1f22a764927acacd3a352558e93ba94a5cf48901
[pandora-kernel.git] / drivers / scsi / mpt2sas / mpt2sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt2sas/mpt2_base.c
6  * Copyright (C) 2007-2010  LSI Corporation
7  *  (mailto:DL-MPTFusionLinux@lsi.com)
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * NO WARRANTY
20  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24  * solely responsible for determining the appropriateness of using and
25  * distributing the Program and assumes all risks associated with its
26  * exercise of rights under this Agreement, including but not limited to
27  * the risks and costs of program errors, damage to or loss of data,
28  * programs or equipment, and unavailability or interruption of operations.
29
30  * DISCLAIMER OF LIABILITY
31  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39  * You should have received a copy of the GNU General Public License
40  * along with this program; if not, write to the Free Software
41  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
42  * USA.
43  */
44
45 #include <linux/version.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/sort.h>
59 #include <linux/io.h>
60 #include <linux/time.h>
61 #include <linux/aer.h>
62
63 #include "mpt2sas_base.h"
64
65 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
66
67 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
68 #define MPT2SAS_MAX_REQUEST_QUEUE 600 /* maximum controller queue depth */
69
70 static int max_queue_depth = -1;
71 module_param(max_queue_depth, int, 0);
72 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
73
74 static int max_sgl_entries = -1;
75 module_param(max_sgl_entries, int, 0);
76 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
77
78 static int msix_disable = -1;
79 module_param(msix_disable, int, 0);
80 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
81
82 /* diag_buffer_enable is bitwise
83  * bit 0 set = TRACE
84  * bit 1 set = SNAPSHOT
85  * bit 2 set = EXTENDED
86  *
87  * Either bit can be set, or both
88  */
89 static int diag_buffer_enable;
90 module_param(diag_buffer_enable, int, 0);
91 MODULE_PARM_DESC(diag_buffer_enable, " post diag buffers "
92     "(TRACE=1/SNAPSHOT=2/EXTENDED=4/default=0)");
93
94 int mpt2sas_fwfault_debug;
95 MODULE_PARM_DESC(mpt2sas_fwfault_debug, " enable detection of firmware fault "
96     "and halt firmware - (default=0)");
97
98 static int disable_discovery = -1;
99 module_param(disable_discovery, int, 0);
100 MODULE_PARM_DESC(disable_discovery, " disable discovery ");
101
102 /**
103  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
104  *
105  */
106 static int
107 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
108 {
109         int ret = param_set_int(val, kp);
110         struct MPT2SAS_ADAPTER *ioc;
111
112         if (ret)
113                 return ret;
114
115         printk(KERN_INFO "setting fwfault_debug(%d)\n", mpt2sas_fwfault_debug);
116         list_for_each_entry(ioc, &mpt2sas_ioc_list, list)
117                 ioc->fwfault_debug = mpt2sas_fwfault_debug;
118         return 0;
119 }
120 module_param_call(mpt2sas_fwfault_debug, _scsih_set_fwfault_debug,
121     param_get_int, &mpt2sas_fwfault_debug, 0644);
122
123 /**
124  * _base_fault_reset_work - workq handling ioc fault conditions
125  * @work: input argument, used to derive ioc
126  * Context: sleep.
127  *
128  * Return nothing.
129  */
130 static void
131 _base_fault_reset_work(struct work_struct *work)
132 {
133         struct MPT2SAS_ADAPTER *ioc =
134             container_of(work, struct MPT2SAS_ADAPTER, fault_reset_work.work);
135         unsigned long    flags;
136         u32 doorbell;
137         int rc;
138
139         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
140         if (ioc->shost_recovery)
141                 goto rearm_timer;
142         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
143
144         doorbell = mpt2sas_base_get_iocstate(ioc, 0);
145         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
146                 rc = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
147                     FORCE_BIG_HAMMER);
148                 printk(MPT2SAS_WARN_FMT "%s: hard reset: %s\n", ioc->name,
149                     __func__, (rc == 0) ? "success" : "failed");
150                 doorbell = mpt2sas_base_get_iocstate(ioc, 0);
151                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
152                         mpt2sas_base_fault_info(ioc, doorbell &
153                             MPI2_DOORBELL_DATA_MASK);
154         }
155
156         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
157  rearm_timer:
158         if (ioc->fault_reset_work_q)
159                 queue_delayed_work(ioc->fault_reset_work_q,
160                     &ioc->fault_reset_work,
161                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
162         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163 }
164
165 /**
166  * mpt2sas_base_start_watchdog - start the fault_reset_work_q
167  * @ioc: per adapter object
168  * Context: sleep.
169  *
170  * Return nothing.
171  */
172 void
173 mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER *ioc)
174 {
175         unsigned long    flags;
176
177         if (ioc->fault_reset_work_q)
178                 return;
179
180         /* initialize fault polling */
181         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
182         snprintf(ioc->fault_reset_work_q_name,
183             sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
184         ioc->fault_reset_work_q =
185                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
186         if (!ioc->fault_reset_work_q) {
187                 printk(MPT2SAS_ERR_FMT "%s: failed (line=%d)\n",
188                     ioc->name, __func__, __LINE__);
189                         return;
190         }
191         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
192         if (ioc->fault_reset_work_q)
193                 queue_delayed_work(ioc->fault_reset_work_q,
194                     &ioc->fault_reset_work,
195                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
196         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
197 }
198
199 /**
200  * mpt2sas_base_stop_watchdog - stop the fault_reset_work_q
201  * @ioc: per adapter object
202  * Context: sleep.
203  *
204  * Return nothing.
205  */
206 void
207 mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER *ioc)
208 {
209         unsigned long    flags;
210         struct workqueue_struct *wq;
211
212         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
213         wq = ioc->fault_reset_work_q;
214         ioc->fault_reset_work_q = NULL;
215         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
216         if (wq) {
217                 if (!cancel_delayed_work(&ioc->fault_reset_work))
218                         flush_workqueue(wq);
219                 destroy_workqueue(wq);
220         }
221 }
222
223 /**
224  * mpt2sas_base_fault_info - verbose translation of firmware FAULT code
225  * @ioc: per adapter object
226  * @fault_code: fault code
227  *
228  * Return nothing.
229  */
230 void
231 mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER *ioc , u16 fault_code)
232 {
233         printk(MPT2SAS_ERR_FMT "fault_state(0x%04x)!\n",
234             ioc->name, fault_code);
235 }
236
237 /**
238  * mpt2sas_halt_firmware - halt's mpt controller firmware
239  * @ioc: per adapter object
240  *
241  * For debugging timeout related issues.  Writing 0xCOFFEE00
242  * to the doorbell register will halt controller firmware. With
243  * the purpose to stop both driver and firmware, the enduser can
244  * obtain a ring buffer from controller UART.
245  */
246 void
247 mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER *ioc)
248 {
249         u32 doorbell;
250
251         if (!ioc->fwfault_debug)
252                 return;
253
254         dump_stack();
255
256         doorbell = readl(&ioc->chip->Doorbell);
257         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
258                 mpt2sas_base_fault_info(ioc , doorbell);
259         else {
260                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
261                 printk(MPT2SAS_ERR_FMT "Firmware is halted due to command "
262                     "timeout\n", ioc->name);
263         }
264
265         panic("panic in %s\n", __func__);
266 }
267
268 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
269 /**
270  * _base_sas_ioc_info - verbose translation of the ioc status
271  * @ioc: per adapter object
272  * @mpi_reply: reply mf payload returned from firmware
273  * @request_hdr: request mf
274  *
275  * Return nothing.
276  */
277 static void
278 _base_sas_ioc_info(struct MPT2SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
279      MPI2RequestHeader_t *request_hdr)
280 {
281         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
282             MPI2_IOCSTATUS_MASK;
283         char *desc = NULL;
284         u16 frame_sz;
285         char *func_str = NULL;
286
287         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
288         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
289             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
290             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
291                 return;
292
293         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
294                 return;
295
296         switch (ioc_status) {
297
298 /****************************************************************************
299 *  Common IOCStatus values for all replies
300 ****************************************************************************/
301
302         case MPI2_IOCSTATUS_INVALID_FUNCTION:
303                 desc = "invalid function";
304                 break;
305         case MPI2_IOCSTATUS_BUSY:
306                 desc = "busy";
307                 break;
308         case MPI2_IOCSTATUS_INVALID_SGL:
309                 desc = "invalid sgl";
310                 break;
311         case MPI2_IOCSTATUS_INTERNAL_ERROR:
312                 desc = "internal error";
313                 break;
314         case MPI2_IOCSTATUS_INVALID_VPID:
315                 desc = "invalid vpid";
316                 break;
317         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
318                 desc = "insufficient resources";
319                 break;
320         case MPI2_IOCSTATUS_INVALID_FIELD:
321                 desc = "invalid field";
322                 break;
323         case MPI2_IOCSTATUS_INVALID_STATE:
324                 desc = "invalid state";
325                 break;
326         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
327                 desc = "op state not supported";
328                 break;
329
330 /****************************************************************************
331 *  Config IOCStatus values
332 ****************************************************************************/
333
334         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
335                 desc = "config invalid action";
336                 break;
337         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
338                 desc = "config invalid type";
339                 break;
340         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
341                 desc = "config invalid page";
342                 break;
343         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
344                 desc = "config invalid data";
345                 break;
346         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
347                 desc = "config no defaults";
348                 break;
349         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
350                 desc = "config cant commit";
351                 break;
352
353 /****************************************************************************
354 *  SCSI IO Reply
355 ****************************************************************************/
356
357         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
358         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
359         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
360         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
361         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
362         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
363         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
364         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
365         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
366         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
367         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
368         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
369                 break;
370
371 /****************************************************************************
372 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
373 ****************************************************************************/
374
375         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
376                 desc = "eedp guard error";
377                 break;
378         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
379                 desc = "eedp ref tag error";
380                 break;
381         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
382                 desc = "eedp app tag error";
383                 break;
384
385 /****************************************************************************
386 *  SCSI Target values
387 ****************************************************************************/
388
389         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
390                 desc = "target invalid io index";
391                 break;
392         case MPI2_IOCSTATUS_TARGET_ABORTED:
393                 desc = "target aborted";
394                 break;
395         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
396                 desc = "target no conn retryable";
397                 break;
398         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
399                 desc = "target no connection";
400                 break;
401         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
402                 desc = "target xfer count mismatch";
403                 break;
404         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
405                 desc = "target data offset error";
406                 break;
407         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
408                 desc = "target too much write data";
409                 break;
410         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
411                 desc = "target iu too short";
412                 break;
413         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
414                 desc = "target ack nak timeout";
415                 break;
416         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
417                 desc = "target nak received";
418                 break;
419
420 /****************************************************************************
421 *  Serial Attached SCSI values
422 ****************************************************************************/
423
424         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
425                 desc = "smp request failed";
426                 break;
427         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
428                 desc = "smp data overrun";
429                 break;
430
431 /****************************************************************************
432 *  Diagnostic Buffer Post / Diagnostic Release values
433 ****************************************************************************/
434
435         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
436                 desc = "diagnostic released";
437                 break;
438         default:
439                 break;
440         }
441
442         if (!desc)
443                 return;
444
445         switch (request_hdr->Function) {
446         case MPI2_FUNCTION_CONFIG:
447                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
448                 func_str = "config_page";
449                 break;
450         case MPI2_FUNCTION_SCSI_TASK_MGMT:
451                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
452                 func_str = "task_mgmt";
453                 break;
454         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
455                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
456                 func_str = "sas_iounit_ctl";
457                 break;
458         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
459                 frame_sz = sizeof(Mpi2SepRequest_t);
460                 func_str = "enclosure";
461                 break;
462         case MPI2_FUNCTION_IOC_INIT:
463                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
464                 func_str = "ioc_init";
465                 break;
466         case MPI2_FUNCTION_PORT_ENABLE:
467                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
468                 func_str = "port_enable";
469                 break;
470         case MPI2_FUNCTION_SMP_PASSTHROUGH:
471                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
472                 func_str = "smp_passthru";
473                 break;
474         default:
475                 frame_sz = 32;
476                 func_str = "unknown";
477                 break;
478         }
479
480         printk(MPT2SAS_WARN_FMT "ioc_status: %s(0x%04x), request(0x%p),"
481             " (%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str);
482
483         _debug_dump_mf(request_hdr, frame_sz/4);
484 }
485
486 /**
487  * _base_display_event_data - verbose translation of firmware asyn events
488  * @ioc: per adapter object
489  * @mpi_reply: reply mf payload returned from firmware
490  *
491  * Return nothing.
