706f3e6a07d5b6542a272e5ad45dd6d2ffb3c3e2
[pandora-kernel.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* wait queue for synchronous unlinks */
110 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
111
112 static inline int is_root_hub(struct usb_device *udev)
113 {
114         return (udev->parent == NULL);
115 }
116
117 /*-------------------------------------------------------------------------*/
118
119 /*
120  * Sharable chunks of root hub code.
121  */
122
123 /*-------------------------------------------------------------------------*/
124
125 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
126 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
127
128 /* usb 2.0 root hub device descriptor */
129 static const u8 usb2_rh_dev_descriptor [18] = {
130         0x12,       /*  __u8  bLength; */
131         0x01,       /*  __u8  bDescriptorType; Device */
132         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
133
134         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
135         0x00,       /*  __u8  bDeviceSubClass; */
136         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
137         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
138
139         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
140         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
141         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
142
143         0x03,       /*  __u8  iManufacturer; */
144         0x02,       /*  __u8  iProduct; */
145         0x01,       /*  __u8  iSerialNumber; */
146         0x01        /*  __u8  bNumConfigurations; */
147 };
148
149 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
150
151 /* usb 1.1 root hub device descriptor */
152 static const u8 usb11_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172
173 /*-------------------------------------------------------------------------*/
174
175 /* Configuration descriptors for our root hubs */
176
177 static const u8 fs_rh_config_descriptor [] = {
178
179         /* one configuration */
180         0x09,       /*  __u8  bLength; */
181         0x02,       /*  __u8  bDescriptorType; Configuration */
182         0x19, 0x00, /*  __le16 wTotalLength; */
183         0x01,       /*  __u8  bNumInterfaces; (1) */
184         0x01,       /*  __u8  bConfigurationValue; */
185         0x00,       /*  __u8  iConfiguration; */
186         0xc0,       /*  __u8  bmAttributes; 
187                                  Bit 7: must be set,
188                                      6: Self-powered,
189                                      5: Remote wakeup,
190                                      4..0: resvd */
191         0x00,       /*  __u8  MaxPower; */
192       
193         /* USB 1.1:
194          * USB 2.0, single TT organization (mandatory):
195          *      one interface, protocol 0
196          *
197          * USB 2.0, multiple TT organization (optional):
198          *      two interfaces, protocols 1 (like single TT)
199          *      and 2 (multiple TT mode) ... config is
200          *      sometimes settable
201          *      NOT IMPLEMENTED
202          */
203
204         /* one interface */
205         0x09,       /*  __u8  if_bLength; */
206         0x04,       /*  __u8  if_bDescriptorType; Interface */
207         0x00,       /*  __u8  if_bInterfaceNumber; */
208         0x00,       /*  __u8  if_bAlternateSetting; */
209         0x01,       /*  __u8  if_bNumEndpoints; */
210         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
211         0x00,       /*  __u8  if_bInterfaceSubClass; */
212         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
213         0x00,       /*  __u8  if_iInterface; */
214      
215         /* one endpoint (status change endpoint) */
216         0x07,       /*  __u8  ep_bLength; */
217         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
218         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
219         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
220         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
221         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
222 };
223
224 static const u8 hs_rh_config_descriptor [] = {
225
226         /* one configuration */
227         0x09,       /*  __u8  bLength; */
228         0x02,       /*  __u8  bDescriptorType; Configuration */
229         0x19, 0x00, /*  __le16 wTotalLength; */
230         0x01,       /*  __u8  bNumInterfaces; (1) */
231         0x01,       /*  __u8  bConfigurationValue; */
232         0x00,       /*  __u8  iConfiguration; */
233         0xc0,       /*  __u8  bmAttributes; 
234                                  Bit 7: must be set,
235                                      6: Self-powered,
236                                      5: Remote wakeup,
237                                      4..0: resvd */
238         0x00,       /*  __u8  MaxPower; */
239       
240         /* USB 1.1:
241          * USB 2.0, single TT organization (mandatory):
242          *      one interface, protocol 0
243          *
244          * USB 2.0, multiple TT organization (optional):
245          *      two interfaces, protocols 1 (like single TT)
246          *      and 2 (multiple TT mode) ... config is
247          *      sometimes settable
248          *      NOT IMPLEMENTED
249          */
250
251         /* one interface */
252         0x09,       /*  __u8  if_bLength; */
253         0x04,       /*  __u8  if_bDescriptorType; Interface */
254         0x00,       /*  __u8  if_bInterfaceNumber; */
255         0x00,       /*  __u8  if_bAlternateSetting; */
256         0x01,       /*  __u8  if_bNumEndpoints; */
257         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
258         0x00,       /*  __u8  if_bInterfaceSubClass; */
259         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
260         0x00,       /*  __u8  if_iInterface; */
261      
262         /* one endpoint (status change endpoint) */
263         0x07,       /*  __u8  ep_bLength; */
264         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
265         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
266         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
267                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
268                      * see hub.c:hub_configure() for details. */
269         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
270         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
271 };
272
273 /*-------------------------------------------------------------------------*/
274
275 /*
276  * helper routine for returning string descriptors in UTF-16LE
277  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
278  */
279 static int ascii2utf (char *s, u8 *utf, int utfmax)
280 {
281         int retval;
282
283         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
284                 *utf++ = *s++;
285                 *utf++ = 0;
286         }
287         if (utfmax > 0) {
288                 *utf = *s;
289                 ++retval;
290         }
291         return retval;
292 }
293
294 /*
295  * rh_string - provides manufacturer, product and serial strings for root hub
296  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
297  * @hcd: the host controller for this root hub
298  * @data: return packet in UTF-16 LE
299  * @len: length of the return packet
300  *
301  * Produces either a manufacturer, product or serial number string for the
302  * virtual root hub device.
303  */
304 static int rh_string (
305         int             id,
306         struct usb_hcd  *hcd,
307         u8              *data,
308         int             len
309 ) {
310         char buf [100];
311
312         // language ids
313         if (id == 0) {
314                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
315                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
316                 len = min (len, 4);
317                 memcpy (data, buf, len);
318                 return len;
319
320         // serial number
321         } else if (id == 1) {
322                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
323
324         // product description
325         } else if (id == 2) {
326                 strlcpy (buf, hcd->product_desc, sizeof buf);
327
328         // id 3 == vendor description
329         } else if (id == 3) {
330                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
331                         init_utsname()->release, hcd->driver->description);
332
333         // unsupported IDs --> "protocol stall"
334         } else
335                 return -EPIPE;
336
337         switch (len) {          /* All cases fall through */
338         default:
339                 len = 2 + ascii2utf (buf, data + 2, len - 2);
340         case 2:
341                 data [1] = 3;   /* type == string */
342         case 1:
343                 data [0] = 2 * (strlen (buf) + 1);
344         case 0:
345                 ;               /* Compiler wants a statement here */
346         }
347         return len;
348 }
349
350
351 /* Root hub control transfers execute synchronously */
352 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
353 {
354         struct usb_ctrlrequest *cmd;
355         u16             typeReq, wValue, wIndex, wLength;
356         u8              *ubuf = urb->transfer_buffer;
357         u8              tbuf [sizeof (struct usb_hub_descriptor)]
358                 __attribute__((aligned(4)));
359         const u8        *bufp = tbuf;
360         int             len = 0;
361         int             status;
362         int             n;
363         u8              patch_wakeup = 0;
364         u8              patch_protocol = 0;
365
366         might_sleep();
367
368         spin_lock_irq(&hcd_root_hub_lock);
369         status = usb_hcd_link_urb_to_ep(hcd, urb);
370         spin_unlock_irq(&hcd_root_hub_lock);
371         if (status)
372                 return status;
373         urb->hcpriv = hcd;      /* Indicate it's queued */
374
375         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
376         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
377         wValue   = le16_to_cpu (cmd->wValue);
378         wIndex   = le16_to_cpu (cmd->wIndex);
379         wLength  = le16_to_cpu (cmd->wLength);
380
381         if (wLength > urb->transfer_buffer_length)
382                 goto error;
383
384         urb->actual_length = 0;
385         switch (typeReq) {
386
387         /* DEVICE REQUESTS */
388
389         /* The root hub's remote wakeup enable bit is implemented using
390          * driver model wakeup flags.  If this system supports wakeup
391          * through USB, userspace may change the default "allow wakeup"
392          * policy through sysfs or these calls.
