
3912         struct inode *inode = dentry->d_inode;
3913         int ret;
3914
3915         trans = __unlink_start_trans(dir);
3916         if (IS_ERR(trans))
3917                 return PTR_ERR(trans);
3918
3919         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3920
3921         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3922                                  dentry->d_name.name, dentry->d_name.len);
3923         if (ret)
3924                 goto out;
3925
3926         if (inode->i_nlink == 0) {
3927                 ret = btrfs_orphan_add(trans, inode);
3928                 if (ret)
3929                         goto out;
3930         }
3931
3932 out:
3933         btrfs_end_transaction(trans, root);
3934         btrfs_btree_balance_dirty(root);
3935         return ret;
3936 }
3937
3938 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3939                         struct btrfs_root *root,
3940                         struct inode *dir, u64 objectid,
3941                         const char *name, int name_len)
3942 {
3943         struct btrfs_path *path;
3944         struct extent_buffer *leaf;
3945         struct btrfs_dir_item *di;
3946         struct btrfs_key key;
3947         u64 index;
3948         int ret;
3949         u64 dir_ino = btrfs_ino(dir);
3950
3951         path = btrfs_alloc_path();
3952         if (!path)
3953                 return -ENOMEM;
3954
3955         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3956                                    name, name_len, -1);
3957         if (IS_ERR_OR_NULL(di)) {
3958                 if (!di)
3959                         ret = -ENOENT;
3960                 else
3961                         ret = PTR_ERR(di);
3962                 goto out;
3963         }
3964
3965         leaf = path->nodes[0];
3966         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3967         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3968         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3969         if (ret) {
3970                 btrfs_abort_transaction(trans, root, ret);
3971                 goto out;
3972         }
3973         btrfs_release_path(path);
3974
3975         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3976                                  objectid, root->root_key.objectid,
3977                                  dir_ino, &index, name, name_len);
3978         if (ret < 0) {
3979                 if (ret != -ENOENT) {
3980                         btrfs_abort_transaction(trans, root, ret);
3981                         goto out;
3982                 }
3983                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3984                                                  name, name_len);
3985                 if (IS_ERR_OR_NULL(di)) {
3986                         if (!di)
3987                                 ret = -ENOENT;
3988                         else
3989                                 ret = PTR_ERR(di);
3990                         btrfs_abort_transaction(trans, root, ret);
3991                         goto out;
3992                 }
3993
3994                 leaf = path->nodes[0];
3995                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3996                 btrfs_release_path(path);
3997                 index = key.offset;
3998         }
3999         btrfs_release_path(path);
4000
4001         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4002         if (ret) {
4003                 btrfs_abort_transaction(trans, root, ret);
4004                 goto out;
4005         }
4006
4007         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4008         inode_inc_iversion(dir);
4009         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4010         ret = btrfs_update_inode_fallback(trans, root, dir);
4011         if (ret)
4012                 btrfs_abort_transaction(trans, root, ret);
4013 out:
4014         btrfs_free_path(path);
4015         return ret;
4016 }
4017
4018 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4019 {
4020         struct inode *inode = dentry->d_inode;
4021         int err = 0;
4022         struct btrfs_root *root = BTRFS_I(dir)->root;
4023         struct btrfs_trans_handle *trans;
4024
4025         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4026                 return -ENOTEMPTY;
4027         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4028                 return -EPERM;
4029
4030         trans = __unlink_start_trans(dir);
4031         if (IS_ERR(trans))
4032                 return PTR_ERR(trans);
4033
4034         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4035                 err = btrfs_unlink_subvol(trans, root, dir,
4036                                           BTRFS_I(inode)->location.objectid,
4037                                           dentry->d_name.name,
4038                                           dentry->d_name.len);
4039                 goto out;
4040         }
4041
4042         err = btrfs_orphan_add(trans, inode);
4043         if (err)
4044                 goto out;
4045
4046         /* now the directory is empty */
4047         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4048                                  dentry->d_name.name, dentry->d_name.len);
4049         if (!err)
4050                 btrfs_i_size_write(inode, 0);
4051 out:
4052         btrfs_end_transaction(trans, root);
4053         btrfs_btree_balance_dirty(root);
4054
4055         return err;
4056 }
4057
4058 /*
4059  * this can truncate away extent items, csum items and directory items.
4060  * It starts at a high offset and removes keys until it can't find
4061  * any higher than new_size
4062  *
4063  * csum items that cross the new i_size are truncated to the new size
4064  * as well.
4065  *
4066  * min_type is the minimum key type to truncate down to.  If set to 0, this
4067  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4068  */
4069 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4070                                struct btrfs_root *root,
4071                                struct inode *inode,
4072                                u64 new_size, u32 min_type)
4073 {
4074         struct btrfs_path *path;
4075         struct extent_buffer *leaf;
4076         struct btrfs_file_extent_item *fi;
4077         struct btrfs_key key;
4078         struct btrfs_key found_key;
4079         u64 extent_start = 0;
4080         u64 extent_num_bytes = 0;
4081         u64 extent_offset = 0;
4082         u64 item_end = 0;
4083         u64 last_size = (u64)-1;
4084         u32 found_type = (u8)-1;
4085         int found_extent;
4086         int del_item;
4087         int pending_del_nr = 0;
4088         int pending_del_slot = 0;
4089         int extent_type = -1;
4090         int ret;
4091         int err = 0;
4092         u64 ino = btrfs_ino(inode);
4093
4094         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4095
4096         path = btrfs_alloc_path();
4097         if (!path)
4098                 return -ENOMEM;
4099         path->reada = -1;
4100
4101         /*
4102          * We want to drop from the next block forward in case this new size is
4103          * not block aligned since we will be keeping the last block of the
4104          * extent just the way it is.
4105          */
4106         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4107             root == root->fs_info->tree_root)
4108                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4109                                         root->sectorsize), (u64)-1, 0);
4110
4111         /*
4112          * This function is also used to drop the items in the log tree before
4113          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4114          * it is used to drop the loged items. So we shouldn't kill the delayed
4115          * items.
4116          */
4117         if (min_type == 0 && root == BTRFS_I(inode)->root)
4118                 btrfs_kill_delayed_inode_items(inode);
4119
4120         key.objectid = ino;
4121         key.offset = (u64)-1;
4122         key.type = (u8)-1;
4123
4124 search_again:
4125         path->leave_spinning = 1;
4126         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4127         if (ret < 0) {
4128                 err = ret;
4129                 goto out;
4130         }
4131
4132         if (ret > 0) {
4133                 /* there are no items in the tree for us to truncate, we're
4134                  * done
4135                  */
4136                 if (path->slots[0] == 0)
4137                         goto out;
4138                 path->slots[0]--;
4139         }
4140
4141         while (1) {
4142                 fi = NULL;
4143                 leaf = path->nodes[0];
4144                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4145                 found_type = found_key.type;
4146
4147                 if (found_key.objectid != ino)
4148                         break;
4149
4150                 if (found_type < min_type)
4151                         break;
4152
4153                 item_end = found_key.offset;
4154                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4155                         fi = btrfs_item_ptr(leaf, path->slots[0],
4156                                             struct btrfs_file_extent_item);
4157                         extent_type = btrfs_file_extent_type(leaf, fi);
4158                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4159                                 item_end +=
4160                                     btrfs_file_extent_num_bytes(leaf, fi);
4161                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162                                 item_end += btrfs_file_extent_inline_len(leaf,
4163                                                          path->slots[0], fi);
4164                         }
4165                         item_end--;
4166                 }
4167                 if (found_type > min_type) {
4168                         del_item = 1;
4169                 } else {
4170                         if (item_end < new_size)
4171                                 break;
4172                         if (found_key.offset >= new_size)
4173                                 del_item = 1;
4174                         else
4175                                 del_item = 0;
4176                 }
4177                 found_extent = 0;
4178                 /* FIXME, shrink the extent if the ref count is only 1 */
4179                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4180                         goto delete;
4181
4182                 if (del_item)
4183                         last_size = found_key.offset;
4184                 else
4185                         last_size = new_size;
4186
4187                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4188                         u64 num_dec;
4189                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4190                         if (!del_item) {
4191                                 u64 orig_num_bytes =
4192                                         btrfs_file_extent_num_bytes(leaf, fi);
4193                                 extent_num_bytes = ALIGN(new_size -
4194                                                 found_key.offset,
4195                                                 root->sectorsize);
4196                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4197                                                          extent_num_bytes);
4198                                 num_dec = (orig_num_bytes -
4199                                            extent_num_bytes);
4200                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4201                                              &root->state) &&
4202                                     extent_start != 0)
4203                                         inode_sub_bytes(inode, num_dec);
4204                                 btrfs_mark_buffer_dirty(leaf);
4205                         } else {
4206                                 extent_num_bytes =
4207                                         btrfs_file_extent_disk_num_bytes(leaf,
4208                                                                          fi);
4209                                 extent_offset = found_key.offset -
4210                                         btrfs_file_extent_offset(leaf, fi);
4211
4212                                 /* FIXME blocksize != 4096 */
4213                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4214                                 if (extent_start != 0) {
4215                                         found_extent = 1;
4216                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4217                                                      &root->state))
4218                                                 inode_sub_bytes(inode, num_dec);
4219                                 }
4220                         }
4221                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4222                         /*
4223                          * we can't truncate inline items that have had
4224                          * special encodings
4225                          */
4226                         if (!del_item &&
4227                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4228                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4229                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4230                                 u32 size = new_size - found_key.offset;
4231
4232                                 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4233                                         inode_sub_bytes(inode, item_end + 1 -
4234                                                         new_size);
4235
4236                                 /*
4237                                  * update the ram bytes to properly reflect
4238                                  * the new size of our item
4239                                  */
4240                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4241                                 size =
4242                                     btrfs_file_extent_calc_inline_size(size);
4243                                 btrfs_truncate_item(root, path, size, 1);
4244                         } else if (test_bit(BTRFS_ROOT_REF_COWS,
4245                                             &root->state)) {
4246                                 inode_sub_bytes(inode, item_end + 1 -
4247                                                 found_key.offset);
4248                         }
4249                 }
4250 delete:
4251                 if (del_item) {
4252                         if (!pending_del_nr) {
4253                                 /* no pending yet, add ourselves */
4254                                 pending_del_slot = path->slots[0];
4255                                 pending_del_nr = 1;
4256                         } else if (pending_del_nr &&
4257                                    path->slots[0] + 1 == pending_del_slot) {
4258                                 /* hop on the pending chunk */
4259                                 pending_del_nr++;
4260                                 pending_del_slot = path->slots[0];
4261                         } else {
4262                                 BUG();
4263                         }
4264                 } else {
4265                         break;
4266                 }
4267                 if (found_extent &&
4268                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4269                      root == root->fs_info->tree_root)) {
4270                         btrfs_set_path_blocking(path);
4271                         ret = btrfs_free_extent(trans, root, extent_start,
4272                                                 extent_num_bytes, 0,
4273                                                 btrfs_header_owner(leaf),
4274                                                 ino, extent_offset, 0);
4275                         BUG_ON(ret);
4276                 }
4277
4278                 if (found_type == BTRFS_INODE_ITEM_KEY)
4279                         break;
4280
4281                 if (path->slots[0] == 0 ||
4282                     path->slots[0] != pending_del_slot) {
4283                         if (pending_del_nr) {
4284                                 ret = btrfs_del_items(trans, root, path,
4285                                                 pending_del_slot,
4286                                                 pending_del_nr);
4287                                 if (ret) {
4288                                         btrfs_abort_transaction(trans,
4289                                                                 root, ret);
4290                                         goto error;
4291                                 }
4292                                 pending_del_nr = 0;
4293                         }
4294                         btrfs_release_path(path);
4295                         goto search_again;
4296                 } else {
4297                         path->slots[0]--;
4298                 }
4299         }
4300 out:
4301         if (pending_del_nr) {
4302                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4303                                       pending_del_nr);
4304                 if (ret)
4305                         btrfs_abort_transaction(trans, root, ret);
4306         }
4307 error:
4308         if (last_size != (u64)-1 &&
4309             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4310                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4311         btrfs_free_path(path);
4312         return err;
4313 }
4314
4315 /*
4316  * btrfs_truncate_page - read, zero a chunk and write a page
4317  * @inode - inode that we're zeroing
4318  * @from - the offset to start zeroing
4319  * @len - the length to zero, 0 to zero the entire range respective to the
4320  *      offset
4321  * @front - zero up to the offset instead of from the offset on
4322  *
4323  * This will find the page for the "from" offset and cow the page and zero the
4324  * part we want to zero.  This is used with truncate and hole punching.
4325  */
4326 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4327                         int front)
4328 {
4329         struct address_space *mapping = inode->i_mapping;
4330         struct btrfs_root *root = BTRFS_I(inode)->root;
4331         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4332         struct btrfs_ordered_extent *ordered;
4333         struct extent_state *cached_state = NULL;
4334         char *kaddr;
4335         u32 blocksize = root->sectorsize;
4336         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4337         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4338         struct page *page;
4339         gfp_t mask = btrfs_alloc_write_mask(mapping);
4340         int ret = 0;
4341         u64 page_start;
4342         u64 page_end;
4343
4344         if ((offset & (blocksize - 1)) == 0 &&
4345             (!len || ((len & (blocksize - 1)) == 0)))
4346                 goto out;
4347         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4348         if (ret)
4349                 goto out;
4350
4351 again:
4352         page = find_or_create_page(mapping, index, mask);
4353         if (!page) {
4354                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4355                 ret = -ENOMEM;
4356                 goto out;
4357         }
4358
4359         page_start = page_offset(page);
4360         page_end = page_start + PAGE_CACHE_SIZE - 1;
4361
4362         if (!PageUptodate(page)) {
4363                 ret = btrfs_readpage(NULL, page);
4364                 lock_page(page);
4365                 if (page->mapping != mapping) {
4366                         unlock_page(page);
4367                         page_cache_release(page);
4368                         goto again;
4369                 }
4370                 if (!PageUptodate(page)) {
4371                         ret = -EIO;
4372                         goto out_unlock;
4373                 }
4374         }
4375         wait_on_page_writeback(page);
4376
4377         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4378         set_page_extent_mapped(page);
4379
4380         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4381         if (ordered) {
4382                 unlock_extent_cached(io_tree, page_start, page_end,
4383                                      &cached_state, GFP_NOFS);
4384                 unlock_page(page);
4385                 page_cache_release(page);
4386                 btrfs_start_ordered_extent(inode, ordered, 1);
4387                 btrfs_put_ordered_extent(ordered);
4388                 goto again;
4389         }
4390
4391         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4392                           EXTENT_DIRTY | EXTENT_DELALLOC |
4393                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4394                           0, 0, &cached_state, GFP_NOFS);
4395
4396         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4397                                         &cached_state);
4398         if (ret) {
4399                 unlock_extent_cached(io_tree, page_start, page_end,
4400                                      &cached_state, GFP_NOFS);
4401                 goto out_unlock;
4402         }
4403
4404         if (offset != PAGE_CACHE_SIZE) {
4405                 if (!len)
4406                         len = PAGE_CACHE_SIZE - offset;
4407                 kaddr = kmap(page);
4408                 if (front)
4409                         memset(kaddr, 0, offset);
4410                 else
4411                         memset(kaddr + offset, 0, len);
4412                 flush_dcache_page(page);
4413                 kunmap(page);
4414         }
4415         ClearPageChecked(page);
4416         set_page_dirty(page);
4417         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4418                              GFP_NOFS);
4419
4420 out_unlock:
4421         if (ret)
4422                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4423         unlock_page(page);
4424         page_cache_release(page);
4425 out:
4426         return ret;
4427 }
4428
4429 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4430                              u64 offset, u64 len)
4431 {
4432         struct btrfs_trans_handle *trans;
4433         int ret;
4434
4435         /*
4436          * Still need to make sure the inode looks like it's been updated so
4437          * that any holes get logged if we fsync.
4438          */
4439         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4440                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4441                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4442                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4443                 return 0;
4444         }
4445
4446         /*
4447          * 1 - for the one we're dropping
4448          * 1 - for the one we're adding
4449          * 1 - for updating the inode.
4450          */
4451         trans = btrfs_start_transaction(root, 3);
4452         if (IS_ERR(trans))
4453                 return PTR_ERR(trans);
4454
4455         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4456         if (ret) {
4457                 btrfs_abort_transaction(trans, root, ret);
4458                 btrfs_end_transaction(trans, root);
4459                 return ret;
4460         }
4461
4462         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4463                                        0, 0, len, 0, len, 0, 0, 0);
4464         if (ret)
4465                 btrfs_abort_transaction(trans, root, ret);
4466         else
4467                 btrfs_update_inode(trans, root, inode);
4468         btrfs_end_transaction(trans, root);
4469         return ret;
4470 }
4471
4472 /*
4473  * This function puts in dummy file extents for the area we're creating a hole
4474  * for.  So if we are truncating this file to a larger size we need to insert
4475  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4476  * the range between oldsize and size
4477  */
4478 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4479 {
4480         struct btrfs_root *root = BTRFS_I(inode)->root;
4481         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4482         struct extent_map *em = NULL;
4483         struct extent_state *cached_state = NULL;
4484         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4485         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4486         u64 block_end = ALIGN(size, root->sectorsize);
4487         u64 last_byte;
4488         u64 cur_offset;
4489         u64 hole_size;
4490         int err = 0;
4491
4492         /*
4493          * If our size started in the middle of a page we need to zero out the
4494          * rest of the page before we expand the i_size, otherwise we could
4495          * expose stale data.
4496          */
4497         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4498         if (err)
4499                 return err;
4500
4501         if (size <= hole_start)
4502                 return 0;
4503
4504         while (1) {
4505                 struct btrfs_ordered_extent *ordered;
4506
4507                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4508                                  &cached_state);
4509                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4510                                                      block_end - hole_start);
4511                 if (!ordered)
4512                         break;
4513                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4514                                      &cached_state, GFP_NOFS);
4515                 btrfs_start_ordered_extent(inode, ordered, 1);
4516                 btrfs_put_ordered_extent(ordered);
4517         }
4518
4519         cur_offset = hole_start;
4520         while (1) {
4521                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4522                                 block_end - cur_offset, 0);
4523                 if (IS_ERR(em)) {
4524                         err = PTR_ERR(em);
4525                         em = NULL;
4526                         break;
4527                 }
4528                 last_byte = min(extent_map_end(em), block_end);
4529                 last_byte = ALIGN(last_byte , root->sectorsize);
4530                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4531                         struct extent_map *hole_em;
4532                         hole_size = last_byte - cur_offset;
4533
4534                         err = maybe_insert_hole(root, inode, cur_offset,
4535                                                 hole_size);
4536                         if (err)
4537                                 break;
4538                         btrfs_drop_extent_cache(inode, cur_offset,
4539                                                 cur_offset + hole_size - 1, 0);
4540                         hole_em = alloc_extent_map();
4541                         if (!hole_em) {
4542                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543                                         &BTRFS_I(inode)->runtime_flags);
4544                                 goto next;
4545                         }
4546                         hole_em->start = cur_offset;
4547                         hole_em->len = hole_size;
4548                         hole_em->orig_start = cur_offset;
4549
4550                         hole_em->block_start = EXTENT_MAP_HOLE;
4551                         hole_em->block_len = 0;
4552                         hole_em->orig_block_len = 0;
4553                         hole_em->ram_bytes = hole_size;
4554                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4555                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4556                         hole_em->generation = root->fs_info->generation;
4557
4558                         while (1) {
4559                                 write_lock(&em_tree->lock);
4560                                 err = add_extent_mapping(em_tree, hole_em, 1);
4561                                 write_unlock(&em_tree->lock);
4562                                 if (err != -EEXIST)
4563                                         break;
4564                                 btrfs_drop_extent_cache(inode, cur_offset,
4565                                                         cur_offset +
4566                                                         hole_size - 1, 0);
4567                         }
4568                         free_extent_map(hole_em);
4569                 }
4570 next:
4571                 free_extent_map(em);
4572                 em = NULL;
4573                 cur_offset = last_byte;
4574                 if (cur_offset >= block_end)
4575                         break;
4576         }
4577         free_extent_map(em);
4578         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4579                              GFP_NOFS);
4580         return err;
4581 }
4582
4583 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4584 {
4585         struct btrfs_root *root = BTRFS_I(inode)->root;
4586         struct btrfs_trans_handle *trans;
4587         loff_t oldsize = i_size_read(inode);
4588         loff_t newsize = attr->ia_size;
4589         int mask = attr->ia_valid;
4590         int ret;
4591
4592         /*
4593          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4594          * special case where we need to update the times despite not having
4595          * these flags set.  For all other operations the VFS set these flags
4596          * explicitly if it wants a timestamp update.
4597          */
4598         if (newsize != oldsize) {
4599                 inode_inc_iversion(inode);
4600                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4601                         inode->i_ctime = inode->i_mtime =
4602                                 current_fs_time(inode->i_sb);
4603         }
4604
4605         if (newsize > oldsize) {
4606                 truncate_pagecache(inode, newsize);
4607                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4608                 if (ret)
4609                         return ret;
4610
4611                 trans = btrfs_start_transaction(root, 1);
4612                 if (IS_ERR(trans))
4613                         return PTR_ERR(trans);
4614
4615                 i_size_write(inode, newsize);
4616                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4617                 ret = btrfs_update_inode(trans, root, inode);
4618                 btrfs_end_transaction(trans, root);
4619         } else {
4620
4621                 /*
4622                  * We're truncating a file that used to have good data down to
4623                  * zero. Make sure it gets into the ordered flush list so that
4624                  * any new writes get down to disk quickly.
4625                  */
4626                 if (newsize == 0)
4627                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4628                                 &BTRFS_I(inode)->runtime_flags);
4629
4630                 /*
4631                  * 1 for the orphan item we're going to add
4632                  * 1 for the orphan item deletion.
4633                  */
4634                 trans = btrfs_start_transaction(root, 2);
4635                 if (IS_ERR(trans))
4636                         return PTR_ERR(trans);
4637
4638                 /*
4639                  * We need to do this in case we fail at _any_ point during the
4640                  * actual truncate.  Once we do the truncate_setsize we could
4641                  * invalidate pages which forces any outstanding ordered io to
4642                  * be instantly completed which will give us extents that need
4643                  * to be truncated.  If we fail to get an orphan inode down we
4644                  * could have left over extents that were never meant to live,
4645                  * so we need to garuntee from this point on that everything
4646                  * will be consistent.
