0a8ccdbdd464c1e9d56d7f6f616b9050f87143e2
[pandora-kernel.git] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35                            struct btrfs_free_space *info);
36
37 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38                                                struct btrfs_path *path,
39                                                u64 offset)
40 {
41         struct btrfs_key key;
42         struct btrfs_key location;
43         struct btrfs_disk_key disk_key;
44         struct btrfs_free_space_header *header;
45         struct extent_buffer *leaf;
46         struct inode *inode = NULL;
47         int ret;
48
49         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
50         key.offset = offset;
51         key.type = 0;
52
53         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54         if (ret < 0)
55                 return ERR_PTR(ret);
56         if (ret > 0) {
57                 btrfs_release_path(path);
58                 return ERR_PTR(-ENOENT);
59         }
60
61         leaf = path->nodes[0];
62         header = btrfs_item_ptr(leaf, path->slots[0],
63                                 struct btrfs_free_space_header);
64         btrfs_free_space_key(leaf, header, &disk_key);
65         btrfs_disk_key_to_cpu(&location, &disk_key);
66         btrfs_release_path(path);
67
68         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69         if (!inode)
70                 return ERR_PTR(-ENOENT);
71         if (IS_ERR(inode))
72                 return inode;
73         if (is_bad_inode(inode)) {
74                 iput(inode);
75                 return ERR_PTR(-ENOENT);
76         }
77
78         inode->i_mapping->flags &= ~__GFP_FS;
79
80         return inode;
81 }
82
83 struct inode *lookup_free_space_inode(struct btrfs_root *root,
84                                       struct btrfs_block_group_cache
85                                       *block_group, struct btrfs_path *path)
86 {
87         struct inode *inode = NULL;
88
89         spin_lock(&block_group->lock);
90         if (block_group->inode)
91                 inode = igrab(block_group->inode);
92         spin_unlock(&block_group->lock);
93         if (inode)
94                 return inode;
95
96         inode = __lookup_free_space_inode(root, path,
97                                           block_group->key.objectid);
98         if (IS_ERR(inode))
99                 return inode;
100
101         spin_lock(&block_group->lock);
102         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) {
103                 printk(KERN_INFO "Old style space inode found, converting.\n");
104                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NODATASUM;
105                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
106         }
107
108         if (!block_group->iref) {
109                 block_group->inode = igrab(inode);
110                 block_group->iref = 1;
111         }
112         spin_unlock(&block_group->lock);
113
114         return inode;
115 }
116
117 int __create_free_space_inode(struct btrfs_root *root,
118                               struct btrfs_trans_handle *trans,
119                               struct btrfs_path *path, u64 ino, u64 offset)
120 {
121         struct btrfs_key key;
122         struct btrfs_disk_key disk_key;
123         struct btrfs_free_space_header *header;
124         struct btrfs_inode_item *inode_item;
125         struct extent_buffer *leaf;
126         int ret;
127
128         ret = btrfs_insert_empty_inode(trans, root, path, ino);
129         if (ret)
130                 return ret;
131
132         leaf = path->nodes[0];
133         inode_item = btrfs_item_ptr(leaf, path->slots[0],
134                                     struct btrfs_inode_item);
135         btrfs_item_key(leaf, &disk_key, path->slots[0]);
136         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
137                              sizeof(*inode_item));
138         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
139         btrfs_set_inode_size(leaf, inode_item, 0);
140         btrfs_set_inode_nbytes(leaf, inode_item, 0);
141         btrfs_set_inode_uid(leaf, inode_item, 0);
142         btrfs_set_inode_gid(leaf, inode_item, 0);
143         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
144         btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
145                               BTRFS_INODE_PREALLOC);
146         btrfs_set_inode_nlink(leaf, inode_item, 1);
147         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
148         btrfs_set_inode_block_group(leaf, inode_item, offset);
149         btrfs_mark_buffer_dirty(leaf);
150         btrfs_release_path(path);
151
152         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
153         key.offset = offset;
154         key.type = 0;
155
156         ret = btrfs_insert_empty_item(trans, root, path, &key,
157                                       sizeof(struct btrfs_free_space_header));
158         if (ret < 0) {
159                 btrfs_release_path(path);
160                 return ret;
161         }
162         leaf = path->nodes[0];
163         header = btrfs_item_ptr(leaf, path->slots[0],
164                                 struct btrfs_free_space_header);
165         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
166         btrfs_set_free_space_key(leaf, header, &disk_key);
167         btrfs_mark_buffer_dirty(leaf);
168         btrfs_release_path(path);
169
170         return 0;
171 }
172
173 int create_free_space_inode(struct btrfs_root *root,
174                             struct btrfs_trans_handle *trans,
175                             struct btrfs_block_group_cache *block_group,
176                             struct btrfs_path *path)
177 {
178         int ret;
179         u64 ino;
180
181         ret = btrfs_find_free_objectid(root, &ino);
182         if (ret < 0)
183                 return ret;
184
185         return __create_free_space_inode(root, trans, path, ino,
186                                          block_group->key.objectid);
187 }
188
189 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
190                                     struct btrfs_trans_handle *trans,
191                                     struct btrfs_path *path,
192                                     struct inode *inode)
193 {
194         struct btrfs_block_rsv *rsv;
195         loff_t oldsize;
196         int ret = 0;
197
198         rsv = trans->block_rsv;
199         trans->block_rsv = root->orphan_block_rsv;
200         ret = btrfs_block_rsv_check(root, root->orphan_block_rsv, 0, 5, 0);
201         if (ret)
202                 return ret;
203
204         oldsize = i_size_read(inode);
205         btrfs_i_size_write(inode, 0);
206         truncate_pagecache(inode, oldsize, 0);
207
208         /*
209          * We don't need an orphan item because truncating the free space cache
210          * will never be split across transactions.
211          */
212         ret = btrfs_truncate_inode_items(trans, root, inode,
213                                          0, BTRFS_EXTENT_DATA_KEY);
214
215         trans->block_rsv = rsv;
216         if (ret) {
217                 WARN_ON(1);
218                 return ret;
219         }
220
221         ret = btrfs_update_inode(trans, root, inode);
222         return ret;
223 }
224
225 static int readahead_cache(struct inode *inode)
226 {
227         struct file_ra_state *ra;
228         unsigned long last_index;
229
230         ra = kzalloc(sizeof(*ra), GFP_NOFS);
231         if (!ra)
232                 return -ENOMEM;
233
234         file_ra_state_init(ra, inode->i_mapping);
235         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
236
237         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
238
239         kfree(ra);
240
241         return 0;
242 }
243
244 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
245                             struct btrfs_free_space_ctl *ctl,
246                             struct btrfs_path *path, u64 offset)
247 {
248         struct btrfs_free_space_header *header;
249         struct extent_buffer *leaf;
250         struct page *page;
251         struct btrfs_key key;
252         struct list_head bitmaps;
253         u64 num_entries;
254         u64 num_bitmaps;
255         u64 generation;
256         pgoff_t index = 0;
257         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
258         int ret = 0;
259
260         INIT_LIST_HEAD(&bitmaps);
261
262         /* Nothing in the space cache, goodbye */
263         if (!i_size_read(inode))
264                 goto out;
265
266         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
267         key.offset = offset;
268         key.type = 0;
269
270         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
271         if (ret < 0)
272                 goto out;
273         else if (ret > 0) {
274                 btrfs_release_path(path);
275                 ret = 0;
276                 goto out;
277         }
278
279         ret = -1;
280
281         leaf = path->nodes[0];
282         header = btrfs_item_ptr(leaf, path->slots[0],
283                                 struct btrfs_free_space_header);
284         num_entries = btrfs_free_space_entries(leaf, header);
285         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
286         generation = btrfs_free_space_generation(leaf, header);
287         btrfs_release_path(path);
288
289         if (BTRFS_I(inode)->generation != generation) {
290                 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
291                        " not match free space cache generation (%llu)\n",
292                        (unsigned long long)BTRFS_I(inode)->generation,
293                        (unsigned long long)generation);
294                 goto out;
295         }
296
297         if (!num_entries)
298                 goto out;
299
300         ret = readahead_cache(inode);
301         if (ret)
302                 goto out;
303
304         while (1) {
305                 struct btrfs_free_space_entry *entry;
306                 struct btrfs_free_space *e;
307                 void *addr;
308                 unsigned long offset = 0;
309                 int need_loop = 0;
310
311                 if (!num_entries && !num_bitmaps)
312                         break;
313
314                 page = find_or_create_page(inode->i_mapping, index, mask);
315                 if (!page)
316                         goto free_cache;
317
318                 if (!PageUptodate(page)) {
319                         btrfs_readpage(NULL, page);
320                         lock_page(page);
321                         if (!PageUptodate(page)) {
322                                 unlock_page(page);
323                                 page_cache_release(page);
324                                 printk(KERN_ERR "btrfs: error reading free "
325                                        "space cache\n");
326                                 goto free_cache;
327                         }
328                 }
329                 addr = kmap(page);
330
331                 if (index == 0) {
332                         u64 *gen;
333
334                         /*
335                          * We put a bogus crc in the front of the first page in
336                          * case old kernels try to mount a fs with the new
337                          * format to make sure they discard the cache.