393          *
394          * Most root hubs support wakeup from downstream devices, for
395          * runtime power management (disabling USB clocks and reducing
396          * VBUS power usage).  However, not all of them do so; silicon,
397          * board, and BIOS bugs here are not uncommon, so these can't
398          * be treated quite like external hubs.
399          *
400          * Likewise, not all root hubs will pass wakeup events upstream,
401          * to wake up the whole system.  So don't assume root hub and
402          * controller capabilities are identical.
403          */
404
405         case DeviceRequest | USB_REQ_GET_STATUS:
406                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
407                                         << USB_DEVICE_REMOTE_WAKEUP)
408                                 | (1 << USB_DEVICE_SELF_POWERED);
409                 tbuf [1] = 0;
410                 len = 2;
411                 break;
412         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
413                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
414                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
415                 else
416                         goto error;
417                 break;
418         case DeviceOutRequest | USB_REQ_SET_FEATURE:
419                 if (device_can_wakeup(&hcd->self.root_hub->dev)
420                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
421                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
422                 else
423                         goto error;
424                 break;
425         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
426                 tbuf [0] = 1;
427                 len = 1;
428                         /* FALLTHROUGH */
429         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
430                 break;
431         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
432                 switch (wValue & 0xff00) {
433                 case USB_DT_DEVICE << 8:
434                         if (hcd->driver->flags & HCD_USB2)
435                                 bufp = usb2_rh_dev_descriptor;
436                         else if (hcd->driver->flags & HCD_USB11)
437                                 bufp = usb11_rh_dev_descriptor;
438                         else
439                                 goto error;
440                         len = 18;
441                         if (hcd->has_tt)
442                                 patch_protocol = 1;
443                         break;
444                 case USB_DT_CONFIG << 8:
445                         if (hcd->driver->flags & HCD_USB2) {
446                                 bufp = hs_rh_config_descriptor;
447                                 len = sizeof hs_rh_config_descriptor;
448                         } else {
449                                 bufp = fs_rh_config_descriptor;
450                                 len = sizeof fs_rh_config_descriptor;
451                         }
452                         if (device_can_wakeup(&hcd->self.root_hub->dev))
453                                 patch_wakeup = 1;
454                         break;
455                 case USB_DT_STRING << 8:
456                         n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
457                         if (n < 0)
458                                 goto error;
459                         urb->actual_length = n;
460                         break;
461                 default:
462                         goto error;
463                 }
464                 break;
465         case DeviceRequest | USB_REQ_GET_INTERFACE:
466                 tbuf [0] = 0;
467                 len = 1;
468                         /* FALLTHROUGH */
469         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
470                 break;
471         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
472                 // wValue == urb->dev->devaddr
473                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
474                         wValue);
475                 break;
476
477         /* INTERFACE REQUESTS (no defined feature/status flags) */
478
479         /* ENDPOINT REQUESTS */
480
481         case EndpointRequest | USB_REQ_GET_STATUS:
482                 // ENDPOINT_HALT flag
483                 tbuf [0] = 0;
484                 tbuf [1] = 0;
485                 len = 2;
486                         /* FALLTHROUGH */
487         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
488         case EndpointOutRequest | USB_REQ_SET_FEATURE:
489                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
490                 break;
491
492         /* CLASS REQUESTS (and errors) */
493
494         default:
495                 /* non-generic request */
496                 switch (typeReq) {
497                 case GetHubStatus:
498                 case GetPortStatus:
499                         len = 4;
500                         break;
501                 case GetHubDescriptor:
502                         len = sizeof (struct usb_hub_descriptor);
503                         break;
504                 }
505                 status = hcd->driver->hub_control (hcd,
506                         typeReq, wValue, wIndex,
507                         tbuf, wLength);
508                 break;
509 error:
510                 /* "protocol stall" on error */
511                 status = -EPIPE;
512         }
513
514         if (status) {
515                 len = 0;
516                 if (status != -EPIPE) {
517                         dev_dbg (hcd->self.controller,
518                                 "CTRL: TypeReq=0x%x val=0x%x "
519                                 "idx=0x%x len=%d ==> %d\n",
520                                 typeReq, wValue, wIndex,
521                                 wLength, status);
522                 }
523         }
524         if (len) {
525                 if (urb->transfer_buffer_length < len)
526                         len = urb->transfer_buffer_length;
527                 urb->actual_length = len;
528                 // always USB_DIR_IN, toward host
529                 memcpy (ubuf, bufp, len);
530
531                 /* report whether RH hardware supports remote wakeup */
532                 if (patch_wakeup &&
533                                 len > offsetof (struct usb_config_descriptor,
534                                                 bmAttributes))
535                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
536                                 |= USB_CONFIG_ATT_WAKEUP;
537
538                 /* report whether RH hardware has an integrated TT */
539                 if (patch_protocol &&
540                                 len > offsetof(struct usb_device_descriptor,
541                                                 bDeviceProtocol))
542                         ((struct usb_device_descriptor *) ubuf)->
543                                         bDeviceProtocol = 1;
544         }
545
546         /* any errors get returned through the urb completion */
547         spin_lock_irq(&hcd_root_hub_lock);
548         usb_hcd_unlink_urb_from_ep(hcd, urb);
549
550         /* This peculiar use of spinlocks echoes what real HC drivers do.
551          * Avoiding calls to local_irq_disable/enable makes the code
552          * RT-friendly.
553          */
554         spin_unlock(&hcd_root_hub_lock);
555         usb_hcd_giveback_urb(hcd, urb, status);
556         spin_lock(&hcd_root_hub_lock);
557
558         spin_unlock_irq(&hcd_root_hub_lock);
559         return 0;
560 }
561
562 /*-------------------------------------------------------------------------*/
563
564 /*
565  * Root Hub interrupt transfers are polled using a timer if the
566  * driver requests it; otherwise the driver is responsible for
567  * calling usb_hcd_poll_rh_status() when an event occurs.
568  *
569  * Completions are called in_interrupt(), but they may or may not
570  * be in_irq().