4647                  */
4648                 ret = btrfs_orphan_add(trans, inode);
4649                 btrfs_end_transaction(trans, root);
4650                 if (ret)
4651                         return ret;
4652
4653                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4654                 truncate_setsize(inode, newsize);
4655
4656                 /* Disable nonlocked read DIO to avoid the end less truncate */
4657                 btrfs_inode_block_unlocked_dio(inode);
4658                 inode_dio_wait(inode);
4659                 btrfs_inode_resume_unlocked_dio(inode);
4660
4661                 ret = btrfs_truncate(inode);
4662                 if (ret && inode->i_nlink) {
4663                         int err;
4664
4665                         /*
4666                          * failed to truncate, disk_i_size is only adjusted down
4667                          * as we remove extents, so it should represent the true
4668                          * size of the inode, so reset the in memory size and
4669                          * delete our orphan entry.
4670                          */
4671                         trans = btrfs_join_transaction(root);
4672                         if (IS_ERR(trans)) {
4673                                 btrfs_orphan_del(NULL, inode);
4674                                 return ret;
4675                         }
4676                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4677                         err = btrfs_orphan_del(trans, inode);
4678                         if (err)
4679                                 btrfs_abort_transaction(trans, root, err);
4680                         btrfs_end_transaction(trans, root);
4681                 }
4682         }
4683
4684         return ret;
4685 }
4686
4687 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4688 {
4689         struct inode *inode = dentry->d_inode;
4690         struct btrfs_root *root = BTRFS_I(inode)->root;
4691         int err;
4692
4693         if (btrfs_root_readonly(root))
4694                 return -EROFS;
4695
4696         err = inode_change_ok(inode, attr);
4697         if (err)
4698                 return err;
4699
4700         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4701                 err = btrfs_setsize(inode, attr);
4702                 if (err)
4703                         return err;
4704         }
4705
4706         if (attr->ia_valid) {
4707                 setattr_copy(inode, attr);
4708                 inode_inc_iversion(inode);
4709                 err = btrfs_dirty_inode(inode);
4710
4711                 if (!err && attr->ia_valid & ATTR_MODE)
4712                         err = posix_acl_chmod(inode, inode->i_mode);
4713         }
4714
4715         return err;
4716 }
4717
4718 /*
4719  * While truncating the inode pages during eviction, we get the VFS calling
4720  * btrfs_invalidatepage() against each page of the inode. This is slow because
4721  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4722  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4723  * extent_state structures over and over, wasting lots of time.
4724  *
4725  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4726  * those expensive operations on a per page basis and do only the ordered io
4727  * finishing, while we release here the extent_map and extent_state structures,
4728  * without the excessive merging and splitting.
4729  */
4730 static void evict_inode_truncate_pages(struct inode *inode)
4731 {
4732         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4734         struct rb_node *node;
4735
4736         ASSERT(inode->i_state & I_FREEING);
4737         truncate_inode_pages_final(&inode->i_data);
4738
4739         write_lock(&map_tree->lock);
4740         while (!RB_EMPTY_ROOT(&map_tree->map)) {
4741                 struct extent_map *em;
4742
4743                 node = rb_first(&map_tree->map);
4744                 em = rb_entry(node, struct extent_map, rb_node);
4745                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4746                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4747                 remove_extent_mapping(map_tree, em);
4748                 free_extent_map(em);
4749                 if (need_resched()) {
4750                         write_unlock(&map_tree->lock);
4751                         cond_resched();
4752                         write_lock(&map_tree->lock);
4753                 }
4754         }
4755         write_unlock(&map_tree->lock);
4756
4757         spin_lock(&io_tree->lock);
4758         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4759                 struct extent_state *state;
4760                 struct extent_state *cached_state = NULL;
4761
4762                 node = rb_first(&io_tree->state);
4763                 state = rb_entry(node, struct extent_state, rb_node);
4764                 atomic_inc(&state->refs);
4765                 spin_unlock(&io_tree->lock);
4766
4767                 lock_extent_bits(io_tree, state->start, state->end,
4768                                  0, &cached_state);
4769                 clear_extent_bit(io_tree, state->start, state->end,
4770                                  EXTENT_LOCKED | EXTENT_DIRTY |
4771                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4772                                  EXTENT_DEFRAG, 1, 1,
4773                                  &cached_state, GFP_NOFS);
4774                 free_extent_state(state);
4775
4776                 cond_resched();
4777                 spin_lock(&io_tree->lock);
4778         }
4779         spin_unlock(&io_tree->lock);
4780 }
4781
4782 void btrfs_evict_inode(struct inode *inode)
4783 {
4784         struct btrfs_trans_handle *trans;
4785         struct btrfs_root *root = BTRFS_I(inode)->root;
4786         struct btrfs_block_rsv *rsv, *global_rsv;
4787         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4788         int ret;
4789
4790         trace_btrfs_inode_evict(inode);
4791
4792         evict_inode_truncate_pages(inode);
4793
4794         if (inode->i_nlink &&
4795             ((btrfs_root_refs(&root->root_item) != 0 &&
4796               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4797              btrfs_is_free_space_inode(inode)))
4798                 goto no_delete;
4799
4800         if (is_bad_inode(inode)) {
4801                 btrfs_orphan_del(NULL, inode);
4802                 goto no_delete;
4803         }
4804         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4805         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4806
4807         btrfs_free_io_failure_record(inode, 0, (u64)-1);
4808
4809         if (root->fs_info->log_root_recovering) {
4810                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4811                                  &BTRFS_I(inode)->runtime_flags));
4812                 goto no_delete;
4813         }
4814
4815         if (inode->i_nlink > 0) {
4816                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4817                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4818                 goto no_delete;
4819         }
4820
4821         ret = btrfs_commit_inode_delayed_inode(inode);
4822         if (ret) {
4823                 btrfs_orphan_del(NULL, inode);
4824                 goto no_delete;
4825         }
4826
4827         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4828         if (!rsv) {
4829                 btrfs_orphan_del(NULL, inode);
4830                 goto no_delete;
4831         }
4832         rsv->size = min_size;
4833         rsv->failfast = 1;
4834         global_rsv = &root->fs_info->global_block_rsv;
4835
4836         btrfs_i_size_write(inode, 0);
4837
4838         /*
4839          * This is a bit simpler than btrfs_truncate since we've already
4840          * reserved our space for our orphan item in the unlink, so we just
4841          * need to reserve some slack space in case we add bytes and update
4842          * inode item when doing the truncate.
4843          */
4844         while (1) {
4845                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4846                                              BTRFS_RESERVE_FLUSH_LIMIT);
4847
4848                 /*
4849                  * Try and steal from the global reserve since we will
4850                  * likely not use this space anyway, we want to try as
4851                  * hard as possible to get this to work.
4852                  */
4853                 if (ret)
4854                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4855
4856                 if (ret) {
4857                         btrfs_warn(root->fs_info,
4858                                 "Could not get space for a delete, will truncate on mount %d",
4859                                 ret);
4860                         btrfs_orphan_del(NULL, inode);
4861                         btrfs_free_block_rsv(root, rsv);
4862                         goto no_delete;
4863                 }
4864
4865                 trans = btrfs_join_transaction(root);
4866                 if (IS_ERR(trans)) {
4867                         btrfs_orphan_del(NULL, inode);
4868                         btrfs_free_block_rsv(root, rsv);
4869                         goto no_delete;
4870                 }
4871
4872                 trans->block_rsv = rsv;
4873
4874                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4875                 if (ret != -ENOSPC)
4876                         break;
4877
4878                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4879                 btrfs_end_transaction(trans, root);
4880                 trans = NULL;
4881                 btrfs_btree_balance_dirty(root);
4882         }
4883
4884         btrfs_free_block_rsv(root, rsv);
4885
4886         /*
4887          * Errors here aren't a big deal, it just means we leave orphan items
4888          * in the tree.  They will be cleaned up on the next mount.
4889          */
4890         if (ret == 0) {
4891                 trans->block_rsv = root->orphan_block_rsv;
4892                 btrfs_orphan_del(trans, inode);
4893         } else {
4894                 btrfs_orphan_del(NULL, inode);
4895         }
4896
4897         trans->block_rsv = &root->fs_info->trans_block_rsv;
4898         if (!(root == root->fs_info->tree_root ||
4899               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4900                 btrfs_return_ino(root, btrfs_ino(inode));
4901
4902         btrfs_end_transaction(trans, root);
4903         btrfs_btree_balance_dirty(root);
4904 no_delete:
4905         btrfs_remove_delayed_node(inode);
4906         clear_inode(inode);
4907         return;
4908 }
4909
4910 /*
4911  * this returns the key found in the dir entry in the location pointer.
4912  * If no dir entries were found, location->objectid is 0.
4913  */
4914 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4915                                struct btrfs_key *location)
4916 {
4917         const char *name = dentry->d_name.name;
4918         int namelen = dentry->d_name.len;
4919         struct btrfs_dir_item *di;
4920         struct btrfs_path *path;
4921         struct btrfs_root *root = BTRFS_I(dir)->root;
4922         int ret = 0;
4923
4924         path = btrfs_alloc_path();
4925         if (!path)
4926                 return -ENOMEM;
4927
4928         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4929                                     namelen, 0);
4930         if (IS_ERR(di))
4931                 ret = PTR_ERR(di);
4932
4933         if (IS_ERR_OR_NULL(di))
4934                 goto out_err;
4935
4936         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4937 out:
4938         btrfs_free_path(path);
4939         return ret;
4940 out_err:
4941         location->objectid = 0;
4942         goto out;
4943 }
4944
4945 /*
4946  * when we hit a tree root in a directory, the btrfs part of the inode
4947  * needs to be changed to reflect the root directory of the tree root.  This
4948  * is kind of like crossing a mount point.
4949  */
4950 static int fixup_tree_root_location(struct btrfs_root *root,
4951                                     struct inode *dir,
4952                                     struct dentry *dentry,
4953                                     struct btrfs_key *location,
4954                                     struct btrfs_root **sub_root)
4955 {
4956         struct btrfs_path *path;
4957         struct btrfs_root *new_root;
4958         struct btrfs_root_ref *ref;
4959         struct extent_buffer *leaf;
4960         int ret;
4961         int err = 0;
4962
4963         path = btrfs_alloc_path();
4964         if (!path) {
4965                 err = -ENOMEM;
4966                 goto out;
4967         }
4968
4969         err = -ENOENT;
4970         ret = btrfs_find_item(root->fs_info->tree_root, path,
4971                                 BTRFS_I(dir)->root->root_key.objectid,
4972                                 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4973         if (ret) {
4974                 if (ret < 0)
4975                         err = ret;
4976                 goto out;
4977         }
4978
4979         leaf = path->nodes[0];
4980         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4981         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4982             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4983                 goto out;
4984
4985         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4986                                    (unsigned long)(ref + 1),
4987                                    dentry->d_name.len);
4988         if (ret)
4989                 goto out;
4990
4991         btrfs_release_path(path);
4992
4993         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4994         if (IS_ERR(new_root)) {
4995                 err = PTR_ERR(new_root);
4996                 goto out;
4997         }
4998
4999         *sub_root = new_root;
5000         location->objectid = btrfs_root_dirid(&new_root->root_item);
5001         location->type = BTRFS_INODE_ITEM_KEY;
5002         location->offset = 0;
5003         err = 0;
5004 out:
5005         btrfs_free_path(path);
5006         return err;
5007 }
5008
5009 static void inode_tree_add(struct inode *inode)
5010 {
5011         struct btrfs_root *root = BTRFS_I(inode)->root;
5012         struct btrfs_inode *entry;
5013         struct rb_node **p;
5014         struct rb_node *parent;
5015         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5016         u64 ino = btrfs_ino(inode);
5017
5018         if (inode_unhashed(inode))
5019                 return;
5020         parent = NULL;
5021         spin_lock(&root->inode_lock);
5022         p = &root->inode_tree.rb_node;
5023         while (*p) {
5024                 parent = *p;
5025                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5026
5027                 if (ino < btrfs_ino(&entry->vfs_inode))
5028                         p = &parent->rb_left;
5029                 else if (ino > btrfs_ino(&entry->vfs_inode))
5030                         p = &parent->rb_right;
5031                 else {
5032                         WARN_ON(!(entry->vfs_inode.i_state &
5033                                   (I_WILL_FREE | I_FREEING)));
5034                         rb_replace_node(parent, new, &root->inode_tree);
5035                         RB_CLEAR_NODE(parent);
5036                         spin_unlock(&root->inode_lock);
5037                         return;
5038                 }
5039         }
5040         rb_link_node(new, parent, p);
5041         rb_insert_color(new, &root->inode_tree);
5042         spin_unlock(&root->inode_lock);
5043 }
5044
5045 static void inode_tree_del(struct inode *inode)
5046 {
5047         struct btrfs_root *root = BTRFS_I(inode)->root;
5048         int empty = 0;
5049
5050         spin_lock(&root->inode_lock);
5051         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5052                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5053                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5054                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5055         }
5056         spin_unlock(&root->inode_lock);
5057
5058         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5059                 synchronize_srcu(&root->fs_info->subvol_srcu);
5060                 spin_lock(&root->inode_lock);
5061                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5062                 spin_unlock(&root->inode_lock);
5063                 if (empty)
5064                         btrfs_add_dead_root(root);
5065         }
5066 }
5067
5068 void btrfs_invalidate_inodes(struct btrfs_root *root)
5069 {
5070         struct rb_node *node;
5071         struct rb_node *prev;
5072         struct btrfs_inode *entry;
5073         struct inode *inode;
5074         u64 objectid = 0;
5075
5076         if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5077                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5078
5079         spin_lock(&root->inode_lock);
5080 again:
5081         node = root->inode_tree.rb_node;
5082         prev = NULL;
5083         while (node) {
5084                 prev = node;
5085                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5086
5087                 if (objectid < btrfs_ino(&entry->vfs_inode))
5088                         node = node->rb_left;
5089                 else if (objectid > btrfs_ino(&entry->vfs_inode))
5090                         node = node->rb_right;
5091                 else
5092                         break;
5093         }
5094         if (!node) {
5095                 while (prev) {
5096                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
5097                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5098                                 node = prev;
5099                                 break;
5100                         }
5101                         prev = rb_next(prev);
5102                 }
5103         }
5104         while (node) {
5105                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5106                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5107                 inode = igrab(&entry->vfs_inode);
5108                 if (inode) {
5109                         spin_unlock(&root->inode_lock);
5110                         if (atomic_read(&inode->i_count) > 1)
5111                                 d_prune_aliases(inode);
5112                         /*
5113                          * btrfs_drop_inode will have it removed from
5114                          * the inode cache when its usage count
5115                          * hits zero.
5116                          */
5117                         iput(inode);
5118                         cond_resched();
5119                         spin_lock(&root->inode_lock);
5120                         goto again;
5121                 }
5122
5123                 if (cond_resched_lock(&root->inode_lock))
5124                         goto again;
5125
5126                 node = rb_next(node);
5127         }
5128         spin_unlock(&root->inode_lock);
5129 }
5130
5131 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5132 {
5133         struct btrfs_iget_args *args = p;
5134         inode->i_ino = args->location->objectid;
5135         memcpy(&BTRFS_I(inode)->location, args->location,
5136                sizeof(*args->location));
5137         BTRFS_I(inode)->root = args->root;
5138         return 0;
5139 }
5140
5141 static int btrfs_find_actor(struct inode *inode, void *opaque)
5142 {
5143         struct btrfs_iget_args *args = opaque;
5144         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5145                 args->root == BTRFS_I(inode)->root;
5146 }
5147
5148 static struct inode *btrfs_iget_locked(struct super_block *s,
5149                                        struct btrfs_key *location,
5150                                        struct btrfs_root *root)
5151 {
5152         struct inode *inode;
5153         struct btrfs_iget_args args;
5154         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5155
5156         args.location = location;
5157         args.root = root;
5158
5159         inode = iget5_locked(s, hashval, btrfs_find_actor,
5160                              btrfs_init_locked_inode,
5161                              (void *)&args);
5162         return inode;
5163 }
5164
5165 /* Get an inode object given its location and corresponding root.
5166  * Returns in *is_new if the inode was read from disk
5167  */
5168 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5169                          struct btrfs_root *root, int *new)
5170 {
5171         struct inode *inode;
5172
5173         inode = btrfs_iget_locked(s, location, root);
5174         if (!inode)
5175                 return ERR_PTR(-ENOMEM);
5176
5177         if (inode->i_state & I_NEW) {
5178                 btrfs_read_locked_inode(inode);
5179                 if (!is_bad_inode(inode)) {
5180                         inode_tree_add(inode);
5181                         unlock_new_inode(inode);
5182                         if (new)
5183                                 *new = 1;
5184                 } else {
5185                         unlock_new_inode(inode);
5186                         iput(inode);
5187                         inode = ERR_PTR(-ESTALE);
5188                 }
5189         }
5190
5191         return inode;
5192 }
5193
5194 static struct inode *new_simple_dir(struct super_block *s,
5195                                     struct btrfs_key *key,
5196                                     struct btrfs_root *root)
5197 {
5198         struct inode *inode = new_inode(s);
5199
5200         if (!inode)
5201                 return ERR_PTR(-ENOMEM);
5202
5203         BTRFS_I(inode)->root = root;
5204         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5205         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5206
5207         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5208         inode->i_op = &btrfs_dir_ro_inode_operations;
5209         inode->i_fop = &simple_dir_operations;
5210         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5211         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5212
5213         return inode;
5214 }
5215
5216 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5217 {
5218         struct inode *inode;
5219         struct btrfs_root *root = BTRFS_I(dir)->root;
5220         struct btrfs_root *sub_root = root;
5221         struct btrfs_key location;
5222         int index;
5223         int ret = 0;
5224
5225         if (dentry->d_name.len > BTRFS_NAME_LEN)
5226                 return ERR_PTR(-ENAMETOOLONG);
5227
5228         ret = btrfs_inode_by_name(dir, dentry, &location);
5229         if (ret < 0)
5230                 return ERR_PTR(ret);
5231
5232         if (location.objectid == 0)
5233                 return ERR_PTR(-ENOENT);
5234
5235         if (location.type == BTRFS_INODE_ITEM_KEY) {
5236                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5237                 return inode;
5238         }
5239
5240         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5241
5242         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5243         ret = fixup_tree_root_location(root, dir, dentry,
5244                                        &location, &sub_root);
5245         if (ret < 0) {
5246                 if (ret != -ENOENT)
5247                         inode = ERR_PTR(ret);
5248                 else
5249                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5250         } else {
5251                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5252         }
5253         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5254
5255         if (!IS_ERR(inode) && root != sub_root) {
5256                 down_read(&root->fs_info->cleanup_work_sem);
5257                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5258                         ret = btrfs_orphan_cleanup(sub_root);
5259                 up_read(&root->fs_info->cleanup_work_sem);
5260                 if (ret) {
5261                         iput(inode);
5262                         inode = ERR_PTR(ret);
5263                 }
5264                 /*
5265                  * If orphan cleanup did remove any orphans, it means the tree
5266                  * was modified and therefore the commit root is not the same as
5267                  * the current root anymore. This is a problem, because send
5268                  * uses the commit root and therefore can see inode items that
5269                  * don't exist in the current root anymore, and for example make
5270                  * calls to btrfs_iget, which will do tree lookups based on the
5271                  * current root and not on the commit root. Those lookups will
5272                  * fail, returning a -ESTALE error, and making send fail with
5273                  * that error. So make sure a send does not see any orphans we
5274                  * have just removed, and that it will see the same inodes
5275                  * regardless of whether a transaction commit happened before
5276                  * it started (meaning that the commit root will be the same as
5277                  * the current root) or not.
5278                  */
5279                 if (sub_root->node != sub_root->commit_root) {
5280                         u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5281
5282                         if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5283                                 struct extent_buffer *eb;
5284
5285                                 /*
5286                                  * Assert we can't have races between dentry
5287                                  * lookup called through the snapshot creation
5288                                  * ioctl and the VFS.
