574594cf6b512dd33be017362cb4f57bb0b68690
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include "compat.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 static void free_fs_root(struct btrfs_root *root);
46
47 /*
48  * end_io_wq structs are used to do processing in task context when an IO is
49  * complete.  This is used during reads to verify checksums, and it is used
50  * by writes to insert metadata for new file extents after IO is complete.
51  */
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60         struct btrfs_work work;
61 };
62
63 /*
64  * async submit bios are used to offload expensive checksumming
65  * onto the worker threads.  They checksum file and metadata bios
66  * just before they are sent down the IO stack.
67  */
68 struct async_submit_bio {
69         struct inode *inode;
70         struct bio *bio;
71         struct list_head list;
72         extent_submit_bio_hook_t *submit_bio_start;
73         extent_submit_bio_hook_t *submit_bio_done;
74         int rw;
75         int mirror_num;
76         unsigned long bio_flags;
77         struct btrfs_work work;
78 };
79
80 /* These are used to set the lockdep class on the extent buffer locks.
81  * The class is set by the readpage_end_io_hook after the buffer has
82  * passed csum validation but before the pages are unlocked.
83  *
84  * The lockdep class is also set by btrfs_init_new_buffer on freshly
85  * allocated blocks.
86  *
87  * The class is based on the level in the tree block, which allows lockdep
88  * to know that lower nodes nest inside the locks of higher nodes.
89  *
90  * We also add a check to make sure the highest level of the tree is
91  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
92  * code needs update as well.
93  */
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
96 #  error
97 # endif
98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
100         /* leaf */
101         "btrfs-extent-00",
102         "btrfs-extent-01",
103         "btrfs-extent-02",
104         "btrfs-extent-03",
105         "btrfs-extent-04",
106         "btrfs-extent-05",
107         "btrfs-extent-06",
108         "btrfs-extent-07",
109         /* highest possible level */
110         "btrfs-extent-08",
111 };
112 #endif
113
114 /*
115  * extents on the btree inode are pretty simple, there's one extent
116  * that covers the entire device
117  */
118 static struct extent_map *btree_get_extent(struct inode *inode,
119                 struct page *page, size_t page_offset, u64 start, u64 len,
120                 int create)
121 {
122         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123         struct extent_map *em;
124         int ret;
125
126         read_lock(&em_tree->lock);
127         em = lookup_extent_mapping(em_tree, start, len);
128         if (em) {
129                 em->bdev =
130                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
131                 read_unlock(&em_tree->lock);
132                 goto out;
133         }
134         read_unlock(&em_tree->lock);
135
136         em = alloc_extent_map(GFP_NOFS);
137         if (!em) {
138                 em = ERR_PTR(-ENOMEM);
139                 goto out;
140         }
141         em->start = 0;
142         em->len = (u64)-1;
143         em->block_len = (u64)-1;
144         em->block_start = 0;
145         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
146
147         write_lock(&em_tree->lock);
148         ret = add_extent_mapping(em_tree, em);
149         if (ret == -EEXIST) {
150                 u64 failed_start = em->start;
151                 u64 failed_len = em->len;
152
153                 free_extent_map(em);
154                 em = lookup_extent_mapping(em_tree, start, len);
155                 if (em) {
156                         ret = 0;
157                 } else {
158                         em = lookup_extent_mapping(em_tree, failed_start,
159                                                    failed_len);
160                         ret = -EIO;
161                 }
162         } else if (ret) {
163                 free_extent_map(em);
164                 em = NULL;
165         }
166         write_unlock(&em_tree->lock);
167
168         if (ret)
169                 em = ERR_PTR(ret);
170 out:
171         return em;
172 }
173
174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
175 {
176         return crc32c(seed, data, len);
177 }
178
179 void btrfs_csum_final(u32 crc, char *result)
180 {
181         *(__le32 *)result = ~cpu_to_le32(crc);
182 }
183
184 /*
185  * compute the csum for a btree block, and either verify it or write it
186  * into the csum field of the block.
187  */
188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
189                            int verify)
190 {
191         u16 csum_size =
192                 btrfs_super_csum_size(&root->fs_info->super_copy);
193         char *result = NULL;
194         unsigned long len;
195         unsigned long cur_len;
196         unsigned long offset = BTRFS_CSUM_SIZE;
197         char *map_token = NULL;
198         char *kaddr;
199         unsigned long map_start;
200         unsigned long map_len;
201         int err;
202         u32 crc = ~(u32)0;
203         unsigned long inline_result;
204
205         len = buf->len - offset;
206         while (len > 0) {
207                 err = map_private_extent_buffer(buf, offset, 32,
208                                         &map_token, &kaddr,
209                                         &map_start, &map_len, KM_USER0);
210                 if (err)
211                         return 1;
212                 cur_len = min(len, map_len - (offset - map_start));
213                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
214                                       crc, cur_len);
215                 len -= cur_len;
216                 offset += cur_len;
217                 unmap_extent_buffer(buf, map_token, KM_USER0);
218         }
219         if (csum_size > sizeof(inline_result)) {
220                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
221                 if (!result)
222                         return 1;
223         } else {
224                 result = (char *)&inline_result;
225         }
226
227         btrfs_csum_final(crc, result);
228
229         if (verify) {
230                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
231                         u32 val;
232                         u32 found = 0;
233                         memcpy(&found, result, csum_size);
234
235                         read_extent_buffer(buf, &val, 0, csum_size);
236                         if (printk_ratelimit()) {
237                                 printk(KERN_INFO "btrfs: %s checksum verify "
238                                        "failed on %llu wanted %X found %X "
239                                        "level %d\n",
240                                        root->fs_info->sb->s_id,
241                                        (unsigned long long)buf->start, val, found,
242                                        btrfs_header_level(buf));
243                         }
244                         if (result != (char *)&inline_result)
245                                 kfree(result);
246                         return 1;
247                 }
248         } else {
249                 write_extent_buffer(buf, result, 0, csum_size);
250         }
251         if (result != (char *)&inline_result)
252                 kfree(result);
253         return 0;
254 }
255
256 /*
257  * we can't consider a given block up to date unless the transid of the
258  * block matches the transid in the parent node's pointer.  This is how we
259  * detect blocks that either didn't get written at all or got written
260  * in the wrong place.
261  */
262 static int verify_parent_transid(struct extent_io_tree *io_tree,
263                                  struct extent_buffer *eb, u64 parent_transid)
264 {
265         struct extent_state *cached_state = NULL;
266         int ret;
267
268         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269                 return 0;
270
271         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
272                          0, &cached_state, GFP_NOFS);
273         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
274             btrfs_header_generation(eb) == parent_transid) {
275                 ret = 0;
276                 goto out;
277         }
278         if (printk_ratelimit()) {
279                 printk("parent transid verify failed on %llu wanted %llu "
280                        "found %llu\n",
281                        (unsigned long long)eb->start,
282                        (unsigned long long)parent_transid,
283                        (unsigned long long)btrfs_header_generation(eb));
284         }
285         ret = 1;
286         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
287 out:
288         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
289                              &cached_state, GFP_NOFS);
290         return ret;
291 }
292
293 /*
294  * helper to read a given tree block, doing retries as required when
295  * the checksums don't match and we have alternate mirrors to try.