338                          */
339                         addr += sizeof(u64);
340                         offset += sizeof(u64);
341
342                         gen = addr;
343                         if (*gen != BTRFS_I(inode)->generation) {
344                                 printk_ratelimited(KERN_ERR "btrfs: space cache"
345                                         " generation (%llu) does not match "
346                                         "inode (%llu)\n",
347                                         (unsigned long long)*gen,
348                                         (unsigned long long)
349                                         BTRFS_I(inode)->generation);
350                                 kunmap(page);
351                                 unlock_page(page);
352                                 page_cache_release(page);
353                                 goto free_cache;
354                         }
355                         addr += sizeof(u64);
356                         offset += sizeof(u64);
357                 }
358                 entry = addr;
359
360                 while (1) {
361                         if (!num_entries)
362                                 break;
363
364                         need_loop = 1;
365                         e = kmem_cache_zalloc(btrfs_free_space_cachep,
366                                               GFP_NOFS);
367                         if (!e) {
368                                 kunmap(page);
369                                 unlock_page(page);
370                                 page_cache_release(page);
371                                 goto free_cache;
372                         }
373
374                         e->offset = le64_to_cpu(entry->offset);
375                         e->bytes = le64_to_cpu(entry->bytes);
376                         if (!e->bytes) {
377                                 kunmap(page);
378                                 kmem_cache_free(btrfs_free_space_cachep, e);
379                                 unlock_page(page);
380                                 page_cache_release(page);
381                                 goto free_cache;
382                         }
383
384                         if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
385                                 spin_lock(&ctl->tree_lock);
386                                 ret = link_free_space(ctl, e);
387                                 spin_unlock(&ctl->tree_lock);
388                                 if (ret) {
389                                         printk(KERN_ERR "Duplicate entries in "
390                                                "free space cache, dumping\n");
391                                         kunmap(page);
392                                         unlock_page(page);
393                                         page_cache_release(page);
394                                         goto free_cache;
395                                 }
396                         } else {
397                                 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
398                                 if (!e->bitmap) {
399                                         kunmap(page);
400                                         kmem_cache_free(
401                                                 btrfs_free_space_cachep, e);
402                                         unlock_page(page);
403                                         page_cache_release(page);
404                                         goto free_cache;
405                                 }
406                                 spin_lock(&ctl->tree_lock);
407                                 ret = link_free_space(ctl, e);
408                                 ctl->total_bitmaps++;
409                                 ctl->op->recalc_thresholds(ctl);
410                                 spin_unlock(&ctl->tree_lock);
411                                 if (ret) {
412                                         printk(KERN_ERR "Duplicate entries in "
413                                                "free space cache, dumping\n");
414                                         kunmap(page);
415                                         unlock_page(page);
416                                         page_cache_release(page);
417                                         goto free_cache;
418                                 }
419                                 list_add_tail(&e->list, &bitmaps);
420                         }
421
422                         num_entries--;
423                         offset += sizeof(struct btrfs_free_space_entry);
424                         if (offset + sizeof(struct btrfs_free_space_entry) >=
425                             PAGE_CACHE_SIZE)
426                                 break;
427                         entry++;
428                 }
429
430                 /*
431                  * We read an entry out of this page, we need to move on to the
432                  * next page.
433                  */
434                 if (need_loop) {
435                         kunmap(page);
436                         goto next;
437                 }
438
439                 /*
440                  * We add the bitmaps at the end of the entries in order that
441                  * the bitmap entries are added to the cache.
442                  */
443                 e = list_entry(bitmaps.next, struct btrfs_free_space, list);
444                 list_del_init(&e->list);
445                 memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
446                 kunmap(page);
447                 num_bitmaps--;
448 next:
449                 unlock_page(page);
450                 page_cache_release(page);
451                 index++;
452         }
453
454         ret = 1;
455 out:
456         return ret;
457 free_cache:
458         __btrfs_remove_free_space_cache(ctl);
459         goto out;
460 }
461
462 int load_free_space_cache(struct btrfs_fs_info *fs_info,
463                           struct btrfs_block_group_cache *block_group)
464 {
465         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
466         struct btrfs_root *root = fs_info->tree_root;
467         struct inode *inode;
468         struct btrfs_path *path;
469         int ret;
470         bool matched;
471         u64 used = btrfs_block_group_used(&block_group->item);
472
473         /*
474          * If we're unmounting then just return, since this does a search on the
475          * normal root and not the commit root and we could deadlock.
476          */
477         if (btrfs_fs_closing(fs_info))
478                 return 0;
479
480         /*
481          * If this block group has been marked to be cleared for one reason or
482          * another then we can't trust the on disk cache, so just return.
483          */
484         spin_lock(&block_group->lock);
485         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
486                 spin_unlock(&block_group->lock);
487                 return 0;
488         }
489         spin_unlock(&block_group->lock);
490
491         path = btrfs_alloc_path();
492         if (!path)
493                 return 0;
494
495         inode = lookup_free_space_inode(root, block_group, path);
496         if (IS_ERR(inode)) {
497                 btrfs_free_path(path);
498                 return 0;
499         }
500
501         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
502                                       path, block_group->key.objectid);
503         btrfs_free_path(path);
504         if (ret <= 0)
505                 goto out;
506
507         spin_lock(&ctl->tree_lock);
508         matched = (ctl->free_space == (block_group->key.offset - used -
509                                        block_group->bytes_super));
510         spin_unlock(&ctl->tree_lock);
511
512         if (!matched) {
513                 __btrfs_remove_free_space_cache(ctl);
514                 printk(KERN_ERR "block group %llu has an wrong amount of free "
515                        "space\n", block_group->key.objectid);
516                 ret = -1;
517         }
518 out:
519         if (ret < 0) {
520                 /* This cache is bogus, make sure it gets cleared */
521                 spin_lock(&block_group->lock);
522                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
523                 spin_unlock(&block_group->lock);
524                 ret = 0;
525
526                 printk(KERN_ERR "btrfs: failed to load free space cache "
527                        "for block group %llu\n", block_group->key.objectid);
528         }
529
530         iput(inode);
531         return ret;
532 }
533
534 /**
535  * __btrfs_write_out_cache - write out cached info to an inode
536  * @root - the root the inode belongs to
537  * @ctl - the free space cache we are going to write out
538  * @block_group - the block_group for this cache if it belongs to a block_group
539  * @trans - the trans handle
540  * @path - the path to use
541  * @offset - the offset for the key we'll insert
542  *
543  * This function writes out a free space cache struct to disk for quick recovery
544  * on mount.  This will return 0 if it was successfull in writing the cache out,
545  * and -1 if it was not.
546  */
547 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
548                             struct btrfs_free_space_ctl *ctl,
549                             struct btrfs_block_group_cache *block_group,
550                             struct btrfs_trans_handle *trans,
551                             struct btrfs_path *path, u64 offset)
552 {
553         struct btrfs_free_space_header *header;
554         struct extent_buffer *leaf;
555         struct rb_node *node;
556         struct list_head *pos, *n;
557         struct page **pages;
558         struct page *page;
559         struct extent_state *cached_state = NULL;
560         struct btrfs_free_cluster *cluster = NULL;
561         struct extent_io_tree *unpin = NULL;
562         struct list_head bitmap_list;
563         struct btrfs_key key;
564         u64 start, end, len;
565         u64 bytes = 0;
566         u32 crc = ~(u32)0;
567         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
568         int index = 0, num_pages = 0;
569         int entries = 0;
570         int bitmaps = 0;
571         int ret;
572         int err = -1;
573         bool next_page = false;
574         bool out_of_space = false;
575
576         INIT_LIST_HEAD(&bitmap_list);
577
578         node = rb_first(&ctl->free_space_offset);
579         if (!node)
580                 return -1;
581
582         if (!i_size_read(inode))
583                 return -1;
584
585         num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
586                 PAGE_CACHE_SHIFT;
587
588         filemap_write_and_wait(inode->i_mapping);
589         btrfs_wait_ordered_range(inode, inode->i_size &
590                                  ~(root->sectorsize - 1), (u64)-1);
591
592         pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
593         if (!pages)
594                 return -1;
595
596         /* Get the cluster for this block_group if it exists */
597         if (block_group && !list_empty(&block_group->cluster_list))
598                 cluster = list_entry(block_group->cluster_list.next,
599                                      struct btrfs_free_cluster,
600                                      block_group_list);
601
602         /*
603          * We shouldn't have switched the pinned extents yet so this is the
604          * right one
605          */
606         unpin = root->fs_info->pinned_extents;
607
608         /*
609          * Lock all pages first so we can lock the extent safely.
610          *
611          * NOTE: Because we hold the ref the entire time we're going to write to
612          * the page find_get_page should never fail, so we don't do a check
613          * after find_get_page at this point.  Just putting this here so people
614          * know and don't freak out.
615          */
616         while (index < num_pages) {
617                 page = find_or_create_page(inode->i_mapping, index, mask);
618                 if (!page) {
619                         int i;
620
621                         for (i = 0; i < num_pages; i++) {
622                                 unlock_page(pages[i]);
623                                 page_cache_release(pages[i]);
624                         }
625                         goto out;
626                 }
627                 pages[index] = page;
628                 index++;
629         }
630
631         index = 0;
632         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
633                          0, &cached_state, GFP_NOFS);
634
635         /*
636          * When searching for pinned extents, we need to start at our start
637          * offset.
638          */
639         if (block_group)
640                 start = block_group->key.objectid;
641
642         /* Write out the extent entries */
643         do {
644                 struct btrfs_free_space_entry *entry;
645                 void *addr, *orig;
646                 unsigned long offset = 0;
647
648                 next_page = false;
649
650                 if (index >= num_pages) {
651                         out_of_space = true;
652                         break;
653                 }
654
655                 page = pages[index];
656
657                 orig = addr = kmap(page);
658                 if (index == 0) {
659                         u64 *gen;
660
661                         /*
662                          * We're going to put in a bogus crc for this page to
663                          * make sure that old kernels who aren't aware of this
664                          * format will be sure to discard the cache.