5289                                  */
5290                                 ASSERT(mutex_is_locked(&dir->i_mutex));
5291
5292                                 down_write(&root->fs_info->commit_root_sem);
5293                                 eb = sub_root->commit_root;
5294                                 sub_root->commit_root =
5295                                         btrfs_root_node(sub_root);
5296                                 up_write(&root->fs_info->commit_root_sem);
5297                                 free_extent_buffer(eb);
5298                         }
5299                 }
5300         }
5301
5302         return inode;
5303 }
5304
5305 static int btrfs_dentry_delete(const struct dentry *dentry)
5306 {
5307         struct btrfs_root *root;
5308         struct inode *inode = dentry->d_inode;
5309
5310         if (!inode && !IS_ROOT(dentry))
5311                 inode = dentry->d_parent->d_inode;
5312
5313         if (inode) {
5314                 root = BTRFS_I(inode)->root;
5315                 if (btrfs_root_refs(&root->root_item) == 0)
5316                         return 1;
5317
5318                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5319                         return 1;
5320         }
5321         return 0;
5322 }
5323
5324 static void btrfs_dentry_release(struct dentry *dentry)
5325 {
5326         kfree(dentry->d_fsdata);
5327 }
5328
5329 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5330                                    unsigned int flags)
5331 {
5332         struct inode *inode;
5333
5334         inode = btrfs_lookup_dentry(dir, dentry);
5335         if (IS_ERR(inode)) {
5336                 if (PTR_ERR(inode) == -ENOENT)
5337                         inode = NULL;
5338                 else
5339                         return ERR_CAST(inode);
5340         }
5341
5342         return d_materialise_unique(dentry, inode);
5343 }
5344
5345 unsigned char btrfs_filetype_table[] = {
5346         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5347 };
5348
5349 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5350 {
5351         struct inode *inode = file_inode(file);
5352         struct btrfs_root *root = BTRFS_I(inode)->root;
5353         struct btrfs_item *item;
5354         struct btrfs_dir_item *di;
5355         struct btrfs_key key;
5356         struct btrfs_key found_key;
5357         struct btrfs_path *path;
5358         struct list_head ins_list;
5359         struct list_head del_list;
5360         int ret;
5361         struct extent_buffer *leaf;
5362         int slot;
5363         unsigned char d_type;
5364         int over = 0;
5365         u32 di_cur;
5366         u32 di_total;
5367         u32 di_len;
5368         int key_type = BTRFS_DIR_INDEX_KEY;
5369         char tmp_name[32];
5370         char *name_ptr;
5371         int name_len;
5372         int is_curr = 0;        /* ctx->pos points to the current index? */
5373
5374         /* FIXME, use a real flag for deciding about the key type */
5375         if (root->fs_info->tree_root == root)
5376                 key_type = BTRFS_DIR_ITEM_KEY;
5377
5378         if (!dir_emit_dots(file, ctx))
5379                 return 0;
5380
5381         path = btrfs_alloc_path();
5382         if (!path)
5383                 return -ENOMEM;
5384
5385         path->reada = 1;
5386
5387         if (key_type == BTRFS_DIR_INDEX_KEY) {
5388                 INIT_LIST_HEAD(&ins_list);
5389                 INIT_LIST_HEAD(&del_list);
5390                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5391         }
5392
5393         key.type = key_type;
5394         key.offset = ctx->pos;
5395         key.objectid = btrfs_ino(inode);
5396
5397         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5398         if (ret < 0)
5399                 goto err;
5400
5401         while (1) {
5402                 leaf = path->nodes[0];
5403                 slot = path->slots[0];
5404                 if (slot >= btrfs_header_nritems(leaf)) {
5405                         ret = btrfs_next_leaf(root, path);
5406                         if (ret < 0)
5407                                 goto err;
5408                         else if (ret > 0)
5409                                 break;
5410                         continue;
5411                 }
5412
5413                 item = btrfs_item_nr(slot);
5414                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5415
5416                 if (found_key.objectid != key.objectid)
5417                         break;
5418                 if (found_key.type != key_type)
5419                         break;
5420                 if (found_key.offset < ctx->pos)
5421                         goto next;
5422                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5423                     btrfs_should_delete_dir_index(&del_list,
5424                                                   found_key.offset))
5425                         goto next;
5426
5427                 ctx->pos = found_key.offset;
5428                 is_curr = 1;
5429
5430                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5431                 di_cur = 0;
5432                 di_total = btrfs_item_size(leaf, item);
5433
5434                 while (di_cur < di_total) {
5435                         struct btrfs_key location;
5436
5437                         if (verify_dir_item(root, leaf, di))
5438                                 break;
5439
5440                         name_len = btrfs_dir_name_len(leaf, di);
5441                         if (name_len <= sizeof(tmp_name)) {
5442                                 name_ptr = tmp_name;
5443                         } else {
5444                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5445                                 if (!name_ptr) {
5446                                         ret = -ENOMEM;
5447                                         goto err;
5448                                 }
5449                         }
5450                         read_extent_buffer(leaf, name_ptr,
5451                                            (unsigned long)(di + 1), name_len);
5452
5453                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5454                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5455
5456
5457                         /* is this a reference to our own snapshot? If so
5458                          * skip it.
5459                          *
5460                          * In contrast to old kernels, we insert the snapshot's
5461                          * dir item and dir index after it has been created, so
5462                          * we won't find a reference to our own snapshot. We
5463                          * still keep the following code for backward
5464                          * compatibility.
5465                          */
5466                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5467                             location.objectid == root->root_key.objectid) {
5468                                 over = 0;
5469                                 goto skip;
5470                         }
5471                         over = !dir_emit(ctx, name_ptr, name_len,
5472                                        location.objectid, d_type);
5473
5474 skip:
5475                         if (name_ptr != tmp_name)
5476                                 kfree(name_ptr);
5477
5478                         if (over)
5479                                 goto nopos;
5480                         di_len = btrfs_dir_name_len(leaf, di) +
5481                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5482                         di_cur += di_len;
5483                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5484                 }
5485 next:
5486                 path->slots[0]++;
5487         }
5488
5489         if (key_type == BTRFS_DIR_INDEX_KEY) {
5490                 if (is_curr)
5491                         ctx->pos++;
5492                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5493                 if (ret)
5494                         goto nopos;
5495         }
5496
5497         /* Reached end of directory/root. Bump pos past the last item. */
5498         ctx->pos++;
5499
5500         /*
5501          * Stop new entries from being returned after we return the last
5502          * entry.
5503          *
5504          * New directory entries are assigned a strictly increasing
5505          * offset.  This means that new entries created during readdir
5506          * are *guaranteed* to be seen in the future by that readdir.
5507          * This has broken buggy programs which operate on names as
5508          * they're returned by readdir.  Until we re-use freed offsets
5509          * we have this hack to stop new entries from being returned
5510          * under the assumption that they'll never reach this huge
5511          * offset.
5512          *
5513          * This is being careful not to overflow 32bit loff_t unless the
5514          * last entry requires it because doing so has broken 32bit apps
5515          * in the past.
5516          */
5517         if (key_type == BTRFS_DIR_INDEX_KEY) {
5518                 if (ctx->pos >= INT_MAX)
5519                         ctx->pos = LLONG_MAX;
5520                 else
5521                         ctx->pos = INT_MAX;
5522         }
5523 nopos:
5524         ret = 0;
5525 err:
5526         if (key_type == BTRFS_DIR_INDEX_KEY)
5527                 btrfs_put_delayed_items(&ins_list, &del_list);
5528         btrfs_free_path(path);
5529         return ret;
5530 }
5531
5532 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5533 {
5534         struct btrfs_root *root = BTRFS_I(inode)->root;
5535         struct btrfs_trans_handle *trans;
5536         int ret = 0;
5537         bool nolock = false;
5538
5539         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5540                 return 0;
5541
5542         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5543                 nolock = true;
5544
5545         if (wbc->sync_mode == WB_SYNC_ALL) {
5546                 if (nolock)
5547                         trans = btrfs_join_transaction_nolock(root);
5548                 else
5549                         trans = btrfs_join_transaction(root);
5550                 if (IS_ERR(trans))
5551                         return PTR_ERR(trans);
5552                 ret = btrfs_commit_transaction(trans, root);
5553         }
5554         return ret;
5555 }
5556
5557 /*
5558  * This is somewhat expensive, updating the tree every time the
5559  * inode changes.  But, it is most likely to find the inode in cache.
5560  * FIXME, needs more benchmarking...there are no reasons other than performance
5561  * to keep or drop this code.
5562  */
5563 static int btrfs_dirty_inode(struct inode *inode)
5564 {
5565         struct btrfs_root *root = BTRFS_I(inode)->root;
5566         struct btrfs_trans_handle *trans;
5567         int ret;
5568
5569         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5570                 return 0;
5571
5572         trans = btrfs_join_transaction(root);
5573         if (IS_ERR(trans))
5574                 return PTR_ERR(trans);
5575
5576         ret = btrfs_update_inode(trans, root, inode);
5577         if (ret && ret == -ENOSPC) {
5578                 /* whoops, lets try again with the full transaction */
5579                 btrfs_end_transaction(trans, root);
5580                 trans = btrfs_start_transaction(root, 1);
5581                 if (IS_ERR(trans))
5582                         return PTR_ERR(trans);
5583
5584                 ret = btrfs_update_inode(trans, root, inode);
5585         }
5586         btrfs_end_transaction(trans, root);
5587         if (BTRFS_I(inode)->delayed_node)
5588                 btrfs_balance_delayed_items(root);
5589
5590         return ret;
5591 }
5592
5593 /*
5594  * This is a copy of file_update_time.  We need this so we can return error on
5595  * ENOSPC for updating the inode in the case of file write and mmap writes.
5596  */
5597 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5598                              int flags)
5599 {
5600         struct btrfs_root *root = BTRFS_I(inode)->root;
5601
5602         if (btrfs_root_readonly(root))
5603                 return -EROFS;
5604
5605         if (flags & S_VERSION)
5606                 inode_inc_iversion(inode);
5607         if (flags & S_CTIME)
5608                 inode->i_ctime = *now;
5609         if (flags & S_MTIME)
5610                 inode->i_mtime = *now;
5611         if (flags & S_ATIME)
5612                 inode->i_atime = *now;
5613         return btrfs_dirty_inode(inode);
5614 }
5615
5616 /*
5617  * find the highest existing sequence number in a directory
5618  * and then set the in-memory index_cnt variable to reflect
5619  * free sequence numbers
5620  */
5621 static int btrfs_set_inode_index_count(struct inode *inode)
5622 {
5623         struct btrfs_root *root = BTRFS_I(inode)->root;
5624         struct btrfs_key key, found_key;
5625         struct btrfs_path *path;
5626         struct extent_buffer *leaf;
5627         int ret;
5628
5629         key.objectid = btrfs_ino(inode);
5630         key.type = BTRFS_DIR_INDEX_KEY;
5631         key.offset = (u64)-1;
5632
5633         path = btrfs_alloc_path();
5634         if (!path)
5635                 return -ENOMEM;
5636
5637         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638         if (ret < 0)
5639                 goto out;
5640         /* FIXME: we should be able to handle this */
5641         if (ret == 0)
5642                 goto out;
5643         ret = 0;
5644
5645         /*
5646          * MAGIC NUMBER EXPLANATION:
5647          * since we search a directory based on f_pos we have to start at 2
5648          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5649          * else has to start at 2
5650          */
5651         if (path->slots[0] == 0) {
5652                 BTRFS_I(inode)->index_cnt = 2;
5653                 goto out;
5654         }
5655
5656         path->slots[0]--;
5657
5658         leaf = path->nodes[0];
5659         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5660
5661         if (found_key.objectid != btrfs_ino(inode) ||
5662             found_key.type != BTRFS_DIR_INDEX_KEY) {
5663                 BTRFS_I(inode)->index_cnt = 2;
5664                 goto out;
5665         }
5666
5667         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5668 out:
5669         btrfs_free_path(path);
5670         return ret;
5671 }
5672
5673 /*
5674  * helper to find a free sequence number in a given directory.  This current
5675  * code is very simple, later versions will do smarter things in the btree
5676  */
5677 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5678 {
5679         int ret = 0;
5680
5681         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5682                 ret = btrfs_inode_delayed_dir_index_count(dir);
5683                 if (ret) {
5684                         ret = btrfs_set_inode_index_count(dir);
5685                         if (ret)
5686                                 return ret;
5687                 }
5688         }
5689
5690         *index = BTRFS_I(dir)->index_cnt;
5691         BTRFS_I(dir)->index_cnt++;
5692
5693         return ret;
5694 }
5695
5696 static int btrfs_insert_inode_locked(struct inode *inode)
5697 {
5698         struct btrfs_iget_args args;
5699         args.location = &BTRFS_I(inode)->location;
5700         args.root = BTRFS_I(inode)->root;
5701
5702         return insert_inode_locked4(inode,
5703                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5704                    btrfs_find_actor, &args);
5705 }
5706
5707 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5708                                      struct btrfs_root *root,
5709                                      struct inode *dir,
5710                                      const char *name, int name_len,
5711                                      u64 ref_objectid, u64 objectid,
5712                                      umode_t mode, u64 *index)
5713 {
5714         struct inode *inode;
5715         struct btrfs_inode_item *inode_item;
5716         struct btrfs_key *location;
5717         struct btrfs_path *path;
5718         struct btrfs_inode_ref *ref;
5719         struct btrfs_key key[2];
5720         u32 sizes[2];
5721         int nitems = name ? 2 : 1;
5722         unsigned long ptr;
5723         int ret;
5724
5725         path = btrfs_alloc_path();
5726         if (!path)
5727                 return ERR_PTR(-ENOMEM);
5728
5729         inode = new_inode(root->fs_info->sb);
5730         if (!inode) {
5731                 btrfs_free_path(path);
5732                 return ERR_PTR(-ENOMEM);
5733         }
5734
5735         /*
5736          * O_TMPFILE, set link count to 0, so that after this point,
5737          * we fill in an inode item with the correct link count.
5738          */
5739         if (!name)
5740                 set_nlink(inode, 0);
5741
5742         /*
5743          * we have to initialize this early, so we can reclaim the inode
5744          * number if we fail afterwards in this function.
5745          */
5746         inode->i_ino = objectid;
5747
5748         if (dir && name) {
5749                 trace_btrfs_inode_request(dir);
5750
5751                 ret = btrfs_set_inode_index(dir, index);
5752                 if (ret) {
5753                         btrfs_free_path(path);
5754                         iput(inode);
5755                         return ERR_PTR(ret);
5756                 }
5757         } else if (dir) {
5758                 *index = 0;
5759         }
5760         /*
5761          * index_cnt is ignored for everything but a dir,
5762          * btrfs_get_inode_index_count has an explanation for the magic
5763          * number
5764          */
5765         BTRFS_I(inode)->index_cnt = 2;
5766         BTRFS_I(inode)->dir_index = *index;
5767         BTRFS_I(inode)->root = root;
5768         BTRFS_I(inode)->generation = trans->transid;
5769         inode->i_generation = BTRFS_I(inode)->generation;
5770
5771         /*
5772          * We could have gotten an inode number from somebody who was fsynced
5773          * and then removed in this same transaction, so let's just set full
5774          * sync since it will be a full sync anyway and this will blow away the
5775          * old info in the log.
5776          */
5777         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5778
5779         key[0].objectid = objectid;
5780         key[0].type = BTRFS_INODE_ITEM_KEY;
5781         key[0].offset = 0;
5782
5783         sizes[0] = sizeof(struct btrfs_inode_item);
5784
5785         if (name) {
5786                 /*
5787                  * Start new inodes with an inode_ref. This is slightly more
5788                  * efficient for small numbers of hard links since they will
5789                  * be packed into one item. Extended refs will kick in if we
5790                  * add more hard links than can fit in the ref item.
5791                  */
5792                 key[1].objectid = objectid;
5793                 key[1].type = BTRFS_INODE_REF_KEY;
5794                 key[1].offset = ref_objectid;
5795
5796                 sizes[1] = name_len + sizeof(*ref);
5797         }
5798
5799         location = &BTRFS_I(inode)->location;
5800         location->objectid = objectid;
5801         location->offset = 0;
5802         location->type = BTRFS_INODE_ITEM_KEY;
5803
5804         ret = btrfs_insert_inode_locked(inode);
5805         if (ret < 0)
5806                 goto fail;
5807
5808         path->leave_spinning = 1;
5809         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5810         if (ret != 0)
5811                 goto fail_unlock;
5812
5813         inode_init_owner(inode, dir, mode);
5814         inode_set_bytes(inode, 0);
5815         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5816         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5817                                   struct btrfs_inode_item);
5818         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5819                              sizeof(*inode_item));
5820         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5821
5822         if (name) {
5823                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5824                                      struct btrfs_inode_ref);
5825                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5826                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5827                 ptr = (unsigned long)(ref + 1);
5828                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5829         }
5830
5831         btrfs_mark_buffer_dirty(path->nodes[0]);
5832         btrfs_free_path(path);
5833
5834         btrfs_inherit_iflags(inode, dir);
5835
5836         if (S_ISREG(mode)) {
5837                 if (btrfs_test_opt(root, NODATASUM))
5838                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5839                 if (btrfs_test_opt(root, NODATACOW))
5840                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5841                                 BTRFS_INODE_NODATASUM;
5842         }
5843
5844         inode_tree_add(inode);
5845
5846         trace_btrfs_inode_new(inode);
5847         btrfs_set_inode_last_trans(trans, inode);
5848
5849         btrfs_update_root_times(trans, root);
5850
5851         ret = btrfs_inode_inherit_props(trans, inode, dir);
5852         if (ret)
5853                 btrfs_err(root->fs_info,
5854                           "error inheriting props for ino %llu (root %llu): %d",
5855                           btrfs_ino(inode), root->root_key.objectid, ret);
5856
5857         return inode;
5858
5859 fail_unlock:
5860         unlock_new_inode(inode);
5861 fail:
5862         if (dir && name)
5863                 BTRFS_I(dir)->index_cnt--;
5864         btrfs_free_path(path);
5865         iput(inode);
5866         return ERR_PTR(ret);
5867 }
5868
5869 static inline u8 btrfs_inode_type(struct inode *inode)
5870 {
5871         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5872 }
5873
5874 /*
5875  * utility function to add 'inode' into 'parent_inode' with
5876  * a give name and a given sequence number.
5877  * if 'add_backref' is true, also insert a backref from the
5878  * inode to the parent directory.
5879  */
5880 int btrfs_add_link(struct btrfs_trans_handle *trans,
5881                    struct inode *parent_inode, struct inode *inode,
5882                    const char *name, int name_len, int add_backref, u64 index)
5883 {
5884         int ret = 0;
5885         struct btrfs_key key;
5886         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5887         u64 ino = btrfs_ino(inode);
5888         u64 parent_ino = btrfs_ino(parent_inode);
5889
5890         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5891                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5892         } else {
5893                 key.objectid = ino;
5894                 key.type = BTRFS_INODE_ITEM_KEY;
5895                 key.offset = 0;
5896         }
5897
5898         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5899                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5900                                          key.objectid, root->root_key.objectid,
5901                                          parent_ino, index, name, name_len);
5902         } else if (add_backref) {
5903                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5904                                              parent_ino, index);
5905         }
5906
5907         /* Nothing to clean up yet */
5908         if (ret)
5909                 return ret;
5910
5911         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5912                                     parent_inode, &key,
5913                                     btrfs_inode_type(inode), index);
5914         if (ret == -EEXIST || ret == -EOVERFLOW)
5915                 goto fail_dir_item;
5916         else if (ret) {
5917                 btrfs_abort_transaction(trans, root, ret);
5918                 return ret;
5919         }
5920
5921         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5922                            name_len * 2);
5923         inode_inc_iversion(parent_inode);
5924         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5925         ret = btrfs_update_inode(trans, root, parent_inode);
5926         if (ret)
5927                 btrfs_abort_transaction(trans, root, ret);
5928         return ret;
5929
5930 fail_dir_item:
5931         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5932                 u64 local_index;
5933                 int err;
5934                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5935                                  key.objectid, root->root_key.objectid,
5936                                  parent_ino, &local_index, name, name_len);
5937
5938         } else if (add_backref) {
5939                 u64 local_index;
5940                 int err;
5941
5942                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5943                                           ino, parent_ino, &local_index);
5944         }
5945         return ret;
5946 }
5947
5948 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5949                             struct inode *dir, struct dentry *dentry,
5950                             struct inode *inode, int backref, u64 index)
5951 {
5952         int err = btrfs_add_link(trans, dir, inode,
5953                                  dentry->d_name.name, dentry->d_name.len,
5954                                  backref, index);
5955         if (err > 0)
5956                 err = -EEXIST;
5957         return err;
5958 }
5959
5960 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5961                         umode_t mode, dev_t rdev)
5962 {
5963         struct btrfs_trans_handle *trans;
5964         struct btrfs_root *root = BTRFS_I(dir)->root;
5965         struct inode *inode = NULL;
5966         int err;
5967         int drop_inode = 0;
5968         u64 objectid;
5969         u64 index = 0;
5970
5971         if (!new_valid_dev(rdev))
5972                 return -EINVAL;
5973
5974         /*
5975          * 2 for inode item and ref
5976          * 2 for dir items
5977          * 1 for xattr if selinux is on
5978          */
5979         trans = btrfs_start_transaction(root, 5);
5980         if (IS_ERR(trans))
5981                 return PTR_ERR(trans);
5982
5983         err = btrfs_find_free_ino(root, &objectid);
5984         if (err)
5985                 goto out_unlock;
5986
5987         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5988                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5989                                 mode, &index);
5990         if (IS_ERR(inode)) {
5991                 err = PTR_ERR(inode);
5992                 goto out_unlock;
5993         }
5994
5995         /*
5996         * If the active LSM wants to access the inode during
5997         * d_instantiate it needs these. Smack checks to see
5998         * if the filesystem supports xattrs by looking at the
5999         * ops vector.
6000         */
6001         inode->i_op = &btrfs_special_inode_operations;
6002         init_special_inode(inode, inode->i_mode, rdev);
6003
6004         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6005         if (err)
6006                 goto out_unlock_inode;
6007
6008         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6009         if (err) {
6010                 goto out_unlock_inode;
6011         } else {
6012                 btrfs_update_inode(trans, root, inode);
6013                 unlock_new_inode(inode);
6014                 d_instantiate(dentry, inode);
6015         }
6016
6017 out_unlock:
6018         btrfs_end_transaction(trans, root);
6019         btrfs_balance_delayed_items(root);
6020         btrfs_btree_balance_dirty(root);
6021         if (drop_inode) {
6022                 inode_dec_link_count(inode);
6023                 iput(inode);
6024         }
6025         return err;
6026
6027 out_unlock_inode:
6028         drop_inode = 1;
6029         unlock_new_inode(inode);
6030         goto out_unlock;
6031
6032 }
6033
6034 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6035                         umode_t mode, bool excl)
6036 {
6037         struct btrfs_trans_handle *trans;
6038         struct btrfs_root *root = BTRFS_I(dir)->root;
6039         struct inode *inode = NULL;
6040         int drop_inode_on_err = 0;
6041         int err;
6042         u64 objectid;
6043         u64 index = 0;
6044
6045         /*
6046          * 2 for inode item and ref
6047          * 2 for dir items
6048          * 1 for xattr if selinux is on
6049          */
6050         trans = btrfs_start_transaction(root, 5);
6051         if (IS_ERR(trans))
6052                 return PTR_ERR(trans);
6053
6054         err = btrfs_find_free_ino(root, &objectid);
6055         if (err)
6056                 goto out_unlock;
6057
6058         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6059                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6060                                 mode, &index);
6061         if (IS_ERR(inode)) {
6062                 err = PTR_ERR(inode);
6063                 goto out_unlock;
6064         }
6065         drop_inode_on_err = 1;
6066         /*
6067         * If the active LSM wants to access the inode during
6068         * d_instantiate it needs these. Smack checks to see
6069         * if the filesystem supports xattrs by looking at the
6070         * ops vector.