492  */
493 static void
494 _base_display_event_data(struct MPT2SAS_ADAPTER *ioc,
495     Mpi2EventNotificationReply_t *mpi_reply)
496 {
497         char *desc = NULL;
498         u16 event;
499
500         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
501                 return;
502
503         event = le16_to_cpu(mpi_reply->Event);
504
505         switch (event) {
506         case MPI2_EVENT_LOG_DATA:
507                 desc = "Log Data";
508                 break;
509         case MPI2_EVENT_STATE_CHANGE:
510                 desc = "Status Change";
511                 break;
512         case MPI2_EVENT_HARD_RESET_RECEIVED:
513                 desc = "Hard Reset Received";
514                 break;
515         case MPI2_EVENT_EVENT_CHANGE:
516                 desc = "Event Change";
517                 break;
518         case MPI2_EVENT_TASK_SET_FULL:
519                 desc = "Task Set Full";
520                 break;
521         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
522                 desc = "Device Status Change";
523                 break;
524         case MPI2_EVENT_IR_OPERATION_STATUS:
525                 desc = "IR Operation Status";
526                 break;
527         case MPI2_EVENT_SAS_DISCOVERY:
528         {
529                 Mpi2EventDataSasDiscovery_t *event_data =
530                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
531                 printk(MPT2SAS_INFO_FMT "Discovery: (%s)", ioc->name,
532                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
533                     "start" : "stop");
534                 if (event_data->DiscoveryStatus)
535                         printk("discovery_status(0x%08x)",
536                             le32_to_cpu(event_data->DiscoveryStatus));
537                         printk("\n");
538                 return;
539         }
540         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
541                 desc = "SAS Broadcast Primitive";
542                 break;
543         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
544                 desc = "SAS Init Device Status Change";
545                 break;
546         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
547                 desc = "SAS Init Table Overflow";
548                 break;
549         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
550                 desc = "SAS Topology Change List";
551                 break;
552         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
553                 desc = "SAS Enclosure Device Status Change";
554                 break;
555         case MPI2_EVENT_IR_VOLUME:
556                 desc = "IR Volume";
557                 break;
558         case MPI2_EVENT_IR_PHYSICAL_DISK:
559                 desc = "IR Physical Disk";
560                 break;
561         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
562                 desc = "IR Configuration Change List";
563                 break;
564         case MPI2_EVENT_LOG_ENTRY_ADDED:
565                 desc = "Log Entry Added";
566                 break;
567         }
568
569         if (!desc)
570                 return;
571
572         printk(MPT2SAS_INFO_FMT "%s\n", ioc->name, desc);
573 }
574 #endif
575
576 /**
577  * _base_sas_log_info - verbose translation of firmware log info
578  * @ioc: per adapter object
579  * @log_info: log info
580  *
581  * Return nothing.
582  */
583 static void
584 _base_sas_log_info(struct MPT2SAS_ADAPTER *ioc , u32 log_info)
585 {
586         union loginfo_type {
587                 u32     loginfo;
588                 struct {
589                         u32     subcode:16;
590                         u32     code:8;
591                         u32     originator:4;
592                         u32     bus_type:4;
593                 } dw;
594         };
595         union loginfo_type sas_loginfo;
596         char *originator_str = NULL;
597
598         sas_loginfo.loginfo = log_info;
599         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
600                 return;
601
602         /* each nexus loss loginfo */
603         if (log_info == 0x31170000)
604                 return;
605
606         /* eat the loginfos associated with task aborts */
607         if (ioc->ignore_loginfos && (log_info == 30050000 || log_info ==
608             0x31140000 || log_info == 0x31130000))
609                 return;
610
611         switch (sas_loginfo.dw.originator) {
612         case 0:
613                 originator_str = "IOP";
614                 break;
615         case 1:
616                 originator_str = "PL";
617                 break;
618         case 2:
619                 originator_str = "IR";
620                 break;
621         }
622
623         printk(MPT2SAS_WARN_FMT "log_info(0x%08x): originator(%s), "
624             "code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info,
625              originator_str, sas_loginfo.dw.code,
626              sas_loginfo.dw.subcode);
627 }
628
629 /**
630  * _base_display_reply_info -
631  * @ioc: per adapter object
632  * @smid: system request message index
633  * @msix_index: MSIX table index supplied by the OS
634  * @reply: reply message frame(lower 32bit addr)
635  *
636  * Return nothing.
637  */
638 static void
639 _base_display_reply_info(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
640     u32 reply)
641 {
642         MPI2DefaultReply_t *mpi_reply;
643         u16 ioc_status;
644
645         mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
646         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
647 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
648         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
649             (ioc->logging_level & MPT_DEBUG_REPLY)) {
650                 _base_sas_ioc_info(ioc , mpi_reply,
651                    mpt2sas_base_get_msg_frame(ioc, smid));
652         }
653 #endif
654         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
655                 _base_sas_log_info(ioc, le32_to_cpu(mpi_reply->IOCLogInfo));
656 }
657
658 /**
659  * mpt2sas_base_done - base internal command completion routine
660  * @ioc: per adapter object
661  * @smid: system request message index
662  * @msix_index: MSIX table index supplied by the OS
663  * @reply: reply message frame(lower 32bit addr)
664  *
665  * Return 1 meaning mf should be freed from _base_interrupt
666  *        0 means the mf is freed from this function.
667  */
668 u8
669 mpt2sas_base_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
670     u32 reply)
671 {
672         MPI2DefaultReply_t *mpi_reply;
673
674         mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
675         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
676                 return 1;
677
678         if (ioc->base_cmds.status == MPT2_CMD_NOT_USED)
679                 return 1;
680
681         ioc->base_cmds.status |= MPT2_CMD_COMPLETE;
682         if (mpi_reply) {
683                 ioc->base_cmds.status |= MPT2_CMD_REPLY_VALID;
684                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
685         }
686         ioc->base_cmds.status &= ~MPT2_CMD_PENDING;
687         complete(&ioc->base_cmds.done);
688         return 1;
689 }
690
691 /**
692  * _base_async_event - main callback handler for firmware asyn events
693  * @ioc: per adapter object
694  * @msix_index: MSIX table index supplied by the OS
695  * @reply: reply message frame(lower 32bit addr)
696  *
697  * Return 1 meaning mf should be freed from _base_interrupt
698  *        0 means the mf is freed from this function.
699  */
700 static u8
701 _base_async_event(struct MPT2SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
702 {
703         Mpi2EventNotificationReply_t *mpi_reply;
704         Mpi2EventAckRequest_t *ack_request;
705         u16 smid;
706
707         mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
708         if (!mpi_reply)
709                 return 1;
710         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
711                 return 1;
712 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
713         _base_display_event_data(ioc, mpi_reply);
714 #endif
715         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
716                 goto out;
717         smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
718         if (!smid) {
719                 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
720                     ioc->name, __func__);
721                 goto out;
722         }
723
724         ack_request = mpt2sas_base_get_msg_frame(ioc, smid);
725         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
726         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
727         ack_request->Event = mpi_reply->Event;
728         ack_request->EventContext = mpi_reply->EventContext;
729         ack_request->VF_ID = 0;  /* TODO */
730         ack_request->VP_ID = 0;
731         mpt2sas_base_put_smid_default(ioc, smid);
732
733  out:
734
735         /* scsih callback handler */
736         mpt2sas_scsih_event_callback(ioc, msix_index, reply);
737
738         /* ctl callback handler */
739         mpt2sas_ctl_event_callback(ioc, msix_index, reply);
740
741         return 1;
742 }
743
744 /**
745  * _base_get_cb_idx - obtain the callback index
746  * @ioc: per adapter object
747  * @smid: system request message index
748  *
749  * Return callback index.
750  */
751 static u8
752 _base_get_cb_idx(struct MPT2SAS_ADAPTER *ioc, u16 smid)
753 {
754         int i;
755         u8 cb_idx = 0xFF;
756
757         if (smid >= ioc->hi_priority_smid) {
758                 if (smid < ioc->internal_smid) {
759                         i = smid - ioc->hi_priority_smid;
760                         cb_idx = ioc->hpr_lookup[i].cb_idx;
761                 } else {
762                         i = smid - ioc->internal_smid;
763                         cb_idx = ioc->internal_lookup[i].cb_idx;
764                 }
765         } else {
766                 i = smid - 1;
767                 cb_idx = ioc->scsi_lookup[i].cb_idx;
768         }
769         return cb_idx;
770 }
771
772 /**
773  * _base_mask_interrupts - disable interrupts
774  * @ioc: per adapter object
775  *
776  * Disabling ResetIRQ, Reply and Doorbell Interrupts
777  *
778  * Return nothing.
779  */
780 static void
781 _base_mask_interrupts(struct MPT2SAS_ADAPTER *ioc)
782 {
783         u32 him_register;
784
785         ioc->mask_interrupts = 1;
786         him_register = readl(&ioc->chip->HostInterruptMask);
787         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
788         writel(him_register, &ioc->chip->HostInterruptMask);
789         readl(&ioc->chip->HostInterruptMask);
790 }
791
792 /**
793  * _base_unmask_interrupts - enable interrupts
794  * @ioc: per adapter object
795  *
796  * Enabling only Reply Interrupts
797  *
798  * Return nothing.
799  */
800 static void
801 _base_unmask_interrupts(struct MPT2SAS_ADAPTER *ioc)
802 {
803         u32 him_register;
804
805         him_register = readl(&ioc->chip->HostInterruptMask);
806         him_register &= ~MPI2_HIM_RIM;
807         writel(him_register, &ioc->chip->HostInterruptMask);
808         ioc->mask_interrupts = 0;
809 }
810
811 union reply_descriptor {
812         u64 word;
813         struct {
814                 u32 low;
815                 u32 high;
816         } u;
817 };
818
819 /**
820  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
821  * @irq: irq number (not used)
822  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
823  * @r: pt_regs pointer (not used)
824  *
825  * Return IRQ_HANDLE if processed, else IRQ_NONE.
826  */
827 static irqreturn_t
828 _base_interrupt(int irq, void *bus_id)
829 {
830         union reply_descriptor rd;
831         u32 completed_cmds;
832         u8 request_desript_type;
833         u16 smid;
834         u8 cb_idx;
835         u32 reply;
836         u8 msix_index;
837         struct MPT2SAS_ADAPTER *ioc = bus_id;
838         Mpi2ReplyDescriptorsUnion_t *rpf;
839         u8 rc;
840
841         if (ioc->mask_interrupts)
842                 return IRQ_NONE;
843
844         rpf = &ioc->reply_post_free[ioc->reply_post_host_index];
845         request_desript_type = rpf->Default.ReplyFlags
846              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
847         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
848                 return IRQ_NONE;
849
850         completed_cmds = 0;
851         do {
852                 rd.word = rpf->Words;
853                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
854                         goto out;
855                 reply = 0;
856                 cb_idx = 0xFF;
857                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
858                 msix_index = rpf->Default.MSIxIndex;
859                 if (request_desript_type ==
860                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
861                         reply = le32_to_cpu
862                                 (rpf->AddressReply.ReplyFrameAddress);
863                 } else if (request_desript_type ==
864                     MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER)
865                         goto next;
866                 else if (request_desript_type ==
867                     MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS)
868                         goto next;
869                 if (smid)
870                         cb_idx = _base_get_cb_idx(ioc, smid);
871                 if (smid && cb_idx != 0xFF) {
872                         rc = mpt_callbacks[cb_idx](ioc, smid, msix_index,
873                             reply);
874                         if (reply)
875                                 _base_display_reply_info(ioc, smid, msix_index,
876                                     reply);
877                         if (rc)
878                                 mpt2sas_base_free_smid(ioc, smid);
879                 }
880                 if (!smid)
881                         _base_async_event(ioc, msix_index, reply);
882
883                 /* reply free queue handling */
884                 if (reply) {
885                         ioc->reply_free_host_index =
886                             (ioc->reply_free_host_index ==
887                             (ioc->reply_free_queue_depth - 1)) ?
888                             0 : ioc->reply_free_host_index + 1;
889                         ioc->reply_free[ioc->reply_free_host_index] =
890                             cpu_to_le32(reply);
891                         wmb();
892                         writel(ioc->reply_free_host_index,
893                             &ioc->chip->ReplyFreeHostIndex);
894                 }
895
896  next:
897
898                 rpf->Words = ULLONG_MAX;
899                 ioc->reply_post_host_index = (ioc->reply_post_host_index ==
900                     (ioc->reply_post_queue_depth - 1)) ? 0 :
901                     ioc->reply_post_host_index + 1;
902                 request_desript_type =
903                     ioc->reply_post_free[ioc->reply_post_host_index].Default.
904                     ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
905                 completed_cmds++;
906                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
907                         goto out;
908                 if (!ioc->reply_post_host_index)
909                         rpf = ioc->reply_post_free;
910                 else
911                         rpf++;
912         } while (1);
913
914  out:
915
916         if (!completed_cmds)
917                 return IRQ_NONE;
918
919         wmb();
920         writel(ioc->reply_post_host_index, &ioc->chip->ReplyPostHostIndex);
921         return IRQ_HANDLED;
922 }
923
924 /**
925  * mpt2sas_base_release_callback_handler - clear interupt callback handler
926  * @cb_idx: callback index
927  *
928  * Return nothing.
929  */
930 void
931 mpt2sas_base_release_callback_handler(u8 cb_idx)
932 {
933         mpt_callbacks[cb_idx] = NULL;
934 }
935
936 /**
937  * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler
938  * @cb_func: callback function
939  *
940  * Returns cb_func.
941  */
942 u8
943 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func)
944 {
945         u8 cb_idx;
946
947         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
948                 if (mpt_callbacks[cb_idx] == NULL)
949                         break;
950
951         mpt_callbacks[cb_idx] = cb_func;
952         return cb_idx;
953 }
954
955 /**
956  * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler
957  *
958  * Return nothing.