665                          */
666                         addr += sizeof(u64);
667                         offset += sizeof(u64);
668
669                         gen = addr;
670                         *gen = trans->transid;
671                         addr += sizeof(u64);
672                         offset += sizeof(u64);
673                 }
674                 entry = addr;
675
676                 memset(addr, 0, PAGE_CACHE_SIZE - offset);
677                 while (node && !next_page) {
678                         struct btrfs_free_space *e;
679
680                         e = rb_entry(node, struct btrfs_free_space, offset_index);
681                         entries++;
682
683                         entry->offset = cpu_to_le64(e->offset);
684                         entry->bytes = cpu_to_le64(e->bytes);
685                         if (e->bitmap) {
686                                 entry->type = BTRFS_FREE_SPACE_BITMAP;
687                                 list_add_tail(&e->list, &bitmap_list);
688                                 bitmaps++;
689                         } else {
690                                 entry->type = BTRFS_FREE_SPACE_EXTENT;
691                         }
692                         node = rb_next(node);
693                         if (!node && cluster) {
694                                 node = rb_first(&cluster->root);
695                                 cluster = NULL;
696                         }
697                         offset += sizeof(struct btrfs_free_space_entry);
698                         if (offset + sizeof(struct btrfs_free_space_entry) >=
699                             PAGE_CACHE_SIZE)
700                                 next_page = true;
701                         entry++;
702                 }
703
704                 /*
705                  * We want to add any pinned extents to our free space cache
706                  * so we don't leak the space
707                  */
708                 while (block_group && !next_page &&
709                        (start < block_group->key.objectid +
710                         block_group->key.offset)) {
711                         ret = find_first_extent_bit(unpin, start, &start, &end,
712                                                     EXTENT_DIRTY);
713                         if (ret) {
714                                 ret = 0;
715                                 break;
716                         }
717
718                         /* This pinned extent is out of our range */
719                         if (start >= block_group->key.objectid +
720                             block_group->key.offset)
721                                 break;
722
723                         len = block_group->key.objectid +
724                                 block_group->key.offset - start;
725                         len = min(len, end + 1 - start);
726
727                         entries++;
728                         entry->offset = cpu_to_le64(start);
729                         entry->bytes = cpu_to_le64(len);
730                         entry->type = BTRFS_FREE_SPACE_EXTENT;
731
732                         start = end + 1;
733                         offset += sizeof(struct btrfs_free_space_entry);
734                         if (offset + sizeof(struct btrfs_free_space_entry) >=
735                             PAGE_CACHE_SIZE)
736                                 next_page = true;
737                         entry++;
738                 }
739
740                 /* Generate bogus crc value */
741                 if (index == 0) {
742                         u32 *tmp;
743                         crc = btrfs_csum_data(root, orig + sizeof(u64), crc,
744                                               PAGE_CACHE_SIZE - sizeof(u64));
745                         btrfs_csum_final(crc, (char *)&crc);
746                         crc++;
747                         tmp = orig;
748                         *tmp = crc;
749                 }
750
751                 kunmap(page);
752
753                 bytes += PAGE_CACHE_SIZE;
754
755                 index++;
756         } while (node || next_page);
757
758         /* Write out the bitmaps */
759         list_for_each_safe(pos, n, &bitmap_list) {
760                 void *addr;
761                 struct btrfs_free_space *entry =
762                         list_entry(pos, struct btrfs_free_space, list);
763
764                 if (index >= num_pages) {
765                         out_of_space = true;
766                         break;
767                 }
768                 page = pages[index];
769
770                 addr = kmap(page);
771                 memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
772                 kunmap(page);
773                 bytes += PAGE_CACHE_SIZE;
774
775                 list_del_init(&entry->list);
776                 index++;
777         }
778
779         if (out_of_space) {
780                 btrfs_drop_pages(pages, num_pages);
781                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
782                                      i_size_read(inode) - 1, &cached_state,
783                                      GFP_NOFS);
784                 goto out;
785         }
786
787         /* Zero out the rest of the pages just to make sure */
788         while (index < num_pages) {
789                 void *addr;
790
791                 page = pages[index];
792                 addr = kmap(page);
793                 memset(addr, 0, PAGE_CACHE_SIZE);
794                 kunmap(page);
795                 bytes += PAGE_CACHE_SIZE;
796                 index++;
797         }
798
799         ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
800                                             bytes, &cached_state);
801         btrfs_drop_pages(pages, num_pages);
802         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
803                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
804
805         if (ret)
806                 goto out;
807
808         BTRFS_I(inode)->generation = trans->transid;
809
810         filemap_write_and_wait(inode->i_mapping);
811
812         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
813         key.offset = offset;
814         key.type = 0;
815
816         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
817         if (ret < 0) {
818                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
819                                  EXTENT_DIRTY | EXTENT_DELALLOC |
820                                  EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
821                 goto out;
822         }
823         leaf = path->nodes[0];
824         if (ret > 0) {
825                 struct btrfs_key found_key;
826                 BUG_ON(!path->slots[0]);
827                 path->slots[0]--;
828                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
829                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
830                     found_key.offset != offset) {
831                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
832                                          EXTENT_DIRTY | EXTENT_DELALLOC |
833                                          EXTENT_DO_ACCOUNTING, 0, 0, NULL,
834                                          GFP_NOFS);
835                         btrfs_release_path(path);
836                         goto out;
837                 }
838         }
839         header = btrfs_item_ptr(leaf, path->slots[0],
840                                 struct btrfs_free_space_header);
841         btrfs_set_free_space_entries(leaf, header, entries);
842         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
843         btrfs_set_free_space_generation(leaf, header, trans->transid);
844         btrfs_mark_buffer_dirty(leaf);
845         btrfs_release_path(path);
846
847         err = 0;
848 out:
849         kfree(pages);
850         if (err) {
851                 invalidate_inode_pages2_range(inode->i_mapping, 0, index);
852                 BTRFS_I(inode)->generation = 0;
853         }
854         btrfs_update_inode(trans, root, inode);
855         return err;
856 }
857
858 int btrfs_write_out_cache(struct btrfs_root *root,
859                           struct btrfs_trans_handle *trans,
860                           struct btrfs_block_group_cache *block_group,
861                           struct btrfs_path *path)
862 {
863         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
864         struct inode *inode;
865         int ret = 0;
866
867         root = root->fs_info->tree_root;
868
869         spin_lock(&block_group->lock);
870         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
871                 spin_unlock(&block_group->lock);
872                 return 0;
873         }
874         spin_unlock(&block_group->lock);
875
876         inode = lookup_free_space_inode(root, block_group, path);
877         if (IS_ERR(inode))
878                 return 0;
879
880         ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
881                                       path, block_group->key.objectid);
882         if (ret) {
883                 btrfs_delalloc_release_metadata(inode, inode->i_size);
884                 spin_lock(&block_group->lock);
885                 block_group->disk_cache_state = BTRFS_DC_ERROR;
886                 spin_unlock(&block_group->lock);
887                 ret = 0;
888 #ifdef DEBUG
889                 printk(KERN_ERR "btrfs: failed to write free space cace "
890                        "for block group %llu\n", block_group->key.objectid);
891 #endif
892         }
893
894         iput(inode);
895         return ret;
896 }
897
898 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
899                                           u64 offset)
900 {
901         BUG_ON(offset < bitmap_start);
902         offset -= bitmap_start;
903         return (unsigned long)(div_u64(offset, unit));
904 }
905
906 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
907 {
908         return (unsigned long)(div_u64(bytes, unit));
909 }
910
911 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
912                                    u64 offset)
913 {
914         u64 bitmap_start;
915         u64 bytes_per_bitmap;
916
917         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
918         bitmap_start = offset - ctl->start;
919         bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
920         bitmap_start *= bytes_per_bitmap;
921         bitmap_start += ctl->start;
922
923         return bitmap_start;
924 }
925
926 static int tree_insert_offset(struct rb_root *root, u64 offset,
927                               struct rb_node *node, int bitmap)
928 {
929         struct rb_node **p = &root->rb_node;
930         struct rb_node *parent = NULL;
931         struct btrfs_free_space *info;
932
933         while (*p) {
934                 parent = *p;
935                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
936
937                 if (offset < info->offset) {
938                         p = &(*p)->rb_left;
939                 } else if (offset > info->offset) {
940                         p = &(*p)->rb_right;
941                 } else {
942                         /*
943                          * we could have a bitmap entry and an extent entry
944                          * share the same offset.  If this is the case, we want
945                          * the extent entry to always be found first if we do a
946                          * linear search through the tree, since we want to have
947                          * the quickest allocation time, and allocating from an
948                          * extent is faster than allocating from a bitmap.  So
949                          * if we're inserting a bitmap and we find an entry at
950                          * this offset, we want to go right, or after this entry
951                          * logically.  If we are inserting an extent and we've
952                          * found a bitmap, we want to go left, or before
953                          * logically.
954                          */
955                         if (bitmap) {
956                                 if (info->bitmap) {
957                                         WARN_ON_ONCE(1);
958                                         return -EEXIST;
959                                 }
960                                 p = &(*p)->rb_right;
961                         } else {
962                                 if (!info->bitmap) {
963                                         WARN_ON_ONCE(1);
964                                         return -EEXIST;
965                                 }
966                                 p = &(*p)->rb_left;
967                         }
968                 }
969         }
970
971         rb_link_node(node, parent, p);
972         rb_insert_color(node, root);
973
974         return 0;
975 }
976
977 /*
978  * searches the tree for the given offset.
979  *
980  * fuzzy - If this is set, then we are trying to make an allocation, and we just
981  * want a section that has at least bytes size and comes at or after the given
982  * offset.
983  */
984 static struct btrfs_free_space *
985 tree_search_offset(struct btrfs_free_space_ctl *ctl,
986                    u64 offset, int bitmap_only, int fuzzy)
987 {
988         struct rb_node *n = ctl->free_space_offset.rb_node;
989         struct btrfs_free_space *entry, *prev = NULL;
990
991         /* find entry that is closest to the 'offset' */
992         while (1) {
993                 if (!n) {
994                         entry = NULL;
995                         break;
996                 }
997
998                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
999                 prev = entry;
1000
1001                 if (offset < entry->offset)
1002                         n = n->rb_left;
1003                 else if (offset > entry->offset)
1004                         n = n->rb_right;
1005                 else
1006                         break;
1007         }
1008
1009         if (bitmap_only) {
1010                 if (!entry)
1011                         return NULL;
1012                 if (entry->bitmap)
1013                         return entry;
1014
1015                 /*
1016                  * bitmap entry and extent entry may share same offset,
1017                  * in that case, bitmap entry comes after extent entry.