6071         */
6072         inode->i_fop = &btrfs_file_operations;
6073         inode->i_op = &btrfs_file_inode_operations;
6074         inode->i_mapping->a_ops = &btrfs_aops;
6075         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6076
6077         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6078         if (err)
6079                 goto out_unlock_inode;
6080
6081         err = btrfs_update_inode(trans, root, inode);
6082         if (err)
6083                 goto out_unlock_inode;
6084
6085         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6086         if (err)
6087                 goto out_unlock_inode;
6088
6089         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6090         unlock_new_inode(inode);
6091         d_instantiate(dentry, inode);
6092
6093 out_unlock:
6094         btrfs_end_transaction(trans, root);
6095         if (err && drop_inode_on_err) {
6096                 inode_dec_link_count(inode);
6097                 iput(inode);
6098         }
6099         btrfs_balance_delayed_items(root);
6100         btrfs_btree_balance_dirty(root);
6101         return err;
6102
6103 out_unlock_inode:
6104         unlock_new_inode(inode);
6105         goto out_unlock;
6106
6107 }
6108
6109 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6110                       struct dentry *dentry)
6111 {
6112         struct btrfs_trans_handle *trans;
6113         struct btrfs_root *root = BTRFS_I(dir)->root;
6114         struct inode *inode = old_dentry->d_inode;
6115         u64 index;
6116         int err;
6117         int drop_inode = 0;
6118
6119         /* do not allow sys_link's with other subvols of the same device */
6120         if (root->objectid != BTRFS_I(inode)->root->objectid)
6121                 return -EXDEV;
6122
6123         if (inode->i_nlink >= BTRFS_LINK_MAX)
6124                 return -EMLINK;
6125
6126         err = btrfs_set_inode_index(dir, &index);
6127         if (err)
6128                 goto fail;
6129
6130         /*
6131          * 2 items for inode and inode ref
6132          * 2 items for dir items
6133          * 1 item for parent inode
6134          */
6135         trans = btrfs_start_transaction(root, 5);
6136         if (IS_ERR(trans)) {
6137                 err = PTR_ERR(trans);
6138                 goto fail;
6139         }
6140
6141         /* There are several dir indexes for this inode, clear the cache. */
6142         BTRFS_I(inode)->dir_index = 0ULL;
6143         inc_nlink(inode);
6144         inode_inc_iversion(inode);
6145         inode->i_ctime = CURRENT_TIME;
6146         ihold(inode);
6147         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6148
6149         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6150
6151         if (err) {
6152                 drop_inode = 1;
6153         } else {
6154                 struct dentry *parent = dentry->d_parent;
6155                 err = btrfs_update_inode(trans, root, inode);
6156                 if (err)
6157                         goto fail;
6158                 if (inode->i_nlink == 1) {
6159                         /*
6160                          * If new hard link count is 1, it's a file created
6161                          * with open(2) O_TMPFILE flag.
6162                          */
6163                         err = btrfs_orphan_del(trans, inode);
6164                         if (err)
6165                                 goto fail;
6166                 }
6167                 d_instantiate(dentry, inode);
6168                 btrfs_log_new_name(trans, inode, NULL, parent);
6169         }
6170
6171         btrfs_end_transaction(trans, root);
6172         btrfs_balance_delayed_items(root);
6173 fail:
6174         if (drop_inode) {
6175                 inode_dec_link_count(inode);
6176                 iput(inode);
6177         }
6178         btrfs_btree_balance_dirty(root);
6179         return err;
6180 }
6181
6182 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6183 {
6184         struct inode *inode = NULL;
6185         struct btrfs_trans_handle *trans;
6186         struct btrfs_root *root = BTRFS_I(dir)->root;
6187         int err = 0;
6188         int drop_on_err = 0;
6189         u64 objectid = 0;
6190         u64 index = 0;
6191
6192         /*
6193          * 2 items for inode and ref
6194          * 2 items for dir items
6195          * 1 for xattr if selinux is on
6196          */
6197         trans = btrfs_start_transaction(root, 5);
6198         if (IS_ERR(trans))
6199                 return PTR_ERR(trans);
6200
6201         err = btrfs_find_free_ino(root, &objectid);
6202         if (err)
6203                 goto out_fail;
6204
6205         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6206                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6207                                 S_IFDIR | mode, &index);
6208         if (IS_ERR(inode)) {
6209                 err = PTR_ERR(inode);
6210                 goto out_fail;
6211         }
6212
6213         drop_on_err = 1;
6214         /* these must be set before we unlock the inode */
6215         inode->i_op = &btrfs_dir_inode_operations;
6216         inode->i_fop = &btrfs_dir_file_operations;
6217
6218         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6219         if (err)
6220                 goto out_fail_inode;
6221
6222         btrfs_i_size_write(inode, 0);
6223         err = btrfs_update_inode(trans, root, inode);
6224         if (err)
6225                 goto out_fail_inode;
6226
6227         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6228                              dentry->d_name.len, 0, index);
6229         if (err)
6230                 goto out_fail_inode;
6231
6232         d_instantiate(dentry, inode);
6233         /*
6234          * mkdir is special.  We're unlocking after we call d_instantiate
6235          * to avoid a race with nfsd calling d_instantiate.
6236          */
6237         unlock_new_inode(inode);
6238         drop_on_err = 0;
6239
6240 out_fail:
6241         btrfs_end_transaction(trans, root);
6242         if (drop_on_err)
6243                 iput(inode);
6244         btrfs_balance_delayed_items(root);
6245         btrfs_btree_balance_dirty(root);
6246         return err;
6247
6248 out_fail_inode:
6249         unlock_new_inode(inode);
6250         goto out_fail;
6251 }
6252
6253 /* Find next extent map of a given extent map, caller needs to ensure locks */
6254 static struct extent_map *next_extent_map(struct extent_map *em)
6255 {
6256         struct rb_node *next;
6257
6258         next = rb_next(&em->rb_node);
6259         if (!next)
6260                 return NULL;
6261         return container_of(next, struct extent_map, rb_node);
6262 }
6263
6264 static struct extent_map *prev_extent_map(struct extent_map *em)
6265 {
6266         struct rb_node *prev;
6267
6268         prev = rb_prev(&em->rb_node);
6269         if (!prev)
6270                 return NULL;
6271         return container_of(prev, struct extent_map, rb_node);
6272 }
6273
6274 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6275  * the existing extent is the nearest extent to map_start,
6276  * and an extent that you want to insert, deal with overlap and insert
6277  * the best fitted new extent into the tree.
6278  */
6279 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6280                                 struct extent_map *existing,
6281                                 struct extent_map *em,
6282                                 u64 map_start)
6283 {
6284         struct extent_map *prev;
6285         struct extent_map *next;
6286         u64 start;
6287         u64 end;
6288         u64 start_diff;
6289
6290         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6291
6292         if (existing->start > map_start) {
6293                 next = existing;
6294                 prev = prev_extent_map(next);
6295         } else {
6296                 prev = existing;
6297                 next = next_extent_map(prev);
6298         }
6299
6300         start = prev ? extent_map_end(prev) : em->start;
6301         start = max_t(u64, start, em->start);
6302         end = next ? next->start : extent_map_end(em);
6303         end = min_t(u64, end, extent_map_end(em));
6304         start_diff = start - em->start;
6305         em->start = start;
6306         em->len = end - start;
6307         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6308             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6309                 em->block_start += start_diff;
6310                 em->block_len -= start_diff;
6311         }
6312         return add_extent_mapping(em_tree, em, 0);
6313 }
6314
6315 static noinline int uncompress_inline(struct btrfs_path *path,
6316                                       struct inode *inode, struct page *page,
6317                                       size_t pg_offset, u64 extent_offset,
6318                                       struct btrfs_file_extent_item *item)
6319 {
6320         int ret;
6321         struct extent_buffer *leaf = path->nodes[0];
6322         char *tmp;
6323         size_t max_size;
6324         unsigned long inline_size;
6325         unsigned long ptr;
6326         int compress_type;
6327
6328         WARN_ON(pg_offset != 0);
6329         compress_type = btrfs_file_extent_compression(leaf, item);
6330         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6331         inline_size = btrfs_file_extent_inline_item_len(leaf,
6332                                         btrfs_item_nr(path->slots[0]));
6333         tmp = kmalloc(inline_size, GFP_NOFS);
6334         if (!tmp)
6335                 return -ENOMEM;
6336         ptr = btrfs_file_extent_inline_start(item);
6337
6338         read_extent_buffer(leaf, tmp, ptr, inline_size);
6339
6340         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6341         ret = btrfs_decompress(compress_type, tmp, page,
6342                                extent_offset, inline_size, max_size);
6343         kfree(tmp);
6344         return ret;
6345 }
6346
6347 /*
6348  * a bit scary, this does extent mapping from logical file offset to the disk.
6349  * the ugly parts come from merging extents from the disk with the in-ram
6350  * representation.  This gets more complex because of the data=ordered code,
6351  * where the in-ram extents might be locked pending data=ordered completion.
6352  *
6353  * This also copies inline extents directly into the page.
6354  */
6355
6356 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6357                                     size_t pg_offset, u64 start, u64 len,
6358                                     int create)
6359 {
6360         int ret;
6361         int err = 0;
6362         u64 extent_start = 0;
6363         u64 extent_end = 0;
6364         u64 objectid = btrfs_ino(inode);
6365         u32 found_type;
6366         struct btrfs_path *path = NULL;
6367         struct btrfs_root *root = BTRFS_I(inode)->root;
6368         struct btrfs_file_extent_item *item;
6369         struct extent_buffer *leaf;
6370         struct btrfs_key found_key;
6371         struct extent_map *em = NULL;
6372         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6373         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6374         struct btrfs_trans_handle *trans = NULL;
6375         const bool new_inline = !page || create;
6376
6377 again:
6378         read_lock(&em_tree->lock);
6379         em = lookup_extent_mapping(em_tree, start, len);
6380         if (em)
6381                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6382         read_unlock(&em_tree->lock);
6383
6384         if (em) {
6385                 if (em->start > start || em->start + em->len <= start)
6386                         free_extent_map(em);
6387                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6388                         free_extent_map(em);
6389                 else
6390                         goto out;
6391         }
6392         em = alloc_extent_map();
6393         if (!em) {
6394                 err = -ENOMEM;
6395                 goto out;
6396         }
6397         em->bdev = root->fs_info->fs_devices->latest_bdev;
6398         em->start = EXTENT_MAP_HOLE;
6399         em->orig_start = EXTENT_MAP_HOLE;
6400         em->len = (u64)-1;
6401         em->block_len = (u64)-1;
6402
6403         if (!path) {
6404                 path = btrfs_alloc_path();
6405                 if (!path) {
6406                         err = -ENOMEM;
6407                         goto out;
6408                 }
6409                 /*
6410                  * Chances are we'll be called again, so go ahead and do
6411                  * readahead
6412                  */
6413                 path->reada = 1;
6414         }
6415
6416         ret = btrfs_lookup_file_extent(trans, root, path,
6417                                        objectid, start, trans != NULL);
6418         if (ret < 0) {
6419                 err = ret;
6420                 goto out;
6421         }
6422
6423         if (ret != 0) {
6424                 if (path->slots[0] == 0)
6425                         goto not_found;
6426                 path->slots[0]--;
6427         }
6428
6429         leaf = path->nodes[0];
6430         item = btrfs_item_ptr(leaf, path->slots[0],
6431                               struct btrfs_file_extent_item);
6432         /* are we inside the extent that was found? */
6433         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6434         found_type = found_key.type;
6435         if (found_key.objectid != objectid ||
6436             found_type != BTRFS_EXTENT_DATA_KEY) {
6437                 /*
6438                  * If we backup past the first extent we want to move forward
6439                  * and see if there is an extent in front of us, otherwise we'll
6440                  * say there is a hole for our whole search range which can
6441                  * cause problems.
6442                  */
6443                 extent_end = start;
6444                 goto next;
6445         }
6446
6447         found_type = btrfs_file_extent_type(leaf, item);
6448         extent_start = found_key.offset;
6449         if (found_type == BTRFS_FILE_EXTENT_REG ||
6450             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6451                 extent_end = extent_start +
6452                        btrfs_file_extent_num_bytes(leaf, item);
6453         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6454                 size_t size;
6455                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6456                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6457         }
6458 next:
6459         if (start >= extent_end) {
6460                 path->slots[0]++;
6461                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6462                         ret = btrfs_next_leaf(root, path);
6463                         if (ret < 0) {
6464                                 err = ret;
6465                                 goto out;
6466                         }
6467                         if (ret > 0)
6468                                 goto not_found;
6469                         leaf = path->nodes[0];
6470                 }
6471                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6472                 if (found_key.objectid != objectid ||
6473                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6474                         goto not_found;
6475                 if (start + len <= found_key.offset)
6476                         goto not_found;
6477                 if (start > found_key.offset)
6478                         goto next;
6479                 em->start = start;
6480                 em->orig_start = start;
6481                 em->len = found_key.offset - start;
6482                 goto not_found_em;
6483         }
6484
6485         btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6486
6487         if (found_type == BTRFS_FILE_EXTENT_REG ||
6488             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6489                 goto insert;
6490         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6491                 unsigned long ptr;
6492                 char *map;
6493                 size_t size;
6494                 size_t extent_offset;
6495                 size_t copy_size;
6496
6497                 if (new_inline)
6498                         goto out;
6499
6500                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6501                 extent_offset = page_offset(page) + pg_offset - extent_start;
6502                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6503                                 size - extent_offset);
6504                 em->start = extent_start + extent_offset;
6505                 em->len = ALIGN(copy_size, root->sectorsize);
6506                 em->orig_block_len = em->len;
6507                 em->orig_start = em->start;
6508                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6509                 if (create == 0 && !PageUptodate(page)) {
6510                         if (btrfs_file_extent_compression(leaf, item) !=
6511                             BTRFS_COMPRESS_NONE) {
6512                                 ret = uncompress_inline(path, inode, page,
6513                                                         pg_offset,
6514                                                         extent_offset, item);
6515                                 if (ret) {
6516                                         err = ret;
6517                                         goto out;
6518                                 }
6519                         } else {
6520                                 map = kmap(page);
6521                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6522                                                    copy_size);
6523                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6524                                         memset(map + pg_offset + copy_size, 0,
6525                                                PAGE_CACHE_SIZE - pg_offset -
6526                                                copy_size);
6527                                 }
6528                                 kunmap(page);
6529                         }
6530                         flush_dcache_page(page);
6531                 } else if (create && PageUptodate(page)) {
6532                         BUG();
6533                         if (!trans) {
6534                                 kunmap(page);
6535                                 free_extent_map(em);
6536                                 em = NULL;
6537
6538                                 btrfs_release_path(path);
6539                                 trans = btrfs_join_transaction(root);
6540
6541                                 if (IS_ERR(trans))
6542                                         return ERR_CAST(trans);
6543                                 goto again;
6544                         }
6545                         map = kmap(page);
6546                         write_extent_buffer(leaf, map + pg_offset, ptr,
6547                                             copy_size);
6548                         kunmap(page);
6549                         btrfs_mark_buffer_dirty(leaf);
6550                 }
6551                 set_extent_uptodate(io_tree, em->start,
6552                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6553                 goto insert;
6554         }
6555 not_found:
6556         em->start = start;
6557         em->orig_start = start;
6558         em->len = len;
6559 not_found_em:
6560         em->block_start = EXTENT_MAP_HOLE;
6561         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6562 insert:
6563         btrfs_release_path(path);
6564         if (em->start > start || extent_map_end(em) <= start) {
6565                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6566                         em->start, em->len, start, len);
6567                 err = -EIO;
6568                 goto out;
6569         }
6570
6571         err = 0;
6572         write_lock(&em_tree->lock);
6573         ret = add_extent_mapping(em_tree, em, 0);
6574         /* it is possible that someone inserted the extent into the tree
6575          * while we had the lock dropped.  It is also possible that
6576          * an overlapping map exists in the tree
6577          */
6578         if (ret == -EEXIST) {
6579                 struct extent_map *existing;
6580
6581                 ret = 0;
6582
6583                 existing = search_extent_mapping(em_tree, start, len);
6584                 /*
6585                  * existing will always be non-NULL, since there must be
6586                  * extent causing the -EEXIST.
6587                  */
6588                 if (start >= extent_map_end(existing) ||
6589                     start <= existing->start) {
6590                         /*
6591                          * The existing extent map is the one nearest to
6592                          * the [start, start + len) range which overlaps
6593                          */
6594                         err = merge_extent_mapping(em_tree, existing,
6595                                                    em, start);
6596                         free_extent_map(existing);
6597                         if (err) {
6598                                 free_extent_map(em);
6599                                 em = NULL;
6600                         }
6601                 } else {
6602                         free_extent_map(em);
6603                         em = existing;
6604                         err = 0;
6605                 }
6606         }
6607         write_unlock(&em_tree->lock);
6608 out:
6609
6610         trace_btrfs_get_extent(root, em);
6611
6612         if (path)
6613                 btrfs_free_path(path);
6614         if (trans) {
6615                 ret = btrfs_end_transaction(trans, root);
6616                 if (!err)
6617                         err = ret;
6618         }
6619         if (err) {
6620                 free_extent_map(em);
6621                 return ERR_PTR(err);
6622         }
6623         BUG_ON(!em); /* Error is always set */
6624         return em;
6625 }
6626
6627 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6628                                            size_t pg_offset, u64 start, u64 len,
6629                                            int create)
6630 {
6631         struct extent_map *em;
6632         struct extent_map *hole_em = NULL;
6633         u64 range_start = start;
6634         u64 end;
6635         u64 found;
6636         u64 found_end;
6637         int err = 0;
6638
6639         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6640         if (IS_ERR(em))
6641                 return em;
6642         if (em) {
6643                 /*
6644                  * if our em maps to
6645                  * -  a hole or
6646                  * -  a pre-alloc extent,
6647                  * there might actually be delalloc bytes behind it.