959  */
960 void
961 mpt2sas_base_initialize_callback_handler(void)
962 {
963         u8 cb_idx;
964
965         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
966                 mpt2sas_base_release_callback_handler(cb_idx);
967 }
968
969 /**
970  * mpt2sas_base_build_zero_len_sge - build zero length sg entry
971  * @ioc: per adapter object
972  * @paddr: virtual address for SGE
973  *
974  * Create a zero length scatter gather entry to insure the IOCs hardware has
975  * something to use if the target device goes brain dead and tries
976  * to send data even when none is asked for.
977  *
978  * Return nothing.
979  */
980 void
981 mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER *ioc, void *paddr)
982 {
983         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
984             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
985             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
986             MPI2_SGE_FLAGS_SHIFT);
987         ioc->base_add_sg_single(paddr, flags_length, -1);
988 }
989
990 /**
991  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
992  * @paddr: virtual address for SGE
993  * @flags_length: SGE flags and data transfer length
994  * @dma_addr: Physical address
995  *
996  * Return nothing.
997  */
998 static void
999 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1000 {
1001         Mpi2SGESimple32_t *sgel = paddr;
1002
1003         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1004             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1005         sgel->FlagsLength = cpu_to_le32(flags_length);
1006         sgel->Address = cpu_to_le32(dma_addr);
1007 }
1008
1009
1010 /**
1011  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1012  * @paddr: virtual address for SGE
1013  * @flags_length: SGE flags and data transfer length
1014  * @dma_addr: Physical address
1015  *
1016  * Return nothing.
1017  */
1018 static void
1019 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1020 {
1021         Mpi2SGESimple64_t *sgel = paddr;
1022
1023         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1024             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1025         sgel->FlagsLength = cpu_to_le32(flags_length);
1026         sgel->Address = cpu_to_le64(dma_addr);
1027 }
1028
1029 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1030
1031 /**
1032  * _base_config_dma_addressing - set dma addressing
1033  * @ioc: per adapter object
1034  * @pdev: PCI device struct
1035  *
1036  * Returns 0 for success, non-zero for failure.
1037  */
1038 static int
1039 _base_config_dma_addressing(struct MPT2SAS_ADAPTER *ioc, struct pci_dev *pdev)
1040 {
1041         struct sysinfo s;
1042         char *desc = NULL;
1043
1044         if (sizeof(dma_addr_t) > 4) {
1045                 const uint64_t required_mask =
1046                     dma_get_required_mask(&pdev->dev);
1047                 if ((required_mask > DMA_BIT_MASK(32)) && !pci_set_dma_mask(pdev,
1048                     DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pdev,
1049                     DMA_BIT_MASK(64))) {
1050                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1051                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1052                         desc = "64";
1053                         goto out;
1054                 }
1055         }
1056
1057         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1058             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1059                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1060                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1061                 desc = "32";
1062         } else
1063                 return -ENODEV;
1064
1065  out:
1066         si_meminfo(&s);
1067         printk(MPT2SAS_INFO_FMT "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, "
1068             "total mem (%ld kB)\n", ioc->name, desc, convert_to_kb(s.totalram));
1069
1070         return 0;
1071 }
1072
1073 /**
1074  * _base_save_msix_table - backup msix vector table
1075  * @ioc: per adapter object
1076  *
1077  * This address an errata where diag reset clears out the table
1078  */
1079 static void
1080 _base_save_msix_table(struct MPT2SAS_ADAPTER *ioc)
1081 {
1082         int i;
1083
1084         if (!ioc->msix_enable || ioc->msix_table_backup == NULL)
1085                 return;
1086
1087         for (i = 0; i < ioc->msix_vector_count; i++)
1088                 ioc->msix_table_backup[i] = ioc->msix_table[i];
1089 }
1090
1091 /**
1092  * _base_restore_msix_table - this restores the msix vector table
1093  * @ioc: per adapter object
1094  *
1095  */
1096 static void
1097 _base_restore_msix_table(struct MPT2SAS_ADAPTER *ioc)
1098 {
1099         int i;
1100
1101         if (!ioc->msix_enable || ioc->msix_table_backup == NULL)
1102                 return;
1103
1104         for (i = 0; i < ioc->msix_vector_count; i++)
1105                 ioc->msix_table[i] = ioc->msix_table_backup[i];
1106 }
1107
1108 /**
1109  * _base_check_enable_msix - checks MSIX capabable.
1110  * @ioc: per adapter object
1111  *
1112  * Check to see if card is capable of MSIX, and set number
1113  * of avaliable msix vectors
1114  */
1115 static int
1116 _base_check_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1117 {
1118         int base;
1119         u16 message_control;
1120         u32 msix_table_offset;
1121
1122         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1123         if (!base) {
1124                 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "msix not "
1125                     "supported\n", ioc->name));
1126                 return -EINVAL;
1127         }
1128
1129         /* get msix vector count */
1130         pci_read_config_word(ioc->pdev, base + 2, &message_control);
1131         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1132
1133         /* get msix table  */
1134         pci_read_config_dword(ioc->pdev, base + 4, &msix_table_offset);
1135         msix_table_offset &= 0xFFFFFFF8;
1136         ioc->msix_table = (u32 *)((void *)ioc->chip + msix_table_offset);
1137
1138         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "msix is supported, "
1139             "vector_count(%d), table_offset(0x%08x), table(%p)\n", ioc->name,
1140             ioc->msix_vector_count, msix_table_offset, ioc->msix_table));
1141         return 0;
1142 }
1143
1144 /**
1145  * _base_disable_msix - disables msix
1146  * @ioc: per adapter object
1147  *
1148  */
1149 static void
1150 _base_disable_msix(struct MPT2SAS_ADAPTER *ioc)
1151 {
1152         if (ioc->msix_enable) {
1153                 pci_disable_msix(ioc->pdev);
1154                 kfree(ioc->msix_table_backup);
1155                 ioc->msix_table_backup = NULL;
1156                 ioc->msix_enable = 0;
1157         }
1158 }
1159
1160 /**
1161  * _base_enable_msix - enables msix, failback to io_apic
1162  * @ioc: per adapter object
1163  *
1164  */
1165 static int
1166 _base_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1167 {
1168         struct msix_entry entries;
1169         int r;
1170         u8 try_msix = 0;
1171
1172         if (msix_disable == -1 || msix_disable == 0)
1173                 try_msix = 1;
1174
1175         if (!try_msix)
1176                 goto try_ioapic;
1177
1178         if (_base_check_enable_msix(ioc) != 0)
1179                 goto try_ioapic;
1180
1181         ioc->msix_table_backup = kcalloc(ioc->msix_vector_count,
1182             sizeof(u32), GFP_KERNEL);
1183         if (!ioc->msix_table_backup) {
1184                 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation for "
1185                     "msix_table_backup failed!!!\n", ioc->name));
1186                 goto try_ioapic;
1187         }
1188
1189         memset(&entries, 0, sizeof(struct msix_entry));
1190         r = pci_enable_msix(ioc->pdev, &entries, 1);
1191         if (r) {
1192                 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "pci_enable_msix "
1193                     "failed (r=%d) !!!\n", ioc->name, r));
1194                 goto try_ioapic;
1195         }
1196
1197         r = request_irq(entries.vector, _base_interrupt, IRQF_SHARED,
1198             ioc->name, ioc);
1199         if (r) {
1200                 dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "unable to allocate "
1201                     "interrupt %d !!!\n", ioc->name, entries.vector));
1202                 pci_disable_msix(ioc->pdev);
1203                 goto try_ioapic;
1204         }
1205
1206         ioc->pci_irq = entries.vector;
1207         ioc->msix_enable = 1;
1208         return 0;
1209
1210 /* failback to io_apic interrupt routing */
1211  try_ioapic:
1212
1213         r = request_irq(ioc->pdev->irq, _base_interrupt, IRQF_SHARED,
1214             ioc->name, ioc);
1215         if (r) {
1216                 printk(MPT2SAS_ERR_FMT "unable to allocate interrupt %d!\n",
1217                     ioc->name, ioc->pdev->irq);
1218                 r = -EBUSY;
1219                 goto out_fail;
1220         }
1221
1222         ioc->pci_irq = ioc->pdev->irq;
1223         return 0;
1224
1225  out_fail:
1226         return r;
1227 }
1228
1229 /**
1230  * mpt2sas_base_map_resources - map in controller resources (io/irq/memap)
1231  * @ioc: per adapter object
1232  *
1233  * Returns 0 for success, non-zero for failure.
1234  */
1235 int
1236 mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER *ioc)
1237 {
1238         struct pci_dev *pdev = ioc->pdev;
1239         u32 memap_sz;
1240         u32 pio_sz;
1241         int i, r = 0;
1242         u64 pio_chip = 0;
1243         u64 chip_phys = 0;
1244
1245         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n",
1246             ioc->name, __func__));
1247
1248         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1249         if (pci_enable_device_mem(pdev)) {
1250                 printk(MPT2SAS_WARN_FMT "pci_enable_device_mem: "
1251                     "failed\n", ioc->name);
1252                 return -ENODEV;
1253         }
1254
1255
1256         if (pci_request_selected_regions(pdev, ioc->bars,
1257             MPT2SAS_DRIVER_NAME)) {
1258                 printk(MPT2SAS_WARN_FMT "pci_request_selected_regions: "
1259                     "failed\n", ioc->name);
1260                 r = -ENODEV;
1261                 goto out_fail;
1262         }
1263
1264         /* AER (Advanced Error Reporting) hooks */
1265         pci_enable_pcie_error_reporting(pdev);
1266
1267         pci_set_master(pdev);
1268
1269         if (_base_config_dma_addressing(ioc, pdev) != 0) {
1270                 printk(MPT2SAS_WARN_FMT "no suitable DMA mask for %s\n",
1271                     ioc->name, pci_name(pdev));
1272                 r = -ENODEV;
1273                 goto out_fail;
1274         }
1275
1276         for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1277                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1278                         if (pio_sz)
1279                                 continue;
1280                         pio_chip = (u64)pci_resource_start(pdev, i);
1281                         pio_sz = pci_resource_len(pdev, i);
1282                 } else {
1283                         if (memap_sz)
1284                                 continue;
1285                         /* verify memory resource is valid before using */
1286                         if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1287                                 ioc->chip_phys = pci_resource_start(pdev, i);
1288                                 chip_phys = (u64)ioc->chip_phys;
1289                                 memap_sz = pci_resource_len(pdev, i);
1290                                 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1291                                 if (ioc->chip == NULL) {
1292                                         printk(MPT2SAS_ERR_FMT "unable to map "
1293                                             "adapter memory!\n", ioc->name);
1294                                         r = -EINVAL;
1295                                         goto out_fail;
1296                                 }
1297                         }
1298                 }
1299         }
1300
1301         _base_mask_interrupts(ioc);
1302         r = _base_enable_msix(ioc);
1303         if (r)
1304                 goto out_fail;
1305
1306         printk(MPT2SAS_INFO_FMT "%s: IRQ %d\n",
1307             ioc->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1308             "IO-APIC enabled"), ioc->pci_irq);
1309         printk(MPT2SAS_INFO_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1310             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1311         printk(MPT2SAS_INFO_FMT "ioport(0x%016llx), size(%d)\n",
1312             ioc->name, (unsigned long long)pio_chip, pio_sz);
1313
1314         return 0;
1315
1316  out_fail:
1317         if (ioc->chip_phys)
1318                 iounmap(ioc->chip);
1319         ioc->chip_phys = 0;
1320         ioc->pci_irq = -1;
1321         pci_release_selected_regions(ioc->pdev, ioc->bars);
1322         pci_disable_pcie_error_reporting(pdev);
1323         pci_disable_device(pdev);
1324         return r;
1325 }
1326
1327 /**
1328  * mpt2sas_base_get_msg_frame - obtain request mf pointer
1329  * @ioc: per adapter object
1330  * @smid: system request message index(smid zero is invalid)
1331  *
1332  * Returns virt pointer to message frame.
1333  */
1334 void *
1335 mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1336 {
1337         return (void *)(ioc->request + (smid * ioc->request_sz));
1338 }
1339
1340 /**
1341  * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request
1342  * @ioc: per adapter object
1343  * @smid: system request message index
1344  *
1345  * Returns virt pointer to sense buffer.
1346  */
1347 void *
1348 mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1349 {
1350         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1351 }
1352
1353 /**
1354  * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request
1355  * @ioc: per adapter object
1356  * @smid: system request message index
1357  *
1358  * Returns phys pointer to the low 32bit address of the sense buffer.
1359  */
1360 __le32
1361 mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1362 {
1363         return cpu_to_le32(ioc->sense_dma +
1364                         ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1365 }
1366
1367 /**
1368  * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address
1369  * @ioc: per adapter object
1370  * @phys_addr: lower 32 physical addr of the reply
1371  *
1372  * Converts 32bit lower physical addr into a virt address.