296  */
297 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
298                                           struct extent_buffer *eb,
299                                           u64 start, u64 parent_transid)
300 {
301         struct extent_io_tree *io_tree;
302         int ret;
303         int num_copies = 0;
304         int mirror_num = 0;
305
306         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
307         while (1) {
308                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
309                                                btree_get_extent, mirror_num);
310                 if (!ret &&
311                     !verify_parent_transid(io_tree, eb, parent_transid))
312                         return ret;
313
314                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
315                                               eb->start, eb->len);
316                 if (num_copies == 1)
317                         return ret;
318
319                 mirror_num++;
320                 if (mirror_num > num_copies)
321                         return ret;
322         }
323         return -EIO;
324 }
325
326 /*
327  * checksum a dirty tree block before IO.  This has extra checks to make sure
328  * we only fill in the checksum field in the first page of a multi-page block
329  */
330
331 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
332 {
333         struct extent_io_tree *tree;
334         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
335         u64 found_start;
336         int found_level;
337         unsigned long len;
338         struct extent_buffer *eb;
339         int ret;
340
341         tree = &BTRFS_I(page->mapping->host)->io_tree;
342
343         if (page->private == EXTENT_PAGE_PRIVATE)
344                 goto out;
345         if (!page->private)
346                 goto out;
347         len = page->private >> 2;
348         WARN_ON(len == 0);
349
350         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
351         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
352                                              btrfs_header_generation(eb));
353         BUG_ON(ret);
354         found_start = btrfs_header_bytenr(eb);
355         if (found_start != start) {
356                 WARN_ON(1);
357                 goto err;
358         }
359         if (eb->first_page != page) {
360                 WARN_ON(1);
361                 goto err;
362         }
363         if (!PageUptodate(page)) {
364                 WARN_ON(1);
365                 goto err;
366         }
367         found_level = btrfs_header_level(eb);
368
369         csum_tree_block(root, eb, 0);
370 err:
371         free_extent_buffer(eb);
372 out:
373         return 0;
374 }
375
376 static int check_tree_block_fsid(struct btrfs_root *root,
377                                  struct extent_buffer *eb)
378 {
379         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
380         u8 fsid[BTRFS_UUID_SIZE];
381         int ret = 1;
382
383         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
384                            BTRFS_FSID_SIZE);
385         while (fs_devices) {
386                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
387                         ret = 0;
388                         break;
389                 }
390                 fs_devices = fs_devices->seed;
391         }
392         return ret;
393 }
394
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
397 {
398         lockdep_set_class_and_name(&eb->lock,
399                            &btrfs_eb_class[level],
400                            btrfs_eb_name[level]);
401 }
402 #endif
403
404 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
405                                struct extent_state *state)
406 {
407         struct extent_io_tree *tree;
408         u64 found_start;
409         int found_level;
410         unsigned long len;
411         struct extent_buffer *eb;
412         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
413         int ret = 0;
414
415         tree = &BTRFS_I(page->mapping->host)->io_tree;
416         if (page->private == EXTENT_PAGE_PRIVATE)
417                 goto out;
418         if (!page->private)
419                 goto out;
420
421         len = page->private >> 2;
422         WARN_ON(len == 0);
423
424         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
425
426         found_start = btrfs_header_bytenr(eb);
427         if (found_start != start) {
428                 if (printk_ratelimit()) {
429                         printk(KERN_INFO "btrfs bad tree block start "
430                                "%llu %llu\n",
431                                (unsigned long long)found_start,
432                                (unsigned long long)eb->start);
433                 }
434                 ret = -EIO;
435                 goto err;
436         }
437         if (eb->first_page != page) {
438                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
439                        eb->first_page->index, page->index);
440                 WARN_ON(1);
441                 ret = -EIO;
442                 goto err;
443         }
444         if (check_tree_block_fsid(root, eb)) {
445                 if (printk_ratelimit()) {
446                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
447                                (unsigned long long)eb->start);
448                 }
449                 ret = -EIO;
450                 goto err;
451         }
452         found_level = btrfs_header_level(eb);
453
454         btrfs_set_buffer_lockdep_class(eb, found_level);
455
456         ret = csum_tree_block(root, eb, 1);
457         if (ret)
458                 ret = -EIO;
459
460         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
461         end = eb->start + end - 1;
462 err:
463         free_extent_buffer(eb);
464 out:
465         return ret;
466 }
467
468 static void end_workqueue_bio(struct bio *bio, int err)
469 {
470         struct end_io_wq *end_io_wq = bio->bi_private;
471         struct btrfs_fs_info *fs_info;
472
473         fs_info = end_io_wq->info;
474         end_io_wq->error = err;
475         end_io_wq->work.func = end_workqueue_fn;
476         end_io_wq->work.flags = 0;
477
478         if (bio->bi_rw & (1 << BIO_RW)) {
479                 if (end_io_wq->metadata)
480                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
481                                            &end_io_wq->work);
482                 else
483                         btrfs_queue_worker(&fs_info->endio_write_workers,
484                                            &end_io_wq->work);
485         } else {
486                 if (end_io_wq->metadata)
487                         btrfs_queue_worker(&fs_info->endio_meta_workers,
488                                            &end_io_wq->work);
489                 else
490                         btrfs_queue_worker(&fs_info->endio_workers,
491                                            &end_io_wq->work);
492         }
493 }
494
495 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
496                         int metadata)
497 {
498         struct end_io_wq *end_io_wq;
499         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
500         if (!end_io_wq)
501                 return -ENOMEM;
502
503         end_io_wq->private = bio->bi_private;
504         end_io_wq->end_io = bio->bi_end_io;
505         end_io_wq->info = info;
506         end_io_wq->error = 0;
507         end_io_wq->bio = bio;
508         end_io_wq->metadata = metadata;
509
510         bio->bi_private = end_io_wq;
511         bio->bi_end_io = end_workqueue_bio;
512         return 0;
513 }
514
515 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
516 {
517         unsigned long limit = min_t(unsigned long,
518                                     info->workers.max_workers,
519                                     info->fs_devices->open_devices);
520         return 256 * limit;
521 }
522
523 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
524 {
525         return atomic_read(&info->nr_async_bios) >
526                 btrfs_async_submit_limit(info);
527 }
528
529 static void run_one_async_start(struct btrfs_work *work)
530 {
531         struct btrfs_fs_info *fs_info;
532         struct async_submit_bio *async;
533
534         async = container_of(work, struct  async_submit_bio, work);
535         fs_info = BTRFS_I(async->inode)->root->fs_info;
536         async->submit_bio_start(async->inode, async->rw, async->bio,
537                                async->mirror_num, async->bio_flags);
538 }
539
540 static void run_one_async_done(struct btrfs_work *work)
541 {
542         struct btrfs_fs_info *fs_info;
543         struct async_submit_bio *async;
544         int limit;
545
546         async = container_of(work, struct  async_submit_bio, work);
547         fs_info = BTRFS_I(async->inode)->root->fs_info;
548
549         limit = btrfs_async_submit_limit(fs_info);
550         limit = limit * 2 / 3;
551
552         atomic_dec(&fs_info->nr_async_submits);
553
554         if (atomic_read(&fs_info->nr_async_submits) < limit &&
555             waitqueue_active(&fs_info->async_submit_wait))
556                 wake_up(&fs_info->async_submit_wait);
557
558         async->submit_bio_done(async->inode, async->rw, async->bio,
559                                async->mirror_num, async->bio_flags);
560 }
561
562 static void run_one_async_free(struct btrfs_work *work)
563 {
564         struct async_submit_bio *async;
565
566         async = container_of(work, struct  async_submit_bio, work);
567         kfree(async);
568 }
569
570 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
571                         int rw, struct bio *bio, int mirror_num,
572                         unsigned long bio_flags,
573                         extent_submit_bio_hook_t *submit_bio_start,
574                         extent_submit_bio_hook_t *submit_bio_done)
575 {
576         struct async_submit_bio *async;
577
578         async = kmalloc(sizeof(*async), GFP_NOFS);
579         if (!async)
580                 return -ENOMEM;
581
582         async->inode = inode;
583         async->rw = rw;
584         async->bio = bio;
585         async->mirror_num = mirror_num;
586         async->submit_bio_start = submit_bio_start;
587         async->submit_bio_done = submit_bio_done;
588
589         async->work.func = run_one_async_start;
590         async->work.ordered_func = run_one_async_done;
591         async->work.ordered_free = run_one_async_free;
592
593         async->work.flags = 0;
594         async->bio_flags = bio_flags;
595
596         atomic_inc(&fs_info->nr_async_submits);
597
598         if (rw & (1 << BIO_RW_SYNCIO))
599                 btrfs_set_work_high_prio(&async->work);
600
601         btrfs_queue_worker(&fs_info->workers, &async->work);
602
603         while (atomic_read(&fs_info->async_submit_draining) &&
604               atomic_read(&fs_info->nr_async_submits)) {
605                 wait_event(fs_info->async_submit_wait,
606                            (atomic_read(&fs_info->nr_async_submits) == 0));
607         }
608
609         return 0;
610 }
611
612 static int btree_csum_one_bio(struct bio *bio)
613 {
614         struct bio_vec *bvec = bio->bi_io_vec;
615         int bio_index = 0;
616         struct btrfs_root *root;
617
618         WARN_ON(bio->bi_vcnt <= 0);
619         while (bio_index < bio->bi_vcnt) {
620                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
621                 csum_dirty_buffer(root, bvec->bv_page);
622                 bio_index++;
623                 bvec++;
624         }
625         return 0;
626 }
627
628 static int __btree_submit_bio_start(struct inode *inode, int rw,
629                                     struct bio *bio, int mirror_num,
630                                     unsigned long bio_flags)
631 {
632         /*
633          * when we're called for a write, we're already in the async
634          * submission context.  Just jump into btrfs_map_bio
635          */
636         btree_csum_one_bio(bio);
637         return 0;
638 }
639
640 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
641                                  int mirror_num, unsigned long bio_flags)
642 {
643         /*
644          * when we're called for a write, we're already in the async
645          * submission context.  Just jump into btrfs_map_bio
646          */
647         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
648 }
649
650 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
651                                  int mirror_num, unsigned long bio_flags)
652 {
653         int ret;
654
655         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
656                                           bio, 1);
657         BUG_ON(ret);
658
659         if (!(rw & (1 << BIO_RW))) {
660                 /*
661                  * called for a read, do the setup so that checksum validation
662                  * can happen in the async kernel threads
663                  */
664                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
665                                      mirror_num, 0);
666         }
667
668         /*
669          * kthread helpers are used to submit writes so that checksumming
670          * can happen in parallel across all CPUs
671          */
672         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
673                                    inode, rw, bio, mirror_num, 0,
674                                    __btree_submit_bio_start,
675                                    __btree_submit_bio_done);
676 }
677
678 static int btree_writepage(struct page *page, struct writeback_control *wbc)
679 {