571  */
572 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 {
574         struct urb      *urb;
575         int             length;
576         unsigned long   flags;
577         char            buffer[4];      /* Any root hubs with > 31 ports? */
578
579         if (unlikely(!hcd->rh_registered))
580                 return;
581         if (!hcd->uses_new_polling && !hcd->status_urb)
582                 return;
583
584         length = hcd->driver->hub_status_data(hcd, buffer);
585         if (length > 0) {
586
587                 /* try to complete the status urb */
588                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
589                 urb = hcd->status_urb;
590                 if (urb) {
591                         hcd->poll_pending = 0;
592                         hcd->status_urb = NULL;
593                         urb->actual_length = length;
594                         memcpy(urb->transfer_buffer, buffer, length);
595
596                         usb_hcd_unlink_urb_from_ep(hcd, urb);
597                         spin_unlock(&hcd_root_hub_lock);
598                         usb_hcd_giveback_urb(hcd, urb, 0);
599                         spin_lock(&hcd_root_hub_lock);
600                 } else {
601                         length = 0;
602                         hcd->poll_pending = 1;
603                 }
604                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
605         }
606
607         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
608          * exceed that limit if HZ is 100. The math is more clunky than
609          * maybe expected, this is to make sure that all timers for USB devices
610          * fire at the same time to give the CPU a break inbetween */
611         if (hcd->uses_new_polling ? hcd->poll_rh :
612                         (length == 0 && hcd->status_urb != NULL))
613                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
614 }
615 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
616
617 /* timer callback */
618 static void rh_timer_func (unsigned long _hcd)
619 {
620         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
621 }
622
623 /*-------------------------------------------------------------------------*/
624
625 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
626 {
627         int             retval;
628         unsigned long   flags;
629         int             len = 1 + (urb->dev->maxchild / 8);
630
631         spin_lock_irqsave (&hcd_root_hub_lock, flags);
632         if (hcd->status_urb || urb->transfer_buffer_length < len) {
633                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634                 retval = -EINVAL;
635                 goto done;
636         }
637
638         retval = usb_hcd_link_urb_to_ep(hcd, urb);
639         if (retval)
640                 goto done;
641
642         hcd->status_urb = urb;
643         urb->hcpriv = hcd;      /* indicate it's queued */
644         if (!hcd->uses_new_polling)
645                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
646
647         /* If a status change has already occurred, report it ASAP */
648         else if (hcd->poll_pending)
649                 mod_timer(&hcd->rh_timer, jiffies);
650         retval = 0;
651  done:
652         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
653         return retval;
654 }
655
656 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
657 {
658         if (usb_endpoint_xfer_int(&urb->ep->desc))
659                 return rh_queue_status (hcd, urb);
660         if (usb_endpoint_xfer_control(&urb->ep->desc))
661                 return rh_call_control (hcd, urb);
662         return -EINVAL;
663 }
664
665 /*-------------------------------------------------------------------------*/
666
667 /* Unlinks of root-hub control URBs are legal, but they don't do anything
668  * since these URBs always execute synchronously.
669  */
670 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 {
672         unsigned long   flags;
673         int             rc;
674
675         spin_lock_irqsave(&hcd_root_hub_lock, flags);
676         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
677         if (rc)
678                 goto done;
679
680         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
681                 ;       /* Do nothing */
682
683         } else {                                /* Status URB */
684                 if (!hcd->uses_new_polling)
685                         del_timer (&hcd->rh_timer);
686                 if (urb == hcd->status_urb) {
687                         hcd->status_urb = NULL;
688                         usb_hcd_unlink_urb_from_ep(hcd, urb);
689
690                         spin_unlock(&hcd_root_hub_lock);
691                         usb_hcd_giveback_urb(hcd, urb, status);
692                         spin_lock(&hcd_root_hub_lock);
693                 }
694         }
695  done:
696         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697         return rc;
698 }
699
700
701
702 /*
703  * Show & store the current value of authorized_default
704  */
705 static ssize_t usb_host_authorized_default_show(struct device *dev,
706                                                 struct device_attribute *attr,
707                                                 char *buf)
708 {
709         struct usb_device *rh_usb_dev = to_usb_device(dev);
710         struct usb_bus *usb_bus = rh_usb_dev->bus;
711         struct usb_hcd *usb_hcd;
712
713         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
714                 return -ENODEV;
715         usb_hcd = bus_to_hcd(usb_bus);
716         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
717 }
718
719 static ssize_t usb_host_authorized_default_store(struct device *dev,
720                                                  struct device_attribute *attr,
721                                                  const char *buf, size_t size)
722 {
723         ssize_t result;
724         unsigned val;
725         struct usb_device *rh_usb_dev = to_usb_device(dev);
726         struct usb_bus *usb_bus = rh_usb_dev->bus;
727         struct usb_hcd *usb_hcd;
728
729         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
730                 return -ENODEV;
731         usb_hcd = bus_to_hcd(usb_bus);
732         result = sscanf(buf, "%u\n", &val);
733         if (result == 1) {
734                 usb_hcd->authorized_default = val? 1 : 0;
735                 result = size;
736         }
737         else
738                 result = -EINVAL;
739         return result;
740 }
741
742 static DEVICE_ATTR(authorized_default, 0644,
743             usb_host_authorized_default_show,
744             usb_host_authorized_default_store);
745
746
747 /* Group all the USB bus attributes */
748 static struct attribute *usb_bus_attrs[] = {
749                 &dev_attr_authorized_default.attr,
750                 NULL,
751 };
752
753 static struct attribute_group usb_bus_attr_group = {
754         .name = NULL,   /* we want them in the same directory */
755         .attrs = usb_bus_attrs,
756 };
757
758
759
760 /*-------------------------------------------------------------------------*/
761
762 static struct class *usb_host_class;
763
764 int usb_host_init(void)
765 {
766         int retval = 0;
767
768         usb_host_class = class_create(THIS_MODULE, "usb_host");
769         if (IS_ERR(usb_host_class))
770                 retval = PTR_ERR(usb_host_class);
771         return retval;
772 }
773
774 void usb_host_cleanup(void)
775 {
776         class_destroy(usb_host_class);
777 }
778
779 /**
780  * usb_bus_init - shared initialization code
781  * @bus: the bus structure being initialized
782  *
783  * This code is used to initialize a usb_bus structure, memory for which is
784  * separately managed.
785  */
786 static void usb_bus_init (struct usb_bus *bus)
787 {
788         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
789
790         bus->devnum_next = 1;
791
792         bus->root_hub = NULL;
793         bus->busnum = -1;
794         bus->bandwidth_allocated = 0;
795         bus->bandwidth_int_reqs  = 0;
796         bus->bandwidth_isoc_reqs = 0;
797
798         INIT_LIST_HEAD (&bus->bus_list);
799 }
800
801 /*-------------------------------------------------------------------------*/
802
803 /**
804  * usb_register_bus - registers the USB host controller with the usb core
805  * @bus: pointer to the bus to register
806  * Context: !in_interrupt()
807  *
808  * Assigns a bus number, and links the controller into usbcore data
809  * structures so that it can be seen by scanning the bus list.
810  */
811 static int usb_register_bus(struct usb_bus *bus)
812 {
813         int result = -E2BIG;
814         int busnum;
815
816         mutex_lock(&usb_bus_list_lock);
817         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
818         if (busnum >= USB_MAXBUS) {
819                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
820                 goto error_find_busnum;
821         }
822         set_bit (busnum, busmap.busmap);
823         bus->busnum = busnum;
824
825         bus->dev = device_create_drvdata(usb_host_class, bus->controller,
826                                          MKDEV(0, 0), bus,
827                                          "usb_host%d", busnum);
828         result = PTR_ERR(bus->dev);
829         if (IS_ERR(bus->dev))
830                 goto error_create_class_dev;
831
832         /* Add it to the local list of buses */
833         list_add (&bus->bus_list, &usb_bus_list);
834         mutex_unlock(&usb_bus_list_lock);
835
836         usb_notify_add_bus(bus);
837
838         dev_info (bus->controller, "new USB bus registered, assigned bus "
839                   "number %d\n", bus->busnum);
840         return 0;
841
842 error_create_class_dev:
843         clear_bit(busnum, busmap.busmap);
844 error_find_busnum:
845         mutex_unlock(&usb_bus_list_lock);
846         return result;
847 }
848
849 /**
850  * usb_deregister_bus - deregisters the USB host controller
851  * @bus: pointer to the bus to deregister
852  * Context: !in_interrupt()
853  *
854  * Recycles the bus number, and unlinks the controller from usbcore data
855  * structures so that it won't be seen by scanning the bus list.