1373  */
1374 void *
1375 mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER *ioc, u32 phys_addr)
1376 {
1377         if (!phys_addr)
1378                 return NULL;
1379         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1380 }
1381
1382 /**
1383  * mpt2sas_base_get_smid - obtain a free smid from internal queue
1384  * @ioc: per adapter object
1385  * @cb_idx: callback index
1386  *
1387  * Returns smid (zero is invalid)
1388  */
1389 u16
1390 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1391 {
1392         unsigned long flags;
1393         struct request_tracker *request;
1394         u16 smid;
1395
1396         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1397         if (list_empty(&ioc->internal_free_list)) {
1398                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1399                 printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1400                     ioc->name, __func__);
1401                 return 0;
1402         }
1403
1404         request = list_entry(ioc->internal_free_list.next,
1405             struct request_tracker, tracker_list);
1406         request->cb_idx = cb_idx;
1407         smid = request->smid;
1408         list_del(&request->tracker_list);
1409         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1410         return smid;
1411 }
1412
1413 /**
1414  * mpt2sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1415  * @ioc: per adapter object
1416  * @cb_idx: callback index
1417  * @scmd: pointer to scsi command object
1418  *
1419  * Returns smid (zero is invalid)
1420  */
1421 u16
1422 mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx,
1423     struct scsi_cmnd *scmd)
1424 {
1425         unsigned long flags;
1426         struct request_tracker *request;
1427         u16 smid;
1428
1429         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1430         if (list_empty(&ioc->free_list)) {
1431                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1432                 printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1433                     ioc->name, __func__);
1434                 return 0;
1435         }
1436
1437         request = list_entry(ioc->free_list.next,
1438             struct request_tracker, tracker_list);
1439         request->scmd = scmd;
1440         request->cb_idx = cb_idx;
1441         smid = request->smid;
1442         list_del(&request->tracker_list);
1443         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1444         return smid;
1445 }
1446
1447 /**
1448  * mpt2sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1449  * @ioc: per adapter object
1450  * @cb_idx: callback index
1451  *
1452  * Returns smid (zero is invalid)
1453  */
1454 u16
1455 mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1456 {
1457         unsigned long flags;
1458         struct request_tracker *request;
1459         u16 smid;
1460
1461         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1462         if (list_empty(&ioc->hpr_free_list)) {
1463                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1464                 return 0;
1465         }
1466
1467         request = list_entry(ioc->hpr_free_list.next,
1468             struct request_tracker, tracker_list);
1469         request->cb_idx = cb_idx;
1470         smid = request->smid;
1471         list_del(&request->tracker_list);
1472         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1473         return smid;
1474 }
1475
1476
1477 /**
1478  * mpt2sas_base_free_smid - put smid back on free_list
1479  * @ioc: per adapter object
1480  * @smid: system request message index
1481  *
1482  * Return nothing.
1483  */
1484 void
1485 mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1486 {
1487         unsigned long flags;
1488         int i;
1489
1490         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1491         if (smid >= ioc->hi_priority_smid) {
1492                 if (smid < ioc->internal_smid) {
1493                         /* hi-priority */
1494                         i = smid - ioc->hi_priority_smid;
1495                         ioc->hpr_lookup[i].cb_idx = 0xFF;
1496                         list_add_tail(&ioc->hpr_lookup[i].tracker_list,
1497                             &ioc->hpr_free_list);
1498                 } else {
1499                         /* internal queue */
1500                         i = smid - ioc->internal_smid;
1501                         ioc->internal_lookup[i].cb_idx = 0xFF;
1502                         list_add_tail(&ioc->internal_lookup[i].tracker_list,
1503                             &ioc->internal_free_list);
1504                 }
1505                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1506                 return;
1507         }
1508
1509         /* scsiio queue */
1510         i = smid - 1;
1511         ioc->scsi_lookup[i].cb_idx = 0xFF;
1512         ioc->scsi_lookup[i].scmd = NULL;
1513         list_add_tail(&ioc->scsi_lookup[i].tracker_list,
1514             &ioc->free_list);
1515         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1516
1517         /*
1518          * See _wait_for_commands_to_complete() call with regards to this code.
1519          */
1520         if (ioc->shost_recovery && ioc->pending_io_count) {
1521                 if (ioc->pending_io_count == 1)
1522                         wake_up(&ioc->reset_wq);
1523                 ioc->pending_io_count--;
1524         }
1525 }
1526
1527 /**
1528  * _base_writeq - 64 bit write to MMIO
1529  * @ioc: per adapter object
1530  * @b: data payload
1531  * @addr: address in MMIO space
1532  * @writeq_lock: spin lock
1533  *
1534  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
1535  * care of 32 bit environment where its not quarenteed to send the entire word
1536  * in one transfer.
1537  */
1538 #ifndef writeq
1539 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1540     spinlock_t *writeq_lock)
1541 {
1542         unsigned long flags;
1543         __u64 data_out = cpu_to_le64(b);
1544
1545         spin_lock_irqsave(writeq_lock, flags);
1546         writel((u32)(data_out), addr);
1547         writel((u32)(data_out >> 32), (addr + 4));
1548         spin_unlock_irqrestore(writeq_lock, flags);
1549 }
1550 #else
1551 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1552     spinlock_t *writeq_lock)
1553 {
1554         writeq(cpu_to_le64(b), addr);
1555 }
1556 #endif
1557
1558 /**
1559  * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
1560  * @ioc: per adapter object
1561  * @smid: system request message index
1562  * @handle: device handle
1563  *
1564  * Return nothing.
1565  */
1566 void
1567 mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER *ioc, u16 smid, u16 handle)
1568 {
1569         Mpi2RequestDescriptorUnion_t descriptor;
1570         u64 *request = (u64 *)&descriptor;
1571
1572
1573         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1574         descriptor.SCSIIO.MSIxIndex = 0; /* TODO */
1575         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
1576         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
1577         descriptor.SCSIIO.LMID = 0;
1578         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1579             &ioc->scsi_lookup_lock);
1580 }
1581
1582
1583 /**
1584  * mpt2sas_base_put_smid_hi_priority - send Task Managment request to firmware
1585  * @ioc: per adapter object
1586  * @smid: system request message index
1587  *
1588  * Return nothing.
1589  */
1590 void
1591 mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1592 {
1593         Mpi2RequestDescriptorUnion_t descriptor;
1594         u64 *request = (u64 *)&descriptor;
1595
1596         descriptor.HighPriority.RequestFlags =
1597             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1598         descriptor.HighPriority.MSIxIndex = 0; /* TODO */
1599         descriptor.HighPriority.SMID = cpu_to_le16(smid);
1600         descriptor.HighPriority.LMID = 0;
1601         descriptor.HighPriority.Reserved1 = 0;
1602         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1603             &ioc->scsi_lookup_lock);
1604 }
1605
1606 /**
1607  * mpt2sas_base_put_smid_default - Default, primarily used for config pages
1608  * @ioc: per adapter object
1609  * @smid: system request message index
1610  *
1611  * Return nothing.
1612  */
1613 void
1614 mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1615 {
1616         Mpi2RequestDescriptorUnion_t descriptor;
1617         u64 *request = (u64 *)&descriptor;
1618
1619         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1620         descriptor.Default.MSIxIndex = 0; /* TODO */
1621         descriptor.Default.SMID = cpu_to_le16(smid);
1622         descriptor.Default.LMID = 0;
1623         descriptor.Default.DescriptorTypeDependent = 0;
1624         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1625             &ioc->scsi_lookup_lock);
1626 }
1627
1628 /**
1629  * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware
1630  * @ioc: per adapter object
1631  * @smid: system request message index
1632  * @io_index: value used to track the IO
1633  *
1634  * Return nothing.
1635  */
1636 void
1637 mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER *ioc, u16 smid,
1638     u16 io_index)
1639 {
1640         Mpi2RequestDescriptorUnion_t descriptor;
1641         u64 *request = (u64 *)&descriptor;
1642
1643         descriptor.SCSITarget.RequestFlags =
1644             MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET;
1645         descriptor.SCSITarget.MSIxIndex = 0; /* TODO */
1646         descriptor.SCSITarget.SMID = cpu_to_le16(smid);
1647         descriptor.SCSITarget.LMID = 0;
1648         descriptor.SCSITarget.IoIndex = cpu_to_le16(io_index);
1649         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1650             &ioc->scsi_lookup_lock);
1651 }
1652
1653 /**
1654  * _base_display_dell_branding - Disply branding string
1655  * @ioc: per adapter object
1656  *
1657  * Return nothing.
1658  */
1659 static void
1660 _base_display_dell_branding(struct MPT2SAS_ADAPTER *ioc)
1661 {
1662         char dell_branding[MPT2SAS_DELL_BRANDING_SIZE];
1663
1664         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL)
1665                 return;
1666
1667         memset(dell_branding, 0, MPT2SAS_DELL_BRANDING_SIZE);
1668         switch (ioc->pdev->subsystem_device) {
1669         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
1670                 strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING,
1671                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1672                 break;
1673         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
1674                 strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING,
1675                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1676                 break;
1677         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
1678                 strncpy(dell_branding,
1679                     MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING,
1680                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1681                 break;
1682         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
1683                 strncpy(dell_branding,
1684                     MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING,
1685                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1686                 break;
1687         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
1688                 strncpy(dell_branding,
1689                     MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING,
1690                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1691                 break;
1692         case MPT2SAS_DELL_PERC_H200_SSDID:
1693                 strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_BRANDING,
1694                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1695                 break;
1696         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
1697                 strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_BRANDING,
1698                     MPT2SAS_DELL_BRANDING_SIZE - 1);
1699                 break;
1700         default:
1701                 sprintf(dell_branding, "0x%4X", ioc->pdev->subsystem_device);
1702                 break;
1703         }
1704
1705         printk(MPT2SAS_INFO_FMT "%s: Vendor(0x%04X), Device(0x%04X),"
1706             " SSVID(0x%04X), SSDID(0x%04X)\n", ioc->name, dell_branding,
1707             ioc->pdev->vendor, ioc->pdev->device, ioc->pdev->subsystem_vendor,
1708             ioc->pdev->subsystem_device);
1709 }
1710
1711 /**
1712  * _base_display_ioc_capabilities - Disply IOC's capabilities.
1713  * @ioc: per adapter object
1714  *
1715  * Return nothing.
1716  */
1717 static void
1718 _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER *ioc)
1719 {
1720         int i = 0;
1721         char desc[16];
1722         u8 revision;
1723         u32 iounit_pg1_flags;
1724
1725         pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision);
1726         strncpy(desc, ioc->manu_pg0.ChipName, 16);
1727         printk(MPT2SAS_INFO_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "
1728            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
1729             ioc->name, desc,
1730            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
1731            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
1732            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
1733            ioc->facts.FWVersion.Word & 0x000000FF,
1734            revision,
1735            (ioc->bios_pg3.BiosVersion & 0xFF000000) >> 24,
1736            (ioc->bios_pg3.BiosVersion & 0x00FF0000) >> 16,
1737            (ioc->bios_pg3.BiosVersion & 0x0000FF00) >> 8,
1738             ioc->bios_pg3.BiosVersion & 0x000000FF);
1739
1740         _base_display_dell_branding(ioc);
1741
1742         printk(MPT2SAS_INFO_FMT "Protocol=(", ioc->name);
1743
1744         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
1745                 printk("Initiator");
1746                 i++;
1747         }
1748
1749         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
1750                 printk("%sTarget", i ? "," : "");
1751                 i++;
1752         }
1753
1754         i = 0;
1755         printk("), ");
1756         printk("Capabilities=(");
1757
1758         if (ioc->facts.IOCCapabilities &
1759             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
1760                 printk("Raid");
1761                 i++;
1762         }
1763
1764         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
1765                 printk("%sTLR", i ? "," : "");
1766                 i++;
1767         }
1768
1769         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
1770                 printk("%sMulticast", i ? "," : "");
1771                 i++;
1772         }
1773
1774         if (ioc->facts.IOCCapabilities &
1775             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
1776                 printk("%sBIDI Target", i ? "," : "");
1777                 i++;
1778         }
1779
1780         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
1781                 printk("%sEEDP", i ? "," : "");
1782                 i++;
1783         }
1784
1785         if (ioc->facts.IOCCapabilities &
1786             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
1787                 printk("%sSnapshot Buffer", i ? "," : "");
1788                 i++;
1789         }
1790
1791         if (ioc->facts.IOCCapabilities &
1792             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
1793                 printk("%sDiag Trace Buffer", i ? "," : "");
1794                 i++;
1795         }
1796
1797         if (ioc->facts.IOCCapabilities &
1798             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
1799                 printk(KERN_INFO "%sDiag Extended Buffer", i ? "," : "");
1800                 i++;
1801         }
1802
1803         if (ioc->facts.IOCCapabilities &
1804             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
1805                 printk("%sTask Set Full", i ? "," : "");
1806                 i++;
1807         }
1808
1809         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
1810         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
1811                 printk("%sNCQ", i ? "," : "");
1812                 i++;
1813         }
1814
1815         printk(")\n");
1816 }
1817
1818 /**
1819  * _base_static_config_pages - static start of day config pages
1820  * @ioc: per adapter object
1821  *
1822  * Return nothing.
1823  */
1824 static void
1825 _base_static_config_pages(struct MPT2SAS_ADAPTER *ioc)
1826 {
1827         Mpi2ConfigReply_t mpi_reply;
1828         u32 iounit_pg1_flags;
1829
1830         mpt2sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
1831         if (ioc->ir_firmware)
1832                 mpt2sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
1833                     &ioc->manu_pg10);
1834         mpt2sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
1835         mpt2sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
1836         mpt2sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
1837         mpt2sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
1838         mpt2sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
1839         _base_display_ioc_capabilities(ioc);
1840
1841         /*
1842          * Enable task_set_full handling in iounit_pg1 when the
1843          * facts capabilities indicate that its supported.