680         struct extent_io_tree *tree;
681         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682         struct extent_buffer *eb;
683         int was_dirty;
684
685         tree = &BTRFS_I(page->mapping->host)->io_tree;
686         if (!(current->flags & PF_MEMALLOC)) {
687                 return extent_write_full_page(tree, page,
688                                               btree_get_extent, wbc);
689         }
690
691         redirty_page_for_writepage(wbc, page);
692         eb = btrfs_find_tree_block(root, page_offset(page),
693                                       PAGE_CACHE_SIZE);
694         WARN_ON(!eb);
695
696         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
697         if (!was_dirty) {
698                 spin_lock(&root->fs_info->delalloc_lock);
699                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
700                 spin_unlock(&root->fs_info->delalloc_lock);
701         }
702         free_extent_buffer(eb);
703
704         unlock_page(page);
705         return 0;
706 }
707
708 static int btree_writepages(struct address_space *mapping,
709                             struct writeback_control *wbc)
710 {
711         struct extent_io_tree *tree;
712         tree = &BTRFS_I(mapping->host)->io_tree;
713         if (wbc->sync_mode == WB_SYNC_NONE) {
714                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
715                 u64 num_dirty;
716                 unsigned long thresh = 32 * 1024 * 1024;
717
718                 if (wbc->for_kupdate)
719                         return 0;
720
721                 /* this is a bit racy, but that's ok */
722                 num_dirty = root->fs_info->dirty_metadata_bytes;
723                 if (num_dirty < thresh)
724                         return 0;
725         }
726         return extent_writepages(tree, mapping, btree_get_extent, wbc);
727 }
728
729 static int btree_readpage(struct file *file, struct page *page)
730 {
731         struct extent_io_tree *tree;
732         tree = &BTRFS_I(page->mapping->host)->io_tree;
733         return extent_read_full_page(tree, page, btree_get_extent);
734 }
735
736 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
737 {
738         struct extent_io_tree *tree;
739         struct extent_map_tree *map;
740         int ret;
741
742         if (PageWriteback(page) || PageDirty(page))
743                 return 0;
744
745         tree = &BTRFS_I(page->mapping->host)->io_tree;
746         map = &BTRFS_I(page->mapping->host)->extent_tree;
747
748         ret = try_release_extent_state(map, tree, page, gfp_flags);
749         if (!ret)
750                 return 0;
751
752         ret = try_release_extent_buffer(tree, page);
753         if (ret == 1) {
754                 ClearPagePrivate(page);
755                 set_page_private(page, 0);
756                 page_cache_release(page);
757         }
758
759         return ret;
760 }
761
762 static void btree_invalidatepage(struct page *page, unsigned long offset)
763 {
764         struct extent_io_tree *tree;
765         tree = &BTRFS_I(page->mapping->host)->io_tree;
766         extent_invalidatepage(tree, page, offset);
767         btree_releasepage(page, GFP_NOFS);
768         if (PagePrivate(page)) {
769                 printk(KERN_WARNING "btrfs warning page private not zero "
770                        "on page %llu\n", (unsigned long long)page_offset(page));
771                 ClearPagePrivate(page);
772                 set_page_private(page, 0);
773                 page_cache_release(page);
774         }
775 }
776
777 static const struct address_space_operations btree_aops = {
778         .readpage       = btree_readpage,
779         .writepage      = btree_writepage,
780         .writepages     = btree_writepages,
781         .releasepage    = btree_releasepage,
782         .invalidatepage = btree_invalidatepage,
783         .sync_page      = block_sync_page,
784 };
785
786 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
787                          u64 parent_transid)
788 {
789         struct extent_buffer *buf = NULL;
790         struct inode *btree_inode = root->fs_info->btree_inode;
791         int ret = 0;
792
793         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
794         if (!buf)
795                 return 0;
796         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
797                                  buf, 0, 0, btree_get_extent, 0);
798         free_extent_buffer(buf);
799         return ret;
800 }
801
802 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
803                                             u64 bytenr, u32 blocksize)
804 {
805         struct inode *btree_inode = root->fs_info->btree_inode;
806         struct extent_buffer *eb;
807         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
808                                 bytenr, blocksize, GFP_NOFS);
809         return eb;
810 }
811
812 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
813                                                  u64 bytenr, u32 blocksize)
814 {
815         struct inode *btree_inode = root->fs_info->btree_inode;
816         struct extent_buffer *eb;
817
818         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
819                                  bytenr, blocksize, NULL, GFP_NOFS);
820         return eb;
821 }
822
823
824 int btrfs_write_tree_block(struct extent_buffer *buf)
825 {
826         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
827                                         buf->start + buf->len - 1);
828 }
829
830 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
831 {
832         return filemap_fdatawait_range(buf->first_page->mapping,
833                                        buf->start, buf->start + buf->len - 1);
834 }
835
836 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
837                                       u32 blocksize, u64 parent_transid)
838 {
839         struct extent_buffer *buf = NULL;
840         struct inode *btree_inode = root->fs_info->btree_inode;
841         struct extent_io_tree *io_tree;
842         int ret;
843
844         io_tree = &BTRFS_I(btree_inode)->io_tree;
845
846         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
847         if (!buf)
848                 return NULL;
849
850         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
851
852         if (ret == 0)
853                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
854         return buf;
855
856 }
857
858 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
859                      struct extent_buffer *buf)
860 {
861         struct inode *btree_inode = root->fs_info->btree_inode;
862         if (btrfs_header_generation(buf) ==
863             root->fs_info->running_transaction->transid) {
864                 btrfs_assert_tree_locked(buf);
865
866                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
867                         spin_lock(&root->fs_info->delalloc_lock);
868                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
869                                 root->fs_info->dirty_metadata_bytes -= buf->len;
870                         else
871                                 WARN_ON(1);
872                         spin_unlock(&root->fs_info->delalloc_lock);
873                 }
874
875                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
876                 btrfs_set_lock_blocking(buf);
877                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
878                                           buf);
879         }
880         return 0;
881 }
882
883 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
884                         u32 stripesize, struct btrfs_root *root,
885                         struct btrfs_fs_info *fs_info,
886                         u64 objectid)
887 {
888         root->node = NULL;
889         root->commit_root = NULL;
890         root->sectorsize = sectorsize;
891         root->nodesize = nodesize;
892         root->leafsize = leafsize;
893         root->stripesize = stripesize;
894         root->ref_cows = 0;
895         root->track_dirty = 0;
896         root->in_radix = 0;
897         root->clean_orphans = 0;
898
899         root->fs_info = fs_info;
900         root->objectid = objectid;
901         root->last_trans = 0;
902         root->highest_objectid = 0;
903         root->name = NULL;
904         root->in_sysfs = 0;
905         root->inode_tree = RB_ROOT;
906         root->block_rsv = NULL;
907
908         INIT_LIST_HEAD(&root->dirty_list);
909         INIT_LIST_HEAD(&root->orphan_list);
910         INIT_LIST_HEAD(&root->root_list);
911         spin_lock_init(&root->node_lock);
912         spin_lock_init(&root->list_lock);
913         spin_lock_init(&root->inode_lock);
914         spin_lock_init(&root->accounting_lock);
915         mutex_init(&root->objectid_mutex);
916         mutex_init(&root->log_mutex);
917         init_waitqueue_head(&root->log_writer_wait);
918         init_waitqueue_head(&root->log_commit_wait[0]);
919         init_waitqueue_head(&root->log_commit_wait[1]);
920         atomic_set(&root->log_commit[0], 0);
921         atomic_set(&root->log_commit[1], 0);
922         atomic_set(&root->log_writers, 0);
923         root->log_batch = 0;
924         root->log_transid = 0;
925         root->last_log_commit = 0;
926         extent_io_tree_init(&root->dirty_log_pages,
927                              fs_info->btree_inode->i_mapping, GFP_NOFS);
928
929         memset(&root->root_key, 0, sizeof(root->root_key));
930         memset(&root->root_item, 0, sizeof(root->root_item));
931         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
932         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
933         root->defrag_trans_start = fs_info->generation;
934         init_completion(&root->kobj_unregister);
935         root->defrag_running = 0;
936         root->root_key.objectid = objectid;
937         root->anon_super.s_root = NULL;
938         root->anon_super.s_dev = 0;
939         INIT_LIST_HEAD(&root->anon_super.s_list);
940         INIT_LIST_HEAD(&root->anon_super.s_instances);
941         init_rwsem(&root->anon_super.s_umount);
942
943         return 0;
944 }
945
946 static int find_and_setup_root(struct btrfs_root *tree_root,
947                                struct btrfs_fs_info *fs_info,
948                                u64 objectid,
949                                struct btrfs_root *root)
950 {
951         int ret;
952         u32 blocksize;
953         u64 generation;
954
955         __setup_root(tree_root->nodesize, tree_root->leafsize,
956                      tree_root->sectorsize, tree_root->stripesize,
957                      root, fs_info, objectid);
958         ret = btrfs_find_last_root(tree_root, objectid,
959                                    &root->root_item, &root->root_key);
960         if (ret > 0)
961                 return -ENOENT;
962         BUG_ON(ret);
963
964         generation = btrfs_root_generation(&root->root_item);
965         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
966         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
967                                      blocksize, generation);
968         BUG_ON(!root->node);
969         root->commit_root = btrfs_root_node(root);
970         return 0;
971 }
972
973 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
974                              struct btrfs_fs_info *fs_info)
975 {
976         struct extent_buffer *eb;
977         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
978         u64 start = 0;
979         u64 end = 0;
980         int ret;
981
982         if (!log_root_tree)
983                 return 0;
984
985         while (1) {
986                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
987                                 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
988                 if (ret)
989                         break;
990
991                 clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
992                                   EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
993         }
994         eb = fs_info->log_root_tree->node;
995
996         WARN_ON(btrfs_header_level(eb) != 0);
997         WARN_ON(btrfs_header_nritems(eb) != 0);
998
999         ret = btrfs_free_reserved_extent(fs_info->tree_root,
1000                                 eb->start, eb->len);
1001         BUG_ON(ret);
1002
1003         free_extent_buffer(eb);
1004         kfree(fs_info->log_root_tree);
1005         fs_info->log_root_tree = NULL;
1006         return 0;
1007 }
1008
1009 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1010                                          struct btrfs_fs_info *fs_info)
1011 {
1012         struct btrfs_root *root;
1013         struct btrfs_root *tree_root = fs_info->tree_root;
1014         struct extent_buffer *leaf;
1015
1016         root = kzalloc(sizeof(*root), GFP_NOFS);
1017         if (!root)
1018                 return ERR_PTR(-ENOMEM);
1019
1020         __setup_root(tree_root->nodesize, tree_root->leafsize,
1021                      tree_root->sectorsize, tree_root->stripesize,
1022                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1023
1024         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1025         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1026         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1027         /*
1028          * log trees do not get reference counted because they go away
1029          * before a real commit is actually done.  They do store pointers
1030          * to file data extents, and those reference counts still get
1031          * updated (along with back refs to the log tree).