6648                  */
6649                 if (em->block_start != EXTENT_MAP_HOLE &&
6650                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6651                         return em;
6652                 else
6653                         hole_em = em;
6654         }
6655
6656         /* check to see if we've wrapped (len == -1 or similar) */
6657         end = start + len;
6658         if (end < start)
6659                 end = (u64)-1;
6660         else
6661                 end -= 1;
6662
6663         em = NULL;
6664
6665         /* ok, we didn't find anything, lets look for delalloc */
6666         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6667                                  end, len, EXTENT_DELALLOC, 1);
6668         found_end = range_start + found;
6669         if (found_end < range_start)
6670                 found_end = (u64)-1;
6671
6672         /*
6673          * we didn't find anything useful, return
6674          * the original results from get_extent()
6675          */
6676         if (range_start > end || found_end <= start) {
6677                 em = hole_em;
6678                 hole_em = NULL;
6679                 goto out;
6680         }
6681
6682         /* adjust the range_start to make sure it doesn't
6683          * go backwards from the start they passed in
6684          */
6685         range_start = max(start, range_start);
6686         found = found_end - range_start;
6687
6688         if (found > 0) {
6689                 u64 hole_start = start;
6690                 u64 hole_len = len;
6691
6692                 em = alloc_extent_map();
6693                 if (!em) {
6694                         err = -ENOMEM;
6695                         goto out;
6696                 }
6697                 /*
6698                  * when btrfs_get_extent can't find anything it
6699                  * returns one huge hole
6700                  *
6701                  * make sure what it found really fits our range, and
6702                  * adjust to make sure it is based on the start from
6703                  * the caller
6704                  */
6705                 if (hole_em) {
6706                         u64 calc_end = extent_map_end(hole_em);
6707
6708                         if (calc_end <= start || (hole_em->start > end)) {
6709                                 free_extent_map(hole_em);
6710                                 hole_em = NULL;
6711                         } else {
6712                                 hole_start = max(hole_em->start, start);
6713                                 hole_len = calc_end - hole_start;
6714                         }
6715                 }
6716                 em->bdev = NULL;
6717                 if (hole_em && range_start > hole_start) {
6718                         /* our hole starts before our delalloc, so we
6719                          * have to return just the parts of the hole
6720                          * that go until  the delalloc starts
6721                          */
6722                         em->len = min(hole_len,
6723                                       range_start - hole_start);
6724                         em->start = hole_start;
6725                         em->orig_start = hole_start;
6726                         /*
6727                          * don't adjust block start at all,
6728                          * it is fixed at EXTENT_MAP_HOLE
6729                          */
6730                         em->block_start = hole_em->block_start;
6731                         em->block_len = hole_len;
6732                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6733                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6734                 } else {
6735                         em->start = range_start;
6736                         em->len = found;
6737                         em->orig_start = range_start;
6738                         em->block_start = EXTENT_MAP_DELALLOC;
6739                         em->block_len = found;
6740                 }
6741         } else if (hole_em) {
6742                 return hole_em;
6743         }
6744 out:
6745
6746         free_extent_map(hole_em);
6747         if (err) {
6748                 free_extent_map(em);
6749                 return ERR_PTR(err);
6750         }
6751         return em;
6752 }
6753
6754 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6755                                                   u64 start, u64 len)
6756 {
6757         struct btrfs_root *root = BTRFS_I(inode)->root;
6758         struct extent_map *em;
6759         struct btrfs_key ins;
6760         u64 alloc_hint;
6761         int ret;
6762
6763         alloc_hint = get_extent_allocation_hint(inode, start, len);
6764         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6765                                    alloc_hint, &ins, 1, 1);
6766         if (ret)
6767                 return ERR_PTR(ret);
6768
6769         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6770                               ins.offset, ins.offset, ins.offset, 0);
6771         if (IS_ERR(em)) {
6772                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6773                 return em;
6774         }
6775
6776         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6777                                            ins.offset, ins.offset, 0);
6778         if (ret) {
6779                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6780                 free_extent_map(em);
6781                 return ERR_PTR(ret);
6782         }
6783
6784         return em;
6785 }
6786
6787 /*
6788  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6789  * block must be cow'd
6790  */
6791 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6792                               u64 *orig_start, u64 *orig_block_len,
6793                               u64 *ram_bytes)
6794 {
6795         struct btrfs_trans_handle *trans;
6796         struct btrfs_path *path;
6797         int ret;
6798         struct extent_buffer *leaf;
6799         struct btrfs_root *root = BTRFS_I(inode)->root;
6800         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6801         struct btrfs_file_extent_item *fi;
6802         struct btrfs_key key;
6803         u64 disk_bytenr;
6804         u64 backref_offset;
6805         u64 extent_end;
6806         u64 num_bytes;
6807         int slot;
6808         int found_type;
6809         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6810
6811         path = btrfs_alloc_path();
6812         if (!path)
6813                 return -ENOMEM;
6814
6815         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6816                                        offset, 0);
6817         if (ret < 0)
6818                 goto out;
6819
6820         slot = path->slots[0];
6821         if (ret == 1) {
6822                 if (slot == 0) {
6823                         /* can't find the item, must cow */
6824                         ret = 0;
6825                         goto out;
6826                 }
6827                 slot--;
6828         }
6829         ret = 0;
6830         leaf = path->nodes[0];
6831         btrfs_item_key_to_cpu(leaf, &key, slot);
6832         if (key.objectid != btrfs_ino(inode) ||
6833             key.type != BTRFS_EXTENT_DATA_KEY) {
6834                 /* not our file or wrong item type, must cow */
6835                 goto out;
6836         }
6837
6838         if (key.offset > offset) {
6839                 /* Wrong offset, must cow */
6840                 goto out;
6841         }
6842
6843         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6844         found_type = btrfs_file_extent_type(leaf, fi);
6845         if (found_type != BTRFS_FILE_EXTENT_REG &&
6846             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6847                 /* not a regular extent, must cow */
6848                 goto out;
6849         }
6850
6851         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6852                 goto out;
6853
6854         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6855         if (extent_end <= offset)
6856                 goto out;
6857
6858         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6859         if (disk_bytenr == 0)
6860                 goto out;
6861
6862         if (btrfs_file_extent_compression(leaf, fi) ||
6863             btrfs_file_extent_encryption(leaf, fi) ||
6864             btrfs_file_extent_other_encoding(leaf, fi))
6865                 goto out;
6866
6867         backref_offset = btrfs_file_extent_offset(leaf, fi);
6868
6869         if (orig_start) {
6870                 *orig_start = key.offset - backref_offset;
6871                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6872                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6873         }
6874
6875         if (btrfs_extent_readonly(root, disk_bytenr))
6876                 goto out;
6877
6878         num_bytes = min(offset + *len, extent_end) - offset;
6879         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6880                 u64 range_end;
6881
6882                 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6883                 ret = test_range_bit(io_tree, offset, range_end,
6884                                      EXTENT_DELALLOC, 0, NULL);
6885                 if (ret) {
6886                         ret = -EAGAIN;
6887                         goto out;
6888                 }
6889         }
6890
6891         btrfs_release_path(path);
6892
6893         /*
6894          * look for other files referencing this extent, if we
6895          * find any we must cow
6896          */
6897         trans = btrfs_join_transaction(root);
6898         if (IS_ERR(trans)) {
6899                 ret = 0;
6900                 goto out;
6901         }
6902
6903         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6904                                     key.offset - backref_offset, disk_bytenr);
6905         btrfs_end_transaction(trans, root);
6906         if (ret) {
6907                 ret = 0;
6908                 goto out;
6909         }
6910
6911         /*
6912          * adjust disk_bytenr and num_bytes to cover just the bytes
6913          * in this extent we are about to write.  If there
6914          * are any csums in that range we have to cow in order
6915          * to keep the csums correct
6916          */
6917         disk_bytenr += backref_offset;
6918         disk_bytenr += offset - key.offset;
6919         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6920                                 goto out;
6921         /*
6922          * all of the above have passed, it is safe to overwrite this extent
6923          * without cow
6924          */
6925         *len = num_bytes;
6926         ret = 1;
6927 out:
6928         btrfs_free_path(path);
6929         return ret;
6930 }
6931
6932 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6933 {
6934         struct radix_tree_root *root = &inode->i_mapping->page_tree;
6935         int found = false;
6936         void **pagep = NULL;
6937         struct page *page = NULL;
6938         int start_idx;
6939         int end_idx;
6940
6941         start_idx = start >> PAGE_CACHE_SHIFT;
6942
6943         /*
6944          * end is the last byte in the last page.  end == start is legal
6945          */
6946         end_idx = end >> PAGE_CACHE_SHIFT;
6947
6948         rcu_read_lock();
6949
6950         /* Most of the code in this while loop is lifted from
6951          * find_get_page.  It's been modified to begin searching from a
6952          * page and return just the first page found in that range.  If the
6953          * found idx is less than or equal to the end idx then we know that
6954          * a page exists.  If no pages are found or if those pages are
6955          * outside of the range then we're fine (yay!) */
6956         while (page == NULL &&
6957                radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6958                 page = radix_tree_deref_slot(pagep);
6959                 if (unlikely(!page))
6960                         break;
6961
6962                 if (radix_tree_exception(page)) {
6963                         if (radix_tree_deref_retry(page)) {
6964                                 page = NULL;
6965                                 continue;
6966                         }
6967                         /*
6968                          * Otherwise, shmem/tmpfs must be storing a swap entry
6969                          * here as an exceptional entry: so return it without
6970                          * attempting to raise page count.
6971                          */
6972                         page = NULL;
6973                         break; /* TODO: Is this relevant for this use case? */
6974                 }
6975
6976                 if (!page_cache_get_speculative(page)) {
6977                         page = NULL;
6978                         continue;
6979                 }
6980
6981                 /*
6982                  * Has the page moved?
6983                  * This is part of the lockless pagecache protocol. See
6984                  * include/linux/pagemap.h for details.
6985                  */
6986                 if (unlikely(page != *pagep)) {
6987                         page_cache_release(page);
6988                         page = NULL;
6989                 }
6990         }
6991
6992         if (page) {
6993                 if (page->index <= end_idx)
6994                         found = true;
6995                 page_cache_release(page);
6996         }
6997
6998         rcu_read_unlock();
6999         return found;
7000 }
7001
7002 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7003                               struct extent_state **cached_state, int writing)
7004 {
7005         struct btrfs_ordered_extent *ordered;
7006         int ret = 0;
7007
7008         while (1) {
7009                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7010                                  0, cached_state);
7011                 /*
7012                  * We're concerned with the entire range that we're going to be
7013                  * doing DIO to, so we need to make sure theres no ordered
7014                  * extents in this range.
7015                  */
7016                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7017                                                      lockend - lockstart + 1);
7018
7019                 /*
7020                  * We need to make sure there are no buffered pages in this
7021                  * range either, we could have raced between the invalidate in
7022                  * generic_file_direct_write and locking the extent.  The
7023                  * invalidate needs to happen so that reads after a write do not
7024                  * get stale data.
7025                  */
7026                 if (!ordered &&
7027                     (!writing ||
7028                      !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7029                         break;
7030
7031                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7032                                      cached_state, GFP_NOFS);
7033
7034                 if (ordered) {
7035                         btrfs_start_ordered_extent(inode, ordered, 1);
7036                         btrfs_put_ordered_extent(ordered);
7037                 } else {
7038                         /* Screw you mmap */
7039                         ret = filemap_write_and_wait_range(inode->i_mapping,
7040                                                            lockstart,
7041                                                            lockend);
7042                         if (ret)
7043                                 break;
7044
7045                         /*
7046                          * If we found a page that couldn't be invalidated just
7047                          * fall back to buffered.
7048                          */
7049                         ret = invalidate_inode_pages2_range(inode->i_mapping,
7050                                         lockstart >> PAGE_CACHE_SHIFT,
7051                                         lockend >> PAGE_CACHE_SHIFT);
7052                         if (ret)
7053                                 break;
7054                 }
7055
7056                 cond_resched();
7057         }
7058
7059         return ret;
7060 }
7061
7062 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7063                                            u64 len, u64 orig_start,
7064                                            u64 block_start, u64 block_len,
7065                                            u64 orig_block_len, u64 ram_bytes,
7066                                            int type)
7067 {
7068         struct extent_map_tree *em_tree;
7069         struct extent_map *em;
7070         struct btrfs_root *root = BTRFS_I(inode)->root;
7071         int ret;
7072
7073         em_tree = &BTRFS_I(inode)->extent_tree;
7074         em = alloc_extent_map();
7075         if (!em)
7076                 return ERR_PTR(-ENOMEM);
7077
7078         em->start = start;
7079         em->orig_start = orig_start;
7080         em->mod_start = start;
7081         em->mod_len = len;
7082         em->len = len;
7083         em->block_len = block_len;
7084         em->block_start = block_start;
7085         em->bdev = root->fs_info->fs_devices->latest_bdev;
7086         em->orig_block_len = orig_block_len;
7087         em->ram_bytes = ram_bytes;
7088         em->generation = -1;
7089         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7090         if (type == BTRFS_ORDERED_PREALLOC)
7091                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7092
7093         do {
7094                 btrfs_drop_extent_cache(inode, em->start,
7095                                 em->start + em->len - 1, 0);
7096                 write_lock(&em_tree->lock);
7097                 ret = add_extent_mapping(em_tree, em, 1);
7098                 write_unlock(&em_tree->lock);
7099         } while (ret == -EEXIST);
7100
7101         if (ret) {
7102                 free_extent_map(em);
7103                 return ERR_PTR(ret);
7104         }
7105
7106         return em;
7107 }
7108
7109
7110 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7111                                    struct buffer_head *bh_result, int create)
7112 {
7113         struct extent_map *em;
7114         struct btrfs_root *root = BTRFS_I(inode)->root;
7115         struct extent_state *cached_state = NULL;
7116         u64 start = iblock << inode->i_blkbits;
7117         u64 lockstart, lockend;
7118         u64 len = bh_result->b_size;
7119         int unlock_bits = EXTENT_LOCKED;
7120         int ret = 0;
7121
7122         if (create)
7123                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7124         else
7125                 len = min_t(u64, len, root->sectorsize);
7126
7127         lockstart = start;
7128         lockend = start + len - 1;
7129
7130         /*
7131          * If this errors out it's because we couldn't invalidate pagecache for
7132          * this range and we need to fallback to buffered.
7133          */
7134         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7135                 return -ENOTBLK;
7136
7137         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7138         if (IS_ERR(em)) {
7139                 ret = PTR_ERR(em);
7140                 goto unlock_err;
7141         }
7142
7143         /*
7144          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7145          * io.  INLINE is special, and we could probably kludge it in here, but
7146          * it's still buffered so for safety lets just fall back to the generic
7147          * buffered path.
7148          *
7149          * For COMPRESSED we _have_ to read the entire extent in so we can
7150          * decompress it, so there will be buffering required no matter what we
7151          * do, so go ahead and fallback to buffered.
7152          *
7153          * We return -ENOTBLK because thats what makes DIO go ahead and go back
7154          * to buffered IO.  Don't blame me, this is the price we pay for using
7155          * the generic code.
7156          */
7157         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7158             em->block_start == EXTENT_MAP_INLINE) {
7159                 free_extent_map(em);
7160                 ret = -ENOTBLK;
7161                 goto unlock_err;
7162         }
7163
7164         /* Just a good old fashioned hole, return */
7165         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7166                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7167                 free_extent_map(em);
7168                 goto unlock_err;
7169         }
7170
7171         /*
7172          * We don't allocate a new extent in the following cases
7173          *
7174          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7175          * existing extent.
7176          * 2) The extent is marked as PREALLOC.  We're good to go here and can
7177          * just use the extent.
7178          *
7179          */
7180         if (!create) {
7181                 len = min(len, em->len - (start - em->start));
7182                 lockstart = start + len;
7183                 goto unlock;
7184         }
7185
7186         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7187             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7188              em->block_start != EXTENT_MAP_HOLE)) {
7189                 int type;
7190                 int ret;
7191                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7192
7193                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7194                         type = BTRFS_ORDERED_PREALLOC;
7195                 else
7196                         type = BTRFS_ORDERED_NOCOW;
7197                 len = min(len, em->len - (start - em->start));
7198                 block_start = em->block_start + (start - em->start);
7199
7200                 if (can_nocow_extent(inode, start, &len, &orig_start,
7201                                      &orig_block_len, &ram_bytes) == 1) {
7202                         if (type == BTRFS_ORDERED_PREALLOC) {
7203                                 free_extent_map(em);
7204                                 em = create_pinned_em(inode, start, len,
7205                                                        orig_start,
7206                                                        block_start, len,
7207                                                        orig_block_len,
7208                                                        ram_bytes, type);
7209                                 if (IS_ERR(em)) {
7210                                         ret = PTR_ERR(em);
7211                                         goto unlock_err;
7212                                 }
7213                         }
7214
7215                         ret = btrfs_add_ordered_extent_dio(inode, start,
7216                                            block_start, len, len, type);
7217                         if (ret) {
7218                                 free_extent_map(em);
7219                                 goto unlock_err;
7220                         }
7221                         goto unlock;
7222                 }
7223         }
7224
7225         /*
7226          * this will cow the extent, reset the len in case we changed
7227          * it above
7228          */
7229         len = bh_result->b_size;
7230         free_extent_map(em);
7231         em = btrfs_new_extent_direct(inode, start, len);
7232         if (IS_ERR(em)) {
7233                 ret = PTR_ERR(em);
7234                 goto unlock_err;
7235         }
7236         len = min(len, em->len - (start - em->start));
7237 unlock:
7238         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7239                 inode->i_blkbits;
7240         bh_result->b_size = len;
7241         bh_result->b_bdev = em->bdev;
7242         set_buffer_mapped(bh_result);
7243         if (create) {
7244                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7245                         set_buffer_new(bh_result);
7246
7247                 /*
7248                  * Need to update the i_size under the extent lock so buffered
7249                  * readers will get the updated i_size when we unlock.
7250                  */
7251                 if (start + len > i_size_read(inode))
7252                         i_size_write(inode, start + len);
7253
7254                 spin_lock(&BTRFS_I(inode)->lock);
7255                 BTRFS_I(inode)->outstanding_extents++;
7256                 spin_unlock(&BTRFS_I(inode)->lock);
7257
7258                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7259                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
7260                                      &cached_state, GFP_NOFS);
7261                 BUG_ON(ret);
7262         }
7263
7264         /*
7265          * In the case of write we need to clear and unlock the entire range,
7266          * in the case of read we need to unlock only the end area that we
7267          * aren't using if there is any left over space.
7268          */
7269         if (lockstart < lockend) {
7270                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7271                                  lockend, unlock_bits, 1, 0,
7272                                  &cached_state, GFP_NOFS);
7273         } else {
7274                 free_extent_state(cached_state);
7275         }
7276
7277         free_extent_map(em);
7278
7279         return 0;
7280
7281 unlock_err:
7282         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7283                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7284         return ret;
7285 }
7286
7287 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7288                                         int rw, int mirror_num)
7289 {
7290         struct btrfs_root *root = BTRFS_I(inode)->root;
7291         int ret;
7292
7293         BUG_ON(rw & REQ_WRITE);
7294
7295         bio_get(bio);
7296
7297         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7298                                   BTRFS_WQ_ENDIO_DIO_REPAIR);
7299         if (ret)
7300                 goto err;
7301
7302         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7303 err:
7304         bio_put(bio);
7305         return ret;
7306 }
7307
7308 static int btrfs_check_dio_repairable(struct inode *inode,
7309                                       struct bio *failed_bio,
7310                                       struct io_failure_record *failrec,
7311                                       int failed_mirror)
7312 {
7313         int num_copies;
7314
7315         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7316                                       failrec->logical, failrec->len);
7317         if (num_copies == 1) {
7318                 /*
7319                  * we only have a single copy of the data, so don't bother with
7320                  * all the retry and error correction code that follows. no
7321                  * matter what the error is, it is very likely to persist.
7322                  */
7323                 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7324                          num_copies, failrec->this_mirror, failed_mirror);
7325                 return 0;
7326         }
7327
7328         failrec->failed_mirror = failed_mirror;
7329         failrec->this_mirror++;
7330         if (failrec->this_mirror == failed_mirror)
7331                 failrec->this_mirror++;
7332
7333         if (failrec->this_mirror > num_copies) {
7334                 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7335                          num_copies, failrec->this_mirror, failed_mirror);
7336                 return 0;
7337         }
7338
7339         return 1;
7340 }
7341
7342 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7343                           struct page *page, u64 start, u64 end,
7344                           int failed_mirror, bio_end_io_t *repair_endio,
7345                           void *repair_arg)
7346 {
7347         struct io_failure_record *failrec;
7348         struct bio *bio;
7349         int isector;
7350         int read_mode;
7351         int ret;
7352
7353         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7354
7355         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7356         if (ret)
7357                 return ret;
7358
7359         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7360                                          failed_mirror);
7361         if (!ret) {
7362                 free_io_failure(inode, failrec);
7363                 return -EIO;
7364         }
7365
7366         if (failed_bio->bi_vcnt > 1)
7367                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7368         else
7369                 read_mode = READ_SYNC;
7370
7371         isector = start - btrfs_io_bio(failed_bio)->logical;
7372         isector >>= inode->i_sb->s_blocksize_bits;
7373         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7374                                       0, isector, repair_endio, repair_arg);
7375         if (!bio) {
7376                 free_io_failure(inode, failrec);
7377                 return -EIO;
7378         }
7379
7380         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7381                     "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7382                     read_mode, failrec->this_mirror, failrec->in_validation);
7383
7384         ret = submit_dio_repair_bio(inode, bio, read_mode,
7385                                     failrec->this_mirror);
7386         if (ret) {
7387                 free_io_failure(inode, failrec);
7388                 bio_put(bio);
7389         }
7390
7391         return ret;
7392 }
7393
7394 struct btrfs_retry_complete {
7395         struct completion done;
7396         struct inode *inode;
7397         u64 start;
7398         int uptodate;
7399 };
7400
7401 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7402 {
7403         struct btrfs_retry_complete *done = bio->bi_private;
7404         struct bio_vec *bvec;
7405         int i;
7406
7407         if (err)
7408                 goto end;
7409
7410         done->uptodate = 1;
7411         bio_for_each_segment_all(bvec, bio, i)
7412                 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7413 end:
7414         complete(&done->done);
7415         bio_put(bio);
7416 }
7417
7418 static int __btrfs_correct_data_nocsum(struct inode *inode,
7419                                        struct btrfs_io_bio *io_bio)
7420 {
7421         struct bio_vec *bvec;
7422         struct btrfs_retry_complete done;
7423         u64 start;
7424         int i;
7425         int ret;
7426
7427         start = io_bio->logical;
7428         done.inode = inode;
7429
7430         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7431 try_again:
7432                 done.uptodate = 0;
7433                 done.start = start;
7434                 init_completion(&done.done);
7435
7436                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7437                                      start + bvec->bv_len - 1,
7438                                      io_bio->mirror_num,
7439                                      btrfs_retry_endio_nocsum, &done);
7440                 if (ret)
7441                         return ret;
7442
7443                 wait_for_completion(&done.done);
7444
7445                 if (!done.uptodate) {
7446                         /* We might have another mirror, so try again */
7447                         goto try_again;
7448                 }
7449
7450                 start += bvec->bv_len;
7451         }
7452
7453         return 0;
7454 }
7455
7456 static void btrfs_retry_endio(struct bio *bio, int err)
7457 {
7458         struct btrfs_retry_complete *done = bio->bi_private;
7459         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7460         struct bio_vec *bvec;
7461         int uptodate;
7462         int ret;
7463         int i;
7464
7465         if (err)
7466                 goto end;
7467
7468         uptodate = 1;
7469         bio_for_each_segment_all(bvec, bio, i) {
7470                 ret = __readpage_endio_check(done->inode, io_bio, i,
7471                                              bvec->bv_page, 0,
7472                                              done->start, bvec->bv_len);
7473                 if (!ret)
7474                         clean_io_failure(done->inode, done->start,
7475                                          bvec->bv_page, 0);
7476                 else
7477                         uptodate = 0;
7478         }
7479
7480         done->uptodate = uptodate;
7481 end:
7482         complete(&done->done);
7483         bio_put(bio);
7484 }
7485
7486 static int __btrfs_subio_endio_read(struct inode *inode,
7487                                     struct btrfs_io_bio *io_bio, int err)
7488 {
7489         struct bio_vec *bvec;
7490         struct btrfs_retry_complete done;
7491         u64 start;
7492         u64 offset = 0;
7493         int i;
7494         int ret;
7495
7496         err = 0;
7497         start = io_bio->logical;
7498         done.inode = inode;
7499
7500         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7501                 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7502                                              0, start, bvec->bv_len);
7503                 if (likely(!ret))
7504                         goto next;
7505 try_again:
7506                 done.uptodate = 0;
7507                 done.start = start;
7508                 init_completion(&done.done);
7509
7510                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7511                                      start + bvec->bv_len - 1,
7512                                      io_bio->mirror_num,
7513                                      btrfs_retry_endio, &done);
7514                 if (ret) {
7515                         err = ret;
7516                         goto next;
7517                 }
7518
7519                 wait_for_completion(&done.done);
7520
7521                 if (!done.uptodate) {
7522                         /* We might have another mirror, so try again */
7523                         goto try_again;
7524                 }
7525 next:
7526                 offset += bvec->bv_len;
7527                 start += bvec->bv_len;
7528         }
7529
7530         return err;
7531 }
7532
7533 static int btrfs_subio_endio_read(struct inode *inode,
7534                                   struct btrfs_io_bio *io_bio, int err)
7535 {
7536         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7537
7538         if (skip_csum) {
7539                 if (unlikely(err))
7540                         return __btrfs_correct_data_nocsum(inode, io_bio);
7541                 else
7542                         return 0;
7543         } else {
7544                 return __btrfs_subio_endio_read(inode, io_bio, err);
7545         }
7546 }
7547
7548 static void btrfs_endio_direct_read(struct bio *bio, int err)
7549 {
7550         struct btrfs_dio_private *dip = bio->bi_private;
7551         struct inode *inode = dip->inode;
7552         struct bio *dio_bio;
7553         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7554
7555         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7556                 err = btrfs_subio_endio_read(inode, io_bio, err);
7557
7558         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7559                       dip->logical_offset + dip->bytes - 1);
7560         dio_bio = dip->dio_bio;
7561
7562         kfree(dip);
7563
7564         /* If we had a csum failure make sure to clear the uptodate flag */
7565         if (err)
7566                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7567         dio_end_io(dio_bio, err);
7568
7569         if (io_bio->end_io)
7570                 io_bio->end_io(io_bio, err);
7571         bio_put(bio);
7572 }
7573
7574 static void btrfs_endio_direct_write(struct bio *bio, int err)
7575 {
7576         struct btrfs_dio_private *dip = bio->bi_private;
7577         struct inode *inode = dip->inode;
7578         struct btrfs_root *root = BTRFS_I(inode)->root;
7579         struct btrfs_ordered_extent *ordered = NULL;
7580         u64 ordered_offset = dip->logical_offset;
7581         u64 ordered_bytes = dip->bytes;
7582         struct bio *dio_bio;
7583         int ret;
7584
7585         if (err)
7586                 goto out_done;
7587 again:
7588         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7589                                                    &ordered_offset,
7590                                                    ordered_bytes, !err);
7591         if (!ret)
7592                 goto out_test;
7593
7594         btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7595                         finish_ordered_fn, NULL, NULL);
7596         btrfs_queue_work(root->fs_info->endio_write_workers,
7597                          &ordered->work);
7598 out_test:
7599         /*
7600          * our bio might span multiple ordered extents.  If we haven't
7601          * completed the accounting for the whole dio, go back and try again
7602          */
7603         if (ordered_offset < dip->logical_offset + dip->bytes) {
7604                 ordered_bytes = dip->logical_offset + dip->bytes -
7605                         ordered_offset;
7606                 ordered = NULL;
7607                 goto again;
7608         }
7609 out_done:
7610         dio_bio = dip->dio_bio;
7611
7612         kfree(dip);
7613
7614         /* If we had an error make sure to clear the uptodate flag */
7615         if (err)
7616                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7617         dio_end_io(dio_bio, err);
7618         bio_put(bio);
7619 }
7620
7621 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7622                                     struct bio *bio, int mirror_num,
7623                                     unsigned long bio_flags, u64 offset)
7624 {
7625         int ret;
7626         struct btrfs_root *root = BTRFS_I(inode)->root;
7627         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7628         BUG_ON(ret); /* -ENOMEM */
7629         return 0;
7630 }
7631
7632 static void btrfs_end_dio_bio(struct bio *bio, int err)
7633 {
7634         struct btrfs_dio_private *dip = bio->bi_private;
7635
7636         if (err)
7637                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7638                            "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7639                            btrfs_ino(dip->inode), bio->bi_rw,
7640                            (unsigned long long)bio->bi_iter.bi_sector,
7641                            bio->bi_iter.bi_size, err);
7642
7643         if (dip->subio_endio)
7644                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7645
7646         if (err) {
7647                 dip->errors = 1;
7648
7649                 /*
7650                  * before atomic variable goto zero, we must make sure
7651                  * dip->errors is perceived to be set.