1844          */
1845         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
1846         if ((ioc->facts.IOCCapabilities &
1847             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
1848                 iounit_pg1_flags &=
1849                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
1850         else
1851                 iounit_pg1_flags |=
1852                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
1853         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
1854         mpt2sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
1855 }
1856
1857 /**
1858  * _base_release_memory_pools - release memory
1859  * @ioc: per adapter object
1860  *
1861  * Free memory allocated from _base_allocate_memory_pools.
1862  *
1863  * Return nothing.
1864  */
1865 static void
1866 _base_release_memory_pools(struct MPT2SAS_ADAPTER *ioc)
1867 {
1868         dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1869             __func__));
1870
1871         if (ioc->request) {
1872                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
1873                     ioc->request,  ioc->request_dma);
1874                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "request_pool(0x%p)"
1875                     ": free\n", ioc->name, ioc->request));
1876                 ioc->request = NULL;
1877         }
1878
1879         if (ioc->sense) {
1880                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
1881                 if (ioc->sense_dma_pool)
1882                         pci_pool_destroy(ioc->sense_dma_pool);
1883                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_pool(0x%p)"
1884                     ": free\n", ioc->name, ioc->sense));
1885                 ioc->sense = NULL;
1886         }
1887
1888         if (ioc->reply) {
1889                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
1890                 if (ioc->reply_dma_pool)
1891                         pci_pool_destroy(ioc->reply_dma_pool);
1892                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_pool(0x%p)"
1893                      ": free\n", ioc->name, ioc->reply));
1894                 ioc->reply = NULL;
1895         }
1896
1897         if (ioc->reply_free) {
1898                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
1899                     ioc->reply_free_dma);
1900                 if (ioc->reply_free_dma_pool)
1901                         pci_pool_destroy(ioc->reply_free_dma_pool);
1902                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_pool"
1903                     "(0x%p): free\n", ioc->name, ioc->reply_free));
1904                 ioc->reply_free = NULL;
1905         }
1906
1907         if (ioc->reply_post_free) {
1908                 pci_pool_free(ioc->reply_post_free_dma_pool,
1909                     ioc->reply_post_free, ioc->reply_post_free_dma);
1910                 if (ioc->reply_post_free_dma_pool)
1911                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
1912                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
1913                     "reply_post_free_pool(0x%p): free\n", ioc->name,
1914                     ioc->reply_post_free));
1915                 ioc->reply_post_free = NULL;
1916         }
1917
1918         if (ioc->config_page) {
1919                 dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
1920                     "config_page(0x%p): free\n", ioc->name,
1921                     ioc->config_page));
1922                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
1923                     ioc->config_page, ioc->config_page_dma);
1924         }
1925
1926         if (ioc->scsi_lookup) {
1927                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
1928                 ioc->scsi_lookup = NULL;
1929         }
1930         kfree(ioc->hpr_lookup);
1931         kfree(ioc->internal_lookup);
1932 }
1933
1934
1935 /**
1936  * _base_allocate_memory_pools - allocate start of day memory pools
1937  * @ioc: per adapter object
1938  * @sleep_flag: CAN_SLEEP or NO_SLEEP
1939  *
1940  * Returns 0 success, anything else error
1941  */
1942 static int
1943 _base_allocate_memory_pools(struct MPT2SAS_ADAPTER *ioc,  int sleep_flag)
1944 {
1945         Mpi2IOCFactsReply_t *facts;
1946         u32 queue_size, queue_diff;
1947         u16 max_sge_elements;
1948         u16 num_of_reply_frames;
1949         u16 chains_needed_per_io;
1950         u32 sz, total_sz;
1951         u32 retry_sz;
1952         u16 max_request_credit;
1953
1954         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1955             __func__));
1956
1957         retry_sz = 0;
1958         facts = &ioc->facts;
1959
1960         /* command line tunables  for max sgl entries */
1961         if (max_sgl_entries != -1) {
1962                 ioc->shost->sg_tablesize = (max_sgl_entries <
1963                     MPT2SAS_SG_DEPTH) ? max_sgl_entries :
1964                     MPT2SAS_SG_DEPTH;
1965         } else {
1966                 ioc->shost->sg_tablesize = MPT2SAS_SG_DEPTH;
1967         }
1968
1969         /* command line tunables  for max controller queue depth */
1970         if (max_queue_depth != -1) {
1971                 max_request_credit = (max_queue_depth < facts->RequestCredit)
1972                     ? max_queue_depth : facts->RequestCredit;
1973         } else {
1974                 max_request_credit = (facts->RequestCredit >
1975                     MPT2SAS_MAX_REQUEST_QUEUE) ? MPT2SAS_MAX_REQUEST_QUEUE :
1976                     facts->RequestCredit;
1977         }
1978
1979         ioc->hba_queue_depth = max_request_credit;
1980         ioc->hi_priority_depth = facts->HighPriorityCredit;
1981         ioc->internal_depth = ioc->hi_priority_depth + 5;
1982
1983         /* request frame size */
1984         ioc->request_sz = facts->IOCRequestFrameSize * 4;
1985
1986         /* reply frame size */
1987         ioc->reply_sz = facts->ReplyFrameSize * 4;
1988
1989  retry_allocation:
1990         total_sz = 0;
1991         /* calculate number of sg elements left over in the 1st frame */
1992         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
1993             sizeof(Mpi2SGEIOUnion_t)) + ioc->sge_size);
1994         ioc->max_sges_in_main_message = max_sge_elements/ioc->sge_size;
1995
1996         /* now do the same for a chain buffer */
1997         max_sge_elements = ioc->request_sz - ioc->sge_size;
1998         ioc->max_sges_in_chain_message = max_sge_elements/ioc->sge_size;
1999
2000         ioc->chain_offset_value_for_main_message =
2001             ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) +
2002              (ioc->max_sges_in_chain_message * ioc->sge_size)) / 4;
2003
2004         /*
2005          *  MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2006          */
2007         chains_needed_per_io = ((ioc->shost->sg_tablesize -
2008            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2009             + 1;
2010         if (chains_needed_per_io > facts->MaxChainDepth) {
2011                 chains_needed_per_io = facts->MaxChainDepth;
2012                 ioc->shost->sg_tablesize = min_t(u16,
2013                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2014                 * chains_needed_per_io), ioc->shost->sg_tablesize);
2015         }
2016         ioc->chains_needed_per_io = chains_needed_per_io;
2017
2018         /* reply free queue sizing - taking into account for events */
2019         num_of_reply_frames = ioc->hba_queue_depth + 32;
2020
2021         /* number of replies frames can't be a multiple of 16 */
2022         /* decrease number of reply frames by 1 */
2023         if (!(num_of_reply_frames % 16))
2024                 num_of_reply_frames--;
2025
2026         /* calculate number of reply free queue entries
2027          *  (must be multiple of 16)
2028          */
2029
2030         /* (we know reply_free_queue_depth is not a multiple of 16) */
2031         queue_size = num_of_reply_frames;
2032         queue_size += 16 - (queue_size % 16);
2033         ioc->reply_free_queue_depth = queue_size;
2034
2035         /* reply descriptor post queue sizing */
2036         /* this size should be the number of request frames + number of reply
2037          * frames
2038          */
2039
2040         queue_size = ioc->hba_queue_depth + num_of_reply_frames + 1;
2041         /* round up to 16 byte boundary */
2042         if (queue_size % 16)
2043                 queue_size += 16 - (queue_size % 16);
2044
2045         /* check against IOC maximum reply post queue depth */
2046         if (queue_size > facts->MaxReplyDescriptorPostQueueDepth) {
2047                 queue_diff = queue_size -
2048                     facts->MaxReplyDescriptorPostQueueDepth;
2049
2050                 /* round queue_diff up to multiple of 16 */
2051                 if (queue_diff % 16)
2052                         queue_diff += 16 - (queue_diff % 16);
2053
2054                 /* adjust hba_queue_depth, reply_free_queue_depth,
2055                  * and queue_size
2056                  */
2057                 ioc->hba_queue_depth -= queue_diff;
2058                 ioc->reply_free_queue_depth -= queue_diff;
2059                 queue_size -= queue_diff;
2060         }
2061         ioc->reply_post_queue_depth = queue_size;
2062
2063         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scatter gather: "
2064             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2065             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2066             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2067             ioc->chains_needed_per_io));
2068
2069         ioc->scsiio_depth = ioc->hba_queue_depth -
2070             ioc->hi_priority_depth - ioc->internal_depth;
2071
2072         /* set the scsi host can_queue depth
2073          * with some internal commands that could be outstanding
2074          */
2075         ioc->shost->can_queue = ioc->scsiio_depth - (2);
2076         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsi host: "
2077             "can_queue depth (%d)\n", ioc->name, ioc->shost->can_queue));
2078
2079         /* contiguous pool for request and chains, 16 byte align, one extra "
2080          * "frame for smid=0
2081          */
2082         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2083         sz = ((ioc->scsiio_depth + 1 + ioc->chain_depth) * ioc->request_sz);
2084
2085         /* hi-priority queue */
2086         sz += (ioc->hi_priority_depth * ioc->request_sz);
2087
2088         /* internal queue */
2089         sz += (ioc->internal_depth * ioc->request_sz);
2090
2091         ioc->request_dma_sz = sz;
2092         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2093         if (!ioc->request) {
2094                 printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2095                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2096                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2097                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2098                 if (ioc->scsiio_depth < MPT2SAS_SAS_QUEUE_DEPTH)
2099                         goto out;
2100                 retry_sz += 64;
2101                 ioc->hba_queue_depth = max_request_credit - retry_sz;
2102                 goto retry_allocation;
2103         }
2104
2105         if (retry_sz)
2106                 printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2107                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2108                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2109                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2110
2111
2112         /* hi-priority queue */
2113         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2114             ioc->request_sz);
2115         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2116             ioc->request_sz);
2117
2118         /* internal queue */
2119         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2120             ioc->request_sz);
2121         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2122             ioc->request_sz);
2123
2124         ioc->chain = ioc->internal + (ioc->internal_depth *
2125             ioc->request_sz);
2126         ioc->chain_dma = ioc->internal_dma + (ioc->internal_depth *
2127             ioc->request_sz);
2128
2129         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool(0x%p): "
2130             "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
2131             ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2132             (ioc->hba_queue_depth * ioc->request_sz)/1024));
2133         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "chain pool(0x%p): depth"
2134             "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->chain,
2135             ioc->chain_depth, ioc->request_sz, ((ioc->chain_depth *
2136             ioc->request_sz))/1024));
2137         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool: dma(0x%llx)\n",
2138             ioc->name, (unsigned long long) ioc->request_dma));
2139         total_sz += sz;
2140
2141         sz = ioc->scsiio_depth * sizeof(struct request_tracker);
2142         ioc->scsi_lookup_pages = get_order(sz);
2143         ioc->scsi_lookup = (struct request_tracker *)__get_free_pages(
2144             GFP_KERNEL, ioc->scsi_lookup_pages);
2145         if (!ioc->scsi_lookup) {
2146                 printk(MPT2SAS_ERR_FMT "scsi_lookup: get_free_pages failed, "
2147                     "sz(%d)\n", ioc->name, (int)sz);
2148                 goto out;
2149         }
2150
2151         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsiio(0x%p): "
2152             "depth(%d)\n", ioc->name, ioc->request,
2153             ioc->scsiio_depth));
2154
2155         /* initialize hi-priority queue smid's */
2156         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2157             sizeof(struct request_tracker), GFP_KERNEL);
2158         if (!ioc->hpr_lookup) {
2159                 printk(MPT2SAS_ERR_FMT "hpr_lookup: kcalloc failed\n",
2160                     ioc->name);
2161                 goto out;
2162         }
2163         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2164         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hi_priority(0x%p): "
2165             "depth(%d), start smid(%d)\n", ioc->name, ioc->hi_priority,
2166             ioc->hi_priority_depth, ioc->hi_priority_smid));
2167
2168         /* initialize internal queue smid's */
2169         ioc->internal_lookup = kcalloc(ioc->internal_depth,
2170             sizeof(struct request_tracker), GFP_KERNEL);
2171         if (!ioc->internal_lookup) {
2172                 printk(MPT2SAS_ERR_FMT "internal_lookup: kcalloc failed\n",
2173                     ioc->name);
2174                 goto out;
2175         }
2176         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2177         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "internal(0x%p): "
2178             "depth(%d), start smid(%d)\n", ioc->name, ioc->internal,
2179              ioc->internal_depth, ioc->internal_smid));
2180
2181         /* sense buffers, 4 byte align */
2182         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2183         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2184             0);
2185         if (!ioc->sense_dma_pool) {
2186                 printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_create failed\n",
2187                     ioc->name);
2188                 goto out;
2189         }
2190         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2191             &ioc->sense_dma);
2192         if (!ioc->sense) {
2193                 printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_alloc failed\n",
2194                     ioc->name);
2195                 goto out;
2196         }
2197         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT
2198             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2199             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2200             SCSI_SENSE_BUFFERSIZE, sz/1024));
2201         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_dma(0x%llx)\n",
2202             ioc->name, (unsigned long long)ioc->sense_dma));
2203         total_sz += sz;
2204
2205         /* reply pool, 4 byte align */
2206         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2207         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2208             0);
2209         if (!ioc->reply_dma_pool) {
2210                 printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_create failed\n",
2211                     ioc->name);
2212                 goto out;
2213         }
2214         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2215             &ioc->reply_dma);
2216         if (!ioc->reply) {
2217                 printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_alloc failed\n",
2218                     ioc->name);
2219                 goto out;
2220         }
2221         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply pool(0x%p): depth"
2222             "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply,
2223             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2224         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_dma(0x%llx)\n",
2225             ioc->name, (unsigned long long)ioc->reply_dma));
2226         total_sz += sz;
2227
2228         /* reply free queue, 16 byte align */
2229         sz = ioc->reply_free_queue_depth * 4;
2230         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2231             ioc->pdev, sz, 16, 0);
2232         if (!ioc->reply_free_dma_pool) {
2233                 printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_create "
2234                     "failed\n", ioc->name);
2235                 goto out;
2236         }
2237         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2238             &ioc->reply_free_dma);
2239         if (!ioc->reply_free) {
2240                 printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_alloc "
2241                     "failed\n", ioc->name);
2242                 goto out;
2243         }
2244         memset(ioc->reply_free, 0, sz);
2245         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free pool(0x%p): "
2246             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2247             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2248         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_dma"
2249             "(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma));
2250         total_sz += sz;
2251
2252         /* reply post queue, 16 byte align */
2253         sz = ioc->reply_post_queue_depth * sizeof(Mpi2DefaultReplyDescriptor_t);
2254         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2255             ioc->pdev, sz, 16, 0);
2256         if (!ioc->reply_post_free_dma_pool) {
2257                 printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_create "
2258                     "failed\n", ioc->name);
2259                 goto out;
2260         }
2261         ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2262             GFP_KERNEL, &ioc->reply_post_free_dma);
2263         if (!ioc->reply_post_free) {
2264                 printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_alloc "
2265                     "failed\n", ioc->name);
2266                 goto out;
2267         }
2268         memset(ioc->reply_post_free, 0, sz);
2269         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply post free pool"
2270             "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2271             ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2272             sz/1024));
2273         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_post_free_dma = "
2274             "(0x%llx)\n", ioc->name, (unsigned long long)
2275             ioc->reply_post_free_dma));
2276         total_sz += sz;
2277
2278         ioc->config_page_sz = 512;
2279         ioc->config_page = pci_alloc_consistent(ioc->pdev,
2280             ioc->config_page_sz, &ioc->config_page_dma);
2281         if (!ioc->config_page) {
2282                 printk(MPT2SAS_ERR_FMT "config page: pci_pool_alloc "
2283                     "failed\n", ioc->name);
2284                 goto out;
2285         }
2286         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config page(0x%p): size"
2287             "(%d)\n", ioc->name, ioc->config_page, ioc->config_page_sz));
2288         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config_page_dma"
2289             "(0x%llx)\n", ioc->name, (unsigned long long)ioc->config_page_dma));
2290         total_sz += ioc->config_page_sz;
2291
2292         printk(MPT2SAS_INFO_FMT "Allocated physical memory: size(%d kB)\n",
2293             ioc->name, total_sz/1024);
2294         printk(MPT2SAS_INFO_FMT "Current Controller Queue Depth(%d), "
2295             "Max Controller Queue Depth(%d)\n",
2296             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2297         printk(MPT2SAS_INFO_FMT "Scatter Gather Elements per IO(%d)\n",
2298             ioc->name, ioc->shost->sg_tablesize);
2299         return 0;
2300
2301  out:
2302         _base_release_memory_pools(ioc);
2303         return -ENOMEM;
2304 }
2305
2306
2307 /**
2308  * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter.