1032          */
1033         root->ref_cows = 0;
1034
1035         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1036                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1037         if (IS_ERR(leaf)) {
1038                 kfree(root);
1039                 return ERR_CAST(leaf);
1040         }
1041
1042         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1043         btrfs_set_header_bytenr(leaf, leaf->start);
1044         btrfs_set_header_generation(leaf, trans->transid);
1045         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1046         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1047         root->node = leaf;
1048
1049         write_extent_buffer(root->node, root->fs_info->fsid,
1050                             (unsigned long)btrfs_header_fsid(root->node),
1051                             BTRFS_FSID_SIZE);
1052         btrfs_mark_buffer_dirty(root->node);
1053         btrfs_tree_unlock(root->node);
1054         return root;
1055 }
1056
1057 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1058                              struct btrfs_fs_info *fs_info)
1059 {
1060         struct btrfs_root *log_root;
1061
1062         log_root = alloc_log_tree(trans, fs_info);
1063         if (IS_ERR(log_root))
1064                 return PTR_ERR(log_root);
1065         WARN_ON(fs_info->log_root_tree);
1066         fs_info->log_root_tree = log_root;
1067         return 0;
1068 }
1069
1070 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1071                        struct btrfs_root *root)
1072 {
1073         struct btrfs_root *log_root;
1074         struct btrfs_inode_item *inode_item;
1075
1076         log_root = alloc_log_tree(trans, root->fs_info);
1077         if (IS_ERR(log_root))
1078                 return PTR_ERR(log_root);
1079
1080         log_root->last_trans = trans->transid;
1081         log_root->root_key.offset = root->root_key.objectid;
1082
1083         inode_item = &log_root->root_item.inode;
1084         inode_item->generation = cpu_to_le64(1);
1085         inode_item->size = cpu_to_le64(3);
1086         inode_item->nlink = cpu_to_le32(1);
1087         inode_item->nbytes = cpu_to_le64(root->leafsize);
1088         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1089
1090         btrfs_set_root_node(&log_root->root_item, log_root->node);
1091
1092         WARN_ON(root->log_root);
1093         root->log_root = log_root;
1094         root->log_transid = 0;
1095         root->last_log_commit = 0;
1096         return 0;
1097 }
1098
1099 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1100                                                struct btrfs_key *location)
1101 {
1102         struct btrfs_root *root;
1103         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1104         struct btrfs_path *path;
1105         struct extent_buffer *l;
1106         u64 generation;
1107         u32 blocksize;
1108         int ret = 0;
1109
1110         root = kzalloc(sizeof(*root), GFP_NOFS);
1111         if (!root)
1112                 return ERR_PTR(-ENOMEM);
1113         if (location->offset == (u64)-1) {
1114                 ret = find_and_setup_root(tree_root, fs_info,
1115                                           location->objectid, root);
1116                 if (ret) {
1117                         kfree(root);
1118                         return ERR_PTR(ret);
1119                 }
1120                 goto out;
1121         }
1122
1123         __setup_root(tree_root->nodesize, tree_root->leafsize,
1124                      tree_root->sectorsize, tree_root->stripesize,
1125                      root, fs_info, location->objectid);
1126
1127         path = btrfs_alloc_path();
1128         BUG_ON(!path);
1129         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1130         if (ret == 0) {
1131                 l = path->nodes[0];
1132                 read_extent_buffer(l, &root->root_item,
1133                                 btrfs_item_ptr_offset(l, path->slots[0]),
1134                                 sizeof(root->root_item));
1135                 memcpy(&root->root_key, location, sizeof(*location));
1136         }
1137         btrfs_free_path(path);
1138         if (ret) {
1139                 if (ret > 0)
1140                         ret = -ENOENT;
1141                 return ERR_PTR(ret);
1142         }
1143
1144         generation = btrfs_root_generation(&root->root_item);
1145         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1146         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1147                                      blocksize, generation);
1148         root->commit_root = btrfs_root_node(root);
1149         BUG_ON(!root->node);
1150 out:
1151         if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1152                 root->ref_cows = 1;
1153
1154         return root;
1155 }
1156
1157 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1158                                         u64 root_objectid)
1159 {
1160         struct btrfs_root *root;
1161
1162         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1163                 return fs_info->tree_root;
1164         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1165                 return fs_info->extent_root;
1166
1167         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1168                                  (unsigned long)root_objectid);
1169         return root;
1170 }
1171
1172 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1173                                               struct btrfs_key *location)
1174 {
1175         struct btrfs_root *root;
1176         int ret;
1177
1178         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1179                 return fs_info->tree_root;
1180         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1181                 return fs_info->extent_root;
1182         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1183                 return fs_info->chunk_root;
1184         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1185                 return fs_info->dev_root;
1186         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1187                 return fs_info->csum_root;
1188 again:
1189         spin_lock(&fs_info->fs_roots_radix_lock);
1190         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1191                                  (unsigned long)location->objectid);
1192         spin_unlock(&fs_info->fs_roots_radix_lock);
1193         if (root)
1194                 return root;
1195
1196         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1197         if (ret == 0)
1198                 ret = -ENOENT;
1199         if (ret < 0)
1200                 return ERR_PTR(ret);
1201
1202         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1203         if (IS_ERR(root))
1204                 return root;
1205
1206         WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1207         set_anon_super(&root->anon_super, NULL);
1208
1209         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1210         if (ret)
1211                 goto fail;
1212
1213         spin_lock(&fs_info->fs_roots_radix_lock);
1214         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1215                                 (unsigned long)root->root_key.objectid,
1216                                 root);
1217         if (ret == 0) {
1218                 root->in_radix = 1;
1219                 root->clean_orphans = 1;
1220         }
1221         spin_unlock(&fs_info->fs_roots_radix_lock);
1222         radix_tree_preload_end();
1223         if (ret) {
1224                 if (ret == -EEXIST) {
1225                         free_fs_root(root);
1226                         goto again;
1227                 }
1228                 goto fail;
1229         }
1230
1231         ret = btrfs_find_dead_roots(fs_info->tree_root,
1232                                     root->root_key.objectid);
1233         WARN_ON(ret);
1234         return root;
1235 fail:
1236         free_fs_root(root);
1237         return ERR_PTR(ret);
1238 }
1239
1240 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1241                                       struct btrfs_key *location,
1242                                       const char *name, int namelen)
1243 {
1244         return btrfs_read_fs_root_no_name(fs_info, location);
1245 #if 0
1246         struct btrfs_root *root;
1247         int ret;
1248
1249         root = btrfs_read_fs_root_no_name(fs_info, location);
1250         if (!root)
1251                 return NULL;
1252
1253         if (root->in_sysfs)
1254                 return root;
1255
1256         ret = btrfs_set_root_name(root, name, namelen);
1257         if (ret) {
1258                 free_extent_buffer(root->node);
1259                 kfree(root);
1260                 return ERR_PTR(ret);
1261         }
1262
1263         ret = btrfs_sysfs_add_root(root);
1264         if (ret) {
1265                 free_extent_buffer(root->node);
1266                 kfree(root->name);
1267                 kfree(root);
1268                 return ERR_PTR(ret);
1269         }
1270         root->in_sysfs = 1;
1271         return root;
1272 #endif
1273 }
1274
1275 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1276 {
1277         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1278         int ret = 0;
1279         struct btrfs_device *device;
1280         struct backing_dev_info *bdi;
1281
1282         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1283                 if (!device->bdev)
1284                         continue;
1285                 bdi = blk_get_backing_dev_info(device->bdev);
1286                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1287                         ret = 1;
1288                         break;
1289                 }
1290         }
1291         return ret;
1292 }
1293
1294 /*
1295  * this unplugs every device on the box, and it is only used when page
1296  * is null
1297  */
1298 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1299 {
1300         struct btrfs_device *device;
1301         struct btrfs_fs_info *info;
1302
1303         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1304         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1305                 if (!device->bdev)
1306                         continue;
1307
1308                 bdi = blk_get_backing_dev_info(device->bdev);
1309                 if (bdi->unplug_io_fn)
1310                         bdi->unplug_io_fn(bdi, page);
1311         }
1312 }
1313
1314 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1315 {
1316         struct inode *inode;
1317         struct extent_map_tree *em_tree;
1318         struct extent_map *em;
1319         struct address_space *mapping;
1320         u64 offset;
1321
1322         /* the generic O_DIRECT read code does this */
1323         if (1 || !page) {
1324                 __unplug_io_fn(bdi, page);
1325                 return;
1326         }
1327
1328         /*
1329          * page->mapping may change at any time.  Get a consistent copy
1330          * and use that for everything below
1331          */
1332         smp_mb();
1333         mapping = page->mapping;
1334         if (!mapping)
1335                 return;
1336
1337         inode = mapping->host;
1338
1339         /*
1340          * don't do the expensive searching for a small number of
1341          * devices
1342          */
1343         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1344                 __unplug_io_fn(bdi, page);
1345                 return;
1346         }
1347
1348         offset = page_offset(page);
1349
1350         em_tree = &BTRFS_I(inode)->extent_tree;
1351         read_lock(&em_tree->lock);
1352         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1353         read_unlock(&em_tree->lock);
1354         if (!em) {
1355                 __unplug_io_fn(bdi, page);
1356                 return;
1357         }
1358
1359         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1360                 free_extent_map(em);
1361                 __unplug_io_fn(bdi, page);
1362                 return;
1363         }
1364         offset = offset - em->start;
1365         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1366                           em->block_start + offset, page);
1367         free_extent_map(em);
1368 }
1369
1370 /*
1371  * If this fails, caller must call bdi_destroy() to get rid of the
1372  * bdi again.