7652                  */
7653                 smp_mb__before_atomic();
7654         }
7655
7656         /* if there are more bios still pending for this dio, just exit */
7657         if (!atomic_dec_and_test(&dip->pending_bios))
7658                 goto out;
7659
7660         if (dip->errors) {
7661                 bio_io_error(dip->orig_bio);
7662         } else {
7663                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7664                 bio_endio(dip->orig_bio, 0);
7665         }
7666 out:
7667         bio_put(bio);
7668 }
7669
7670 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7671                                        u64 first_sector, gfp_t gfp_flags)
7672 {
7673         int nr_vecs = bio_get_nr_vecs(bdev);
7674         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7675 }
7676
7677 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7678                                                  struct inode *inode,
7679                                                  struct btrfs_dio_private *dip,
7680                                                  struct bio *bio,
7681                                                  u64 file_offset)
7682 {
7683         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7684         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7685         int ret;
7686
7687         /*
7688          * We load all the csum data we need when we submit
7689          * the first bio to reduce the csum tree search and
7690          * contention.
7691          */
7692         if (dip->logical_offset == file_offset) {
7693                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7694                                                 file_offset);
7695                 if (ret)
7696                         return ret;
7697         }
7698
7699         if (bio == dip->orig_bio)
7700                 return 0;
7701
7702         file_offset -= dip->logical_offset;
7703         file_offset >>= inode->i_sb->s_blocksize_bits;
7704         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7705
7706         return 0;
7707 }
7708
7709 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7710                                          int rw, u64 file_offset, int skip_sum,
7711                                          int async_submit)
7712 {
7713         struct btrfs_dio_private *dip = bio->bi_private;
7714         int write = rw & REQ_WRITE;
7715         struct btrfs_root *root = BTRFS_I(inode)->root;
7716         int ret;
7717
7718         if (async_submit)
7719                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7720
7721         bio_get(bio);
7722
7723         if (!write) {
7724                 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7725                                 BTRFS_WQ_ENDIO_DATA);
7726                 if (ret)
7727                         goto err;
7728         }
7729
7730         if (skip_sum)
7731                 goto map;
7732
7733         if (write && async_submit) {
7734                 ret = btrfs_wq_submit_bio(root->fs_info,
7735                                    inode, rw, bio, 0, 0,
7736                                    file_offset,
7737                                    __btrfs_submit_bio_start_direct_io,
7738                                    __btrfs_submit_bio_done);
7739                 goto err;
7740         } else if (write) {
7741                 /*
7742                  * If we aren't doing async submit, calculate the csum of the
7743                  * bio now.
7744                  */
7745                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7746                 if (ret)
7747                         goto err;
7748         } else {
7749                 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7750                                                      file_offset);
7751                 if (ret)
7752                         goto err;
7753         }
7754 map:
7755         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7756 err:
7757         bio_put(bio);
7758         return ret;
7759 }
7760
7761 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7762                                     int skip_sum)
7763 {
7764         struct inode *inode = dip->inode;
7765         struct btrfs_root *root = BTRFS_I(inode)->root;
7766         struct bio *bio;
7767         struct bio *orig_bio = dip->orig_bio;
7768         struct bio_vec *bvec = orig_bio->bi_io_vec;
7769         u64 start_sector = orig_bio->bi_iter.bi_sector;
7770         u64 file_offset = dip->logical_offset;
7771         u64 submit_len = 0;
7772         u64 map_length;
7773         int nr_pages = 0;
7774         int ret;
7775         int async_submit = 0;
7776
7777         map_length = orig_bio->bi_iter.bi_size;
7778         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7779                               &map_length, NULL, 0);
7780         if (ret)
7781                 return -EIO;
7782
7783         if (map_length >= orig_bio->bi_iter.bi_size) {
7784                 bio = orig_bio;
7785                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7786                 goto submit;
7787         }
7788
7789         /* async crcs make it difficult to collect full stripe writes. */
7790         if (btrfs_get_alloc_profile(root, 1) &
7791             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7792                 async_submit = 0;
7793         else
7794                 async_submit = 1;
7795
7796         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7797         if (!bio)
7798                 return -ENOMEM;
7799
7800         bio->bi_private = dip;
7801         bio->bi_end_io = btrfs_end_dio_bio;
7802         btrfs_io_bio(bio)->logical = file_offset;
7803         atomic_inc(&dip->pending_bios);
7804
7805         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7806                 if (map_length < submit_len + bvec->bv_len ||
7807                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7808                                  bvec->bv_offset) < bvec->bv_len) {
7809                         /*
7810                          * inc the count before we submit the bio so
7811                          * we know the end IO handler won't happen before
7812                          * we inc the count. Otherwise, the dip might get freed
7813                          * before we're done setting it up
7814                          */
7815                         atomic_inc(&dip->pending_bios);
7816                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7817                                                      file_offset, skip_sum,
7818                                                      async_submit);
7819                         if (ret) {
7820                                 bio_put(bio);
7821                                 atomic_dec(&dip->pending_bios);
7822                                 goto out_err;
7823                         }
7824
7825                         start_sector += submit_len >> 9;
7826                         file_offset += submit_len;
7827
7828                         submit_len = 0;
7829                         nr_pages = 0;
7830
7831                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7832                                                   start_sector, GFP_NOFS);
7833                         if (!bio)
7834                                 goto out_err;
7835                         bio->bi_private = dip;
7836                         bio->bi_end_io = btrfs_end_dio_bio;
7837                         btrfs_io_bio(bio)->logical = file_offset;
7838
7839                         map_length = orig_bio->bi_iter.bi_size;
7840                         ret = btrfs_map_block(root->fs_info, rw,
7841                                               start_sector << 9,
7842                                               &map_length, NULL, 0);
7843                         if (ret) {
7844                                 bio_put(bio);
7845                                 goto out_err;
7846                         }
7847                 } else {
7848                         submit_len += bvec->bv_len;
7849                         nr_pages++;
7850                         bvec++;
7851                 }
7852         }
7853
7854 submit:
7855         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7856                                      async_submit);
7857         if (!ret)
7858                 return 0;
7859
7860         bio_put(bio);
7861 out_err:
7862         dip->errors = 1;
7863         /*
7864          * before atomic variable goto zero, we must
7865          * make sure dip->errors is perceived to be set.
7866          */
7867         smp_mb__before_atomic();
7868         if (atomic_dec_and_test(&dip->pending_bios))
7869                 bio_io_error(dip->orig_bio);
7870
7871         /* bio_end_io() will handle error, so we needn't return it */
7872         return 0;
7873 }
7874
7875 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7876                                 struct inode *inode, loff_t file_offset)
7877 {
7878         struct btrfs_root *root = BTRFS_I(inode)->root;
7879         struct btrfs_dio_private *dip;
7880         struct bio *io_bio;
7881         struct btrfs_io_bio *btrfs_bio;
7882         int skip_sum;
7883         int write = rw & REQ_WRITE;
7884         int ret = 0;
7885
7886         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7887
7888         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7889         if (!io_bio) {
7890                 ret = -ENOMEM;
7891                 goto free_ordered;
7892         }
7893
7894         dip = kzalloc(sizeof(*dip), GFP_NOFS);
7895         if (!dip) {
7896                 ret = -ENOMEM;
7897                 goto free_io_bio;
7898         }
7899
7900         dip->private = dio_bio->bi_private;
7901         dip->inode = inode;
7902         dip->logical_offset = file_offset;
7903         dip->bytes = dio_bio->bi_iter.bi_size;
7904         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7905         io_bio->bi_private = dip;
7906         dip->orig_bio = io_bio;
7907         dip->dio_bio = dio_bio;
7908         atomic_set(&dip->pending_bios, 0);
7909         btrfs_bio = btrfs_io_bio(io_bio);
7910         btrfs_bio->logical = file_offset;
7911
7912         if (write) {
7913                 io_bio->bi_end_io = btrfs_endio_direct_write;
7914         } else {
7915                 io_bio->bi_end_io = btrfs_endio_direct_read;
7916                 dip->subio_endio = btrfs_subio_endio_read;
7917         }
7918
7919         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7920         if (!ret)
7921                 return;
7922
7923         if (btrfs_bio->end_io)
7924                 btrfs_bio->end_io(btrfs_bio, ret);
7925 free_io_bio:
7926         bio_put(io_bio);
7927
7928 free_ordered:
7929         /*
7930          * If this is a write, we need to clean up the reserved space and kill
7931          * the ordered extent.
7932          */
7933         if (write) {
7934                 struct btrfs_ordered_extent *ordered;
7935                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7936                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7937                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7938                         btrfs_free_reserved_extent(root, ordered->start,
7939                                                    ordered->disk_len, 1);
7940                 btrfs_put_ordered_extent(ordered);
7941                 btrfs_put_ordered_extent(ordered);
7942         }
7943         bio_endio(dio_bio, ret);
7944 }
7945
7946 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7947                         const struct iov_iter *iter, loff_t offset)
7948 {
7949         int seg;
7950         int i;
7951         unsigned blocksize_mask = root->sectorsize - 1;
7952         ssize_t retval = -EINVAL;
7953
7954         if (offset & blocksize_mask)
7955                 goto out;
7956
7957         if (iov_iter_alignment(iter) & blocksize_mask)
7958                 goto out;
7959
7960         /* If this is a write we don't need to check anymore */
7961         if (rw & WRITE)
7962                 return 0;
7963         /*
7964          * Check to make sure we don't have duplicate iov_base's in this
7965          * iovec, if so return EINVAL, otherwise we'll get csum errors
7966          * when reading back.
7967          */
7968         for (seg = 0; seg < iter->nr_segs; seg++) {
7969                 for (i = seg + 1; i < iter->nr_segs; i++) {
7970                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7971                                 goto out;
7972                 }
7973         }
7974         retval = 0;
7975 out:
7976         return retval;
7977 }
7978
7979 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7980                         struct iov_iter *iter, loff_t offset)
7981 {
7982         struct file *file = iocb->ki_filp;
7983         struct inode *inode = file->f_mapping->host;
7984         size_t count = 0;
7985         int flags = 0;
7986         bool wakeup = true;
7987         bool relock = false;
7988         ssize_t ret;
7989
7990         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7991                 return 0;
7992
7993         atomic_inc(&inode->i_dio_count);
7994         smp_mb__after_atomic();
7995
7996         /*
7997          * The generic stuff only does filemap_write_and_wait_range, which
7998          * isn't enough if we've written compressed pages to this area, so
7999          * we need to flush the dirty pages again to make absolutely sure
8000          * that any outstanding dirty pages are on disk.
8001          */
8002         count = iov_iter_count(iter);
8003         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8004                      &BTRFS_I(inode)->runtime_flags))
8005                 filemap_fdatawrite_range(inode->i_mapping, offset,
8006                                          offset + count - 1);
8007
8008         if (rw & WRITE) {
8009                 /*
8010                  * If the write DIO is beyond the EOF, we need update
8011                  * the isize, but it is protected by i_mutex. So we can
8012                  * not unlock the i_mutex at this case.
8013                  */
8014                 if (offset + count <= inode->i_size) {
8015                         mutex_unlock(&inode->i_mutex);
8016                         relock = true;
8017                 }
8018                 ret = btrfs_delalloc_reserve_space(inode, count);
8019                 if (ret)
8020                         goto out;
8021         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8022                                      &BTRFS_I(inode)->runtime_flags)) {
8023                 inode_dio_done(inode);
8024                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8025                 wakeup = false;
8026         }
8027
8028         ret = __blockdev_direct_IO(rw, iocb, inode,
8029                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8030                         iter, offset, btrfs_get_blocks_direct, NULL,
8031                         btrfs_submit_direct, flags);
8032         if (rw & WRITE) {
8033                 if (ret < 0 && ret != -EIOCBQUEUED)
8034                         btrfs_delalloc_release_space(inode, count);
8035                 else if (ret >= 0 && (size_t)ret < count)
8036                         btrfs_delalloc_release_space(inode,
8037                                                      count - (size_t)ret);
8038                 else
8039                         btrfs_delalloc_release_metadata(inode, 0);
8040         }
8041 out:
8042         if (wakeup)
8043                 inode_dio_done(inode);
8044         if (relock)
8045                 mutex_lock(&inode->i_mutex);
8046
8047         return ret;
8048 }
8049
8050 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8051
8052 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8053                 __u64 start, __u64 len)
8054 {
8055         int     ret;
8056
8057         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8058         if (ret)
8059                 return ret;
8060
8061         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8062 }
8063
8064 int btrfs_readpage(struct file *file, struct page *page)
8065 {
8066         struct extent_io_tree *tree;
8067         tree = &BTRFS_I(page->mapping->host)->io_tree;
8068         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8069 }
8070
8071 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8072 {
8073         struct extent_io_tree *tree;
8074
8075
8076         if (current->flags & PF_MEMALLOC) {
8077                 redirty_page_for_writepage(wbc, page);
8078                 unlock_page(page);
8079                 return 0;
8080         }
8081         tree = &BTRFS_I(page->mapping->host)->io_tree;
8082         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8083 }
8084
8085 static int btrfs_writepages(struct address_space *mapping,
8086                             struct writeback_control *wbc)
8087 {
8088         struct extent_io_tree *tree;
8089
8090         tree = &BTRFS_I(mapping->host)->io_tree;
8091         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8092 }
8093
8094 static int
8095 btrfs_readpages(struct file *file, struct address_space *mapping,
8096                 struct list_head *pages, unsigned nr_pages)
8097 {
8098         struct extent_io_tree *tree;
8099         tree = &BTRFS_I(mapping->host)->io_tree;
8100         return extent_readpages(tree, mapping, pages, nr_pages,
8101                                 btrfs_get_extent);
8102 }
8103 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8104 {
8105         struct extent_io_tree *tree;
8106         struct extent_map_tree *map;
8107         int ret;
8108
8109         tree = &BTRFS_I(page->mapping->host)->io_tree;
8110         map = &BTRFS_I(page->mapping->host)->extent_tree;
8111         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8112         if (ret == 1) {
8113                 ClearPagePrivate(page);
8114                 set_page_private(page, 0);
8115                 page_cache_release(page);
8116         }
8117         return ret;
8118 }
8119
8120 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8121 {
8122         if (PageWriteback(page) || PageDirty(page))
8123                 return 0;
8124         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8125 }
8126
8127 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8128                                  unsigned int length)
8129 {
8130         struct inode *inode = page->mapping->host;
8131         struct extent_io_tree *tree;
8132         struct btrfs_ordered_extent *ordered;
8133         struct extent_state *cached_state = NULL;
8134         u64 page_start = page_offset(page);
8135         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8136         int inode_evicting = inode->i_state & I_FREEING;
8137
8138         /*
8139          * we have the page locked, so new writeback can't start,
8140          * and the dirty bit won't be cleared while we are here.
8141          *
8142          * Wait for IO on this page so that we can safely clear
8143          * the PagePrivate2 bit and do ordered accounting
8144          */
8145         wait_on_page_writeback(page);
8146
8147         tree = &BTRFS_I(inode)->io_tree;
8148         if (offset) {
8149                 btrfs_releasepage(page, GFP_NOFS);
8150                 return;
8151         }
8152
8153         if (!inode_evicting)
8154                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8155         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8156         if (ordered) {
8157                 /*
8158                  * IO on this page will never be started, so we need
8159                  * to account for any ordered extents now
8160                  */
8161                 if (!inode_evicting)
8162                         clear_extent_bit(tree, page_start, page_end,
8163                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8164                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8165                                          EXTENT_DEFRAG, 1, 0, &cached_state,
8166                                          GFP_NOFS);
8167                 /*
8168                  * whoever cleared the private bit is responsible
8169                  * for the finish_ordered_io
8170                  */
8171                 if (TestClearPagePrivate2(page)) {
8172                         struct btrfs_ordered_inode_tree *tree;
8173                         u64 new_len;
8174
8175                         tree = &BTRFS_I(inode)->ordered_tree;
8176
8177                         spin_lock_irq(&tree->lock);
8178                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8179                         new_len = page_start - ordered->file_offset;
8180                         if (new_len < ordered->truncated_len)
8181                                 ordered->truncated_len = new_len;
8182                         spin_unlock_irq(&tree->lock);
8183
8184                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8185                                                            page_start,
8186                                                            PAGE_CACHE_SIZE, 1))
8187                                 btrfs_finish_ordered_io(ordered);
8188                 }
8189                 btrfs_put_ordered_extent(ordered);
8190                 if (!inode_evicting) {
8191                         cached_state = NULL;
8192                         lock_extent_bits(tree, page_start, page_end, 0,
8193                                          &cached_state);
8194                 }
8195         }
8196
8197         if (!inode_evicting) {
8198                 clear_extent_bit(tree, page_start, page_end,
8199                                  EXTENT_LOCKED | EXTENT_DIRTY |
8200                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8201                                  EXTENT_DEFRAG, 1, 1,
8202                                  &cached_state, GFP_NOFS);
8203
8204                 __btrfs_releasepage(page, GFP_NOFS);
8205         }
8206
8207         ClearPageChecked(page);
8208         if (PagePrivate(page)) {
8209                 ClearPagePrivate(page);
8210                 set_page_private(page, 0);
8211                 page_cache_release(page);
8212         }
8213 }
8214
8215 /*
8216  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8217  * called from a page fault handler when a page is first dirtied. Hence we must
8218  * be careful to check for EOF conditions here. We set the page up correctly
8219  * for a written page which means we get ENOSPC checking when writing into
8220  * holes and correct delalloc and unwritten extent mapping on filesystems that
8221  * support these features.
8222  *
8223  * We are not allowed to take the i_mutex here so we have to play games to
8224  * protect against truncate races as the page could now be beyond EOF.  Because
8225  * vmtruncate() writes the inode size before removing pages, once we have the
8226  * page lock we can determine safely if the page is beyond EOF. If it is not
8227  * beyond EOF, then the page is guaranteed safe against truncation until we
8228  * unlock the page.
8229  */
8230 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8231 {
8232         struct page *page = vmf->page;
8233         struct inode *inode = file_inode(vma->vm_file);
8234         struct btrfs_root *root = BTRFS_I(inode)->root;
8235         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8236         struct btrfs_ordered_extent *ordered;
8237         struct extent_state *cached_state = NULL;
8238         char *kaddr;
8239         unsigned long zero_start;
8240         loff_t size;
8241         int ret;
8242         int reserved = 0;
8243         u64 page_start;
8244         u64 page_end;
8245
8246         sb_start_pagefault(inode->i_sb);
8247         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8248         if (!ret) {
8249                 ret = file_update_time(vma->vm_file);
8250                 reserved = 1;
8251         }
8252         if (ret) {
8253                 if (ret == -ENOMEM)
8254                         ret = VM_FAULT_OOM;
8255                 else /* -ENOSPC, -EIO, etc */
8256                         ret = VM_FAULT_SIGBUS;
8257                 if (reserved)
8258                         goto out;
8259                 goto out_noreserve;
8260         }
8261
8262         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8263 again:
8264         lock_page(page);
8265         size = i_size_read(inode);
8266         page_start = page_offset(page);
8267         page_end = page_start + PAGE_CACHE_SIZE - 1;
8268
8269         if ((page->mapping != inode->i_mapping) ||
8270             (page_start >= size)) {
8271                 /* page got truncated out from underneath us */
8272                 goto out_unlock;
8273         }
8274         wait_on_page_writeback(page);
8275
8276         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8277         set_page_extent_mapped(page);
8278
8279         /*
8280          * we can't set the delalloc bits if there are pending ordered
8281          * extents.  Drop our locks and wait for them to finish
8282          */
8283         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8284         if (ordered) {
8285                 unlock_extent_cached(io_tree, page_start, page_end,
8286                                      &cached_state, GFP_NOFS);
8287                 unlock_page(page);
8288                 btrfs_start_ordered_extent(inode, ordered, 1);
8289                 btrfs_put_ordered_extent(ordered);
8290                 goto again;
8291         }
8292
8293         /*
8294          * XXX - page_mkwrite gets called every time the page is dirtied, even
8295          * if it was already dirty, so for space accounting reasons we need to
8296          * clear any delalloc bits for the range we are fixing to save.  There
8297          * is probably a better way to do this, but for now keep consistent with
8298          * prepare_pages in the normal write path.