2309  * @ioc: Pointer to MPT_ADAPTER structure
2310  * @cooked: Request raw or cooked IOC state
2311  *
2312  * Returns all IOC Doorbell register bits if cooked==0, else just the
2313  * Doorbell bits in MPI_IOC_STATE_MASK.
2314  */
2315 u32
2316 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER *ioc, int cooked)
2317 {
2318         u32 s, sc;
2319
2320         s = readl(&ioc->chip->Doorbell);
2321         sc = s & MPI2_IOC_STATE_MASK;
2322         return cooked ? sc : s;
2323 }
2324
2325 /**
2326  * _base_wait_on_iocstate - waiting on a particular ioc state
2327  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2328  * @timeout: timeout in second
2329  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2330  *
2331  * Returns 0 for success, non-zero for failure.
2332  */
2333 static int
2334 _base_wait_on_iocstate(struct MPT2SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2335     int sleep_flag)
2336 {
2337         u32 count, cntdn;
2338         u32 current_state;
2339
2340         count = 0;
2341         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2342         do {
2343                 current_state = mpt2sas_base_get_iocstate(ioc, 1);
2344                 if (current_state == ioc_state)
2345                         return 0;
2346                 if (count && current_state == MPI2_IOC_STATE_FAULT)
2347                         break;
2348                 if (sleep_flag == CAN_SLEEP)
2349                         msleep(1);
2350                 else
2351                         udelay(500);
2352                 count++;
2353         } while (--cntdn);
2354
2355         return current_state;
2356 }
2357
2358 /**
2359  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2360  * a write to the doorbell)
2361  * @ioc: per adapter object
2362  * @timeout: timeout in second
2363  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2364  *
2365  * Returns 0 for success, non-zero for failure.
2366  *
2367  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
2368  */
2369 static int
2370 _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER *ioc, int timeout,
2371     int sleep_flag)
2372 {
2373         u32 cntdn, count;
2374         u32 int_status;
2375
2376         count = 0;
2377         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2378         do {
2379                 int_status = readl(&ioc->chip->HostInterruptStatus);
2380                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2381                         dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2382                             "successfull count(%d), timeout(%d)\n", ioc->name,
2383                             __func__, count, timeout));
2384                         return 0;
2385                 }
2386                 if (sleep_flag == CAN_SLEEP)
2387                         msleep(1);
2388                 else
2389                         udelay(500);
2390                 count++;
2391         } while (--cntdn);
2392
2393         printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2394             "int_status(%x)!\n", ioc->name, __func__, count, int_status);
2395         return -EFAULT;
2396 }
2397
2398 /**
2399  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
2400  * @ioc: per adapter object
2401  * @timeout: timeout in second
2402  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2403  *
2404  * Returns 0 for success, non-zero for failure.
2405  *
2406  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
2407  * doorbell.
2408  */
2409 static int
2410 _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER *ioc, int timeout,
2411     int sleep_flag)
2412 {
2413         u32 cntdn, count;
2414         u32 int_status;
2415         u32 doorbell;
2416
2417         count = 0;
2418         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2419         do {
2420                 int_status = readl(&ioc->chip->HostInterruptStatus);
2421                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
2422                         dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2423                             "successfull count(%d), timeout(%d)\n", ioc->name,
2424                             __func__, count, timeout));
2425                         return 0;
2426                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2427                         doorbell = readl(&ioc->chip->Doorbell);
2428                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
2429                             MPI2_IOC_STATE_FAULT) {
2430                                 mpt2sas_base_fault_info(ioc , doorbell);
2431                                 return -EFAULT;
2432                         }
2433                 } else if (int_status == 0xFFFFFFFF)
2434                         goto out;
2435
2436                 if (sleep_flag == CAN_SLEEP)
2437                         msleep(1);
2438                 else
2439                         udelay(500);
2440                 count++;
2441         } while (--cntdn);
2442
2443  out:
2444         printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2445             "int_status(%x)!\n", ioc->name, __func__, count, int_status);
2446         return -EFAULT;
2447 }
2448
2449 /**
2450  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
2451  * @ioc: per adapter object
2452  * @timeout: timeout in second
2453  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2454  *
2455  * Returns 0 for success, non-zero for failure.
2456  *
2457  */
2458 static int
2459 _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER *ioc, int timeout,
2460     int sleep_flag)
2461 {
2462         u32 cntdn, count;
2463         u32 doorbell_reg;
2464
2465         count = 0;
2466         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2467         do {
2468                 doorbell_reg = readl(&ioc->chip->Doorbell);
2469                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
2470                         dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2471                             "successfull count(%d), timeout(%d)\n", ioc->name,
2472                             __func__, count, timeout));
2473                         return 0;
2474                 }
2475                 if (sleep_flag == CAN_SLEEP)
2476                         msleep(1);
2477                 else
2478                         udelay(500);
2479                 count++;
2480         } while (--cntdn);
2481
2482         printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2483             "doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg);
2484         return -EFAULT;
2485 }
2486
2487 /**
2488  * _base_send_ioc_reset - send doorbell reset
2489  * @ioc: per adapter object
2490  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
2491  * @timeout: timeout in second
2492  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2493  *
2494  * Returns 0 for success, non-zero for failure.
2495  */
2496 static int
2497 _base_send_ioc_reset(struct MPT2SAS_ADAPTER *ioc, u8 reset_type, int timeout,
2498     int sleep_flag)
2499 {
2500         u32 ioc_state;
2501         int r = 0;
2502
2503         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
2504                 printk(MPT2SAS_ERR_FMT "%s: unknown reset_type\n",
2505                     ioc->name, __func__);
2506                 return -EFAULT;
2507         }
2508
2509         if (!(ioc->facts.IOCCapabilities &
2510            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
2511                 return -EFAULT;
2512
2513         printk(MPT2SAS_INFO_FMT "sending message unit reset !!\n", ioc->name);
2514
2515         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
2516             &ioc->chip->Doorbell);
2517         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
2518                 r = -EFAULT;
2519                 goto out;
2520         }
2521         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
2522             timeout, sleep_flag);
2523         if (ioc_state) {
2524                 printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
2525                     " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
2526                 r = -EFAULT;
2527                 goto out;
2528         }
2529  out:
2530         printk(MPT2SAS_INFO_FMT "message unit reset: %s\n",
2531             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
2532         return r;
2533 }
2534
2535 /**
2536  * _base_handshake_req_reply_wait - send request thru doorbell interface
2537  * @ioc: per adapter object
2538  * @request_bytes: request length
2539  * @request: pointer having request payload
2540  * @reply_bytes: reply length
2541  * @reply: pointer to reply payload
2542  * @timeout: timeout in second
2543  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2544  *
2545  * Returns 0 for success, non-zero for failure.
2546  */
2547 static int
2548 _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER *ioc, int request_bytes,
2549     u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
2550 {
2551         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
2552         int i;
2553         u8 failed;
2554         u16 dummy;
2555         u32 *mfp;
2556
2557         /* make sure doorbell is not in use */
2558         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
2559                 printk(MPT2SAS_ERR_FMT "doorbell is in use "
2560                     " (line=%d)\n", ioc->name, __LINE__);
2561                 return -EFAULT;
2562         }
2563
2564         /* clear pending doorbell interrupts from previous state changes */
2565         if (readl(&ioc->chip->HostInterruptStatus) &
2566             MPI2_HIS_IOC2SYS_DB_STATUS)
2567                 writel(0, &ioc->chip->HostInterruptStatus);
2568
2569         /* send message to ioc */
2570         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
2571             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
2572             &ioc->chip->Doorbell);
2573
2574         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
2575                 printk(MPT2SAS_ERR_FMT "doorbell handshake "
2576                    "int failed (line=%d)\n", ioc->name, __LINE__);
2577                 return -EFAULT;
2578         }
2579         writel(0, &ioc->chip->HostInterruptStatus);
2580
2581         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
2582                 printk(MPT2SAS_ERR_FMT "doorbell handshake "
2583                     "ack failed (line=%d)\n", ioc->name, __LINE__);
2584                 return -EFAULT;
2585         }
2586
2587         /* send message 32-bits at a time */
2588         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
2589                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
2590                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
2591                         failed = 1;
2592         }
2593
2594         if (failed) {
2595                 printk(MPT2SAS_ERR_FMT "doorbell handshake "
2596                     "sending request failed (line=%d)\n", ioc->name, __LINE__);
2597                 return -EFAULT;
2598         }
2599
2600         /* now wait for the reply */
2601         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
2602                 printk(MPT2SAS_ERR_FMT "doorbell handshake "
2603                    "int failed (line=%d)\n", ioc->name, __LINE__);
2604                 return -EFAULT;
2605         }
2606
2607         /* read the first two 16-bits, it gives the total length of the reply */
2608         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
2609             & MPI2_DOORBELL_DATA_MASK);
2610         writel(0, &ioc->chip->HostInterruptStatus);
2611         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
2612                 printk(MPT2SAS_ERR_FMT "doorbell handshake "
2613                    "int failed (line=%d)\n", ioc->name, __LINE__);
2614                 return -EFAULT;
2615         }
2616         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
2617             & MPI2_DOORBELL_DATA_MASK);
2618         writel(0, &ioc->chip->HostInterruptStatus);
2619
2620         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
2621                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
2622                         printk(MPT2SAS_ERR_FMT "doorbell "
2623                             "handshake int failed (line=%d)\n", ioc->name,
2624                             __LINE__);
2625                         return -EFAULT;
2626                 }
2627                 if (i >=  reply_bytes/2) /* overflow case */
2628                         dummy = readl(&ioc->chip->Doorbell);
2629                 else
2630                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
2631                             & MPI2_DOORBELL_DATA_MASK);
2632                 writel(0, &ioc->chip->HostInterruptStatus);
2633         }
2634
2635         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
2636         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
2637                 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "doorbell is in use "
2638                     " (line=%d)\n", ioc->name, __LINE__));
2639         }
2640         writel(0, &ioc->chip->HostInterruptStatus);
2641
2642         if (ioc->logging_level & MPT_DEBUG_INIT) {
2643                 mfp = (u32 *)reply;
2644                 printk(KERN_INFO "\toffset:data\n");
2645                 for (i = 0; i < reply_bytes/4; i++)
2646                         printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
2647                             le32_to_cpu(mfp[i]));
2648         }
2649         return 0;
2650 }
2651
2652 /**
2653  * mpt2sas_base_sas_iounit_control - send sas iounit control to FW
2654  * @ioc: per adapter object
2655  * @mpi_reply: the reply payload from FW
2656  * @mpi_request: the request payload sent to FW
2657  *
2658  * The SAS IO Unit Control Request message allows the host to perform low-level
2659  * operations, such as resets on the PHYs of the IO Unit, also allows the host
2660  * to obtain the IOC assigned device handles for a device if it has other
2661  * identifying information about the device, in addition allows the host to
2662  * remove IOC resources associated with the device.