1373  */
1374 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1375 {
1376         int err;
1377
1378         bdi->capabilities = BDI_CAP_MAP_COPY;
1379         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1380         if (err)
1381                 return err;
1382
1383         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1384         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1385         bdi->unplug_io_data     = info;
1386         bdi->congested_fn       = btrfs_congested_fn;
1387         bdi->congested_data     = info;
1388         return 0;
1389 }
1390
1391 static int bio_ready_for_csum(struct bio *bio)
1392 {
1393         u64 length = 0;
1394         u64 buf_len = 0;
1395         u64 start = 0;
1396         struct page *page;
1397         struct extent_io_tree *io_tree = NULL;
1398         struct btrfs_fs_info *info = NULL;
1399         struct bio_vec *bvec;
1400         int i;
1401         int ret;
1402
1403         bio_for_each_segment(bvec, bio, i) {
1404                 page = bvec->bv_page;
1405                 if (page->private == EXTENT_PAGE_PRIVATE) {
1406                         length += bvec->bv_len;
1407                         continue;
1408                 }
1409                 if (!page->private) {
1410                         length += bvec->bv_len;
1411                         continue;
1412                 }
1413                 length = bvec->bv_len;
1414                 buf_len = page->private >> 2;
1415                 start = page_offset(page) + bvec->bv_offset;
1416                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1417                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1418         }
1419         /* are we fully contained in this bio? */
1420         if (buf_len <= length)
1421                 return 1;
1422
1423         ret = extent_range_uptodate(io_tree, start + length,
1424                                     start + buf_len - 1);
1425         return ret;
1426 }
1427
1428 /*
1429  * called by the kthread helper functions to finally call the bio end_io
1430  * functions.  This is where read checksum verification actually happens
1431  */
1432 static void end_workqueue_fn(struct btrfs_work *work)
1433 {
1434         struct bio *bio;
1435         struct end_io_wq *end_io_wq;
1436         struct btrfs_fs_info *fs_info;
1437         int error;
1438
1439         end_io_wq = container_of(work, struct end_io_wq, work);
1440         bio = end_io_wq->bio;
1441         fs_info = end_io_wq->info;
1442
1443         /* metadata bio reads are special because the whole tree block must
1444          * be checksummed at once.  This makes sure the entire block is in
1445          * ram and up to date before trying to verify things.  For
1446          * blocksize <= pagesize, it is basically a noop
1447          */
1448         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1449             !bio_ready_for_csum(bio)) {
1450                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1451                                    &end_io_wq->work);
1452                 return;
1453         }
1454         error = end_io_wq->error;
1455         bio->bi_private = end_io_wq->private;
1456         bio->bi_end_io = end_io_wq->end_io;
1457         kfree(end_io_wq);
1458         bio_endio(bio, error);
1459 }
1460
1461 static int cleaner_kthread(void *arg)
1462 {
1463         struct btrfs_root *root = arg;
1464
1465         do {
1466                 smp_mb();
1467                 if (root->fs_info->closing)
1468                         break;
1469
1470                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1471
1472                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1473                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1474                         btrfs_run_delayed_iputs(root);
1475                         btrfs_clean_old_snapshots(root);
1476                         mutex_unlock(&root->fs_info->cleaner_mutex);
1477                 }
1478
1479                 if (freezing(current)) {
1480                         refrigerator();
1481                 } else {
1482                         smp_mb();
1483                         if (root->fs_info->closing)
1484                                 break;
1485                         set_current_state(TASK_INTERRUPTIBLE);
1486                         schedule();
1487                         __set_current_state(TASK_RUNNING);
1488                 }
1489         } while (!kthread_should_stop());
1490         return 0;
1491 }
1492
1493 static int transaction_kthread(void *arg)
1494 {
1495         struct btrfs_root *root = arg;
1496         struct btrfs_trans_handle *trans;
1497         struct btrfs_transaction *cur;
1498         unsigned long now;
1499         unsigned long delay;
1500         int ret;
1501
1502         do {
1503                 smp_mb();
1504                 if (root->fs_info->closing)
1505                         break;
1506
1507                 delay = HZ * 30;
1508                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1509                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1510
1511                 mutex_lock(&root->fs_info->trans_mutex);
1512                 cur = root->fs_info->running_transaction;
1513                 if (!cur) {
1514                         mutex_unlock(&root->fs_info->trans_mutex);
1515                         goto sleep;
1516                 }
1517
1518                 now = get_seconds();
1519                 if (now < cur->start_time || now - cur->start_time < 30) {
1520                         mutex_unlock(&root->fs_info->trans_mutex);
1521                         delay = HZ * 5;
1522                         goto sleep;
1523                 }
1524                 mutex_unlock(&root->fs_info->trans_mutex);
1525                 trans = btrfs_start_transaction(root, 1);
1526                 ret = btrfs_commit_transaction(trans, root);
1527
1528 sleep:
1529                 wake_up_process(root->fs_info->cleaner_kthread);
1530                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1531
1532                 if (freezing(current)) {
1533                         refrigerator();
1534                 } else {
1535                         if (root->fs_info->closing)
1536                                 break;
1537                         set_current_state(TASK_INTERRUPTIBLE);
1538                         schedule_timeout(delay);
1539                         __set_current_state(TASK_RUNNING);
1540                 }
1541         } while (!kthread_should_stop());
1542         return 0;
1543 }
1544
1545 struct btrfs_root *open_ctree(struct super_block *sb,
1546                               struct btrfs_fs_devices *fs_devices,
1547                               char *options)
1548 {
1549         u32 sectorsize;
1550         u32 nodesize;
1551         u32 leafsize;
1552         u32 blocksize;
1553         u32 stripesize;
1554         u64 generation;
1555         u64 features;
1556         struct btrfs_key location;
1557         struct buffer_head *bh;
1558         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1559                                                  GFP_NOFS);
1560         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1561                                                  GFP_NOFS);
1562         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1563                                                GFP_NOFS);
1564         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1565                                                 GFP_NOFS);
1566         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1567                                                 GFP_NOFS);
1568         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1569                                               GFP_NOFS);
1570         struct btrfs_root *log_tree_root;
1571
1572         int ret;
1573         int err = -EINVAL;
1574
1575         struct btrfs_super_block *disk_super;
1576
1577         if (!extent_root || !tree_root || !fs_info ||
1578             !chunk_root || !dev_root || !csum_root) {
1579                 err = -ENOMEM;
1580                 goto fail;
1581         }
1582
1583         ret = init_srcu_struct(&fs_info->subvol_srcu);
1584         if (ret) {
1585                 err = ret;
1586                 goto fail;
1587         }
1588
1589         ret = setup_bdi(fs_info, &fs_info->bdi);
1590         if (ret) {
1591                 err = ret;
1592                 goto fail_srcu;
1593         }
1594
1595         fs_info->btree_inode = new_inode(sb);
1596         if (!fs_info->btree_inode) {
1597                 err = -ENOMEM;
1598                 goto fail_bdi;
1599         }
1600
1601         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1602         INIT_LIST_HEAD(&fs_info->trans_list);
1603         INIT_LIST_HEAD(&fs_info->dead_roots);
1604         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1605         INIT_LIST_HEAD(&fs_info->hashers);
1606         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1607         INIT_LIST_HEAD(&fs_info->ordered_operations);
1608         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1609         spin_lock_init(&fs_info->delalloc_lock);
1610         spin_lock_init(&fs_info->new_trans_lock);
1611         spin_lock_init(&fs_info->ref_cache_lock);
1612         spin_lock_init(&fs_info->fs_roots_radix_lock);
1613         spin_lock_init(&fs_info->delayed_iput_lock);
1614
1615         init_completion(&fs_info->kobj_unregister);
1616         fs_info->tree_root = tree_root;
1617         fs_info->extent_root = extent_root;
1618         fs_info->csum_root = csum_root;
1619         fs_info->chunk_root = chunk_root;
1620         fs_info->dev_root = dev_root;
1621         fs_info->fs_devices = fs_devices;
1622         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1623         INIT_LIST_HEAD(&fs_info->space_info);
1624         btrfs_mapping_init(&fs_info->mapping_tree);
1625         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1626         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1627         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1628         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1629         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1630         INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1631         mutex_init(&fs_info->durable_block_rsv_mutex);
1632         atomic_set(&fs_info->nr_async_submits, 0);
1633         atomic_set(&fs_info->async_delalloc_pages, 0);
1634         atomic_set(&fs_info->async_submit_draining, 0);
1635         atomic_set(&fs_info->nr_async_bios, 0);
1636         fs_info->sb = sb;
1637         fs_info->max_inline = 8192 * 1024;
1638         fs_info->metadata_ratio = 0;
1639
1640         fs_info->thread_pool_size = min_t(unsigned long,
1641                                           num_online_cpus() + 2, 8);
1642
1643         INIT_LIST_HEAD(&fs_info->ordered_extents);
1644         spin_lock_init(&fs_info->ordered_extent_lock);
1645
1646         sb->s_blocksize = 4096;
1647         sb->s_blocksize_bits = blksize_bits(4096);
1648         sb->s_bdi = &fs_info->bdi;
1649
1650         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1651         fs_info->btree_inode->i_nlink = 1;
1652         /*
1653          * we set the i_size on the btree inode to the max possible int.