8299          */
8300         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8301                           EXTENT_DIRTY | EXTENT_DELALLOC |
8302                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8303                           0, 0, &cached_state, GFP_NOFS);
8304
8305         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8306                                         &cached_state);
8307         if (ret) {
8308                 unlock_extent_cached(io_tree, page_start, page_end,
8309                                      &cached_state, GFP_NOFS);
8310                 ret = VM_FAULT_SIGBUS;
8311                 goto out_unlock;
8312         }
8313         ret = 0;
8314
8315         /* page is wholly or partially inside EOF */
8316         if (page_start + PAGE_CACHE_SIZE > size)
8317                 zero_start = size & ~PAGE_CACHE_MASK;
8318         else
8319                 zero_start = PAGE_CACHE_SIZE;
8320
8321         if (zero_start != PAGE_CACHE_SIZE) {
8322                 kaddr = kmap(page);
8323                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8324                 flush_dcache_page(page);
8325                 kunmap(page);
8326         }
8327         ClearPageChecked(page);
8328         set_page_dirty(page);
8329         SetPageUptodate(page);
8330
8331         BTRFS_I(inode)->last_trans = root->fs_info->generation;
8332         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8333         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8334
8335         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8336
8337 out_unlock:
8338         if (!ret) {
8339                 sb_end_pagefault(inode->i_sb);
8340                 return VM_FAULT_LOCKED;
8341         }
8342         unlock_page(page);
8343 out:
8344         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8345 out_noreserve:
8346         sb_end_pagefault(inode->i_sb);
8347         return ret;
8348 }
8349
8350 static int btrfs_truncate(struct inode *inode)
8351 {
8352         struct btrfs_root *root = BTRFS_I(inode)->root;
8353         struct btrfs_block_rsv *rsv;
8354         int ret = 0;
8355         int err = 0;
8356         struct btrfs_trans_handle *trans;
8357         u64 mask = root->sectorsize - 1;
8358         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8359
8360         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8361                                        (u64)-1);
8362         if (ret)
8363                 return ret;
8364
8365         /*
8366          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8367          * 3 things going on here
8368          *
8369          * 1) We need to reserve space for our orphan item and the space to
8370          * delete our orphan item.  Lord knows we don't want to have a dangling
8371          * orphan item because we didn't reserve space to remove it.
8372          *
8373          * 2) We need to reserve space to update our inode.
8374          *
8375          * 3) We need to have something to cache all the space that is going to
8376          * be free'd up by the truncate operation, but also have some slack
8377          * space reserved in case it uses space during the truncate (thank you
8378          * very much snapshotting).
8379          *
8380          * And we need these to all be seperate.  The fact is we can use alot of
8381          * space doing the truncate, and we have no earthly idea how much space
8382          * we will use, so we need the truncate reservation to be seperate so it
8383          * doesn't end up using space reserved for updating the inode or
8384          * removing the orphan item.  We also need to be able to stop the
8385          * transaction and start a new one, which means we need to be able to
8386          * update the inode several times, and we have no idea of knowing how
8387          * many times that will be, so we can't just reserve 1 item for the
8388          * entirety of the opration, so that has to be done seperately as well.
8389          * Then there is the orphan item, which does indeed need to be held on
8390          * to for the whole operation, and we need nobody to touch this reserved
8391          * space except the orphan code.
8392          *
8393          * So that leaves us with
8394          *
8395          * 1) root->orphan_block_rsv - for the orphan deletion.
8396          * 2) rsv - for the truncate reservation, which we will steal from the
8397          * transaction reservation.
8398          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8399          * updating the inode.
8400          */
8401         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8402         if (!rsv)
8403                 return -ENOMEM;
8404         rsv->size = min_size;
8405         rsv->failfast = 1;
8406
8407         /*
8408          * 1 for the truncate slack space
8409          * 1 for updating the inode.
8410          */
8411         trans = btrfs_start_transaction(root, 2);
8412         if (IS_ERR(trans)) {
8413                 err = PTR_ERR(trans);
8414                 goto out;
8415         }
8416
8417         /* Migrate the slack space for the truncate to our reserve */
8418         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8419                                       min_size);
8420         BUG_ON(ret);
8421
8422         /*
8423          * So if we truncate and then write and fsync we normally would just
8424          * write the extents that changed, which is a problem if we need to
8425          * first truncate that entire inode.  So set this flag so we write out
8426          * all of the extents in the inode to the sync log so we're completely
8427          * safe.
8428          */
8429         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8430         trans->block_rsv = rsv;
8431
8432         while (1) {
8433                 ret = btrfs_truncate_inode_items(trans, root, inode,
8434                                                  inode->i_size,
8435                                                  BTRFS_EXTENT_DATA_KEY);
8436                 if (ret != -ENOSPC) {
8437                         err = ret;
8438                         break;
8439                 }
8440
8441                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8442                 ret = btrfs_update_inode(trans, root, inode);
8443                 if (ret) {
8444                         err = ret;
8445                         break;
8446                 }
8447
8448                 btrfs_end_transaction(trans, root);
8449                 btrfs_btree_balance_dirty(root);
8450
8451                 trans = btrfs_start_transaction(root, 2);
8452                 if (IS_ERR(trans)) {
8453                         ret = err = PTR_ERR(trans);
8454                         trans = NULL;
8455                         break;
8456                 }
8457
8458                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8459                                               rsv, min_size);
8460                 BUG_ON(ret);    /* shouldn't happen */
8461                 trans->block_rsv = rsv;
8462         }
8463
8464         if (ret == 0 && inode->i_nlink > 0) {
8465                 trans->block_rsv = root->orphan_block_rsv;
8466                 ret = btrfs_orphan_del(trans, inode);
8467                 if (ret)
8468                         err = ret;
8469         }
8470
8471         if (trans) {
8472                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8473                 ret = btrfs_update_inode(trans, root, inode);
8474                 if (ret && !err)
8475                         err = ret;
8476
8477                 ret = btrfs_end_transaction(trans, root);
8478                 btrfs_btree_balance_dirty(root);
8479         }
8480
8481 out:
8482         btrfs_free_block_rsv(root, rsv);
8483
8484         if (ret && !err)
8485                 err = ret;
8486
8487         return err;
8488 }
8489
8490 /*
8491  * create a new subvolume directory/inode (helper for the ioctl).
8492  */
8493 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8494                              struct btrfs_root *new_root,
8495                              struct btrfs_root *parent_root,
8496                              u64 new_dirid)
8497 {
8498         struct inode *inode;
8499         int err;
8500         u64 index = 0;
8501
8502         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8503                                 new_dirid, new_dirid,
8504                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
8505                                 &index);
8506         if (IS_ERR(inode))
8507                 return PTR_ERR(inode);
8508         inode->i_op = &btrfs_dir_inode_operations;
8509         inode->i_fop = &btrfs_dir_file_operations;
8510
8511         set_nlink(inode, 1);
8512         btrfs_i_size_write(inode, 0);
8513         unlock_new_inode(inode);
8514
8515         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8516         if (err)
8517                 btrfs_err(new_root->fs_info,
8518                           "error inheriting subvolume %llu properties: %d",
8519                           new_root->root_key.objectid, err);
8520
8521         err = btrfs_update_inode(trans, new_root, inode);
8522
8523         iput(inode);
8524         return err;
8525 }
8526
8527 struct inode *btrfs_alloc_inode(struct super_block *sb)
8528 {
8529         struct btrfs_inode *ei;
8530         struct inode *inode;
8531
8532         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8533         if (!ei)
8534                 return NULL;
8535
8536         ei->root = NULL;
8537         ei->generation = 0;
8538         ei->last_trans = 0;
8539         ei->last_sub_trans = 0;
8540         ei->logged_trans = 0;
8541         ei->delalloc_bytes = 0;
8542         ei->defrag_bytes = 0;
8543         ei->disk_i_size = 0;
8544         ei->flags = 0;
8545         ei->csum_bytes = 0;
8546         ei->index_cnt = (u64)-1;
8547         ei->dir_index = 0;
8548         ei->last_unlink_trans = 0;
8549         ei->last_log_commit = 0;
8550
8551         spin_lock_init(&ei->lock);
8552         ei->outstanding_extents = 0;
8553         ei->reserved_extents = 0;
8554
8555         ei->runtime_flags = 0;
8556         ei->force_compress = BTRFS_COMPRESS_NONE;
8557
8558         ei->delayed_node = NULL;
8559
8560         inode = &ei->vfs_inode;
8561         extent_map_tree_init(&ei->extent_tree);
8562         extent_io_tree_init(&ei->io_tree, &inode->i_data);
8563         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8564         ei->io_tree.track_uptodate = 1;
8565         ei->io_failure_tree.track_uptodate = 1;
8566         atomic_set(&ei->sync_writers, 0);
8567         mutex_init(&ei->log_mutex);
8568         mutex_init(&ei->delalloc_mutex);
8569         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8570         INIT_LIST_HEAD(&ei->delalloc_inodes);
8571         RB_CLEAR_NODE(&ei->rb_node);
8572
8573         return inode;
8574 }
8575
8576 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8577 void btrfs_test_destroy_inode(struct inode *inode)
8578 {
8579         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8580         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8581 }
8582 #endif
8583
8584 static void btrfs_i_callback(struct rcu_head *head)
8585 {
8586         struct inode *inode = container_of(head, struct inode, i_rcu);
8587         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8588 }
8589
8590 void btrfs_destroy_inode(struct inode *inode)
8591 {
8592         struct btrfs_ordered_extent *ordered;
8593         struct btrfs_root *root = BTRFS_I(inode)->root;
8594
8595         WARN_ON(!hlist_empty(&inode->i_dentry));
8596         WARN_ON(inode->i_data.nrpages);
8597         WARN_ON(BTRFS_I(inode)->outstanding_extents);
8598         WARN_ON(BTRFS_I(inode)->reserved_extents);
8599         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8600         WARN_ON(BTRFS_I(inode)->csum_bytes);
8601         WARN_ON(BTRFS_I(inode)->defrag_bytes);
8602
8603         /*
8604          * This can happen where we create an inode, but somebody else also
8605          * created the same inode and we need to destroy the one we already
8606          * created.
8607          */
8608         if (!root)
8609                 goto free;
8610
8611         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8612                      &BTRFS_I(inode)->runtime_flags)) {
8613                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8614                         btrfs_ino(inode));
8615                 atomic_dec(&root->orphan_inodes);
8616         }
8617
8618         while (1) {
8619                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8620                 if (!ordered)
8621                         break;
8622                 else {
8623                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8624                                 ordered->file_offset, ordered->len);
8625                         btrfs_remove_ordered_extent(inode, ordered);
8626                         btrfs_put_ordered_extent(ordered);
8627                         btrfs_put_ordered_extent(ordered);
8628                 }
8629         }
8630         inode_tree_del(inode);
8631         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8632 free:
8633         call_rcu(&inode->i_rcu, btrfs_i_callback);
8634 }
8635
8636 int btrfs_drop_inode(struct inode *inode)
8637 {
8638         struct btrfs_root *root = BTRFS_I(inode)->root;
8639
8640         if (root == NULL)
8641                 return 1;
8642
8643         /* the snap/subvol tree is on deleting */
8644         if (btrfs_root_refs(&root->root_item) == 0)
8645                 return 1;
8646         else
8647                 return generic_drop_inode(inode);
8648 }
8649
8650 static void init_once(void *foo)
8651 {
8652         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8653
8654         inode_init_once(&ei->vfs_inode);
8655 }
8656
8657 void btrfs_destroy_cachep(void)
8658 {
8659         /*
8660          * Make sure all delayed rcu free inodes are flushed before we
8661          * destroy cache.
8662          */
8663         rcu_barrier();
8664         if (btrfs_inode_cachep)
8665                 kmem_cache_destroy(btrfs_inode_cachep);
8666         if (btrfs_trans_handle_cachep)
8667                 kmem_cache_destroy(btrfs_trans_handle_cachep);
8668         if (btrfs_transaction_cachep)
8669                 kmem_cache_destroy(btrfs_transaction_cachep);
8670         if (btrfs_path_cachep)
8671                 kmem_cache_destroy(btrfs_path_cachep);
8672         if (btrfs_free_space_cachep)
8673                 kmem_cache_destroy(btrfs_free_space_cachep);
8674         if (btrfs_delalloc_work_cachep)
8675                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8676 }
8677
8678 int btrfs_init_cachep(void)
8679 {
8680         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8681                         sizeof(struct btrfs_inode), 0,
8682                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8683         if (!btrfs_inode_cachep)
8684                 goto fail;
8685
8686         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8687                         sizeof(struct btrfs_trans_handle), 0,
8688                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8689         if (!btrfs_trans_handle_cachep)
8690                 goto fail;
8691
8692         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8693                         sizeof(struct btrfs_transaction), 0,
8694                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8695         if (!btrfs_transaction_cachep)
8696                 goto fail;
8697
8698         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8699                         sizeof(struct btrfs_path), 0,
8700                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8701         if (!btrfs_path_cachep)
8702                 goto fail;
8703
8704         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8705                         sizeof(struct btrfs_free_space), 0,
8706                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8707         if (!btrfs_free_space_cachep)
8708                 goto fail;
8709
8710         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8711                         sizeof(struct btrfs_delalloc_work), 0,
8712                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8713                         NULL);
8714         if (!btrfs_delalloc_work_cachep)
8715                 goto fail;
8716
8717         return 0;
8718 fail:
8719         btrfs_destroy_cachep();
8720         return -ENOMEM;
8721 }
8722
8723 static int btrfs_getattr(struct vfsmount *mnt,
8724                          struct dentry *dentry, struct kstat *stat)
8725 {
8726         u64 delalloc_bytes;
8727         struct inode *inode = dentry->d_inode;
8728         u32 blocksize = inode->i_sb->s_blocksize;
8729
8730         generic_fillattr(inode, stat);
8731         stat->dev = BTRFS_I(inode)->root->anon_dev;
8732         stat->blksize = PAGE_CACHE_SIZE;
8733
8734         spin_lock(&BTRFS_I(inode)->lock);
8735         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8736         spin_unlock(&BTRFS_I(inode)->lock);
8737         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8738                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8739         return 0;
8740 }
8741
8742 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8743                            struct inode *new_dir, struct dentry *new_dentry)
8744 {
8745         struct btrfs_trans_handle *trans;
8746         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8747         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8748         struct inode *new_inode = new_dentry->d_inode;
8749         struct inode *old_inode = old_dentry->d_inode;
8750         struct timespec ctime = CURRENT_TIME;
8751         u64 index = 0;
8752         u64 root_objectid;
8753         int ret;
8754         u64 old_ino = btrfs_ino(old_inode);
8755
8756         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8757                 return -EPERM;
8758
8759         /* we only allow rename subvolume link between subvolumes */
8760         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8761                 return -EXDEV;
8762
8763         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8764             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8765                 return -ENOTEMPTY;
8766
8767         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8768             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8769                 return -ENOTEMPTY;
8770
8771
8772         /* check for collisions, even if the  name isn't there */
8773         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8774                              new_dentry->d_name.name,
8775                              new_dentry->d_name.len);
8776
8777         if (ret) {
8778                 if (ret == -EEXIST) {
8779                         /* we shouldn't get
8780                          * eexist without a new_inode */
8781                         if (WARN_ON(!new_inode)) {
8782                                 return ret;
8783                         }
8784                 } else {
8785                         /* maybe -EOVERFLOW */
8786                         return ret;
8787                 }
8788         }
8789         ret = 0;
8790
8791         /*
8792          * we're using rename to replace one file with another.  Start IO on it
8793          * now so  we don't add too much work to the end of the transaction
8794          */
8795         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8796                 filemap_flush(old_inode->i_mapping);
8797
8798         /* close the racy window with snapshot create/destroy ioctl */
8799         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8800                 down_read(&root->fs_info->subvol_sem);
8801         /*
8802          * We want to reserve the absolute worst case amount of items.  So if
8803          * both inodes are subvols and we need to unlink them then that would
8804          * require 4 item modifications, but if they are both normal inodes it
8805          * would require 5 item modifications, so we'll assume their normal
8806          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8807          * should cover the worst case number of items we'll modify.
8808          */
8809         trans = btrfs_start_transaction(root, 11);
8810         if (IS_ERR(trans)) {
8811                 ret = PTR_ERR(trans);
8812                 goto out_notrans;
8813         }
8814
8815         if (dest != root)
8816                 btrfs_record_root_in_trans(trans, dest);
8817
8818         ret = btrfs_set_inode_index(new_dir, &index);
8819         if (ret)
8820                 goto out_fail;
8821
8822         BTRFS_I(old_inode)->dir_index = 0ULL;
8823         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8824                 /* force full log commit if subvolume involved. */
8825                 btrfs_set_log_full_commit(root->fs_info, trans);
8826         } else {
8827                 ret = btrfs_insert_inode_ref(trans, dest,
8828                                              new_dentry->d_name.name,
8829                                              new_dentry->d_name.len,
8830                                              old_ino,
8831                                              btrfs_ino(new_dir), index);
8832                 if (ret)
8833                         goto out_fail;
8834                 /*
8835                  * this is an ugly little race, but the rename is required
8836                  * to make sure that if we crash, the inode is either at the
8837                  * old name or the new one.  pinning the log transaction lets
8838                  * us make sure we don't allow a log commit to come in after
8839                  * we unlink the name but before we add the new name back in.
8840                  */
8841                 btrfs_pin_log_trans(root);
8842         }
8843
8844         inode_inc_iversion(old_dir);
8845         inode_inc_iversion(new_dir);
8846         inode_inc_iversion(old_inode);
8847         old_dir->i_ctime = old_dir->i_mtime = ctime;
8848         new_dir->i_ctime = new_dir->i_mtime = ctime;
8849         old_inode->i_ctime = ctime;
8850
8851         if (old_dentry->d_parent != new_dentry->d_parent)
8852                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8853
8854         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8855                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8856                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8857                                         old_dentry->d_name.name,
8858                                         old_dentry->d_name.len);
8859         } else {
8860                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8861                                         old_dentry->d_inode,
8862                                         old_dentry->d_name.name,
8863                                         old_dentry->d_name.len);
8864                 if (!ret)
8865                         ret = btrfs_update_inode(trans, root, old_inode);
8866         }
8867         if (ret) {
8868                 btrfs_abort_transaction(trans, root, ret);
8869                 goto out_fail;
8870         }
8871
8872         if (new_inode) {
8873                 inode_inc_iversion(new_inode);
8874                 new_inode->i_ctime = CURRENT_TIME;
8875                 if (unlikely(btrfs_ino(new_inode) ==
8876                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8877                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8878                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8879                                                 root_objectid,
8880                                                 new_dentry->d_name.name,
8881                                                 new_dentry->d_name.len);
8882                         BUG_ON(new_inode->i_nlink == 0);
8883                 } else {
8884                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8885                                                  new_dentry->d_inode,
8886                                                  new_dentry->d_name.name,
8887                                                  new_dentry->d_name.len);
8888                 }
8889                 if (!ret && new_inode->i_nlink == 0)
8890                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8891                 if (ret) {
8892                         btrfs_abort_transaction(trans, root, ret);
8893                         goto out_fail;
8894                 }
8895         }
8896
8897         ret = btrfs_add_link(trans, new_dir, old_inode,
8898                              new_dentry->d_name.name,
8899                              new_dentry->d_name.len, 0, index);
8900         if (ret) {
8901                 btrfs_abort_transaction(trans, root, ret);
8902                 goto out_fail;
8903         }
8904
8905         if (old_inode->i_nlink == 1)
8906                 BTRFS_I(old_inode)->dir_index = index;
8907
8908         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8909                 struct dentry *parent = new_dentry->d_parent;
8910                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8911                 btrfs_end_log_trans(root);
8912         }
8913 out_fail:
8914         btrfs_end_transaction(trans, root);
8915 out_notrans:
8916         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8917                 up_read(&root->fs_info->subvol_sem);
8918
8919         return ret;
8920 }
8921
8922 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8923                          struct inode *new_dir, struct dentry *new_dentry,
8924                          unsigned int flags)
8925 {
8926         if (flags & ~RENAME_NOREPLACE)
8927                 return -EINVAL;
8928
8929         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8930 }
8931
8932 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8933 {
8934         struct btrfs_delalloc_work *delalloc_work;
8935         struct inode *inode;
8936
8937         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8938                                      work);
8939         inode = delalloc_work->inode;
8940         if (delalloc_work->wait) {
8941                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8942         } else {
8943                 filemap_flush(inode->i_mapping);
8944                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8945                              &BTRFS_I(inode)->runtime_flags))
8946                         filemap_flush(inode->i_mapping);
8947         }
8948
8949         if (delalloc_work->delay_iput)
8950                 btrfs_add_delayed_iput(inode);
8951         else
8952                 iput(inode);
8953         complete(&delalloc_work->completion);
8954 }
8955
8956 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8957                                                     int wait, int delay_iput)
8958 {
8959         struct btrfs_delalloc_work *work;
8960
8961         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8962         if (!work)
8963                 return NULL;
8964
8965         init_completion(&work->completion);
8966         INIT_LIST_HEAD(&work->list);
8967         work->inode = inode;
8968         work->wait = wait;
8969         work->delay_iput = delay_iput;
8970         WARN_ON_ONCE(!inode);
8971         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8972                         btrfs_run_delalloc_work, NULL, NULL);
8973
8974         return work;
8975 }
8976
8977 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8978 {
8979         wait_for_completion(&work->completion);
8980         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8981 }
8982
8983 /*
8984  * some fairly slow code that needs optimization. This walks the list
8985  * of all the inodes with pending delalloc and forces them to disk.