2663  *
2664  * Returns 0 for success, non-zero for failure.
2665  */
2666 int
2667 mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER *ioc,
2668     Mpi2SasIoUnitControlReply_t *mpi_reply,
2669     Mpi2SasIoUnitControlRequest_t *mpi_request)
2670 {
2671         u16 smid;
2672         u32 ioc_state;
2673         unsigned long timeleft;
2674         u8 issue_reset;
2675         int rc;
2676         void *request;
2677         u16 wait_state_count;
2678
2679         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2680             __func__));
2681
2682         mutex_lock(&ioc->base_cmds.mutex);
2683
2684         if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
2685                 printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
2686                     ioc->name, __func__);
2687                 rc = -EAGAIN;
2688                 goto out;
2689         }
2690
2691         wait_state_count = 0;
2692         ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
2693         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
2694                 if (wait_state_count++ == 10) {
2695                         printk(MPT2SAS_ERR_FMT
2696                             "%s: failed due to ioc not operational\n",
2697                             ioc->name, __func__);
2698                         rc = -EFAULT;
2699                         goto out;
2700                 }
2701                 ssleep(1);
2702                 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
2703                 printk(MPT2SAS_INFO_FMT "%s: waiting for "
2704                     "operational state(count=%d)\n", ioc->name,
2705                     __func__, wait_state_count);
2706         }
2707
2708         smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
2709         if (!smid) {
2710                 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
2711                     ioc->name, __func__);
2712                 rc = -EAGAIN;
2713                 goto out;
2714         }
2715
2716         rc = 0;
2717         ioc->base_cmds.status = MPT2_CMD_PENDING;
2718         request = mpt2sas_base_get_msg_frame(ioc, smid);
2719         ioc->base_cmds.smid = smid;
2720         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
2721         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
2722             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
2723                 ioc->ioc_link_reset_in_progress = 1;
2724         mpt2sas_base_put_smid_default(ioc, smid);
2725         init_completion(&ioc->base_cmds.done);
2726         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
2727             msecs_to_jiffies(10000));
2728         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
2729             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
2730             ioc->ioc_link_reset_in_progress)
2731                 ioc->ioc_link_reset_in_progress = 0;
2732         if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
2733                 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
2734                     ioc->name, __func__);
2735                 _debug_dump_mf(mpi_request,
2736                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
2737                 if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
2738                         issue_reset = 1;
2739                 goto issue_host_reset;
2740         }
2741         if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
2742                 memcpy(mpi_reply, ioc->base_cmds.reply,
2743                     sizeof(Mpi2SasIoUnitControlReply_t));
2744         else
2745                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
2746         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
2747         goto out;
2748
2749  issue_host_reset:
2750         if (issue_reset)
2751                 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
2752                     FORCE_BIG_HAMMER);
2753         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
2754         rc = -EFAULT;
2755  out:
2756         mutex_unlock(&ioc->base_cmds.mutex);
2757         return rc;
2758 }
2759
2760
2761 /**
2762  * mpt2sas_base_scsi_enclosure_processor - sending request to sep device
2763  * @ioc: per adapter object
2764  * @mpi_reply: the reply payload from FW
2765  * @mpi_request: the request payload sent to FW
2766  *
2767  * The SCSI Enclosure Processor request message causes the IOC to
2768  * communicate with SES devices to control LED status signals.
2769  *
2770  * Returns 0 for success, non-zero for failure.
2771  */
2772 int
2773 mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER *ioc,
2774     Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
2775 {
2776         u16 smid;
2777         u32 ioc_state;
2778         unsigned long timeleft;
2779         u8 issue_reset;
2780         int rc;
2781         void *request;
2782         u16 wait_state_count;
2783
2784         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2785             __func__));
2786
2787         mutex_lock(&ioc->base_cmds.mutex);
2788
2789         if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
2790                 printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
2791                     ioc->name, __func__);
2792                 rc = -EAGAIN;
2793                 goto out;
2794         }
2795
2796         wait_state_count = 0;
2797         ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
2798         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
2799                 if (wait_state_count++ == 10) {
2800                         printk(MPT2SAS_ERR_FMT
2801                             "%s: failed due to ioc not operational\n",
2802                             ioc->name, __func__);
2803                         rc = -EFAULT;
2804                         goto out;
2805                 }
2806                 ssleep(1);
2807                 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
2808                 printk(MPT2SAS_INFO_FMT "%s: waiting for "
2809                     "operational state(count=%d)\n", ioc->name,
2810                     __func__, wait_state_count);
2811         }
2812
2813         smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
2814         if (!smid) {
2815                 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
2816                     ioc->name, __func__);
2817                 rc = -EAGAIN;
2818                 goto out;
2819         }
2820
2821         rc = 0;
2822         ioc->base_cmds.status = MPT2_CMD_PENDING;
2823         request = mpt2sas_base_get_msg_frame(ioc, smid);
2824         ioc->base_cmds.smid = smid;
2825         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
2826         mpt2sas_base_put_smid_default(ioc, smid);
2827         init_completion(&ioc->base_cmds.done);
2828         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
2829             msecs_to_jiffies(10000));
2830         if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
2831                 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
2832                     ioc->name, __func__);
2833                 _debug_dump_mf(mpi_request,
2834                     sizeof(Mpi2SepRequest_t)/4);
2835                 if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
2836                         issue_reset = 1;
2837                 goto issue_host_reset;
2838         }
2839         if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
2840                 memcpy(mpi_reply, ioc->base_cmds.reply,
2841                     sizeof(Mpi2SepReply_t));
2842         else
2843                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
2844         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
2845         goto out;
2846
2847  issue_host_reset:
2848         if (issue_reset)
2849                 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
2850                     FORCE_BIG_HAMMER);
2851         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
2852         rc = -EFAULT;
2853  out:
2854         mutex_unlock(&ioc->base_cmds.mutex);
2855         return rc;
2856 }
2857
2858 /**
2859  * _base_get_port_facts - obtain port facts reply and save in ioc
2860  * @ioc: per adapter object
2861  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2862  *
2863  * Returns 0 for success, non-zero for failure.
2864  */
2865 static int
2866 _base_get_port_facts(struct MPT2SAS_ADAPTER *ioc, int port, int sleep_flag)
2867 {
2868         Mpi2PortFactsRequest_t mpi_request;
2869         Mpi2PortFactsReply_t mpi_reply, *pfacts;
2870         int mpi_reply_sz, mpi_request_sz, r;
2871
2872         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2873             __func__));
2874
2875         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
2876         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
2877         memset(&mpi_request, 0, mpi_request_sz);
2878         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
2879         mpi_request.PortNumber = port;
2880         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
2881             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
2882
2883         if (r != 0) {
2884                 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
2885                     ioc->name, __func__, r);
2886                 return r;
2887         }
2888
2889         pfacts = &ioc->pfacts[port];
2890         memset(pfacts, 0, sizeof(Mpi2PortFactsReply_t));
2891         pfacts->PortNumber = mpi_reply.PortNumber;
2892         pfacts->VP_ID = mpi_reply.VP_ID;
2893         pfacts->VF_ID = mpi_reply.VF_ID;
2894         pfacts->MaxPostedCmdBuffers =
2895             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
2896
2897         return 0;
2898 }
2899
2900 /**
2901  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
2902  * @ioc: per adapter object
2903  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2904  *
2905  * Returns 0 for success, non-zero for failure.
2906  */
2907 static int
2908 _base_get_ioc_facts(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
2909 {
2910         Mpi2IOCFactsRequest_t mpi_request;
2911         Mpi2IOCFactsReply_t mpi_reply, *facts;
2912         int mpi_reply_sz, mpi_request_sz, r;
2913
2914         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2915             __func__));
2916
2917         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
2918         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
2919         memset(&mpi_request, 0, mpi_request_sz);
2920         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
2921         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
2922             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
2923
2924         if (r != 0) {
2925                 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
2926                     ioc->name, __func__, r);
2927                 return r;
2928         }
2929
2930         facts = &ioc->facts;
2931         memset(facts, 0, sizeof(Mpi2IOCFactsReply_t));
2932         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
2933         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
2934         facts->VP_ID = mpi_reply.VP_ID;
2935         facts->VF_ID = mpi_reply.VF_ID;
2936         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
2937         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
2938         facts->WhoInit = mpi_reply.WhoInit;
2939         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
2940         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
2941         facts->MaxReplyDescriptorPostQueueDepth =
2942             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
2943         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
2944         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
2945         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
2946                 ioc->ir_firmware = 1;
2947         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
2948         facts->IOCRequestFrameSize =
2949             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
2950         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
2951         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
2952         ioc->shost->max_id = -1;
2953         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
2954         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
2955         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
2956         facts->HighPriorityCredit =
2957             le16_to_cpu(mpi_reply.HighPriorityCredit);
2958         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
2959         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
2960
2961         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hba queue depth(%d), "
2962             "max chains per io(%d)\n", ioc->name, facts->RequestCredit,
2963             facts->MaxChainDepth));
2964         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request frame size(%d), "
2965             "reply frame size(%d)\n", ioc->name,
2966             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
2967         return 0;
2968 }
2969
2970 /**
2971  * _base_send_ioc_init - send ioc_init to firmware
2972  * @ioc: per adapter object
2973  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2974  *
2975  * Returns 0 for success, non-zero for failure.
2976  */
2977 static int
2978 _base_send_ioc_init(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
2979 {
2980         Mpi2IOCInitRequest_t mpi_request;
2981         Mpi2IOCInitReply_t mpi_reply;
2982         int r;
2983         struct timeval current_time;
2984         u16 ioc_status;
2985
2986         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2987             __func__));
2988
2989         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
2990         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
2991         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
2992         mpi_request.VF_ID = 0; /* TODO */
2993         mpi_request.VP_ID = 0;
2994         mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
2995         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
2996
2997         /* In MPI Revision I (0xA), the SystemReplyFrameSize(offset 0x18) was
2998          * removed and made reserved.  For those with older firmware will need
2999          * this fix. It was decided that the Reply and Request frame sizes are
3000          * the same.
3001          */
3002         if ((ioc->facts.HeaderVersion >> 8) < 0xA) {
3003                 mpi_request.Reserved7 = cpu_to_le16(ioc->reply_sz);
3004 /*              mpi_request.SystemReplyFrameSize =
3005  *               cpu_to_le16(ioc->reply_sz);
3006  */
3007         }
3008
3009         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3010         mpi_request.ReplyDescriptorPostQueueDepth =
3011             cpu_to_le16(ioc->reply_post_queue_depth);
3012         mpi_request.ReplyFreeQueueDepth =
3013             cpu_to_le16(ioc->reply_free_queue_depth);
3014
3015 #if BITS_PER_LONG > 32
3016         mpi_request.SenseBufferAddressHigh =
3017             cpu_to_le32(ioc->sense_dma >> 32);
3018         mpi_request.SystemReplyAddressHigh =
3019             cpu_to_le32(ioc->reply_dma >> 32);
3020         mpi_request.SystemRequestFrameBaseAddress =
3021             cpu_to_le64(ioc->request_dma);
3022         mpi_request.ReplyFreeQueueAddress =
3023             cpu_to_le64(ioc->reply_free_dma);
3024         mpi_request.ReplyDescriptorPostQueueAddress =
3025             cpu_to_le64(ioc->reply_post_free_dma);
3026 #else
3027         mpi_request.SystemRequestFrameBaseAddress =
3028             cpu_to_le32(ioc->request_dma);
3029         mpi_request.ReplyFreeQueueAddress =
3030             cpu_to_le32(ioc->reply_free_dma);
3031         mpi_request.ReplyDescriptorPostQueueAddress =
3032             cpu_to_le32(ioc->reply_post_free_dma);
3033 #endif
3034
3035         /* This time stamp specifies number of milliseconds
3036          * since epoch ~ midnight January 1, 1970.