856  */
857 static void usb_deregister_bus (struct usb_bus *bus)
858 {
859         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
860
861         /*
862          * NOTE: make sure that all the devices are removed by the
863          * controller code, as well as having it call this when cleaning
864          * itself up
865          */
866         mutex_lock(&usb_bus_list_lock);
867         list_del (&bus->bus_list);
868         mutex_unlock(&usb_bus_list_lock);
869
870         usb_notify_remove_bus(bus);
871
872         clear_bit (bus->busnum, busmap.busmap);
873
874         device_unregister(bus->dev);
875 }
876
877 /**
878  * register_root_hub - called by usb_add_hcd() to register a root hub
879  * @hcd: host controller for this root hub
880  *
881  * This function registers the root hub with the USB subsystem.  It sets up
882  * the device properly in the device tree and then calls usb_new_device()
883  * to register the usb device.  It also assigns the root hub's USB address
884  * (always 1).
885  */
886 static int register_root_hub(struct usb_hcd *hcd)
887 {
888         struct device *parent_dev = hcd->self.controller;
889         struct usb_device *usb_dev = hcd->self.root_hub;
890         const int devnum = 1;
891         int retval;
892
893         usb_dev->devnum = devnum;
894         usb_dev->bus->devnum_next = devnum + 1;
895         memset (&usb_dev->bus->devmap.devicemap, 0,
896                         sizeof usb_dev->bus->devmap.devicemap);
897         set_bit (devnum, usb_dev->bus->devmap.devicemap);
898         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
899
900         mutex_lock(&usb_bus_list_lock);
901
902         usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
903         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
904         if (retval != sizeof usb_dev->descriptor) {
905                 mutex_unlock(&usb_bus_list_lock);
906                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
907                                 dev_name(&usb_dev->dev), retval);
908                 return (retval < 0) ? retval : -EMSGSIZE;
909         }
910
911         retval = usb_new_device (usb_dev);
912         if (retval) {
913                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
914                                 dev_name(&usb_dev->dev), retval);
915         }
916         mutex_unlock(&usb_bus_list_lock);
917
918         if (retval == 0) {
919                 spin_lock_irq (&hcd_root_hub_lock);
920                 hcd->rh_registered = 1;
921                 spin_unlock_irq (&hcd_root_hub_lock);
922
923                 /* Did the HC die before the root hub was registered? */
924                 if (hcd->state == HC_STATE_HALT)
925                         usb_hc_died (hcd);      /* This time clean up */
926         }
927
928         return retval;
929 }
930
931
932 /*-------------------------------------------------------------------------*/
933
934 /**
935  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
936  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
937  * @is_input: true iff the transaction sends data to the host
938  * @isoc: true for isochronous transactions, false for interrupt ones
939  * @bytecount: how many bytes in the transaction.
940  *
941  * Returns approximate bus time in nanoseconds for a periodic transaction.
942  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
943  * scheduled in software, this function is only used for such scheduling.
944  */
945 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
946 {
947         unsigned long   tmp;
948
949         switch (speed) {
950         case USB_SPEED_LOW:     /* INTR only */
951                 if (is_input) {
952                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
953                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
954                 } else {
955                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
956                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
957                 }
958         case USB_SPEED_FULL:    /* ISOC or INTR */
959                 if (isoc) {
960                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
961                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
962                 } else {
963                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
964                         return (9107L + BW_HOST_DELAY + tmp);
965                 }
966         case USB_SPEED_HIGH:    /* ISOC or INTR */
967                 // FIXME adjust for input vs output
968                 if (isoc)
969                         tmp = HS_NSECS_ISO (bytecount);
970                 else
971                         tmp = HS_NSECS (bytecount);
972                 return tmp;
973         default:
974                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
975                 return -1;
976         }
977 }
978 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
979
980
981 /*-------------------------------------------------------------------------*/
982
983 /*
984  * Generic HC operations.
985  */
986
987 /*-------------------------------------------------------------------------*/
988
989 /**
990  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
991  * @hcd: host controller to which @urb was submitted
992  * @urb: URB being submitted
993  *
994  * Host controller drivers should call this routine in their enqueue()
995  * method.  The HCD's private spinlock must be held and interrupts must
996  * be disabled.  The actions carried out here are required for URB
997  * submission, as well as for endpoint shutdown and for usb_kill_urb.
998  *
999  * Returns 0 for no error, otherwise a negative error code (in which case
1000  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1001  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1002  * the private spinlock and returning.
1003  */
1004 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1005 {
1006         int             rc = 0;
1007
1008         spin_lock(&hcd_urb_list_lock);
1009
1010         /* Check that the URB isn't being killed */
1011         if (unlikely(urb->reject)) {
1012                 rc = -EPERM;
1013                 goto done;
1014         }
1015
1016         if (unlikely(!urb->ep->enabled)) {
1017                 rc = -ENOENT;
1018                 goto done;
1019         }
1020
1021         if (unlikely(!urb->dev->can_submit)) {
1022                 rc = -EHOSTUNREACH;
1023                 goto done;
1024         }
1025
1026         /*
1027          * Check the host controller's state and add the URB to the
1028          * endpoint's queue.
1029          */
1030         switch (hcd->state) {
1031         case HC_STATE_RUNNING:
1032         case HC_STATE_RESUMING:
1033                 urb->unlinked = 0;
1034                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1035                 break;
1036         default:
1037                 rc = -ESHUTDOWN;
1038                 goto done;
1039         }
1040  done:
1041         spin_unlock(&hcd_urb_list_lock);
1042         return rc;
1043 }
1044 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1045
1046 /**
1047  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1048  * @hcd: host controller to which @urb was submitted
1049  * @urb: URB being checked for unlinkability
1050  * @status: error code to store in @urb if the unlink succeeds
1051  *
1052  * Host controller drivers should call this routine in their dequeue()
1053  * method.  The HCD's private spinlock must be held and interrupts must
1054  * be disabled.  The actions carried out here are required for making
1055  * sure than an unlink is valid.
1056  *
1057  * Returns 0 for no error, otherwise a negative error code (in which case
1058  * the dequeue() method must fail).  The possible error codes are:
1059  *
1060  *      -EIDRM: @urb was not submitted or has already completed.
1061  *              The completion function may not have been called yet.
1062  *
1063  *      -EBUSY: @urb has already been unlinked.
1064  */
1065 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1066                 int status)
1067 {
1068         struct list_head        *tmp;
1069
1070         /* insist the urb is still queued */
1071         list_for_each(tmp, &urb->ep->urb_list) {
1072                 if (tmp == &urb->urb_list)
1073                         break;
1074         }
1075         if (tmp != &urb->urb_list)
1076                 return -EIDRM;
1077
1078         /* Any status except -EINPROGRESS means something already started to
1079          * unlink this URB from the hardware.  So there's no more work to do.
1080          */
1081         if (urb->unlinked)
1082                 return -EBUSY;
1083         urb->unlinked = status;
1084
1085         /* IRQ setup can easily be broken so that USB controllers
1086          * never get completion IRQs ... maybe even the ones we need to
1087          * finish unlinking the initial failed usb_set_address()
1088          * or device descriptor fetch.
1089          */
1090         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1091                         !is_root_hub(urb->dev)) {
1092                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1093                         "Controller is probably using the wrong IRQ.\n");
1094                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1095         }
1096
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1100
1101 /**
1102  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1103  * @hcd: host controller to which @urb was submitted
1104  * @urb: URB being unlinked
1105  *
1106  * Host controller drivers should call this routine before calling
1107  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1108  * interrupts must be disabled.  The actions carried out here are required
1109  * for URB completion.
1110  */
1111 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1112 {
1113         /* clear all state linking urb to this dev (and hcd) */
1114         spin_lock(&hcd_urb_list_lock);
1115         list_del_init(&urb->urb_list);
1116         spin_unlock(&hcd_urb_list_lock);
1117 }
1118 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1119
1120 /*
1121  * Some usb host controllers can only perform dma using a small SRAM area.