1018                  */
1019                 n = rb_next(n);
1020                 if (!n)
1021                         return NULL;
1022                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1023                 if (entry->offset != offset)
1024                         return NULL;
1025
1026                 WARN_ON(!entry->bitmap);
1027                 return entry;
1028         } else if (entry) {
1029                 if (entry->bitmap) {
1030                         /*
1031                          * if previous extent entry covers the offset,
1032                          * we should return it instead of the bitmap entry
1033                          */
1034                         n = &entry->offset_index;
1035                         while (1) {
1036                                 n = rb_prev(n);
1037                                 if (!n)
1038                                         break;
1039                                 prev = rb_entry(n, struct btrfs_free_space,
1040                                                 offset_index);
1041                                 if (!prev->bitmap) {
1042                                         if (prev->offset + prev->bytes > offset)
1043                                                 entry = prev;
1044                                         break;
1045                                 }
1046                         }
1047                 }
1048                 return entry;
1049         }
1050
1051         if (!prev)
1052                 return NULL;
1053
1054         /* find last entry before the 'offset' */
1055         entry = prev;
1056         if (entry->offset > offset) {
1057                 n = rb_prev(&entry->offset_index);
1058                 if (n) {
1059                         entry = rb_entry(n, struct btrfs_free_space,
1060                                         offset_index);
1061                         BUG_ON(entry->offset > offset);
1062                 } else {
1063                         if (fuzzy)
1064                                 return entry;
1065                         else
1066                                 return NULL;
1067                 }
1068         }
1069
1070         if (entry->bitmap) {
1071                 n = &entry->offset_index;
1072                 while (1) {
1073                         n = rb_prev(n);
1074                         if (!n)
1075                                 break;
1076                         prev = rb_entry(n, struct btrfs_free_space,
1077                                         offset_index);
1078                         if (!prev->bitmap) {
1079                                 if (prev->offset + prev->bytes > offset)
1080                                         return prev;
1081                                 break;
1082                         }
1083                 }
1084                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1085                         return entry;
1086         } else if (entry->offset + entry->bytes > offset)
1087                 return entry;
1088
1089         if (!fuzzy)
1090                 return NULL;
1091
1092         while (1) {
1093                 if (entry->bitmap) {
1094                         if (entry->offset + BITS_PER_BITMAP *
1095                             ctl->unit > offset)
1096                                 break;
1097                 } else {
1098                         if (entry->offset + entry->bytes > offset)
1099                                 break;
1100                 }
1101
1102                 n = rb_next(&entry->offset_index);
1103                 if (!n)
1104                         return NULL;
1105                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1106         }
1107         return entry;
1108 }
1109
1110 static inline void
1111 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1112                     struct btrfs_free_space *info)
1113 {
1114         rb_erase(&info->offset_index, &ctl->free_space_offset);
1115         ctl->free_extents--;
1116 }
1117
1118 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1119                               struct btrfs_free_space *info)
1120 {
1121         __unlink_free_space(ctl, info);
1122         ctl->free_space -= info->bytes;
1123 }
1124
1125 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1126                            struct btrfs_free_space *info)
1127 {
1128         int ret = 0;
1129
1130         BUG_ON(!info->bitmap && !info->bytes);
1131         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1132                                  &info->offset_index, (info->bitmap != NULL));
1133         if (ret)
1134                 return ret;
1135
1136         ctl->free_space += info->bytes;
1137         ctl->free_extents++;
1138         return ret;
1139 }
1140
1141 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1142 {
1143         struct btrfs_block_group_cache *block_group = ctl->private;
1144         u64 max_bytes;
1145         u64 bitmap_bytes;
1146         u64 extent_bytes;
1147         u64 size = block_group->key.offset;
1148         u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1149         int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1150
1151         BUG_ON(ctl->total_bitmaps > max_bitmaps);
1152
1153         /*
1154          * The goal is to keep the total amount of memory used per 1gb of space
1155          * at or below 32k, so we need to adjust how much memory we allow to be
1156          * used by extent based free space tracking
1157          */
1158         if (size < 1024 * 1024 * 1024)
1159                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1160         else
1161                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1162                         div64_u64(size, 1024 * 1024 * 1024);
1163
1164         /*
1165          * we want to account for 1 more bitmap than what we have so we can make
1166          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1167          * we add more bitmaps.
1168          */
1169         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1170
1171         if (bitmap_bytes >= max_bytes) {
1172                 ctl->extents_thresh = 0;
1173                 return;
1174         }
1175
1176         /*
1177          * we want the extent entry threshold to always be at most 1/2 the maxw
1178          * bytes we can have, or whatever is less than that.
1179          */
1180         extent_bytes = max_bytes - bitmap_bytes;
1181         extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1182
1183         ctl->extents_thresh =
1184                 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1185 }
1186
1187 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1188                                        struct btrfs_free_space *info,
1189                                        u64 offset, u64 bytes)
1190 {
1191         unsigned long start, count;
1192
1193         start = offset_to_bit(info->offset, ctl->unit, offset);
1194         count = bytes_to_bits(bytes, ctl->unit);
1195         BUG_ON(start + count > BITS_PER_BITMAP);
1196
1197         bitmap_clear(info->bitmap, start, count);
1198
1199         info->bytes -= bytes;
1200 }
1201
1202 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1203                               struct btrfs_free_space *info, u64 offset,
1204                               u64 bytes)
1205 {
1206         __bitmap_clear_bits(ctl, info, offset, bytes);
1207         ctl->free_space -= bytes;
1208 }
1209
1210 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1211                             struct btrfs_free_space *info, u64 offset,
1212                             u64 bytes)
1213 {
1214         unsigned long start, count;
1215
1216         start = offset_to_bit(info->offset, ctl->unit, offset);
1217         count = bytes_to_bits(bytes, ctl->unit);
1218         BUG_ON(start + count > BITS_PER_BITMAP);
1219
1220         bitmap_set(info->bitmap, start, count);
1221
1222         info->bytes += bytes;
1223         ctl->free_space += bytes;
1224 }
1225
1226 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1227                          struct btrfs_free_space *bitmap_info, u64 *offset,
1228                          u64 *bytes)
1229 {
1230         unsigned long found_bits = 0;
1231         unsigned long bits, i;
1232         unsigned long next_zero;
1233
1234         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1235                           max_t(u64, *offset, bitmap_info->offset));
1236         bits = bytes_to_bits(*bytes, ctl->unit);
1237
1238         for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1239              i < BITS_PER_BITMAP;
1240              i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1241                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1242                                                BITS_PER_BITMAP, i);
1243                 if ((next_zero - i) >= bits) {
1244                         found_bits = next_zero - i;
1245                         break;
1246                 }
1247                 i = next_zero;
1248         }
1249
1250         if (found_bits) {
1251                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1252                 *bytes = (u64)(found_bits) * ctl->unit;
1253                 return 0;
1254         }
1255
1256         return -1;
1257 }
1258
1259 static struct btrfs_free_space *
1260 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1261 {
1262         struct btrfs_free_space *entry;
1263         struct rb_node *node;
1264         int ret;
1265
1266         if (!ctl->free_space_offset.rb_node)
1267                 return NULL;
1268
1269         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1270         if (!entry)
1271                 return NULL;
1272
1273         for (node = &entry->offset_index; node; node = rb_next(node)) {
1274                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1275                 if (entry->bytes < *bytes)
1276                         continue;
1277
1278                 if (entry->bitmap) {
1279                         ret = search_bitmap(ctl, entry, offset, bytes);
1280                         if (!ret)
1281                                 return entry;
1282                         continue;
1283                 }
1284
1285                 *offset = entry->offset;
1286                 *bytes = entry->bytes;
1287                 return entry;
1288         }
1289
1290         return NULL;
1291 }
1292
1293 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1294                            struct btrfs_free_space *info, u64 offset)
1295 {
1296         info->offset = offset_to_bitmap(ctl, offset);
1297         info->bytes = 0;
1298         link_free_space(ctl, info);
1299         ctl->total_bitmaps++;
1300
1301         ctl->op->recalc_thresholds(ctl);
1302 }
1303
1304 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1305                         struct btrfs_free_space *bitmap_info)
1306 {
1307         unlink_free_space(ctl, bitmap_info);
1308         kfree(bitmap_info->bitmap);
1309         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1310         ctl->total_bitmaps--;
1311         ctl->op->recalc_thresholds(ctl);
1312 }
1313
1314 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1315                               struct btrfs_free_space *bitmap_info,
1316                               u64 *offset, u64 *bytes)
1317 {
1318         u64 end;
1319         u64 search_start, search_bytes;
1320         int ret;
1321
1322 again:
1323         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1324
1325         /*
1326          * XXX - this can go away after a few releases.
1327          *
1328          * since the only user of btrfs_remove_free_space is the tree logging
1329          * stuff, and the only way to test that is under crash conditions, we
1330          * want to have this debug stuff here just in case somethings not
1331          * working.  Search the bitmap for the space we are trying to use to
1332          * make sure its actually there.  If its not there then we need to stop
1333          * because something has gone wrong.
1334          */
1335         search_start = *offset;
1336         search_bytes = *bytes;
1337         search_bytes = min(search_bytes, end - search_start + 1);
1338         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1339         BUG_ON(ret < 0 || search_start != *offset);
1340
1341         if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1342                 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1343                 *bytes -= end - *offset + 1;
1344                 *offset = end + 1;
1345         } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1346                 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1347                 *bytes = 0;
1348         }
1349
1350         if (*bytes) {
1351                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1352                 if (!bitmap_info->bytes)
1353                         free_bitmap(ctl, bitmap_info);
1354
1355                 /*
1356                  * no entry after this bitmap, but we still have bytes to
1357                  * remove, so something has gone wrong.
1358                  */
1359                 if (!next)
1360                         return -EINVAL;
1361
1362                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1363                                        offset_index);
1364
1365                 /*
1366                  * if the next entry isn't a bitmap we need to return to let the
1367                  * extent stuff do its work.
1368                  */
1369                 if (!bitmap_info->bitmap)
1370                         return -EAGAIN;
1371
1372                 /*
1373                  * Ok the next item is a bitmap, but it may not actually hold
1374                  * the information for the rest of this free space stuff, so
1375                  * look for it, and if we don't find it return so we can try
1376                  * everything over again.