1654          * the real end of the address space is determined by all of
1655          * the devices in the system
1656          */
1657         fs_info->btree_inode->i_size = OFFSET_MAX;
1658         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1659         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1660
1661         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1662         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1663                              fs_info->btree_inode->i_mapping,
1664                              GFP_NOFS);
1665         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1666                              GFP_NOFS);
1667
1668         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1669
1670         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1671         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1672                sizeof(struct btrfs_key));
1673         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1674         insert_inode_hash(fs_info->btree_inode);
1675
1676         spin_lock_init(&fs_info->block_group_cache_lock);
1677         fs_info->block_group_cache_tree = RB_ROOT;
1678
1679         extent_io_tree_init(&fs_info->freed_extents[0],
1680                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1681         extent_io_tree_init(&fs_info->freed_extents[1],
1682                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1683         fs_info->pinned_extents = &fs_info->freed_extents[0];
1684         fs_info->do_barriers = 1;
1685
1686
1687         mutex_init(&fs_info->trans_mutex);
1688         mutex_init(&fs_info->ordered_operations_mutex);
1689         mutex_init(&fs_info->tree_log_mutex);
1690         mutex_init(&fs_info->chunk_mutex);
1691         mutex_init(&fs_info->transaction_kthread_mutex);
1692         mutex_init(&fs_info->cleaner_mutex);
1693         mutex_init(&fs_info->volume_mutex);
1694         init_rwsem(&fs_info->extent_commit_sem);
1695         init_rwsem(&fs_info->cleanup_work_sem);
1696         init_rwsem(&fs_info->subvol_sem);
1697
1698         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1699         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1700
1701         init_waitqueue_head(&fs_info->transaction_throttle);
1702         init_waitqueue_head(&fs_info->transaction_wait);
1703         init_waitqueue_head(&fs_info->async_submit_wait);
1704
1705         __setup_root(4096, 4096, 4096, 4096, tree_root,
1706                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1707
1708
1709         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1710         if (!bh)
1711                 goto fail_iput;
1712
1713         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1714         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1715                sizeof(fs_info->super_for_commit));
1716         brelse(bh);
1717
1718         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1719
1720         disk_super = &fs_info->super_copy;
1721         if (!btrfs_super_root(disk_super))
1722                 goto fail_iput;
1723
1724         ret = btrfs_parse_options(tree_root, options);
1725         if (ret) {
1726                 err = ret;
1727                 goto fail_iput;
1728         }
1729
1730         features = btrfs_super_incompat_flags(disk_super) &
1731                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1732         if (features) {
1733                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1734                        "unsupported optional features (%Lx).\n",
1735                        (unsigned long long)features);
1736                 err = -EINVAL;
1737                 goto fail_iput;
1738         }
1739
1740         features = btrfs_super_incompat_flags(disk_super);
1741         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1742                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1743                 btrfs_set_super_incompat_flags(disk_super, features);
1744         }
1745
1746         features = btrfs_super_compat_ro_flags(disk_super) &
1747                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1748         if (!(sb->s_flags & MS_RDONLY) && features) {
1749                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1750                        "unsupported option features (%Lx).\n",
1751                        (unsigned long long)features);
1752                 err = -EINVAL;
1753                 goto fail_iput;
1754         }
1755
1756         btrfs_init_workers(&fs_info->generic_worker,
1757                            "genwork", 1, NULL);
1758
1759         btrfs_init_workers(&fs_info->workers, "worker",
1760                            fs_info->thread_pool_size,
1761                            &fs_info->generic_worker);
1762
1763         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1764                            fs_info->thread_pool_size,
1765                            &fs_info->generic_worker);
1766
1767         btrfs_init_workers(&fs_info->submit_workers, "submit",
1768                            min_t(u64, fs_devices->num_devices,
1769                            fs_info->thread_pool_size),
1770                            &fs_info->generic_worker);
1771
1772         /* a higher idle thresh on the submit workers makes it much more
1773          * likely that bios will be send down in a sane order to the
1774          * devices
1775          */
1776         fs_info->submit_workers.idle_thresh = 64;
1777
1778         fs_info->workers.idle_thresh = 16;
1779         fs_info->workers.ordered = 1;
1780
1781         fs_info->delalloc_workers.idle_thresh = 2;
1782         fs_info->delalloc_workers.ordered = 1;
1783
1784         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1785                            &fs_info->generic_worker);
1786         btrfs_init_workers(&fs_info->endio_workers, "endio",
1787                            fs_info->thread_pool_size,
1788                            &fs_info->generic_worker);
1789         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1790                            fs_info->thread_pool_size,
1791                            &fs_info->generic_worker);
1792         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1793                            "endio-meta-write", fs_info->thread_pool_size,
1794                            &fs_info->generic_worker);
1795         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1796                            fs_info->thread_pool_size,
1797                            &fs_info->generic_worker);
1798
1799         /*
1800          * endios are largely parallel and should have a very
1801          * low idle thresh
1802          */
1803         fs_info->endio_workers.idle_thresh = 4;
1804         fs_info->endio_meta_workers.idle_thresh = 4;
1805
1806         fs_info->endio_write_workers.idle_thresh = 2;
1807         fs_info->endio_meta_write_workers.idle_thresh = 2;
1808
1809         btrfs_start_workers(&fs_info->workers, 1);
1810         btrfs_start_workers(&fs_info->generic_worker, 1);
1811         btrfs_start_workers(&fs_info->submit_workers, 1);
1812         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1813         btrfs_start_workers(&fs_info->fixup_workers, 1);
1814         btrfs_start_workers(&fs_info->endio_workers, 1);
1815         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1816         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1817         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1818
1819         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1820         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1821                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1822
1823         nodesize = btrfs_super_nodesize(disk_super);
1824         leafsize = btrfs_super_leafsize(disk_super);
1825         sectorsize = btrfs_super_sectorsize(disk_super);
1826         stripesize = btrfs_super_stripesize(disk_super);
1827         tree_root->nodesize = nodesize;
1828         tree_root->leafsize = leafsize;
1829         tree_root->sectorsize = sectorsize;
1830         tree_root->stripesize = stripesize;
1831
1832         sb->s_blocksize = sectorsize;
1833         sb->s_blocksize_bits = blksize_bits(sectorsize);
1834
1835         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1836                     sizeof(disk_super->magic))) {
1837                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1838                 goto fail_sb_buffer;
1839         }
1840
1841         mutex_lock(&fs_info->chunk_mutex);
1842         ret = btrfs_read_sys_array(tree_root);
1843         mutex_unlock(&fs_info->chunk_mutex);
1844         if (ret) {
1845                 printk(KERN_WARNING "btrfs: failed to read the system "
1846                        "array on %s\n", sb->s_id);
1847                 goto fail_sb_buffer;
1848         }
1849
1850         blocksize = btrfs_level_size(tree_root,
1851                                      btrfs_super_chunk_root_level(disk_super));
1852         generation = btrfs_super_chunk_root_generation(disk_super);
1853
1854         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1855                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1856
1857         chunk_root->node = read_tree_block(chunk_root,
1858                                            btrfs_super_chunk_root(disk_super),
1859                                            blocksize, generation);
1860         BUG_ON(!chunk_root->node);
1861         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1862                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1863                        sb->s_id);
1864                 goto fail_chunk_root;
1865         }
1866         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1867         chunk_root->commit_root = btrfs_root_node(chunk_root);
1868
1869         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1870            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1871            BTRFS_UUID_SIZE);
1872
1873         mutex_lock(&fs_info->chunk_mutex);
1874         ret = btrfs_read_chunk_tree(chunk_root);
1875         mutex_unlock(&fs_info->chunk_mutex);
1876         if (ret) {
1877                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1878                        sb->s_id);
1879                 goto fail_chunk_root;
1880         }
1881
1882         btrfs_close_extra_devices(fs_devices);
1883
1884         blocksize = btrfs_level_size(tree_root,
1885                                      btrfs_super_root_level(disk_super));
1886         generation = btrfs_super_generation(disk_super);
1887
1888         tree_root->node = read_tree_block(tree_root,
1889                                           btrfs_super_root(disk_super),
1890                                           blocksize, generation);
1891         if (!tree_root->node)
1892                 goto fail_chunk_root;
1893         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1894                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1895                        sb->s_id);
1896                 goto fail_tree_root;
1897         }
1898         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1899         tree_root->commit_root = btrfs_root_node(tree_root);
1900
1901         ret = find_and_setup_root(tree_root, fs_info,
1902                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1903         if (ret)
1904                 goto fail_tree_root;
1905         extent_root->track_dirty = 1;
1906
1907         ret = find_and_setup_root(tree_root, fs_info,
1908                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1909         if (ret)
1910                 goto fail_extent_root;
1911         dev_root->track_dirty = 1;
1912
1913         ret = find_and_setup_root(tree_root, fs_info,
1914                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1915         if (ret)
1916                 goto fail_dev_root;
1917
1918         csum_root->track_dirty = 1;
1919
1920         ret = btrfs_read_block_groups(extent_root);
1921         if (ret) {
1922                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1923                 goto fail_block_groups;
1924         }
1925
1926         fs_info->generation = generation;
1927         fs_info->last_trans_committed = generation;
1928         fs_info->data_alloc_profile = (u64)-1;
1929         fs_info->metadata_alloc_profile = (u64)-1;
1930         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1931         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1932                                                "btrfs-cleaner");
1933         if (IS_ERR(fs_info->cleaner_kthread))
1934                 goto fail_block_groups;
1935
1936         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1937                                                    tree_root,
1938                                                    "btrfs-transaction");
1939         if (IS_ERR(fs_info->transaction_kthread))
1940                 goto fail_cleaner;
1941
1942         if (!btrfs_test_opt(tree_root, SSD) &&
1943             !btrfs_test_opt(tree_root, NOSSD) &&
1944             !fs_info->fs_devices->rotating) {
1945                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1946                        "mode\n");