1122  * The usb core itself is however optimized for host controllers that can dma
1123  * using regular system memory - like pci devices doing bus mastering.
1124  *
1125  * To support host controllers with limited dma capabilites we provide dma
1126  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1127  * For this to work properly the host controller code must first use the
1128  * function dma_declare_coherent_memory() to point out which memory area
1129  * that should be used for dma allocations.
1130  *
1131  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1132  * dma using dma_alloc_coherent() which in turn allocates from the memory
1133  * area pointed out with dma_declare_coherent_memory().
1134  *
1135  * So, to summarize...
1136  *
1137  * - We need "local" memory, canonical example being
1138  *   a small SRAM on a discrete controller being the
1139  *   only memory that the controller can read ...
1140  *   (a) "normal" kernel memory is no good, and
1141  *   (b) there's not enough to share
1142  *
1143  * - The only *portable* hook for such stuff in the
1144  *   DMA framework is dma_declare_coherent_memory()
1145  *
1146  * - So we use that, even though the primary requirement
1147  *   is that the memory be "local" (hence addressible
1148  *   by that device), not "coherent".
1149  *
1150  */
1151
1152 static int hcd_alloc_coherent(struct usb_bus *bus,
1153                               gfp_t mem_flags, dma_addr_t *dma_handle,
1154                               void **vaddr_handle, size_t size,
1155                               enum dma_data_direction dir)
1156 {
1157         unsigned char *vaddr;
1158
1159         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1160                                  mem_flags, dma_handle);
1161         if (!vaddr)
1162                 return -ENOMEM;
1163
1164         /*
1165          * Store the virtual address of the buffer at the end
1166          * of the allocated dma buffer. The size of the buffer
1167          * may be uneven so use unaligned functions instead
1168          * of just rounding up. It makes sense to optimize for
1169          * memory footprint over access speed since the amount
1170          * of memory available for dma may be limited.
1171          */
1172         put_unaligned((unsigned long)*vaddr_handle,
1173                       (unsigned long *)(vaddr + size));
1174
1175         if (dir == DMA_TO_DEVICE)
1176                 memcpy(vaddr, *vaddr_handle, size);
1177
1178         *vaddr_handle = vaddr;
1179         return 0;
1180 }
1181
1182 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1183                               void **vaddr_handle, size_t size,
1184                               enum dma_data_direction dir)
1185 {
1186         unsigned char *vaddr = *vaddr_handle;
1187
1188         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1189
1190         if (dir == DMA_FROM_DEVICE)
1191                 memcpy(vaddr, *vaddr_handle, size);
1192
1193         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1194
1195         *vaddr_handle = vaddr;
1196         *dma_handle = 0;
1197 }
1198
1199 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1200                            gfp_t mem_flags)
1201 {
1202         enum dma_data_direction dir;
1203         int ret = 0;
1204
1205         /* Map the URB's buffers for DMA access.
1206          * Lower level HCD code should use *_dma exclusively,
1207          * unless it uses pio or talks to another transport.
1208          */
1209         if (is_root_hub(urb->dev))
1210                 return 0;
1211
1212         if (usb_endpoint_xfer_control(&urb->ep->desc)
1213             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1214                 if (hcd->self.uses_dma)
1215                         urb->setup_dma = dma_map_single(
1216                                         hcd->self.controller,
1217                                         urb->setup_packet,
1218                                         sizeof(struct usb_ctrlrequest),
1219                                         DMA_TO_DEVICE);
1220                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1221                         ret = hcd_alloc_coherent(
1222                                         urb->dev->bus, mem_flags,
1223                                         &urb->setup_dma,
1224                                         (void **)&urb->setup_packet,
1225                                         sizeof(struct usb_ctrlrequest),
1226                                         DMA_TO_DEVICE);
1227         }
1228
1229         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1230         if (ret == 0 && urb->transfer_buffer_length != 0
1231             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1232                 if (hcd->self.uses_dma)
1233                         urb->transfer_dma = dma_map_single (
1234                                         hcd->self.controller,
1235                                         urb->transfer_buffer,
1236                                         urb->transfer_buffer_length,
1237                                         dir);
1238                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1239                         ret = hcd_alloc_coherent(
1240                                         urb->dev->bus, mem_flags,
1241                                         &urb->transfer_dma,
1242                                         &urb->transfer_buffer,
1243                                         urb->transfer_buffer_length,
1244                                         dir);
1245
1246                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1247                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1248                                 hcd_free_coherent(urb->dev->bus,
1249                                         &urb->setup_dma,
1250                                         (void **)&urb->setup_packet,
1251                                         sizeof(struct usb_ctrlrequest),
1252                                         DMA_TO_DEVICE);
1253                 }
1254         }
1255         return ret;
1256 }
1257
1258 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1259 {
1260         enum dma_data_direction dir;
1261
1262         if (is_root_hub(urb->dev))
1263                 return;
1264
1265         if (usb_endpoint_xfer_control(&urb->ep->desc)
1266             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1267                 if (hcd->self.uses_dma)
1268                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1269                                         sizeof(struct usb_ctrlrequest),
1270                                         DMA_TO_DEVICE);
1271                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1272                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1273                                         (void **)&urb->setup_packet,
1274                                         sizeof(struct usb_ctrlrequest),
1275                                         DMA_TO_DEVICE);
1276         }
1277
1278         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1279         if (urb->transfer_buffer_length != 0
1280             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1281                 if (hcd->self.uses_dma)
1282                         dma_unmap_single(hcd->self.controller,
1283                                         urb->transfer_dma,
1284                                         urb->transfer_buffer_length,
1285                                         dir);
1286                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1287                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1288                                         &urb->transfer_buffer,
1289                                         urb->transfer_buffer_length,
1290                                         dir);
1291         }
1292 }
1293
1294 /*-------------------------------------------------------------------------*/
1295
1296 /* may be called in any context with a valid urb->dev usecount
1297  * caller surrenders "ownership" of urb
1298  * expects usb_submit_urb() to have sanity checked and conditioned all
1299  * inputs in the urb
1300  */
1301 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1302 {
1303         int                     status;
1304         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1305
1306         /* increment urb's reference count as part of giving it to the HCD
1307          * (which will control it).  HCD guarantees that it either returns
1308          * an error or calls giveback(), but not both.
1309          */
1310         usb_get_urb(urb);
1311         atomic_inc(&urb->use_count);
1312         atomic_inc(&urb->dev->urbnum);
1313         usbmon_urb_submit(&hcd->self, urb);
1314
1315         /* NOTE requirements on root-hub callers (usbfs and the hub
1316          * driver, for now):  URBs' urb->transfer_buffer must be
1317          * valid and usb_buffer_{sync,unmap}() not be needed, since
1318          * they could clobber root hub response data.  Also, control
1319          * URBs must be submitted in process context with interrupts
1320          * enabled.
1321          */
1322         status = map_urb_for_dma(hcd, urb, mem_flags);
1323         if (unlikely(status)) {
1324                 usbmon_urb_submit_error(&hcd->self, urb, status);
1325                 goto error;
1326         }
1327
1328         if (is_root_hub(urb->dev))
1329                 status = rh_urb_enqueue(hcd, urb);
1330         else
1331                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1332
1333         if (unlikely(status)) {
1334                 usbmon_urb_submit_error(&hcd->self, urb, status);
1335                 unmap_urb_for_dma(hcd, urb);
1336  error:
1337                 urb->hcpriv = NULL;
1338                 INIT_LIST_HEAD(&urb->urb_list);
1339                 atomic_dec(&urb->use_count);
1340                 atomic_dec(&urb->dev->urbnum);
1341                 if (urb->reject)
1342                         wake_up(&usb_kill_urb_queue);
1343                 usb_put_urb(urb);
1344         }
1345         return status;
1346 }
1347
1348 /*-------------------------------------------------------------------------*/
1349
1350 /* this makes the hcd giveback() the urb more quickly, by kicking it
1351  * off hardware queues (which may take a while) and returning it as
1352  * soon as practical.  we've already set up the urb's return status,
1353  * but we can't know if the callback completed already.