1377                  */
1378                 search_start = *offset;
1379                 search_bytes = *bytes;
1380                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1381                                     &search_bytes);
1382                 if (ret < 0 || search_start != *offset)
1383                         return -EAGAIN;
1384
1385                 goto again;
1386         } else if (!bitmap_info->bytes)
1387                 free_bitmap(ctl, bitmap_info);
1388
1389         return 0;
1390 }
1391
1392 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1393                                struct btrfs_free_space *info, u64 offset,
1394                                u64 bytes)
1395 {
1396         u64 bytes_to_set = 0;
1397         u64 end;
1398
1399         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1400
1401         bytes_to_set = min(end - offset, bytes);
1402
1403         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1404
1405         return bytes_to_set;
1406
1407 }
1408
1409 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1410                       struct btrfs_free_space *info)
1411 {
1412         struct btrfs_block_group_cache *block_group = ctl->private;
1413
1414         /*
1415          * If we are below the extents threshold then we can add this as an
1416          * extent, and don't have to deal with the bitmap
1417          */
1418         if (ctl->free_extents < ctl->extents_thresh) {
1419                 /*
1420                  * If this block group has some small extents we don't want to
1421                  * use up all of our free slots in the cache with them, we want
1422                  * to reserve them to larger extents, however if we have plent
1423                  * of cache left then go ahead an dadd them, no sense in adding
1424                  * the overhead of a bitmap if we don't have to.
1425                  */
1426                 if (info->bytes <= block_group->sectorsize * 4) {
1427                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1428                                 return false;
1429                 } else {
1430                         return false;
1431                 }
1432         }
1433
1434         /*
1435          * some block groups are so tiny they can't be enveloped by a bitmap, so
1436          * don't even bother to create a bitmap for this
1437          */
1438         if (BITS_PER_BITMAP * block_group->sectorsize >
1439             block_group->key.offset)
1440                 return false;
1441
1442         return true;
1443 }
1444
1445 static struct btrfs_free_space_op free_space_op = {
1446         .recalc_thresholds      = recalculate_thresholds,
1447         .use_bitmap             = use_bitmap,
1448 };
1449
1450 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1451                               struct btrfs_free_space *info)
1452 {
1453         struct btrfs_free_space *bitmap_info;
1454         struct btrfs_block_group_cache *block_group = NULL;
1455         int added = 0;
1456         u64 bytes, offset, bytes_added;
1457         int ret;
1458
1459         bytes = info->bytes;
1460         offset = info->offset;
1461
1462         if (!ctl->op->use_bitmap(ctl, info))
1463                 return 0;
1464
1465         if (ctl->op == &free_space_op)
1466                 block_group = ctl->private;
1467 again:
1468         /*
1469          * Since we link bitmaps right into the cluster we need to see if we
1470          * have a cluster here, and if so and it has our bitmap we need to add
1471          * the free space to that bitmap.
1472          */
1473         if (block_group && !list_empty(&block_group->cluster_list)) {
1474                 struct btrfs_free_cluster *cluster;
1475                 struct rb_node *node;
1476                 struct btrfs_free_space *entry;
1477
1478                 cluster = list_entry(block_group->cluster_list.next,
1479                                      struct btrfs_free_cluster,
1480                                      block_group_list);
1481                 spin_lock(&cluster->lock);
1482                 node = rb_first(&cluster->root);
1483                 if (!node) {
1484                         spin_unlock(&cluster->lock);
1485                         goto no_cluster_bitmap;
1486                 }
1487
1488                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1489                 if (!entry->bitmap) {
1490                         spin_unlock(&cluster->lock);
1491                         goto no_cluster_bitmap;
1492                 }
1493
1494                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1495                         bytes_added = add_bytes_to_bitmap(ctl, entry,
1496                                                           offset, bytes);
1497                         bytes -= bytes_added;
1498                         offset += bytes_added;
1499                 }
1500                 spin_unlock(&cluster->lock);
1501                 if (!bytes) {
1502                         ret = 1;
1503                         goto out;
1504                 }
1505         }
1506
1507 no_cluster_bitmap:
1508         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1509                                          1, 0);
1510         if (!bitmap_info) {
1511                 BUG_ON(added);
1512                 goto new_bitmap;
1513         }
1514
1515         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1516         bytes -= bytes_added;
1517         offset += bytes_added;
1518         added = 0;
1519
1520         if (!bytes) {
1521                 ret = 1;
1522                 goto out;
1523         } else
1524                 goto again;
1525
1526 new_bitmap:
1527         if (info && info->bitmap) {
1528                 add_new_bitmap(ctl, info, offset);
1529                 added = 1;
1530                 info = NULL;
1531                 goto again;
1532         } else {
1533                 spin_unlock(&ctl->tree_lock);
1534
1535                 /* no pre-allocated info, allocate a new one */
1536                 if (!info) {
1537                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
1538                                                  GFP_NOFS);
1539                         if (!info) {
1540                                 spin_lock(&ctl->tree_lock);
1541                                 ret = -ENOMEM;
1542                                 goto out;
1543                         }
1544                 }
1545
1546                 /* allocate the bitmap */
1547                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1548                 spin_lock(&ctl->tree_lock);
1549                 if (!info->bitmap) {
1550                         ret = -ENOMEM;
1551                         goto out;
1552                 }
1553                 goto again;
1554         }
1555
1556 out:
1557         if (info) {
1558                 if (info->bitmap)
1559                         kfree(info->bitmap);
1560                 kmem_cache_free(btrfs_free_space_cachep, info);
1561         }
1562
1563         return ret;
1564 }
1565
1566 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1567                           struct btrfs_free_space *info, bool update_stat)
1568 {
1569         struct btrfs_free_space *left_info;
1570         struct btrfs_free_space *right_info;
1571         bool merged = false;
1572         u64 offset = info->offset;
1573         u64 bytes = info->bytes;
1574
1575         /*
1576          * first we want to see if there is free space adjacent to the range we
1577          * are adding, if there is remove that struct and add a new one to
1578          * cover the entire range
1579          */
1580         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1581         if (right_info && rb_prev(&right_info->offset_index))
1582                 left_info = rb_entry(rb_prev(&right_info->offset_index),
1583                                      struct btrfs_free_space, offset_index);
1584         else
1585                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1586
1587         if (right_info && !right_info->bitmap) {
1588                 if (update_stat)
1589                         unlink_free_space(ctl, right_info);
1590                 else
1591                         __unlink_free_space(ctl, right_info);
1592                 info->bytes += right_info->bytes;
1593                 kmem_cache_free(btrfs_free_space_cachep, right_info);
1594                 merged = true;
1595         }
1596
1597         if (left_info && !left_info->bitmap &&
1598             left_info->offset + left_info->bytes == offset) {
1599                 if (update_stat)
1600                         unlink_free_space(ctl, left_info);
1601                 else
1602                         __unlink_free_space(ctl, left_info);
1603                 info->offset = left_info->offset;
1604                 info->bytes += left_info->bytes;
1605                 kmem_cache_free(btrfs_free_space_cachep, left_info);
1606                 merged = true;
1607         }
1608
1609         return merged;
1610 }
1611
1612 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1613                            u64 offset, u64 bytes)
1614 {
1615         struct btrfs_free_space *info;
1616         int ret = 0;
1617
1618         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1619         if (!info)
1620                 return -ENOMEM;
1621
1622         info->offset = offset;
1623         info->bytes = bytes;
1624
1625         spin_lock(&ctl->tree_lock);
1626
1627         if (try_merge_free_space(ctl, info, true))
1628                 goto link;
1629
1630         /*
1631          * There was no extent directly to the left or right of this new
1632          * extent then we know we're going to have to allocate a new extent, so
1633          * before we do that see if we need to drop this into a bitmap
1634          */
1635         ret = insert_into_bitmap(ctl, info);
1636         if (ret < 0) {
1637                 goto out;
1638         } else if (ret) {
1639                 ret = 0;
1640                 goto out;
1641         }
1642 link:
1643         ret = link_free_space(ctl, info);
1644         if (ret)
1645                 kmem_cache_free(btrfs_free_space_cachep, info);
1646 out:
1647         spin_unlock(&ctl->tree_lock);
1648
1649         if (ret) {
1650                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1651                 BUG_ON(ret == -EEXIST);
1652         }
1653
1654         return ret;
1655 }
1656
1657 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1658                             u64 offset, u64 bytes)
1659 {
1660         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1661         struct btrfs_free_space *info;
1662         struct btrfs_free_space *next_info = NULL;
1663         int ret = 0;
1664
1665         spin_lock(&ctl->tree_lock);
1666
1667 again:
1668         info = tree_search_offset(ctl, offset, 0, 0);
1669         if (!info) {
1670                 /*
1671                  * oops didn't find an extent that matched the space we wanted
1672                  * to remove, look for a bitmap instead
1673                  */
1674                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1675                                           1, 0);