1947                 btrfs_set_opt(fs_info->mount_opt, SSD);
1948         }
1949
1950         if (btrfs_super_log_root(disk_super) != 0) {
1951                 u64 bytenr = btrfs_super_log_root(disk_super);
1952
1953                 if (fs_devices->rw_devices == 0) {
1954                         printk(KERN_WARNING "Btrfs log replay required "
1955                                "on RO media\n");
1956                         err = -EIO;
1957                         goto fail_trans_kthread;
1958                 }
1959                 blocksize =
1960                      btrfs_level_size(tree_root,
1961                                       btrfs_super_log_root_level(disk_super));
1962
1963                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1964                                                       GFP_NOFS);
1965
1966                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1967                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1968
1969                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1970                                                       blocksize,
1971                                                       generation + 1);
1972                 ret = btrfs_recover_log_trees(log_tree_root);
1973                 BUG_ON(ret);
1974
1975                 if (sb->s_flags & MS_RDONLY) {
1976                         ret =  btrfs_commit_super(tree_root);
1977                         BUG_ON(ret);
1978                 }
1979         }
1980
1981         ret = btrfs_find_orphan_roots(tree_root);
1982         BUG_ON(ret);
1983
1984         if (!(sb->s_flags & MS_RDONLY)) {
1985                 ret = btrfs_recover_relocation(tree_root);
1986                 if (ret < 0) {
1987                         printk(KERN_WARNING
1988                                "btrfs: failed to recover relocation\n");
1989                         err = -EINVAL;
1990                         goto fail_trans_kthread;
1991                 }
1992         }
1993
1994         location.objectid = BTRFS_FS_TREE_OBJECTID;
1995         location.type = BTRFS_ROOT_ITEM_KEY;
1996         location.offset = (u64)-1;
1997
1998         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1999         if (!fs_info->fs_root)
2000                 goto fail_trans_kthread;
2001
2002         if (!(sb->s_flags & MS_RDONLY)) {
2003                 down_read(&fs_info->cleanup_work_sem);
2004                 btrfs_orphan_cleanup(fs_info->fs_root);
2005                 up_read(&fs_info->cleanup_work_sem);
2006         }
2007
2008         return tree_root;
2009
2010 fail_trans_kthread:
2011         kthread_stop(fs_info->transaction_kthread);
2012 fail_cleaner:
2013         kthread_stop(fs_info->cleaner_kthread);
2014
2015         /*
2016          * make sure we're done with the btree inode before we stop our
2017          * kthreads
2018          */
2019         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2020         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2021
2022 fail_block_groups:
2023         btrfs_free_block_groups(fs_info);
2024         free_extent_buffer(csum_root->node);
2025         free_extent_buffer(csum_root->commit_root);
2026 fail_dev_root:
2027         free_extent_buffer(dev_root->node);
2028         free_extent_buffer(dev_root->commit_root);
2029 fail_extent_root:
2030         free_extent_buffer(extent_root->node);
2031         free_extent_buffer(extent_root->commit_root);
2032 fail_tree_root:
2033         free_extent_buffer(tree_root->node);
2034         free_extent_buffer(tree_root->commit_root);
2035 fail_chunk_root:
2036         free_extent_buffer(chunk_root->node);
2037         free_extent_buffer(chunk_root->commit_root);
2038 fail_sb_buffer:
2039         btrfs_stop_workers(&fs_info->generic_worker);
2040         btrfs_stop_workers(&fs_info->fixup_workers);
2041         btrfs_stop_workers(&fs_info->delalloc_workers);
2042         btrfs_stop_workers(&fs_info->workers);
2043         btrfs_stop_workers(&fs_info->endio_workers);
2044         btrfs_stop_workers(&fs_info->endio_meta_workers);
2045         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2046         btrfs_stop_workers(&fs_info->endio_write_workers);
2047         btrfs_stop_workers(&fs_info->submit_workers);
2048 fail_iput:
2049         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2050         iput(fs_info->btree_inode);
2051
2052         btrfs_close_devices(fs_info->fs_devices);
2053         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2054 fail_bdi:
2055         bdi_destroy(&fs_info->bdi);
2056 fail_srcu:
2057         cleanup_srcu_struct(&fs_info->subvol_srcu);
2058 fail:
2059         kfree(extent_root);
2060         kfree(tree_root);
2061         kfree(fs_info);
2062         kfree(chunk_root);
2063         kfree(dev_root);
2064         kfree(csum_root);
2065         return ERR_PTR(err);
2066 }
2067
2068 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2069 {
2070         char b[BDEVNAME_SIZE];
2071
2072         if (uptodate) {
2073                 set_buffer_uptodate(bh);
2074         } else {
2075                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2076                         printk(KERN_WARNING "lost page write due to "
2077                                         "I/O error on %s\n",
2078                                        bdevname(bh->b_bdev, b));
2079                 }
2080                 /* note, we dont' set_buffer_write_io_error because we have
2081                  * our own ways of dealing with the IO errors
2082                  */
2083                 clear_buffer_uptodate(bh);
2084         }
2085         unlock_buffer(bh);
2086         put_bh(bh);
2087 }
2088
2089 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2090 {
2091         struct buffer_head *bh;
2092         struct buffer_head *latest = NULL;
2093         struct btrfs_super_block *super;
2094         int i;
2095         u64 transid = 0;
2096         u64 bytenr;
2097
2098         /* we would like to check all the supers, but that would make
2099          * a btrfs mount succeed after a mkfs from a different FS.
2100          * So, we need to add a special mount option to scan for
2101          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2102          */
2103         for (i = 0; i < 1; i++) {
2104                 bytenr = btrfs_sb_offset(i);
2105                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2106                         break;
2107                 bh = __bread(bdev, bytenr / 4096, 4096);
2108                 if (!bh)
2109                         continue;
2110
2111                 super = (struct btrfs_super_block *)bh->b_data;
2112                 if (btrfs_super_bytenr(super) != bytenr ||
2113                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2114                             sizeof(super->magic))) {
2115                         brelse(bh);
2116                         continue;
2117                 }
2118
2119                 if (!latest || btrfs_super_generation(super) > transid) {
2120                         brelse(latest);
2121                         latest = bh;
2122                         transid = btrfs_super_generation(super);
2123                 } else {
2124                         brelse(bh);
2125                 }
2126         }
2127         return latest;
2128 }
2129
2130 /*
2131  * this should be called twice, once with wait == 0 and
2132  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2133  * we write are pinned.
2134  *
2135  * They are released when wait == 1 is done.
2136  * max_mirrors must be the same for both runs, and it indicates how
2137  * many supers on this one device should be written.
2138  *
2139  * max_mirrors == 0 means to write them all.
2140  */
2141 static int write_dev_supers(struct btrfs_device *device,
2142                             struct btrfs_super_block *sb,
2143                             int do_barriers, int wait, int max_mirrors)
2144 {
2145         struct buffer_head *bh;
2146         int i;
2147         int ret;
2148         int errors = 0;
2149         u32 crc;
2150         u64 bytenr;
2151         int last_barrier = 0;
2152
2153         if (max_mirrors == 0)
2154                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2155
2156         /* make sure only the last submit_bh does a barrier */
2157         if (do_barriers) {
2158                 for (i = 0; i < max_mirrors; i++) {
2159                         bytenr = btrfs_sb_offset(i);
2160                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2161                             device->total_bytes)
2162                                 break;
2163                         last_barrier = i;
2164                 }
2165         }
2166
2167         for (i = 0; i < max_mirrors; i++) {
2168                 bytenr = btrfs_sb_offset(i);
2169                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2170                         break;
2171
2172                 if (wait) {
2173                         bh = __find_get_block(device->bdev, bytenr / 4096,
2174                                               BTRFS_SUPER_INFO_SIZE);
2175                         BUG_ON(!bh);
2176                         wait_on_buffer(bh);
2177                         if (!buffer_uptodate(bh))
2178                                 errors++;
2179
2180                         /* drop our reference */
2181                         brelse(bh);
2182
2183                         /* drop the reference from the wait == 0 run */
2184                         brelse(bh);
2185                         continue;
2186                 } else {
2187                         btrfs_set_super_bytenr(sb, bytenr);
2188
2189                         crc = ~(u32)0;
2190                         crc = btrfs_csum_data(NULL, (char *)sb +
2191                                               BTRFS_CSUM_SIZE, crc,
2192                                               BTRFS_SUPER_INFO_SIZE -
2193                                               BTRFS_CSUM_SIZE);
2194                         btrfs_csum_final(crc, sb->csum);
2195
2196                         /*
2197                          * one reference for us, and we leave it for the
2198                          * caller
2199                          */
2200                         bh = __getblk(device->bdev, bytenr / 4096,
2201                                       BTRFS_SUPER_INFO_SIZE);
2202                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2203
2204                         /* one reference for submit_bh */
2205                         get_bh(bh);
2206
2207                         set_buffer_uptodate(bh);
2208                         lock_buffer(bh);
2209                         bh->b_end_io = btrfs_end_buffer_write_sync;
2210                 }
2211
2212                 if (i == last_barrier && do_barriers && device->barriers) {
2213                         ret = submit_bh(WRITE_BARRIER, bh);
2214                         if (ret == -EOPNOTSUPP) {
2215                                 printk("btrfs: disabling barriers on dev %s\n",
2216                                        device->name);
2217                                 set_buffer_uptodate(bh);
2218                                 device->barriers = 0;
2219                                 /* one reference for submit_bh */
2220                                 get_bh(bh);
2221                                 lock_buffer(bh);
2222                                 ret = submit_bh(WRITE_SYNC, bh);
2223                         }
2224                 } else {
2225                         ret = submit_bh(WRITE_SYNC, bh);
2226                 }
2227
2228                 if (ret)
2229                         errors++;
2230         }
2231         return errors < i ? 0 : -1;
2232 }
2233
2234 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2235 {
2236         struct list_head *head;
2237         struct btrfs_device *dev;
2238         struct btrfs_super_block *sb;
2239         struct btrfs_dev_item *dev_item;
2240         int ret;
2241         int do_barriers;
2242         int max_errors;
2243         int total_errors = 0;
2244         u64 flags;
2245
2246         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2247         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2248
2249         sb = &root->fs_info->super_for_commit;
2250         dev_item = &sb->dev_item;
2251
2252         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2253         head = &root->fs_info->fs_devices->devices;
2254         list_for_each_entry(dev, head, dev_list) {
2255                 if (!dev->bdev) {
2256                         total_errors++;
2257                         continue;
2258                 }
2259                 if (!dev->in_fs_metadata || !dev->writeable)
2260                         continue;
2261
2262                 btrfs_set_stack_device_generation(dev_item, 0);
2263                 btrfs_set_stack_device_type(dev_item, dev->type);
2264                 btrfs_set_stack_device_id(dev_item, dev->devid);