1354  */
1355 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1356 {
1357         int             value;
1358
1359         if (is_root_hub(urb->dev))
1360                 value = usb_rh_urb_dequeue(hcd, urb, status);
1361         else {
1362
1363                 /* The only reason an HCD might fail this call is if
1364                  * it has not yet fully queued the urb to begin with.
1365                  * Such failures should be harmless. */
1366                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1367         }
1368         return value;
1369 }
1370
1371 /*
1372  * called in any context
1373  *
1374  * caller guarantees urb won't be recycled till both unlink()
1375  * and the urb's completion function return
1376  */
1377 int usb_hcd_unlink_urb (struct urb *urb, int status)
1378 {
1379         struct usb_hcd          *hcd;
1380         int                     retval;
1381
1382         hcd = bus_to_hcd(urb->dev->bus);
1383         retval = unlink1(hcd, urb, status);
1384
1385         if (retval == 0)
1386                 retval = -EINPROGRESS;
1387         else if (retval != -EIDRM && retval != -EBUSY)
1388                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1389                                 urb, retval);
1390         return retval;
1391 }
1392
1393 /*-------------------------------------------------------------------------*/
1394
1395 /**
1396  * usb_hcd_giveback_urb - return URB from HCD to device driver
1397  * @hcd: host controller returning the URB
1398  * @urb: urb being returned to the USB device driver.
1399  * @status: completion status code for the URB.
1400  * Context: in_interrupt()
1401  *
1402  * This hands the URB from HCD to its USB device driver, using its
1403  * completion function.  The HCD has freed all per-urb resources
1404  * (and is done using urb->hcpriv).  It also released all HCD locks;
1405  * the device driver won't cause problems if it frees, modifies,
1406  * or resubmits this URB.
1407  *
1408  * If @urb was unlinked, the value of @status will be overridden by
1409  * @urb->unlinked.  Erroneous short transfers are detected in case
1410  * the HCD hasn't checked for them.
1411  */
1412 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1413 {
1414         urb->hcpriv = NULL;
1415         if (unlikely(urb->unlinked))
1416                 status = urb->unlinked;
1417         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1418                         urb->actual_length < urb->transfer_buffer_length &&
1419                         !status))
1420                 status = -EREMOTEIO;
1421
1422         unmap_urb_for_dma(hcd, urb);
1423         usbmon_urb_complete(&hcd->self, urb, status);
1424         usb_unanchor_urb(urb);
1425
1426         /* pass ownership to the completion handler */
1427         urb->status = status;
1428         urb->complete (urb);
1429         atomic_dec (&urb->use_count);
1430         if (unlikely (urb->reject))
1431                 wake_up (&usb_kill_urb_queue);
1432         usb_put_urb (urb);
1433 }
1434 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1435
1436 /*-------------------------------------------------------------------------*/
1437
1438 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1439  * queue to drain completely.  The caller must first insure that no more
1440  * URBs can be submitted for this endpoint.
1441  */
1442 void usb_hcd_flush_endpoint(struct usb_device *udev,
1443                 struct usb_host_endpoint *ep)
1444 {
1445         struct usb_hcd          *hcd;
1446         struct urb              *urb;
1447
1448         if (!ep)
1449                 return;
1450         might_sleep();
1451         hcd = bus_to_hcd(udev->bus);
1452
1453         /* No more submits can occur */
1454         spin_lock_irq(&hcd_urb_list_lock);
1455 rescan:
1456         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1457                 int     is_in;
1458
1459                 if (urb->unlinked)
1460                         continue;
1461                 usb_get_urb (urb);
1462                 is_in = usb_urb_dir_in(urb);
1463                 spin_unlock(&hcd_urb_list_lock);
1464
1465                 /* kick hcd */
1466                 unlink1(hcd, urb, -ESHUTDOWN);
1467                 dev_dbg (hcd->self.controller,
1468                         "shutdown urb %p ep%d%s%s\n",
1469                         urb, usb_endpoint_num(&ep->desc),
1470                         is_in ? "in" : "out",
1471                         ({      char *s;
1472
1473                                  switch (usb_endpoint_type(&ep->desc)) {
1474                                  case USB_ENDPOINT_XFER_CONTROL:
1475                                         s = ""; break;
1476                                  case USB_ENDPOINT_XFER_BULK:
1477                                         s = "-bulk"; break;
1478                                  case USB_ENDPOINT_XFER_INT:
1479                                         s = "-intr"; break;
1480                                  default:
1481                                         s = "-iso"; break;
1482                                 };
1483                                 s;
1484                         }));
1485                 usb_put_urb (urb);
1486
1487                 /* list contents may have changed */
1488                 spin_lock(&hcd_urb_list_lock);
1489                 goto rescan;
1490         }
1491         spin_unlock_irq(&hcd_urb_list_lock);
1492
1493         /* Wait until the endpoint queue is completely empty */
1494         while (!list_empty (&ep->urb_list)) {
1495                 spin_lock_irq(&hcd_urb_list_lock);
1496
1497                 /* The list may have changed while we acquired the spinlock */
1498                 urb = NULL;
1499                 if (!list_empty (&ep->urb_list)) {
1500                         urb = list_entry (ep->urb_list.prev, struct urb,
1501                                         urb_list);
1502                         usb_get_urb (urb);
1503                 }
1504                 spin_unlock_irq(&hcd_urb_list_lock);
1505
1506                 if (urb) {
1507                         usb_kill_urb (urb);
1508                         usb_put_urb (urb);
1509                 }
1510         }
1511 }
1512
1513 /* Disables the endpoint: synchronizes with the hcd to make sure all
1514  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1515  * have been called previously.  Use for set_configuration, set_interface,
1516  * driver removal, physical disconnect.
1517  *
1518  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1519  * type, maxpacket size, toggle, halt status, and scheduling.