1676                 if (!info) {
1677                         WARN_ON(1);
1678                         goto out_lock;
1679                 }
1680         }
1681
1682         if (info->bytes < bytes && rb_next(&info->offset_index)) {
1683                 u64 end;
1684                 next_info = rb_entry(rb_next(&info->offset_index),
1685                                              struct btrfs_free_space,
1686                                              offset_index);
1687
1688                 if (next_info->bitmap)
1689                         end = next_info->offset +
1690                               BITS_PER_BITMAP * ctl->unit - 1;
1691                 else
1692                         end = next_info->offset + next_info->bytes;
1693
1694                 if (next_info->bytes < bytes ||
1695                     next_info->offset > offset || offset > end) {
1696                         printk(KERN_CRIT "Found free space at %llu, size %llu,"
1697                               " trying to use %llu\n",
1698                               (unsigned long long)info->offset,
1699                               (unsigned long long)info->bytes,
1700                               (unsigned long long)bytes);
1701                         WARN_ON(1);
1702                         ret = -EINVAL;
1703                         goto out_lock;
1704                 }
1705
1706                 info = next_info;
1707         }
1708
1709         if (info->bytes == bytes) {
1710                 unlink_free_space(ctl, info);
1711                 if (info->bitmap) {
1712                         kfree(info->bitmap);
1713                         ctl->total_bitmaps--;
1714                 }
1715                 kmem_cache_free(btrfs_free_space_cachep, info);
1716                 goto out_lock;
1717         }
1718
1719         if (!info->bitmap && info->offset == offset) {
1720                 unlink_free_space(ctl, info);
1721                 info->offset += bytes;
1722                 info->bytes -= bytes;
1723                 link_free_space(ctl, info);
1724                 goto out_lock;
1725         }
1726
1727         if (!info->bitmap && info->offset <= offset &&
1728             info->offset + info->bytes >= offset + bytes) {
1729                 u64 old_start = info->offset;
1730                 /*
1731                  * we're freeing space in the middle of the info,
1732                  * this can happen during tree log replay
1733                  *
1734                  * first unlink the old info and then
1735                  * insert it again after the hole we're creating
1736                  */
1737                 unlink_free_space(ctl, info);
1738                 if (offset + bytes < info->offset + info->bytes) {
1739                         u64 old_end = info->offset + info->bytes;
1740
1741                         info->offset = offset + bytes;
1742                         info->bytes = old_end - info->offset;
1743                         ret = link_free_space(ctl, info);
1744                         WARN_ON(ret);
1745                         if (ret)
1746                                 goto out_lock;
1747                 } else {
1748                         /* the hole we're creating ends at the end
1749                          * of the info struct, just free the info
1750                          */
1751                         kmem_cache_free(btrfs_free_space_cachep, info);
1752                 }
1753                 spin_unlock(&ctl->tree_lock);
1754
1755                 /* step two, insert a new info struct to cover
1756                  * anything before the hole
1757                  */
1758                 ret = btrfs_add_free_space(block_group, old_start,
1759                                            offset - old_start);
1760                 WARN_ON(ret);
1761                 goto out;
1762         }
1763
1764         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1765         if (ret == -EAGAIN)
1766                 goto again;
1767         BUG_ON(ret);
1768 out_lock:
1769         spin_unlock(&ctl->tree_lock);
1770 out:
1771         return ret;
1772 }
1773
1774 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1775                            u64 bytes)
1776 {
1777         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1778         struct btrfs_free_space *info;
1779         struct rb_node *n;
1780         int count = 0;
1781
1782         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1783                 info = rb_entry(n, struct btrfs_free_space, offset_index);
1784                 if (info->bytes >= bytes)
1785                         count++;
1786                 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1787                        (unsigned long long)info->offset,
1788                        (unsigned long long)info->bytes,
1789                        (info->bitmap) ? "yes" : "no");
1790         }
1791         printk(KERN_INFO "block group has cluster?: %s\n",
1792                list_empty(&block_group->cluster_list) ? "no" : "yes");
1793         printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1794                "\n", count);
1795 }
1796
1797 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1798 {
1799         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1800
1801         spin_lock_init(&ctl->tree_lock);
1802         ctl->unit = block_group->sectorsize;
1803         ctl->start = block_group->key.objectid;
1804         ctl->private = block_group;
1805         ctl->op = &free_space_op;
1806
1807         /*
1808          * we only want to have 32k of ram per block group for keeping
1809          * track of free space, and if we pass 1/2 of that we want to
1810          * start converting things over to using bitmaps
1811          */
1812         ctl->extents_thresh = ((1024 * 32) / 2) /
1813                                 sizeof(struct btrfs_free_space);
1814 }
1815
1816 /*
1817  * for a given cluster, put all of its extents back into the free
1818  * space cache.  If the block group passed doesn't match the block group
1819  * pointed to by the cluster, someone else raced in and freed the
1820  * cluster already.  In that case, we just return without changing anything
1821  */
1822 static int
1823 __btrfs_return_cluster_to_free_space(
1824                              struct btrfs_block_group_cache *block_group,
1825                              struct btrfs_free_cluster *cluster)
1826 {
1827         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1828         struct btrfs_free_space *entry;
1829         struct rb_node *node;
1830
1831         spin_lock(&cluster->lock);
1832         if (cluster->block_group != block_group)
1833                 goto out;
1834
1835         cluster->block_group = NULL;
1836         cluster->window_start = 0;
1837         list_del_init(&cluster->block_group_list);
1838
1839         node = rb_first(&cluster->root);
1840         while (node) {
1841                 bool bitmap;
1842
1843                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1844                 node = rb_next(&entry->offset_index);
1845                 rb_erase(&entry->offset_index, &cluster->root);
1846
1847                 bitmap = (entry->bitmap != NULL);
1848                 if (!bitmap)
1849                         try_merge_free_space(ctl, entry, false);
1850                 tree_insert_offset(&ctl->free_space_offset,
1851                                    entry->offset, &entry->offset_index, bitmap);
1852         }
1853         cluster->root = RB_ROOT;
1854
1855 out:
1856         spin_unlock(&cluster->lock);
1857         btrfs_put_block_group(block_group);
1858         return 0;
1859 }
1860
1861 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
1862 {
1863         struct btrfs_free_space *info;
1864         struct rb_node *node;
1865
1866         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1867                 info = rb_entry(node, struct btrfs_free_space, offset_index);
1868                 if (!info->bitmap) {
1869                         unlink_free_space(ctl, info);
1870                         kmem_cache_free(btrfs_free_space_cachep, info);
1871                 } else {
1872                         free_bitmap(ctl, info);
1873                 }
1874                 if (need_resched()) {
1875                         spin_unlock(&ctl->tree_lock);
1876                         cond_resched();
1877                         spin_lock(&ctl->tree_lock);
1878                 }
1879         }
1880 }
1881
1882 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1883 {
1884         spin_lock(&ctl->tree_lock);
1885         __btrfs_remove_free_space_cache_locked(ctl);
1886         spin_unlock(&ctl->tree_lock);
1887 }
1888
1889 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1890 {
1891         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1892         struct btrfs_free_cluster *cluster;
1893         struct list_head *head;
1894
1895         spin_lock(&ctl->tree_lock);
1896         while ((head = block_group->cluster_list.next) !=
1897                &block_group->cluster_list) {
1898                 cluster = list_entry(head, struct btrfs_free_cluster,
1899                                      block_group_list);
1900
1901                 WARN_ON(cluster->block_group != block_group);
1902                 __btrfs_return_cluster_to_free_space(block_group, cluster);
1903                 if (need_resched()) {
1904                         spin_unlock(&ctl->tree_lock);
1905                         cond_resched();
1906                         spin_lock(&ctl->tree_lock);
1907                 }
1908         }
1909         __btrfs_remove_free_space_cache_locked(ctl);
1910         spin_unlock(&ctl->tree_lock);
1911
1912 }
1913
1914 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1915                                u64 offset, u64 bytes, u64 empty_size)
1916 {
1917         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1918         struct btrfs_free_space *entry = NULL;
1919         u64 bytes_search = bytes + empty_size;
1920         u64 ret = 0;
1921
1922         spin_lock(&ctl->tree_lock);
1923         entry = find_free_space(ctl, &offset, &bytes_search);
1924         if (!entry)
1925                 goto out;
1926
1927         ret = offset;
1928         if (entry->bitmap) {
1929                 bitmap_clear_bits(ctl, entry, offset, bytes);
1930                 if (!entry->bytes)
1931                         free_bitmap(ctl, entry);
1932         } else {
1933                 unlink_free_space(ctl, entry);
1934                 entry->offset += bytes;
1935                 entry->bytes -= bytes;
1936                 if (!entry->bytes)
1937                         kmem_cache_free(btrfs_free_space_cachep, entry);
1938                 else
1939                         link_free_space(ctl, entry);
1940         }
1941
1942 out:
1943         spin_unlock(&ctl->tree_lock);
1944
1945         return ret;
1946 }
1947
1948 /*
1949  * given a cluster, put all of its extents back into the free space
1950  * cache.  If a block group is passed, this function will only free
1951  * a cluster that belongs to the passed block group.
1952  *
1953  * Otherwise, it'll get a reference on the block group pointed to by the
1954  * cluster and remove the cluster from it.