2265                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2266                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2267                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2268                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2269                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2270                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2271                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2272
2273                 flags = btrfs_super_flags(sb);
2274                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2275
2276                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2277                 if (ret)
2278                         total_errors++;
2279         }
2280         if (total_errors > max_errors) {
2281                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2282                        total_errors);
2283                 BUG();
2284         }
2285
2286         total_errors = 0;
2287         list_for_each_entry(dev, head, dev_list) {
2288                 if (!dev->bdev)
2289                         continue;
2290                 if (!dev->in_fs_metadata || !dev->writeable)
2291                         continue;
2292
2293                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2294                 if (ret)
2295                         total_errors++;
2296         }
2297         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2298         if (total_errors > max_errors) {
2299                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2300                        total_errors);
2301                 BUG();
2302         }
2303         return 0;
2304 }
2305
2306 int write_ctree_super(struct btrfs_trans_handle *trans,
2307                       struct btrfs_root *root, int max_mirrors)
2308 {
2309         int ret;
2310
2311         ret = write_all_supers(root, max_mirrors);
2312         return ret;
2313 }
2314
2315 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2316 {
2317         spin_lock(&fs_info->fs_roots_radix_lock);
2318         radix_tree_delete(&fs_info->fs_roots_radix,
2319                           (unsigned long)root->root_key.objectid);
2320         spin_unlock(&fs_info->fs_roots_radix_lock);
2321
2322         if (btrfs_root_refs(&root->root_item) == 0)
2323                 synchronize_srcu(&fs_info->subvol_srcu);
2324
2325         free_fs_root(root);
2326         return 0;
2327 }
2328
2329 static void free_fs_root(struct btrfs_root *root)
2330 {
2331         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2332         if (root->anon_super.s_dev) {
2333                 down_write(&root->anon_super.s_umount);
2334                 kill_anon_super(&root->anon_super);
2335         }
2336         free_extent_buffer(root->node);
2337         free_extent_buffer(root->commit_root);
2338         kfree(root->name);
2339         kfree(root);
2340 }
2341
2342 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2343 {
2344         int ret;
2345         struct btrfs_root *gang[8];
2346         int i;
2347
2348         while (!list_empty(&fs_info->dead_roots)) {
2349                 gang[0] = list_entry(fs_info->dead_roots.next,
2350                                      struct btrfs_root, root_list);
2351                 list_del(&gang[0]->root_list);
2352
2353                 if (gang[0]->in_radix) {
2354                         btrfs_free_fs_root(fs_info, gang[0]);
2355                 } else {
2356                         free_extent_buffer(gang[0]->node);
2357                         free_extent_buffer(gang[0]->commit_root);
2358                         kfree(gang[0]);
2359                 }
2360         }
2361
2362         while (1) {
2363                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2364                                              (void **)gang, 0,
2365                                              ARRAY_SIZE(gang));
2366                 if (!ret)
2367                         break;
2368                 for (i = 0; i < ret; i++)
2369                         btrfs_free_fs_root(fs_info, gang[i]);
2370         }
2371         return 0;
2372 }
2373
2374 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2375 {
2376         u64 root_objectid = 0;
2377         struct btrfs_root *gang[8];
2378         int i;
2379         int ret;
2380
2381         while (1) {
2382                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2383                                              (void **)gang, root_objectid,
2384                                              ARRAY_SIZE(gang));
2385                 if (!ret)
2386                         break;
2387
2388                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2389                 for (i = 0; i < ret; i++) {
2390                         root_objectid = gang[i]->root_key.objectid;
2391                         btrfs_orphan_cleanup(gang[i]);
2392                 }
2393                 root_objectid++;
2394         }
2395         return 0;
2396 }
2397
2398 int btrfs_commit_super(struct btrfs_root *root)
2399 {
2400         struct btrfs_trans_handle *trans;
2401         int ret;
2402
2403         mutex_lock(&root->fs_info->cleaner_mutex);
2404         btrfs_run_delayed_iputs(root);
2405         btrfs_clean_old_snapshots(root);
2406         mutex_unlock(&root->fs_info->cleaner_mutex);
2407
2408         /* wait until ongoing cleanup work done */
2409         down_write(&root->fs_info->cleanup_work_sem);
2410         up_write(&root->fs_info->cleanup_work_sem);
2411
2412         trans = btrfs_start_transaction(root, 1);
2413         ret = btrfs_commit_transaction(trans, root);
2414         BUG_ON(ret);
2415         /* run commit again to drop the original snapshot */
2416         trans = btrfs_start_transaction(root, 1);
2417         btrfs_commit_transaction(trans, root);
2418         ret = btrfs_write_and_wait_transaction(NULL, root);
2419         BUG_ON(ret);
2420
2421         ret = write_ctree_super(NULL, root, 0);
2422         return ret;
2423 }
2424
2425 int close_ctree(struct btrfs_root *root)
2426 {
2427         struct btrfs_fs_info *fs_info = root->fs_info;
2428         int ret;
2429
2430         fs_info->closing = 1;
2431         smp_mb();
2432
2433         kthread_stop(root->fs_info->transaction_kthread);
2434         kthread_stop(root->fs_info->cleaner_kthread);
2435
2436         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2437                 ret =  btrfs_commit_super(root);
2438                 if (ret)
2439                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2440         }
2441
2442         fs_info->closing = 2;
2443         smp_mb();
2444
2445         if (fs_info->delalloc_bytes) {
2446                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2447                        (unsigned long long)fs_info->delalloc_bytes);
2448         }
2449         if (fs_info->total_ref_cache_size) {
2450                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2451                        (unsigned long long)fs_info->total_ref_cache_size);
2452         }
2453
2454         free_extent_buffer(fs_info->extent_root->node);
2455         free_extent_buffer(fs_info->extent_root->commit_root);
2456         free_extent_buffer(fs_info->tree_root->node);
2457         free_extent_buffer(fs_info->tree_root->commit_root);
2458         free_extent_buffer(root->fs_info->chunk_root->node);
2459         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2460         free_extent_buffer(root->fs_info->dev_root->node);
2461         free_extent_buffer(root->fs_info->dev_root->commit_root);
2462         free_extent_buffer(root->fs_info->csum_root->node);
2463         free_extent_buffer(root->fs_info->csum_root->commit_root);
2464
2465         btrfs_free_block_groups(root->fs_info);
2466
2467         del_fs_roots(fs_info);
2468
2469         iput(fs_info->btree_inode);
2470
2471         btrfs_stop_workers(&fs_info->generic_worker);
2472         btrfs_stop_workers(&fs_info->fixup_workers);
2473         btrfs_stop_workers(&fs_info->delalloc_workers);
2474         btrfs_stop_workers(&fs_info->workers);
2475         btrfs_stop_workers(&fs_info->endio_workers);
2476         btrfs_stop_workers(&fs_info->endio_meta_workers);
2477         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2478         btrfs_stop_workers(&fs_info->endio_write_workers);
2479         btrfs_stop_workers(&fs_info->submit_workers);
2480
2481         btrfs_close_devices(fs_info->fs_devices);
2482         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2483
2484         bdi_destroy(&fs_info->bdi);
2485         cleanup_srcu_struct(&fs_info->subvol_srcu);
2486
2487         kfree(fs_info->extent_root);
2488         kfree(fs_info->tree_root);
2489         kfree(fs_info->chunk_root);
2490         kfree(fs_info->dev_root);
2491         kfree(fs_info->csum_root);
2492         return 0;
2493 }
2494
2495 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2496 {
2497         int ret;
2498         struct inode *btree_inode = buf->first_page->mapping->host;
2499
2500         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2501                                      NULL);
2502         if (!ret)
2503                 return ret;
2504
2505         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2506                                     parent_transid);
2507         return !ret;
2508 }
2509
2510 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2511 {
2512         struct inode *btree_inode = buf->first_page->mapping->host;
2513         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2514                                           buf);
2515 }
2516
2517 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2518 {
2519         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2520         u64 transid = btrfs_header_generation(buf);
2521         struct inode *btree_inode = root->fs_info->btree_inode;
2522         int was_dirty;
2523
2524         btrfs_assert_tree_locked(buf);
2525         if (transid != root->fs_info->generation) {
2526                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2527                        "found %llu running %llu\n",
2528                         (unsigned long long)buf->start,
2529                         (unsigned long long)transid,
2530                         (unsigned long long)root->fs_info->generation);
2531                 WARN_ON(1);
2532         }
2533         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2534                                             buf);
2535         if (!was_dirty) {
2536                 spin_lock(&root->fs_info->delalloc_lock);
2537                 root->fs_info->dirty_metadata_bytes += buf->len;
2538                 spin_unlock(&root->fs_info->delalloc_lock);
2539         }
2540 }
2541
2542 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2543 {
2544         /*
2545          * looks as though older kernels can get into trouble with
2546          * this code, they end up stuck in balance_dirty_pages forever
2547          */
2548         u64 num_dirty;
2549         unsigned long thresh = 32 * 1024 * 1024;
2550
2551         if (current->flags & PF_MEMALLOC)
2552                 return;
2553
2554         num_dirty = root->fs_info->dirty_metadata_bytes;
2555
2556         if (num_dirty > thresh) {
2557                 balance_dirty_pages_ratelimited_nr(
2558                                    root->fs_info->btree_inode->i_mapping, 1);
2559         }
2560         return;
2561 }
2562
2563 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2564 {
2565         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2566         int ret;
2567         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2568         if (ret == 0)
2569                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2570         return ret;
2571 }
2572
2573 int btree_lock_page_hook(struct page *page)
2574 {
2575         struct inode *inode = page->mapping->host;
2576         struct btrfs_root *root = BTRFS_I(inode)->root;
2577         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2578         struct extent_buffer *eb;
2579         unsigned long len;
2580         u64 bytenr = page_offset(page);
2581
2582         if (page->private == EXTENT_PAGE_PRIVATE)
2583                 goto out;
2584
2585         len = page->private >> 2;
2586         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2587         if (!eb)
2588                 goto out;
2589
2590         btrfs_tree_lock(eb);
2591         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2592
2593         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2594                 spin_lock(&root->fs_info->delalloc_lock);
2595                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2596                         root->fs_info->dirty_metadata_bytes -= eb->len;
2597                 else
2598                         WARN_ON(1);
2599                 spin_unlock(&root->fs_info->delalloc_lock);
2600         }
2601
2602         btrfs_tree_unlock(eb);
2603         free_extent_buffer(eb);
2604 out:
2605         lock_page(page);
2606         return 0;
2607 }
2608
2609 static struct extent_io_ops btree_extent_io_ops = {
2610         .write_cache_pages_lock_hook = btree_lock_page_hook,
2611         .readpage_end_io_hook = btree_readpage_end_io_hook,
2612         .submit_bio_hook = btree_submit_bio_hook,
2613         /* note we're sharing with inode.c for the merge bio hook */
2614         .merge_bio_hook = btrfs_merge_bio_hook,
2615 };