1520  */
1521 void usb_hcd_disable_endpoint(struct usb_device *udev,
1522                 struct usb_host_endpoint *ep)
1523 {
1524         struct usb_hcd          *hcd;
1525
1526         might_sleep();
1527         hcd = bus_to_hcd(udev->bus);
1528         if (hcd->driver->endpoint_disable)
1529                 hcd->driver->endpoint_disable(hcd, ep);
1530 }
1531
1532 /*-------------------------------------------------------------------------*/
1533
1534 /* called in any context */
1535 int usb_hcd_get_frame_number (struct usb_device *udev)
1536 {
1537         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1538
1539         if (!HC_IS_RUNNING (hcd->state))
1540                 return -ESHUTDOWN;
1541         return hcd->driver->get_frame_number (hcd);
1542 }
1543
1544 /*-------------------------------------------------------------------------*/
1545
1546 #ifdef  CONFIG_PM
1547
1548 int hcd_bus_suspend(struct usb_device *rhdev)
1549 {
1550         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1551         int             status;
1552         int             old_state = hcd->state;
1553
1554         dev_dbg(&rhdev->dev, "bus %s%s\n",
1555                         rhdev->auto_pm ? "auto-" : "", "suspend");
1556         if (!hcd->driver->bus_suspend) {
1557                 status = -ENOENT;
1558         } else {
1559                 hcd->state = HC_STATE_QUIESCING;
1560                 status = hcd->driver->bus_suspend(hcd);
1561         }
1562         if (status == 0) {
1563                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1564                 hcd->state = HC_STATE_SUSPENDED;
1565         } else {
1566                 hcd->state = old_state;
1567                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1568                                 "suspend", status);
1569         }
1570         return status;
1571 }
1572
1573 int hcd_bus_resume(struct usb_device *rhdev)
1574 {
1575         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1576         int             status;
1577         int             old_state = hcd->state;
1578
1579         dev_dbg(&rhdev->dev, "usb %s%s\n",
1580                         rhdev->auto_pm ? "auto-" : "", "resume");
1581         if (!hcd->driver->bus_resume)
1582                 return -ENOENT;
1583         if (hcd->state == HC_STATE_RUNNING)
1584                 return 0;
1585
1586         hcd->state = HC_STATE_RESUMING;
1587         status = hcd->driver->bus_resume(hcd);
1588         if (status == 0) {
1589                 /* TRSMRCY = 10 msec */
1590                 msleep(10);
1591                 usb_set_device_state(rhdev, rhdev->actconfig
1592                                 ? USB_STATE_CONFIGURED
1593                                 : USB_STATE_ADDRESS);
1594                 hcd->state = HC_STATE_RUNNING;
1595         } else {
1596                 hcd->state = old_state;
1597                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1598                                 "resume", status);
1599                 if (status != -ESHUTDOWN)
1600                         usb_hc_died(hcd);
1601         }
1602         return status;
1603 }
1604
1605 /* Workqueue routine for root-hub remote wakeup */
1606 static void hcd_resume_work(struct work_struct *work)
1607 {
1608         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1609         struct usb_device *udev = hcd->self.root_hub;
1610
1611         usb_lock_device(udev);
1612         usb_mark_last_busy(udev);
1613         usb_external_resume_device(udev);
1614         usb_unlock_device(udev);
1615 }
1616
1617 /**
1618  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1619  * @hcd: host controller for this root hub
1620  *
1621  * The USB host controller calls this function when its root hub is
1622  * suspended (with the remote wakeup feature enabled) and a remote
1623  * wakeup request is received.  The routine submits a workqueue request
1624  * to resume the root hub (that is, manage its downstream ports again).
1625  */
1626 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1627 {
1628         unsigned long flags;
1629
1630         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1631         if (hcd->rh_registered)
1632                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1633         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1634 }
1635 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1636
1637 #endif
1638
1639 /*-------------------------------------------------------------------------*/
1640
1641 #ifdef  CONFIG_USB_OTG
1642
1643 /**
1644  * usb_bus_start_enum - start immediate enumeration (for OTG)
1645  * @bus: the bus (must use hcd framework)
1646  * @port_num: 1-based number of port; usually bus->otg_port
1647  * Context: in_interrupt()
1648  *
1649  * Starts enumeration, with an immediate reset followed later by
1650  * khubd identifying and possibly configuring the device.
1651  * This is needed by OTG controller drivers, where it helps meet
1652  * HNP protocol timing requirements for starting a port reset.
1653  */
1654 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1655 {
1656         struct usb_hcd          *hcd;
1657         int                     status = -EOPNOTSUPP;
1658
1659         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1660          * boards with root hubs hooked up to internal devices (instead of
1661          * just the OTG port) may need more attention to resetting...
1662          */
1663         hcd = container_of (bus, struct usb_hcd, self);
1664         if (port_num && hcd->driver->start_port_reset)
1665                 status = hcd->driver->start_port_reset(hcd, port_num);
1666
1667         /* run khubd shortly after (first) root port reset finishes;
1668          * it may issue others, until at least 50 msecs have passed.
1669          */
1670         if (status == 0)
1671                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1672         return status;
1673 }
1674 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1675
1676 #endif
1677
1678 /*-------------------------------------------------------------------------*/
1679
1680 /**
1681  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1682  * @irq: the IRQ being raised
1683  * @__hcd: pointer to the HCD whose IRQ is being signaled
1684  *
1685  * If the controller isn't HALTed, calls the driver's irq handler.
1686  * Checks whether the controller is now dead.
1687  */
1688 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1689 {
1690         struct usb_hcd          *hcd = __hcd;
1691         unsigned long           flags;
1692         irqreturn_t             rc;
1693
1694         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1695          * when the first handler doesn't use it.  So let's just
1696          * assume it's never used.
1697          */
1698         local_irq_save(flags);
1699
1700         if (unlikely(hcd->state == HC_STATE_HALT ||
1701                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1702                 rc = IRQ_NONE;
1703         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1704                 rc = IRQ_NONE;
1705         } else {
1706                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1707
1708                 if (unlikely(hcd->state == HC_STATE_HALT))
1709                         usb_hc_died(hcd);
1710                 rc = IRQ_HANDLED;
1711         }
1712
1713         local_irq_restore(flags);
1714         return rc;
1715 }
1716
1717 /*-------------------------------------------------------------------------*/
1718
1719 /**
1720  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1721  * @hcd: pointer to the HCD representing the controller
1722  *
1723  * This is called by bus glue to report a USB host controller that died
1724  * while operations may still have been pending.  It's called automatically
1725  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1726  */
1727 void usb_hc_died (struct usb_hcd *hcd)
1728 {
1729         unsigned long flags;
1730
1731         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1732
1733         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1734         if (hcd->rh_registered) {
1735                 hcd->poll_rh = 0;
1736
1737                 /* make khubd clean up old urbs and devices */
1738                 usb_set_device_state (hcd->self.root_hub,
1739                                 USB_STATE_NOTATTACHED);
1740                 usb_kick_khubd (hcd->self.root_hub);
1741         }
1742         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1743 }
1744 EXPORT_SYMBOL_GPL (usb_hc_died);
1745
1746 /*-------------------------------------------------------------------------*/
1747
1748 /**
1749  * usb_create_hcd - create and initialize an HCD structure
1750  * @driver: HC driver that will use this hcd
1751  * @dev: device for this HC, stored in hcd->self.controller
1752  * @bus_name: value to store in hcd->self.bus_name
1753  * Context: !in_interrupt()
1754  *
1755  * Allocate a struct usb_hcd, with extra space at the end for the
1756  * HC driver's private data.  Initialize the generic members of the
1757  * hcd structure.
1758  *
1759  * If memory is unavailable, returns NULL.
1760  */
1761 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1762                 struct device *dev, const char *bus_name)
1763 {
1764         struct usb_hcd *hcd;
1765
1766         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1767         if (!hcd) {
1768                 dev_dbg (dev, "hcd alloc failed\n");
1769                 return NULL;
1770         }
1771         dev_set_drvdata(dev, hcd);
1772         kref_init(&hcd->kref);
1773
1774         usb_bus_init(&hcd->self);
1775         hcd->self.controller = dev;
1776         hcd->self.bus_name = bus_name;
1777         hcd->self.uses_dma = (dev->dma_mask != NULL);
1778
1779         init_timer(&hcd->rh_timer);
1780         hcd->rh_timer.function = rh_timer_func;
1781         hcd->rh_timer.data = (unsigned long) hcd;
1782 #ifdef CONFIG_PM
1783         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1784 #endif
1785
1786         hcd->driver = driver;
1787         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1788                         "USB Host Controller";
1789         return hcd;
1790 }
1791 EXPORT_SYMBOL_GPL(usb_create_hcd);
1792
1793 static void hcd_release (struct kref *kref)
1794 {
1795         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1796
1797         kfree(hcd);
1798 }
1799
1800 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1801 {
1802         if (hcd)
1803                 kref_get (&hcd->kref);
1804         return hcd;
1805 }
1806 EXPORT_SYMBOL_GPL(usb_get_hcd);
1807
1808 void usb_put_hcd (struct usb_hcd *hcd)
1809 {
1810         if (hcd)
1811                 kref_put (&hcd->kref, hcd_release);
1812 }
1813 EXPORT_SYMBOL_GPL(usb_put_hcd);
1814
1815 /**
1816  * usb_add_hcd - finish generic HCD structure initialization and register
1817  * @hcd: the usb_hcd structure to initialize
1818  * @irqnum: Interrupt line to allocate
1819  * @irqflags: Interrupt type flags
1820  *
1821  * Finish the remaining parts of generic HCD initialization: allocate the
1822  * buffers of consistent memory, register the bus, request the IRQ line,
1823  * and call the driver's reset() and start() routines.