1955  */
1956 int btrfs_return_cluster_to_free_space(
1957                                struct btrfs_block_group_cache *block_group,
1958                                struct btrfs_free_cluster *cluster)
1959 {
1960         struct btrfs_free_space_ctl *ctl;
1961         int ret;
1962
1963         /* first, get a safe pointer to the block group */
1964         spin_lock(&cluster->lock);
1965         if (!block_group) {
1966                 block_group = cluster->block_group;
1967                 if (!block_group) {
1968                         spin_unlock(&cluster->lock);
1969                         return 0;
1970                 }
1971         } else if (cluster->block_group != block_group) {
1972                 /* someone else has already freed it don't redo their work */
1973                 spin_unlock(&cluster->lock);
1974                 return 0;
1975         }
1976         atomic_inc(&block_group->count);
1977         spin_unlock(&cluster->lock);
1978
1979         ctl = block_group->free_space_ctl;
1980
1981         /* now return any extents the cluster had on it */
1982         spin_lock(&ctl->tree_lock);
1983         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1984         spin_unlock(&ctl->tree_lock);
1985
1986         /* finally drop our ref */
1987         btrfs_put_block_group(block_group);
1988         return ret;
1989 }
1990
1991 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1992                                    struct btrfs_free_cluster *cluster,
1993                                    struct btrfs_free_space *entry,
1994                                    u64 bytes, u64 min_start)
1995 {
1996         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1997         int err;
1998         u64 search_start = cluster->window_start;
1999         u64 search_bytes = bytes;
2000         u64 ret = 0;
2001
2002         search_start = min_start;
2003         search_bytes = bytes;
2004
2005         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2006         if (err)
2007                 return 0;
2008
2009         ret = search_start;
2010         __bitmap_clear_bits(ctl, entry, ret, bytes);
2011
2012         return ret;
2013 }
2014
2015 /*
2016  * given a cluster, try to allocate 'bytes' from it, returns 0
2017  * if it couldn't find anything suitably large, or a logical disk offset
2018  * if things worked out
2019  */
2020 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2021                              struct btrfs_free_cluster *cluster, u64 bytes,
2022                              u64 min_start)
2023 {
2024         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2025         struct btrfs_free_space *entry = NULL;
2026         struct rb_node *node;
2027         u64 ret = 0;
2028
2029         spin_lock(&cluster->lock);
2030         if (bytes > cluster->max_size)
2031                 goto out;
2032
2033         if (cluster->block_group != block_group)
2034                 goto out;
2035
2036         node = rb_first(&cluster->root);
2037         if (!node)
2038                 goto out;
2039
2040         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2041         while(1) {
2042                 if (entry->bytes < bytes ||
2043                     (!entry->bitmap && entry->offset < min_start)) {
2044                         node = rb_next(&entry->offset_index);
2045                         if (!node)
2046                                 break;
2047                         entry = rb_entry(node, struct btrfs_free_space,
2048                                          offset_index);
2049                         continue;
2050                 }
2051
2052                 if (entry->bitmap) {
2053                         ret = btrfs_alloc_from_bitmap(block_group,
2054                                                       cluster, entry, bytes,
2055                                                       min_start);
2056                         if (ret == 0) {
2057                                 node = rb_next(&entry->offset_index);
2058                                 if (!node)
2059                                         break;
2060                                 entry = rb_entry(node, struct btrfs_free_space,
2061                                                  offset_index);
2062                                 continue;
2063                         }
2064                 } else {
2065                         ret = entry->offset;
2066
2067                         entry->offset += bytes;
2068                         entry->bytes -= bytes;
2069                 }
2070
2071                 if (entry->bytes == 0)
2072                         rb_erase(&entry->offset_index, &cluster->root);
2073                 break;
2074         }
2075 out:
2076         spin_unlock(&cluster->lock);
2077
2078         if (!ret)
2079                 return 0;
2080
2081         spin_lock(&ctl->tree_lock);
2082
2083         ctl->free_space -= bytes;
2084         if (entry->bytes == 0) {
2085                 ctl->free_extents--;
2086                 if (entry->bitmap) {
2087                         kfree(entry->bitmap);
2088                         ctl->total_bitmaps--;
2089                         ctl->op->recalc_thresholds(ctl);
2090                 }
2091                 kmem_cache_free(btrfs_free_space_cachep, entry);
2092         }
2093
2094         spin_unlock(&ctl->tree_lock);
2095
2096         return ret;
2097 }
2098
2099 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2100                                 struct btrfs_free_space *entry,
2101                                 struct btrfs_free_cluster *cluster,
2102                                 u64 offset, u64 bytes, u64 min_bytes)
2103 {
2104         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2105         unsigned long next_zero;
2106         unsigned long i;
2107         unsigned long search_bits;
2108         unsigned long total_bits;
2109         unsigned long found_bits;
2110         unsigned long start = 0;
2111         unsigned long total_found = 0;
2112         int ret;
2113         bool found = false;
2114
2115         i = offset_to_bit(entry->offset, block_group->sectorsize,
2116                           max_t(u64, offset, entry->offset));
2117         search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2118         total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2119
2120 again:
2121         found_bits = 0;
2122         for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2123              i < BITS_PER_BITMAP;
2124              i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2125                 next_zero = find_next_zero_bit(entry->bitmap,
2126                                                BITS_PER_BITMAP, i);
2127                 if (next_zero - i >= search_bits) {
2128                         found_bits = next_zero - i;
2129                         break;
2130                 }
2131                 i = next_zero;
2132         }
2133
2134         if (!found_bits)
2135                 return -ENOSPC;
2136
2137         if (!found) {
2138                 start = i;
2139                 found = true;
2140         }
2141
2142         total_found += found_bits;
2143
2144         if (cluster->max_size < found_bits * block_group->sectorsize)
2145                 cluster->max_size = found_bits * block_group->sectorsize;
2146
2147         if (total_found < total_bits) {
2148                 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2149                 if (i - start > total_bits * 2) {
2150                         total_found = 0;
2151                         cluster->max_size = 0;
2152                         found = false;
2153                 }
2154                 goto again;
2155         }
2156
2157         cluster->window_start = start * block_group->sectorsize +
2158                 entry->offset;
2159         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2160         ret = tree_insert_offset(&cluster->root, entry->offset,
2161                                  &entry->offset_index, 1);
2162         BUG_ON(ret);
2163
2164         return 0;
2165 }
2166
2167 /*
2168  * This searches the block group for just extents to fill the cluster with.
2169  */
2170 static noinline int
2171 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2172                         struct btrfs_free_cluster *cluster,
2173                         struct list_head *bitmaps, u64 offset, u64 bytes,
2174                         u64 min_bytes)
2175 {
2176         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2177         struct btrfs_free_space *first = NULL;
2178         struct btrfs_free_space *entry = NULL;
2179         struct btrfs_free_space *prev = NULL;
2180         struct btrfs_free_space *last;
2181         struct rb_node *node;
2182         u64 window_start;
2183         u64 window_free;
2184         u64 max_extent;
2185         u64 max_gap = 128 * 1024;
2186
2187         entry = tree_search_offset(ctl, offset, 0, 1);
2188         if (!entry)
2189                 return -ENOSPC;
2190
2191         /*
2192          * We don't want bitmaps, so just move along until we find a normal
2193          * extent entry.
2194          */
2195         while (entry->bitmap) {
2196                 if (list_empty(&entry->list))
2197                         list_add_tail(&entry->list, bitmaps);
2198                 node = rb_next(&entry->offset_index);
2199                 if (!node)
2200                         return -ENOSPC;
2201                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2202         }
2203
2204         window_start = entry->offset;
2205         window_free = entry->bytes;
2206         max_extent = entry->bytes;
2207         first = entry;
2208         last = entry;
2209         prev = entry;
2210
2211         while (window_free <= min_bytes) {
2212                 node = rb_next(&entry->offset_index);
2213                 if (!node)
2214                         return -ENOSPC;
2215                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2216
2217                 if (entry->bitmap) {
2218                         if (list_empty(&entry->list))
2219                                 list_add_tail(&entry->list, bitmaps);
2220                         continue;
2221                 }
2222
2223                 /*
2224                  * we haven't filled the empty size and the window is
2225                  * very large.  reset and try again
2226                  */
2227                 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2228                     entry->offset - window_start > (min_bytes * 2)) {
2229                         first = entry;
2230                         window_start = entry->offset;
2231                         window_free = entry->bytes;
2232                         last = entry;
2233                         max_extent = entry->bytes;
2234                 } else {
2235                         last = entry;
2236                         window_free += entry->bytes;
2237                         if (entry->bytes > max_extent)
2238                                 max_extent = entry->bytes;
2239                 }
2240                 prev = entry;
2241         }
2242
2243         cluster->window_start = first->offset;
2244
2245         node = &first->offset_index;
2246
2247         /*
2248          * now we've found our entries, pull them out of the free space
2249          * cache and put them into the cluster rbtree
2250          */
2251         do {
2252                 int ret;
2253
2254                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2255                 node = rb_next(&entry->offset_index);
2256                 if (entry->bitmap)
2257                         continue;
2258
2259                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2260                 ret = tree_insert_offset(&cluster->root, entry->offset,
2261                                          &entry->offset_index, 0);
2262                 BUG_ON(ret);
2263         } while (node && entry != last);
2264
2265         cluster->max_size = max_extent;
2266
2267         return 0;
2268 }
2269
2270 /*
2271  * This specifically looks for bitmaps that may work in the cluster, we assume
2272  * that we have already failed to find extents that will work.
2273  */
2274 static noinline int
2275 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2276                      struct btrfs_free_cluster *cluster,
2277                      struct list_head *bitmaps, u64 offset, u64 bytes,
2278                      u64 min_bytes)
2279 {
2280         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2281         struct btrfs_free_space *entry;
2282         struct rb_node *node;
2283         int ret = -ENOSPC;
2284
2285         if (ctl->total_bitmaps == 0)
2286                 return -ENOSPC;
2287
2288         /*
2289          * First check our cached list of bitmaps and see if there is an entry
2290          * here that will work.
2291          */
2292         list_for_each_entry(entry, bitmaps, list) {
2293                 if (entry->bytes < min_bytes)
2294                         continue;
2295                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2296                                            bytes, min_bytes);
2297                 if (!ret)
2298                         return 0;
2299         }
2300
2301         /*
2302          * If we do have entries on our list and we are here then we didn't find
2303          * anything, so go ahead and get the next entry after the last entry in
2304          * this list and start the search from there.
2305          */
2306         if (!list_empty(bitmaps)) {
2307                 entry = list_entry(bitmaps->prev, struct btrfs_free_space,
2308                                    list);
2309                 node = rb_next(&entry->offset_index);
2310                 if (!node)
2311                         return -ENOSPC;
2312                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2313                 goto search;
2314         }
2315
2316         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
2317         if (!entry)
2318                 return -ENOSPC;
2319
2320 search:
2321         node = &entry->offset_index;
2322         do {
2323                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2324                 node = rb_next(&entry->offset_index);
2325                 if (!entry->bitmap)
2326                         continue;
2327                 if (entry->bytes < min_bytes)
2328                         continue;
2329                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2330                                            bytes, min_bytes);
2331         } while (ret && node);
2332
2333         return ret;
2334 }
2335
2336 /*
2337  * here we try to find a cluster of blocks in a block group.  The goal
2338  * is to find at least bytes free and up to empty_size + bytes free.
2339  * We might not find them all in one contiguous area.
2340  *
2341  * returns zero and sets up cluster if things worked out, otherwise
2342  * it returns -enospc
2343  */
2344 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2345                              struct btrfs_root *root,
2346                              struct btrfs_block_group_cache *block_group,
2347                              struct btrfs_free_cluster *cluster,
2348                              u64 offset, u64 bytes, u64 empty_size)
2349 {
2350         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2351         struct list_head bitmaps;
2352         struct btrfs_free_space *entry, *tmp;
2353         u64 min_bytes;
2354         int ret;
2355
2356         /* for metadata, allow allocates with more holes */
2357         if (btrfs_test_opt(root, SSD_SPREAD)) {
2358                 min_bytes = bytes + empty_size;
2359         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2360                 /*
2361                  * we want to do larger allocations when we are
2362                  * flushing out the delayed refs, it helps prevent
2363                  * making more work as we go along.