8986  */
8987 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8988                                    int nr)
8989 {
8990         struct btrfs_inode *binode;
8991         struct inode *inode;
8992         struct btrfs_delalloc_work *work, *next;
8993         struct list_head works;
8994         struct list_head splice;
8995         int ret = 0;
8996
8997         INIT_LIST_HEAD(&works);
8998         INIT_LIST_HEAD(&splice);
8999
9000         mutex_lock(&root->delalloc_mutex);
9001         spin_lock(&root->delalloc_lock);
9002         list_splice_init(&root->delalloc_inodes, &splice);
9003         while (!list_empty(&splice)) {
9004                 binode = list_entry(splice.next, struct btrfs_inode,
9005                                     delalloc_inodes);
9006
9007                 list_move_tail(&binode->delalloc_inodes,
9008                                &root->delalloc_inodes);
9009                 inode = igrab(&binode->vfs_inode);
9010                 if (!inode) {
9011                         cond_resched_lock(&root->delalloc_lock);
9012                         continue;
9013                 }
9014                 spin_unlock(&root->delalloc_lock);
9015
9016                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9017                 if (!work) {
9018                         if (delay_iput)
9019                                 btrfs_add_delayed_iput(inode);
9020                         else
9021                                 iput(inode);
9022                         ret = -ENOMEM;
9023                         goto out;
9024                 }
9025                 list_add_tail(&work->list, &works);
9026                 btrfs_queue_work(root->fs_info->flush_workers,
9027                                  &work->work);
9028                 ret++;
9029                 if (nr != -1 && ret >= nr)
9030                         goto out;
9031                 cond_resched();
9032                 spin_lock(&root->delalloc_lock);
9033         }
9034         spin_unlock(&root->delalloc_lock);
9035
9036 out:
9037         list_for_each_entry_safe(work, next, &works, list) {
9038                 list_del_init(&work->list);
9039                 btrfs_wait_and_free_delalloc_work(work);
9040         }
9041
9042         if (!list_empty_careful(&splice)) {
9043                 spin_lock(&root->delalloc_lock);
9044                 list_splice_tail(&splice, &root->delalloc_inodes);
9045                 spin_unlock(&root->delalloc_lock);
9046         }
9047         mutex_unlock(&root->delalloc_mutex);
9048         return ret;
9049 }
9050
9051 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9052 {
9053         int ret;
9054
9055         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9056                 return -EROFS;
9057
9058         ret = __start_delalloc_inodes(root, delay_iput, -1);
9059         if (ret > 0)
9060                 ret = 0;
9061         /*
9062          * the filemap_flush will queue IO into the worker threads, but
9063          * we have to make sure the IO is actually started and that
9064          * ordered extents get created before we return
9065          */
9066         atomic_inc(&root->fs_info->async_submit_draining);
9067         while (atomic_read(&root->fs_info->nr_async_submits) ||
9068               atomic_read(&root->fs_info->async_delalloc_pages)) {
9069                 wait_event(root->fs_info->async_submit_wait,
9070                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9071                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9072         }
9073         atomic_dec(&root->fs_info->async_submit_draining);
9074         return ret;
9075 }
9076
9077 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9078                                int nr)
9079 {
9080         struct btrfs_root *root;
9081         struct list_head splice;
9082         int ret;
9083
9084         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9085                 return -EROFS;
9086
9087         INIT_LIST_HEAD(&splice);
9088
9089         mutex_lock(&fs_info->delalloc_root_mutex);
9090         spin_lock(&fs_info->delalloc_root_lock);
9091         list_splice_init(&fs_info->delalloc_roots, &splice);
9092         while (!list_empty(&splice) && nr) {
9093                 root = list_first_entry(&splice, struct btrfs_root,
9094                                         delalloc_root);
9095                 root = btrfs_grab_fs_root(root);
9096                 BUG_ON(!root);
9097                 list_move_tail(&root->delalloc_root,
9098                                &fs_info->delalloc_roots);
9099                 spin_unlock(&fs_info->delalloc_root_lock);
9100
9101                 ret = __start_delalloc_inodes(root, delay_iput, nr);
9102                 btrfs_put_fs_root(root);
9103                 if (ret < 0)
9104                         goto out;
9105
9106                 if (nr != -1) {
9107                         nr -= ret;
9108                         WARN_ON(nr < 0);
9109                 }
9110                 spin_lock(&fs_info->delalloc_root_lock);
9111         }
9112         spin_unlock(&fs_info->delalloc_root_lock);
9113
9114         ret = 0;
9115         atomic_inc(&fs_info->async_submit_draining);
9116         while (atomic_read(&fs_info->nr_async_submits) ||
9117               atomic_read(&fs_info->async_delalloc_pages)) {
9118                 wait_event(fs_info->async_submit_wait,
9119                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
9120                     atomic_read(&fs_info->async_delalloc_pages) == 0));
9121         }
9122         atomic_dec(&fs_info->async_submit_draining);
9123 out:
9124         if (!list_empty_careful(&splice)) {
9125                 spin_lock(&fs_info->delalloc_root_lock);
9126                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9127                 spin_unlock(&fs_info->delalloc_root_lock);
9128         }
9129         mutex_unlock(&fs_info->delalloc_root_mutex);
9130         return ret;
9131 }
9132
9133 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9134                          const char *symname)
9135 {
9136         struct btrfs_trans_handle *trans;
9137         struct btrfs_root *root = BTRFS_I(dir)->root;
9138         struct btrfs_path *path;
9139         struct btrfs_key key;
9140         struct inode *inode = NULL;
9141         int err;
9142         int drop_inode = 0;
9143         u64 objectid;
9144         u64 index = 0;
9145         int name_len;
9146         int datasize;
9147         unsigned long ptr;
9148         struct btrfs_file_extent_item *ei;
9149         struct extent_buffer *leaf;
9150
9151         name_len = strlen(symname);
9152         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9153                 return -ENAMETOOLONG;
9154
9155         /*
9156          * 2 items for inode item and ref
9157          * 2 items for dir items
9158          * 1 item for xattr if selinux is on
9159          */
9160         trans = btrfs_start_transaction(root, 5);
9161         if (IS_ERR(trans))
9162                 return PTR_ERR(trans);
9163
9164         err = btrfs_find_free_ino(root, &objectid);
9165         if (err)
9166                 goto out_unlock;
9167
9168         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9169                                 dentry->d_name.len, btrfs_ino(dir), objectid,
9170                                 S_IFLNK|S_IRWXUGO, &index);
9171         if (IS_ERR(inode)) {
9172                 err = PTR_ERR(inode);
9173                 goto out_unlock;
9174         }
9175
9176         /*
9177         * If the active LSM wants to access the inode during
9178         * d_instantiate it needs these. Smack checks to see
9179         * if the filesystem supports xattrs by looking at the
9180         * ops vector.
9181         */
9182         inode->i_fop = &btrfs_file_operations;
9183         inode->i_op = &btrfs_file_inode_operations;
9184         inode->i_mapping->a_ops = &btrfs_aops;
9185         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9186         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9187
9188         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9189         if (err)
9190                 goto out_unlock_inode;
9191
9192         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9193         if (err)
9194                 goto out_unlock_inode;
9195
9196         path = btrfs_alloc_path();
9197         if (!path) {
9198                 err = -ENOMEM;
9199                 goto out_unlock_inode;
9200         }
9201         key.objectid = btrfs_ino(inode);
9202         key.offset = 0;
9203         key.type = BTRFS_EXTENT_DATA_KEY;
9204         datasize = btrfs_file_extent_calc_inline_size(name_len);
9205         err = btrfs_insert_empty_item(trans, root, path, &key,
9206                                       datasize);
9207         if (err) {
9208                 btrfs_free_path(path);
9209                 goto out_unlock_inode;
9210         }
9211         leaf = path->nodes[0];
9212         ei = btrfs_item_ptr(leaf, path->slots[0],
9213                             struct btrfs_file_extent_item);
9214         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9215         btrfs_set_file_extent_type(leaf, ei,
9216                                    BTRFS_FILE_EXTENT_INLINE);
9217         btrfs_set_file_extent_encryption(leaf, ei, 0);
9218         btrfs_set_file_extent_compression(leaf, ei, 0);
9219         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9220         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9221
9222         ptr = btrfs_file_extent_inline_start(ei);
9223         write_extent_buffer(leaf, symname, ptr, name_len);
9224         btrfs_mark_buffer_dirty(leaf);
9225         btrfs_free_path(path);
9226
9227         inode->i_op = &btrfs_symlink_inode_operations;
9228         inode->i_mapping->a_ops = &btrfs_symlink_aops;
9229         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9230         inode_set_bytes(inode, name_len);
9231         btrfs_i_size_write(inode, name_len);
9232         err = btrfs_update_inode(trans, root, inode);
9233         if (err) {
9234                 drop_inode = 1;
9235                 goto out_unlock_inode;
9236         }
9237
9238         unlock_new_inode(inode);
9239         d_instantiate(dentry, inode);
9240
9241 out_unlock:
9242         btrfs_end_transaction(trans, root);
9243         if (drop_inode) {
9244                 inode_dec_link_count(inode);
9245                 iput(inode);
9246         }
9247         btrfs_btree_balance_dirty(root);
9248         return err;
9249
9250 out_unlock_inode:
9251         drop_inode = 1;
9252         unlock_new_inode(inode);
9253         goto out_unlock;
9254 }
9255
9256 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9257                                        u64 start, u64 num_bytes, u64 min_size,
9258                                        loff_t actual_len, u64 *alloc_hint,
9259                                        struct btrfs_trans_handle *trans)
9260 {
9261         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9262         struct extent_map *em;
9263         struct btrfs_root *root = BTRFS_I(inode)->root;
9264         struct btrfs_key ins;
9265         u64 cur_offset = start;
9266         u64 i_size;
9267         u64 cur_bytes;
9268         int ret = 0;
9269         bool own_trans = true;
9270
9271         if (trans)
9272                 own_trans = false;
9273         while (num_bytes > 0) {
9274                 if (own_trans) {
9275                         trans = btrfs_start_transaction(root, 3);
9276                         if (IS_ERR(trans)) {
9277                                 ret = PTR_ERR(trans);
9278                                 break;
9279                         }
9280                 }
9281
9282                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9283                 cur_bytes = max(cur_bytes, min_size);
9284                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9285                                            *alloc_hint, &ins, 1, 0);
9286                 if (ret) {
9287                         if (own_trans)
9288                                 btrfs_end_transaction(trans, root);
9289                         break;
9290                 }
9291
9292                 ret = insert_reserved_file_extent(trans, inode,
9293                                                   cur_offset, ins.objectid,
9294                                                   ins.offset, ins.offset,
9295                                                   ins.offset, 0, 0, 0,
9296                                                   BTRFS_FILE_EXTENT_PREALLOC);
9297                 if (ret) {
9298                         btrfs_free_reserved_extent(root, ins.objectid,
9299                                                    ins.offset, 0);
9300                         btrfs_abort_transaction(trans, root, ret);
9301                         if (own_trans)
9302                                 btrfs_end_transaction(trans, root);
9303                         break;
9304                 }
9305                 btrfs_drop_extent_cache(inode, cur_offset,
9306                                         cur_offset + ins.offset -1, 0);
9307
9308                 em = alloc_extent_map();
9309                 if (!em) {
9310                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9311                                 &BTRFS_I(inode)->runtime_flags);
9312                         goto next;
9313                 }
9314
9315                 em->start = cur_offset;
9316                 em->orig_start = cur_offset;
9317                 em->len = ins.offset;
9318                 em->block_start = ins.objectid;
9319                 em->block_len = ins.offset;
9320                 em->orig_block_len = ins.offset;
9321                 em->ram_bytes = ins.offset;
9322                 em->bdev = root->fs_info->fs_devices->latest_bdev;
9323                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9324                 em->generation = trans->transid;
9325
9326                 while (1) {
9327                         write_lock(&em_tree->lock);
9328                         ret = add_extent_mapping(em_tree, em, 1);
9329                         write_unlock(&em_tree->lock);
9330                         if (ret != -EEXIST)
9331                                 break;
9332                         btrfs_drop_extent_cache(inode, cur_offset,
9333                                                 cur_offset + ins.offset - 1,
9334                                                 0);
9335                 }
9336                 free_extent_map(em);
9337 next:
9338                 num_bytes -= ins.offset;
9339                 cur_offset += ins.offset;
9340                 *alloc_hint = ins.objectid + ins.offset;
9341
9342                 inode_inc_iversion(inode);
9343                 inode->i_ctime = CURRENT_TIME;
9344                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9345                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9346                     (actual_len > inode->i_size) &&
9347                     (cur_offset > inode->i_size)) {
9348                         if (cur_offset > actual_len)
9349                                 i_size = actual_len;
9350                         else
9351                                 i_size = cur_offset;
9352                         i_size_write(inode, i_size);
9353                         btrfs_ordered_update_i_size(inode, i_size, NULL);
9354                 }
9355
9356                 ret = btrfs_update_inode(trans, root, inode);
9357
9358                 if (ret) {
9359                         btrfs_abort_transaction(trans, root, ret);
9360                         if (own_trans)
9361                                 btrfs_end_transaction(trans, root);
9362                         break;
9363                 }
9364
9365                 if (own_trans)
9366                         btrfs_end_transaction(trans, root);
9367         }
9368         return ret;
9369 }
9370
9371 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9372                               u64 start, u64 num_bytes, u64 min_size,
9373                               loff_t actual_len, u64 *alloc_hint)
9374 {
9375         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9376                                            min_size, actual_len, alloc_hint,
9377                                            NULL);
9378 }
9379
9380 int btrfs_prealloc_file_range_trans(struct inode *inode,
9381                                     struct btrfs_trans_handle *trans, int mode,
9382                                     u64 start, u64 num_bytes, u64 min_size,
9383                                     loff_t actual_len, u64 *alloc_hint)
9384 {
9385         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9386                                            min_size, actual_len, alloc_hint, trans);
9387 }
9388
9389 static int btrfs_set_page_dirty(struct page *page)
9390 {
9391         return __set_page_dirty_nobuffers(page);
9392 }
9393
9394 static int btrfs_permission(struct inode *inode, int mask)
9395 {
9396         struct btrfs_root *root = BTRFS_I(inode)->root;
9397         umode_t mode = inode->i_mode;
9398
9399         if (mask & MAY_WRITE &&
9400             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9401                 if (btrfs_root_readonly(root))
9402                         return -EROFS;
9403                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9404                         return -EACCES;
9405         }
9406         return generic_permission(inode, mask);
9407 }
9408
9409 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9410 {
9411         struct btrfs_trans_handle *trans;
9412         struct btrfs_root *root = BTRFS_I(dir)->root;
9413         struct inode *inode = NULL;
9414         u64 objectid;
9415         u64 index;
9416         int ret = 0;
9417
9418         /*
9419          * 5 units required for adding orphan entry
9420          */
9421         trans = btrfs_start_transaction(root, 5);
9422         if (IS_ERR(trans))
9423                 return PTR_ERR(trans);
9424
9425         ret = btrfs_find_free_ino(root, &objectid);
9426         if (ret)
9427                 goto out;
9428
9429         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9430                                 btrfs_ino(dir), objectid, mode, &index);
9431         if (IS_ERR(inode)) {
9432                 ret = PTR_ERR(inode);
9433                 inode = NULL;
9434                 goto out;
9435         }
9436
9437         inode->i_fop = &btrfs_file_operations;
9438         inode->i_op = &btrfs_file_inode_operations;
9439
9440         inode->i_mapping->a_ops = &btrfs_aops;
9441         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9442         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9443
9444         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9445         if (ret)
9446                 goto out_inode;
9447
9448         ret = btrfs_update_inode(trans, root, inode);
9449         if (ret)
9450                 goto out_inode;
9451         ret = btrfs_orphan_add(trans, inode);
9452         if (ret)
9453                 goto out_inode;
9454
9455         /*
9456          * We set number of links to 0 in btrfs_new_inode(), and here we set
9457          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9458          * through:
9459          *
9460          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9461          */
9462         set_nlink(inode, 1);
9463         unlock_new_inode(inode);
9464         d_tmpfile(dentry, inode);
9465         mark_inode_dirty(inode);
9466
9467 out:
9468         btrfs_end_transaction(trans, root);
9469         if (ret)
9470                 iput(inode);
9471         btrfs_balance_delayed_items(root);
9472         btrfs_btree_balance_dirty(root);
9473         return ret;
9474
9475 out_inode:
9476         unlock_new_inode(inode);
9477         goto out;
9478
9479 }
9480
9481 static const struct inode_operations btrfs_dir_inode_operations = {
9482         .getattr        = btrfs_getattr,
9483         .lookup         = btrfs_lookup,
9484         .create         = btrfs_create,
9485         .unlink         = btrfs_unlink,
9486         .link           = btrfs_link,
9487         .mkdir          = btrfs_mkdir,
9488         .rmdir          = btrfs_rmdir,
9489         .rename2        = btrfs_rename2,
9490         .symlink        = btrfs_symlink,
9491         .setattr        = btrfs_setattr,
9492         .mknod          = btrfs_mknod,
9493         .setxattr       = btrfs_setxattr,
9494         .getxattr       = btrfs_getxattr,
9495         .listxattr      = btrfs_listxattr,
9496         .removexattr    = btrfs_removexattr,
9497         .permission     = btrfs_permission,
9498         .get_acl        = btrfs_get_acl,
9499         .set_acl        = btrfs_set_acl,
9500         .update_time    = btrfs_update_time,
9501         .tmpfile        = btrfs_tmpfile,
9502 };
9503 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9504         .lookup         = btrfs_lookup,
9505         .permission     = btrfs_permission,
9506         .get_acl        = btrfs_get_acl,
9507         .set_acl        = btrfs_set_acl,
9508         .update_time    = btrfs_update_time,
9509 };
9510
9511 static const struct file_operations btrfs_dir_file_operations = {
9512         .llseek         = generic_file_llseek,
9513         .read           = generic_read_dir,
9514         .iterate        = btrfs_real_readdir,
9515         .unlocked_ioctl = btrfs_ioctl,
9516 #ifdef CONFIG_COMPAT
9517         .compat_ioctl   = btrfs_ioctl,
9518 #endif
9519         .release        = btrfs_release_file,
9520         .fsync          = btrfs_sync_file,
9521 };
9522
9523 static struct extent_io_ops btrfs_extent_io_ops = {
9524         .fill_delalloc = run_delalloc_range,
9525         .submit_bio_hook = btrfs_submit_bio_hook,
9526         .merge_bio_hook = btrfs_merge_bio_hook,
9527         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9528         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9529         .writepage_start_hook = btrfs_writepage_start_hook,
9530         .set_bit_hook = btrfs_set_bit_hook,
9531         .clear_bit_hook = btrfs_clear_bit_hook,
9532         .merge_extent_hook = btrfs_merge_extent_hook,
9533         .split_extent_hook = btrfs_split_extent_hook,
9534 };
9535
9536 /*
9537  * btrfs doesn't support the bmap operation because swapfiles
9538  * use bmap to make a mapping of extents in the file.  They assume
9539  * these extents won't change over the life of the file and they
9540  * use the bmap result to do IO directly to the drive.
9541  *
9542  * the btrfs bmap call would return logical addresses that aren't
9543  * suitable for IO and they also will change frequently as COW
9544  * operations happen.  So, swapfile + btrfs == corruption.
9545  *
9546  * For now we're avoiding this by dropping bmap.
9547  */
9548 static const struct address_space_operations btrfs_aops = {
9549         .readpage       = btrfs_readpage,
9550         .writepage      = btrfs_writepage,
9551         .writepages     = btrfs_writepages,
9552         .readpages      = btrfs_readpages,
9553         .direct_IO      = btrfs_direct_IO,
9554         .invalidatepage = btrfs_invalidatepage,
9555         .releasepage    = btrfs_releasepage,
9556         .set_page_dirty = btrfs_set_page_dirty,
9557         .error_remove_page = generic_error_remove_page,
9558 };
9559
9560 static const struct address_space_operations btrfs_symlink_aops = {
9561         .readpage       = btrfs_readpage,
9562         .writepage      = btrfs_writepage,
9563         .invalidatepage = btrfs_invalidatepage,
9564         .releasepage    = btrfs_releasepage,
9565 };
9566
9567 static const struct inode_operations btrfs_file_inode_operations = {
9568         .getattr        = btrfs_getattr,
9569         .setattr        = btrfs_setattr,
9570         .setxattr       = btrfs_setxattr,
9571         .getxattr       = btrfs_getxattr,
9572         .listxattr      = btrfs_listxattr,
9573         .removexattr    = btrfs_removexattr,
9574         .permission     = btrfs_permission,
9575         .fiemap         = btrfs_fiemap,
9576         .get_acl        = btrfs_get_acl,
9577         .set_acl        = btrfs_set_acl,
9578         .update_time    = btrfs_update_time,
9579 };
9580 static const struct inode_operations btrfs_special_inode_operations = {
9581         .getattr        = btrfs_getattr,
9582         .setattr        = btrfs_setattr,
9583         .permission     = btrfs_permission,
9584         .setxattr       = btrfs_setxattr,
9585         .getxattr       = btrfs_getxattr,
9586         .listxattr      = btrfs_listxattr,
9587         .removexattr    = btrfs_removexattr,
9588         .get_acl        = btrfs_get_acl,
9589         .set_acl        = btrfs_set_acl,
9590         .update_time    = btrfs_update_time,
9591 };
9592 static const struct inode_operations btrfs_symlink_inode_operations = {
9593         .readlink       = generic_readlink,
9594         .follow_link    = page_follow_link_light,
9595         .put_link       = page_put_link,
9596         .getattr        = btrfs_getattr,
9597         .setattr        = btrfs_setattr,
9598         .permission     = btrfs_permission,
9599         .setxattr       = btrfs_setxattr,
9600         .getxattr       = btrfs_getxattr,
9601         .listxattr      = btrfs_listxattr,
9602         .removexattr    = btrfs_removexattr,
9603         .update_time    = btrfs_update_time,
9604 };
9605
9606 const struct dentry_operations btrfs_dentry_operations = {
9607         .d_delete       = btrfs_dentry_delete,
9608         .d_release      = btrfs_dentry_release,
9609 };