1824  */
1825 int usb_add_hcd(struct usb_hcd *hcd,
1826                 unsigned int irqnum, unsigned long irqflags)
1827 {
1828         int retval;
1829         struct usb_device *rhdev;
1830
1831         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1832
1833         hcd->authorized_default = hcd->wireless? 0 : 1;
1834         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1835
1836         /* HC is in reset state, but accessible.  Now do the one-time init,
1837          * bottom up so that hcds can customize the root hubs before khubd
1838          * starts talking to them.  (Note, bus id is assigned early too.)
1839          */
1840         if ((retval = hcd_buffer_create(hcd)) != 0) {
1841                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1842                 return retval;
1843         }
1844
1845         if ((retval = usb_register_bus(&hcd->self)) < 0)
1846                 goto err_register_bus;
1847
1848         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1849                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1850                 retval = -ENOMEM;
1851                 goto err_allocate_root_hub;
1852         }
1853         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1854                         USB_SPEED_FULL;
1855         hcd->self.root_hub = rhdev;
1856
1857         /* wakeup flag init defaults to "everything works" for root hubs,
1858          * but drivers can override it in reset() if needed, along with
1859          * recording the overall controller's system wakeup capability.
1860          */
1861         device_init_wakeup(&rhdev->dev, 1);
1862
1863         /* "reset" is misnamed; its role is now one-time init. the controller
1864          * should already have been reset (and boot firmware kicked off etc).
1865          */
1866         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1867                 dev_err(hcd->self.controller, "can't setup\n");
1868                 goto err_hcd_driver_setup;
1869         }
1870
1871         /* NOTE: root hub and controller capabilities may not be the same */
1872         if (device_can_wakeup(hcd->self.controller)
1873                         && device_can_wakeup(&hcd->self.root_hub->dev))
1874                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1875
1876         /* enable irqs just before we start the controller */
1877         if (hcd->driver->irq) {
1878
1879                 /* IRQF_DISABLED doesn't work as advertised when used together
1880                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1881                  * interrupts we can remove it here.
1882                  */
1883                 if (irqflags & IRQF_SHARED)
1884                         irqflags &= ~IRQF_DISABLED;
1885
1886                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1887                                 hcd->driver->description, hcd->self.busnum);
1888                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1889                                 hcd->irq_descr, hcd)) != 0) {
1890                         dev_err(hcd->self.controller,
1891                                         "request interrupt %d failed\n", irqnum);
1892                         goto err_request_irq;
1893                 }
1894                 hcd->irq = irqnum;
1895                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1896                                 (hcd->driver->flags & HCD_MEMORY) ?
1897                                         "io mem" : "io base",
1898                                         (unsigned long long)hcd->rsrc_start);
1899         } else {
1900                 hcd->irq = -1;
1901                 if (hcd->rsrc_start)
1902                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1903                                         (hcd->driver->flags & HCD_MEMORY) ?
1904                                         "io mem" : "io base",
1905                                         (unsigned long long)hcd->rsrc_start);
1906         }
1907
1908         if ((retval = hcd->driver->start(hcd)) < 0) {
1909                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1910                 goto err_hcd_driver_start;
1911         }
1912
1913         /* starting here, usbcore will pay attention to this root hub */
1914         rhdev->bus_mA = min(500u, hcd->power_budget);
1915         if ((retval = register_root_hub(hcd)) != 0)
1916                 goto err_register_root_hub;
1917
1918         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1919         if (retval < 0) {
1920                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1921                        retval);
1922                 goto error_create_attr_group;
1923         }
1924         if (hcd->uses_new_polling && hcd->poll_rh)
1925                 usb_hcd_poll_rh_status(hcd);
1926         return retval;
1927
1928 error_create_attr_group:
1929         mutex_lock(&usb_bus_list_lock);
1930         usb_disconnect(&hcd->self.root_hub);
1931         mutex_unlock(&usb_bus_list_lock);
1932 err_register_root_hub:
1933         hcd->driver->stop(hcd);
1934 err_hcd_driver_start:
1935         if (hcd->irq >= 0)
1936                 free_irq(irqnum, hcd);
1937 err_request_irq:
1938 err_hcd_driver_setup:
1939         hcd->self.root_hub = NULL;
1940         usb_put_dev(rhdev);
1941 err_allocate_root_hub:
1942         usb_deregister_bus(&hcd->self);
1943 err_register_bus:
1944         hcd_buffer_destroy(hcd);
1945         return retval;
1946
1947 EXPORT_SYMBOL_GPL(usb_add_hcd);
1948
1949 /**
1950  * usb_remove_hcd - shutdown processing for generic HCDs
1951  * @hcd: the usb_hcd structure to remove
1952  * Context: !in_interrupt()
1953  *
1954  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1955  * invoking the HCD's stop() method.
1956  */
1957 void usb_remove_hcd(struct usb_hcd *hcd)
1958 {
1959         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1960
1961         if (HC_IS_RUNNING (hcd->state))
1962                 hcd->state = HC_STATE_QUIESCING;
1963
1964         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1965         spin_lock_irq (&hcd_root_hub_lock);
1966         hcd->rh_registered = 0;
1967         spin_unlock_irq (&hcd_root_hub_lock);
1968
1969 #ifdef CONFIG_PM
1970         cancel_work_sync(&hcd->wakeup_work);
1971 #endif
1972
1973         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1974         mutex_lock(&usb_bus_list_lock);
1975         usb_disconnect(&hcd->self.root_hub);
1976         mutex_unlock(&usb_bus_list_lock);
1977
1978         hcd->driver->stop(hcd);
1979         hcd->state = HC_STATE_HALT;
1980
1981         hcd->poll_rh = 0;
1982         del_timer_sync(&hcd->rh_timer);
1983
1984         if (hcd->irq >= 0)
1985                 free_irq(hcd->irq, hcd);
1986         usb_deregister_bus(&hcd->self);
1987         hcd_buffer_destroy(hcd);
1988 }
1989 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1990
1991 void
1992 usb_hcd_platform_shutdown(struct platform_device* dev)
1993 {
1994         struct usb_hcd *hcd = platform_get_drvdata(dev);
1995
1996         if (hcd->driver->shutdown)
1997                 hcd->driver->shutdown(hcd);
1998 }
1999 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2000
2001 /*-------------------------------------------------------------------------*/
2002
2003 #if defined(CONFIG_USB_MON)
2004
2005 struct usb_mon_operations *mon_ops;
2006
2007 /*
2008  * The registration is unlocked.
2009  * We do it this way because we do not want to lock in hot paths.
2010  *
2011  * Notice that the code is minimally error-proof. Because usbmon needs
2012  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2013  */
2014  
2015 int usb_mon_register (struct usb_mon_operations *ops)
2016 {
2017
2018         if (mon_ops)
2019                 return -EBUSY;
2020
2021         mon_ops = ops;
2022         mb();
2023         return 0;
2024 }
2025 EXPORT_SYMBOL_GPL (usb_mon_register);
2026
2027 void usb_mon_deregister (void)
2028 {
2029
2030         if (mon_ops == NULL) {
2031                 printk(KERN_ERR "USB: monitor was not registered\n");
2032                 return;
2033         }
2034         mon_ops = NULL;
2035         mb();
2036 }
2037 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2038
2039 #endif /* CONFIG_USB_MON */