2364                  */
2365                 if (trans->transaction->delayed_refs.flushing)
2366                         min_bytes = max(bytes, (bytes + empty_size) >> 1);
2367                 else
2368                         min_bytes = max(bytes, (bytes + empty_size) >> 4);
2369         } else
2370                 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2371
2372         spin_lock(&ctl->tree_lock);
2373
2374         /*
2375          * If we know we don't have enough space to make a cluster don't even
2376          * bother doing all the work to try and find one.
2377          */
2378         if (ctl->free_space < min_bytes) {
2379                 spin_unlock(&ctl->tree_lock);
2380                 return -ENOSPC;
2381         }
2382
2383         spin_lock(&cluster->lock);
2384
2385         /* someone already found a cluster, hooray */
2386         if (cluster->block_group) {
2387                 ret = 0;
2388                 goto out;
2389         }
2390
2391         INIT_LIST_HEAD(&bitmaps);
2392         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2393                                       bytes, min_bytes);
2394         if (ret)
2395                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2396                                            offset, bytes, min_bytes);
2397
2398         /* Clear our temporary list */
2399         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2400                 list_del_init(&entry->list);
2401
2402         if (!ret) {
2403                 atomic_inc(&block_group->count);
2404                 list_add_tail(&cluster->block_group_list,
2405                               &block_group->cluster_list);
2406                 cluster->block_group = block_group;
2407         }
2408 out:
2409         spin_unlock(&cluster->lock);
2410         spin_unlock(&ctl->tree_lock);
2411
2412         return ret;
2413 }
2414
2415 /*
2416  * simple code to zero out a cluster
2417  */
2418 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2419 {
2420         spin_lock_init(&cluster->lock);
2421         spin_lock_init(&cluster->refill_lock);
2422         cluster->root = RB_ROOT;
2423         cluster->max_size = 0;
2424         INIT_LIST_HEAD(&cluster->block_group_list);
2425         cluster->block_group = NULL;
2426 }
2427
2428 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2429                            u64 *trimmed, u64 start, u64 end, u64 minlen)
2430 {
2431         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2432         struct btrfs_free_space *entry = NULL;
2433         struct btrfs_fs_info *fs_info = block_group->fs_info;
2434         u64 bytes = 0;
2435         u64 actually_trimmed;
2436         int ret = 0;
2437
2438         *trimmed = 0;
2439
2440         while (start < end) {
2441                 spin_lock(&ctl->tree_lock);
2442
2443                 if (ctl->free_space < minlen) {
2444                         spin_unlock(&ctl->tree_lock);
2445                         break;
2446                 }
2447
2448                 entry = tree_search_offset(ctl, start, 0, 1);
2449                 if (!entry)
2450                         entry = tree_search_offset(ctl,
2451                                                    offset_to_bitmap(ctl, start),
2452                                                    1, 1);
2453
2454                 if (!entry || entry->offset >= end) {
2455                         spin_unlock(&ctl->tree_lock);
2456                         break;
2457                 }
2458
2459                 if (entry->bitmap) {
2460                         ret = search_bitmap(ctl, entry, &start, &bytes);
2461                         if (!ret) {
2462                                 if (start >= end) {
2463                                         spin_unlock(&ctl->tree_lock);
2464                                         break;
2465                                 }
2466                                 bytes = min(bytes, end - start);
2467                                 bitmap_clear_bits(ctl, entry, start, bytes);
2468                                 if (entry->bytes == 0)
2469                                         free_bitmap(ctl, entry);
2470                         } else {
2471                                 start = entry->offset + BITS_PER_BITMAP *
2472                                         block_group->sectorsize;
2473                                 spin_unlock(&ctl->tree_lock);
2474                                 ret = 0;
2475                                 continue;
2476                         }
2477                 } else {
2478                         start = entry->offset;
2479                         bytes = min(entry->bytes, end - start);
2480                         unlink_free_space(ctl, entry);
2481                         kmem_cache_free(btrfs_free_space_cachep, entry);
2482                 }
2483
2484                 spin_unlock(&ctl->tree_lock);
2485
2486                 if (bytes >= minlen) {
2487                         struct btrfs_space_info *space_info;
2488                         int update = 0;
2489
2490                         space_info = block_group->space_info;
2491                         spin_lock(&space_info->lock);
2492                         spin_lock(&block_group->lock);
2493                         if (!block_group->ro) {
2494                                 block_group->reserved += bytes;
2495                                 space_info->bytes_reserved += bytes;
2496                                 update = 1;
2497                         }
2498                         spin_unlock(&block_group->lock);
2499                         spin_unlock(&space_info->lock);
2500
2501                         ret = btrfs_error_discard_extent(fs_info->extent_root,
2502                                                          start,
2503                                                          bytes,
2504                                                          &actually_trimmed);
2505
2506                         btrfs_add_free_space(block_group, start, bytes);
2507                         if (update) {
2508                                 spin_lock(&space_info->lock);
2509                                 spin_lock(&block_group->lock);
2510                                 if (block_group->ro)
2511                                         space_info->bytes_readonly += bytes;
2512                                 block_group->reserved -= bytes;
2513                                 space_info->bytes_reserved -= bytes;
2514                                 spin_unlock(&space_info->lock);
2515                                 spin_unlock(&block_group->lock);
2516                         }
2517
2518                         if (ret)
2519                                 break;
2520                         *trimmed += actually_trimmed;
2521                 }
2522                 start += bytes;
2523                 bytes = 0;
2524
2525                 if (fatal_signal_pending(current)) {
2526                         ret = -ERESTARTSYS;
2527                         break;
2528                 }
2529
2530                 cond_resched();
2531         }
2532
2533         return ret;
2534 }
2535
2536 /*
2537  * Find the left-most item in the cache tree, and then return the
2538  * smallest inode number in the item.
2539  *
2540  * Note: the returned inode number may not be the smallest one in
2541  * the tree, if the left-most item is a bitmap.
2542  */
2543 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2544 {
2545         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2546         struct btrfs_free_space *entry = NULL;
2547         u64 ino = 0;
2548
2549         spin_lock(&ctl->tree_lock);
2550
2551         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2552                 goto out;
2553
2554         entry = rb_entry(rb_first(&ctl->free_space_offset),
2555                          struct btrfs_free_space, offset_index);
2556
2557         if (!entry->bitmap) {
2558                 ino = entry->offset;
2559
2560                 unlink_free_space(ctl, entry);
2561                 entry->offset++;
2562                 entry->bytes--;
2563                 if (!entry->bytes)
2564                         kmem_cache_free(btrfs_free_space_cachep, entry);
2565                 else
2566                         link_free_space(ctl, entry);
2567         } else {
2568                 u64 offset = 0;
2569                 u64 count = 1;
2570                 int ret;
2571
2572                 ret = search_bitmap(ctl, entry, &offset, &count);
2573                 BUG_ON(ret);
2574
2575                 ino = offset;
2576                 bitmap_clear_bits(ctl, entry, offset, 1);
2577                 if (entry->bytes == 0)
2578                         free_bitmap(ctl, entry);
2579         }
2580 out:
2581         spin_unlock(&ctl->tree_lock);
2582
2583         return ino;
2584 }
2585
2586 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2587                                     struct btrfs_path *path)
2588 {
2589         struct inode *inode = NULL;
2590
2591         spin_lock(&root->cache_lock);
2592         if (root->cache_inode)
2593                 inode = igrab(root->cache_inode);
2594         spin_unlock(&root->cache_lock);
2595         if (inode)
2596                 return inode;
2597
2598         inode = __lookup_free_space_inode(root, path, 0);
2599         if (IS_ERR(inode))
2600                 return inode;
2601
2602         spin_lock(&root->cache_lock);
2603         if (!btrfs_fs_closing(root->fs_info))
2604                 root->cache_inode = igrab(inode);
2605         spin_unlock(&root->cache_lock);
2606
2607         return inode;
2608 }
2609
2610 int create_free_ino_inode(struct btrfs_root *root,
2611                           struct btrfs_trans_handle *trans,
2612                           struct btrfs_path *path)
2613 {
2614         return __create_free_space_inode(root, trans, path,
2615                                          BTRFS_FREE_INO_OBJECTID, 0);
2616 }
2617
2618 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619 {
2620         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2621         struct btrfs_path *path;
2622         struct inode *inode;
2623         int ret = 0;
2624         u64 root_gen = btrfs_root_generation(&root->root_item);
2625
2626         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2627                 return 0;
2628
2629         /*
2630          * If we're unmounting then just return, since this does a search on the
2631          * normal root and not the commit root and we could deadlock.
2632          */
2633         if (btrfs_fs_closing(fs_info))
2634                 return 0;
2635
2636         path = btrfs_alloc_path();
2637         if (!path)
2638                 return 0;
2639
2640         inode = lookup_free_ino_inode(root, path);
2641         if (IS_ERR(inode))
2642                 goto out;
2643
2644         if (root_gen != BTRFS_I(inode)->generation)
2645                 goto out_put;
2646
2647         ret = __load_free_space_cache(root, inode, ctl, path, 0);
2648
2649         if (ret < 0)
2650                 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2651                        "root %llu\n", root->root_key.objectid);
2652 out_put:
2653         iput(inode);
2654 out:
2655         btrfs_free_path(path);
2656         return ret;
2657 }
2658
2659 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2660                               struct btrfs_trans_handle *trans,
2661                               struct btrfs_path *path)
2662 {
2663         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2664         struct inode *inode;
2665         int ret;
2666
2667         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2668                 return 0;
2669
2670         inode = lookup_free_ino_inode(root, path);
2671         if (IS_ERR(inode))
2672                 return 0;
2673
2674         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2675         if (ret) {
2676                 btrfs_delalloc_release_metadata(inode, inode->i_size);
2677 #ifdef DEBUG
2678                 printk(KERN_ERR "btrfs: failed to write free ino cache "
2679                        "for root %llu\n", root->root_key.objectid);
2680 #endif
2681         }
2682
2683         iput(inode);
2684         return ret;
2685 }