3037          */
3038         do_gettimeofday(&current_time);
3039         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3040             (current_time.tv_usec / 1000));
3041
3042         if (ioc->logging_level & MPT_DEBUG_INIT) {
3043                 u32 *mfp;
3044                 int i;
3045
3046                 mfp = (u32 *)&mpi_request;
3047                 printk(KERN_INFO "\toffset:data\n");
3048                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3049                         printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
3050                             le32_to_cpu(mfp[i]));
3051         }
3052
3053         r = _base_handshake_req_reply_wait(ioc,
3054             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3055             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3056             sleep_flag);
3057
3058         if (r != 0) {
3059                 printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3060                     ioc->name, __func__, r);
3061                 return r;
3062         }
3063
3064         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3065         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3066             mpi_reply.IOCLogInfo) {
3067                 printk(MPT2SAS_ERR_FMT "%s: failed\n", ioc->name, __func__);
3068                 r = -EIO;
3069         }
3070
3071         return 0;
3072 }
3073
3074 /**
3075  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3076  * @ioc: per adapter object
3077  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3078  *
3079  * Returns 0 for success, non-zero for failure.
3080  */
3081 static int
3082 _base_send_port_enable(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3083 {
3084         Mpi2PortEnableRequest_t *mpi_request;
3085         u32 ioc_state;
3086         unsigned long timeleft;
3087         int r = 0;
3088         u16 smid;
3089
3090         printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name);
3091
3092         if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
3093                 printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3094                     ioc->name, __func__);
3095                 return -EAGAIN;
3096         }
3097
3098         smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3099         if (!smid) {
3100                 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3101                     ioc->name, __func__);
3102                 return -EAGAIN;
3103         }
3104
3105         ioc->base_cmds.status = MPT2_CMD_PENDING;
3106         mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3107         ioc->base_cmds.smid = smid;
3108         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3109         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3110         mpi_request->VF_ID = 0; /* TODO */
3111         mpi_request->VP_ID = 0;
3112
3113         mpt2sas_base_put_smid_default(ioc, smid);
3114         init_completion(&ioc->base_cmds.done);
3115         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3116             300*HZ);
3117         if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3118                 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3119                     ioc->name, __func__);
3120                 _debug_dump_mf(mpi_request,
3121                     sizeof(Mpi2PortEnableRequest_t)/4);
3122                 if (ioc->base_cmds.status & MPT2_CMD_RESET)
3123                         r = -EFAULT;
3124                 else
3125                         r = -ETIME;
3126                 goto out;
3127         } else
3128                 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: complete\n",
3129                     ioc->name, __func__));
3130
3131         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_OPERATIONAL,
3132             60, sleep_flag);
3133         if (ioc_state) {
3134                 printk(MPT2SAS_ERR_FMT "%s: failed going to operational state "
3135                     " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
3136                 r = -EFAULT;
3137         }
3138  out:
3139         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3140         printk(MPT2SAS_INFO_FMT "port enable: %s\n",
3141             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3142         return r;
3143 }
3144
3145 /**
3146  * _base_unmask_events - turn on notification for this event
3147  * @ioc: per adapter object
3148  * @event: firmware event
3149  *
3150  * The mask is stored in ioc->event_masks.
3151  */
3152 static void
3153 _base_unmask_events(struct MPT2SAS_ADAPTER *ioc, u16 event)
3154 {
3155         u32 desired_event;
3156
3157         if (event >= 128)
3158                 return;
3159
3160         desired_event = (1 << (event % 32));
3161
3162         if (event < 32)
3163                 ioc->event_masks[0] &= ~desired_event;
3164         else if (event < 64)
3165                 ioc->event_masks[1] &= ~desired_event;
3166         else if (event < 96)
3167                 ioc->event_masks[2] &= ~desired_event;
3168         else if (event < 128)
3169                 ioc->event_masks[3] &= ~desired_event;
3170 }
3171
3172 /**
3173  * _base_event_notification - send event notification
3174  * @ioc: per adapter object
3175  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3176  *
3177  * Returns 0 for success, non-zero for failure.
3178  */
3179 static int
3180 _base_event_notification(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3181 {
3182         Mpi2EventNotificationRequest_t *mpi_request;
3183         unsigned long timeleft;
3184         u16 smid;
3185         int r = 0;
3186         int i;
3187
3188         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3189             __func__));
3190
3191         if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
3192                 printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3193                     ioc->name, __func__);
3194                 return -EAGAIN;
3195         }
3196
3197         smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3198         if (!smid) {
3199                 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3200                     ioc->name, __func__);
3201                 return -EAGAIN;
3202         }
3203         ioc->base_cmds.status = MPT2_CMD_PENDING;
3204         mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3205         ioc->base_cmds.smid = smid;
3206         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3207         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3208         mpi_request->VF_ID = 0; /* TODO */
3209         mpi_request->VP_ID = 0;
3210         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3211                 mpi_request->EventMasks[i] =
3212                     cpu_to_le32(ioc->event_masks[i]);
3213         mpt2sas_base_put_smid_default(ioc, smid);
3214         init_completion(&ioc->base_cmds.done);
3215         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3216         if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3217                 printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3218                     ioc->name, __func__);
3219                 _debug_dump_mf(mpi_request,
3220                     sizeof(Mpi2EventNotificationRequest_t)/4);
3221                 if (ioc->base_cmds.status & MPT2_CMD_RESET)
3222                         r = -EFAULT;
3223                 else
3224                         r = -ETIME;
3225         } else
3226                 dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: complete\n",
3227                     ioc->name, __func__));
3228         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3229         return r;
3230 }
3231
3232 /**
3233  * mpt2sas_base_validate_event_type - validating event types
3234  * @ioc: per adapter object
3235  * @event: firmware event
3236  *
3237  * This will turn on firmware event notification when application
3238  * ask for that event. We don't mask events that are already enabled.
3239  */
3240 void
3241 mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER *ioc, u32 *event_type)
3242 {
3243         int i, j;
3244         u32 event_mask, desired_event;
3245         u8 send_update_to_fw;
3246
3247         for (i = 0, send_update_to_fw = 0; i <
3248             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
3249                 event_mask = ~event_type[i];
3250                 desired_event = 1;
3251                 for (j = 0; j < 32; j++) {
3252                         if (!(event_mask & desired_event) &&
3253                             (ioc->event_masks[i] & desired_event)) {
3254                                 ioc->event_masks[i] &= ~desired_event;
3255                                 send_update_to_fw = 1;
3256                         }
3257                         desired_event = (desired_event << 1);
3258                 }
3259         }
3260
3261         if (!send_update_to_fw)
3262                 return;
3263
3264         mutex_lock(&ioc->base_cmds.mutex);
3265         _base_event_notification(ioc, CAN_SLEEP);
3266         mutex_unlock(&ioc->base_cmds.mutex);
3267 }
3268
3269 /**
3270  * _base_diag_reset - the "big hammer" start of day reset
3271  * @ioc: per adapter object
3272  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3273  *
3274  * Returns 0 for success, non-zero for failure.
3275  */
3276 static int
3277 _base_diag_reset(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3278 {
3279         u32 host_diagnostic;
3280         u32 ioc_state;
3281         u32 count;
3282         u32 hcb_size;
3283
3284         printk(MPT2SAS_INFO_FMT "sending diag reset !!\n", ioc->name);
3285
3286         _base_save_msix_table(ioc);
3287
3288         drsprintk(ioc, printk(MPT2SAS_INFO_FMT "clear interrupts\n",
3289             ioc->name));
3290
3291         count = 0;
3292         do {
3293                 /* Write magic sequence to WriteSequence register
3294                  * Loop until in diagnostic mode
3295                  */
3296                 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "write magic "
3297                     "sequence\n", ioc->name));
3298                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
3299                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
3300                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
3301                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
3302                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
3303                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
3304                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
3305
3306                 /* wait 100 msec */
3307                 if (sleep_flag == CAN_SLEEP)
3308                         msleep(100);
3309                 else
3310                         mdelay(100);
3311
3312                 if (count++ > 20)
3313                         goto out;
3314
3315                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
3316                 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "wrote magic "
3317                     "sequence: count(%d), host_diagnostic(0x%08x)\n",
3318                     ioc->name, count, host_diagnostic));
3319
3320         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
3321
3322         hcb_size = readl(&ioc->chip->HCBSize);
3323
3324         drsprintk(ioc, printk(MPT2SAS_INFO_FMT "diag reset: issued\n",
3325             ioc->name));
3326         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
3327              &ioc->chip->HostDiagnostic);
3328
3329         /* don't access any registers for 50 milliseconds */
3330         msleep(50);
3331
3332         /* 300 second max wait */
3333         for (count = 0; count < 3000000 ; count++) {
3334
3335                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
3336
3337                 if (host_diagnostic == 0xFFFFFFFF)
3338                         goto out;
3339                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
3340                         break;
3341
3342                 /* wait 100 msec */
3343                 if (sleep_flag == CAN_SLEEP)
3344                         msleep(1);
3345                 else
3346                         mdelay(1);
3347         }
3348
3349         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
3350
3351                 drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter "
3352                     "assuming the HCB Address points to good F/W\n",
3353                     ioc->name));
3354                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
3355                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
3356                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
3357
3358                 drsprintk(ioc, printk(MPT2SAS_INFO_FMT
3359                     "re-enable the HCDW\n", ioc->name));
3360                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
3361                     &ioc->chip->HCBSize);
3362         }
3363
3364         drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter\n",
3365             ioc->name));
3366         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
3367             &ioc->chip->HostDiagnostic);
3368
3369         drsprintk(ioc, printk(MPT2SAS_INFO_FMT "disable writes to the "
3370             "diagnostic register\n", ioc->name));
3371         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
3372
3373         drsprintk(ioc, printk(MPT2SAS_INFO_FMT "Wait for FW to go to the "
3374             "READY state\n", ioc->name));
3375         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
3376             sleep_flag);
3377         if (ioc_state) {
3378                 printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
3379                     " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
3380                 goto out;
3381         }
3382
3383         _base_restore_msix_table(ioc);
3384         printk(MPT2SAS_INFO_FMT "diag reset: SUCCESS\n", ioc->name);
3385         return 0;
3386
3387  out:
3388         printk(MPT2SAS_ERR_FMT "diag reset: FAILED\n", ioc->name);
3389         return -EFAULT;
3390 }
3391
3392 /**
3393  * _base_make_ioc_ready - put controller in READY state
3394  * @ioc: per adapter object
3395  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3396  * @type: FORCE_BIG_HAMMER or SOFT_RESET
3397  *
3398  * Returns 0 for success, non-zero for failure.
3399  */
3400 static int
3401 _base_make_ioc_ready(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
3402     enum reset_type type)
3403 {
3404         u32 ioc_state;
3405         int rc;
3406
3407         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3408             __func__));
3409
3410         ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
3411         dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
3412             ioc->name, __func__, ioc_state));
3413
3414         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
3415                 return 0;
3416
3417         if (ioc_state & MPI2_DOORBELL_USED) {
3418                 dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "unexpected doorbell "
3419                     "active!\n", ioc->name));
3420                 goto issue_diag_reset;
3421         }
3422
3423         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3424                 mpt2sas_base_fault_info(ioc, ioc_state &
3425                     MPI2_DOORBELL_DATA_MASK);
3426                 goto issue_diag_reset;
3427         }
3428
3429         if (type == FORCE_BIG_HAMMER)
3430                 goto issue_diag_reset;
3431
3432         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
3433                 if (!(_base_send_ioc_reset(ioc,
3434                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
3435                         ioc->ioc_reset_count++;
3436                         return 0;
3437         }
3438
3439  issue_diag_reset:
3440         rc = _base_diag_reset(ioc, CAN_SLEEP);
3441         ioc->ioc_reset_count++;
3442         return rc;
3443 }
3444
3445 /**
3446  * _base_make_ioc_operational - put controller in OPERATIONAL state
3447  * @ioc: per adapter object
3448  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3449  *
3450  * Returns 0 for success, non-zero for failure.
3451  */
3452 static int
3453 _base_make_ioc_operational(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3454 {
3455         int r, i;
3456         unsigned long   flags;
3457         u32 reply_address;
3458         u16 smid;
3459         struct _tr_list *delayed_tr, *delayed_tr_next;
3460
3461         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3462             __func__));
3463
3464         /* clean the delayed target reset list */
3465         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
3466             &ioc->delayed_tr_list, list) {
3467                 list_del(&delayed_tr->list);
3468                 kfree(delayed_tr);
3469         }
3470
3471         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
3472             &ioc->delayed_tr_volume_list, list) {
3473                 list_del(&delayed_tr->list);
3474                 kfree(delayed_tr);
3475         }
3476
3477         /* initialize the scsi lookup free list */
3478         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3479         INIT_LIST_HEAD(&ioc->free_list);
3480         smid = 1;
3481         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
3482                 ioc->scsi_lookup[i].cb_idx = 0xFF;
3483                 ioc->scsi_lookup[i].smid = smid;
3484                 ioc->scsi_lookup[i].scmd = NULL;
3485                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
3486                     &ioc->free_list);
3487         }
3488
3489         /* hi-priority queue */
3490         INIT_LIST_HEAD(&ioc->hpr_free_list);
3491         smid = ioc->hi_priority_smid;
3492         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
3493                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3494                 ioc->hpr_lookup[i].smid = smid;
3495                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
3496                     &ioc->hpr_free_list);
3497         }
3498
3499         /* internal queue */
3500         INIT_LIST_HEAD(&ioc->internal_free_list);
3501         smid = ioc->internal_smid;
3502         for (i = 0; i < ioc->internal_depth; i++, smid++) {
3503                 ioc->internal_lookup[i].cb_idx = 0xFF;
3504                 ioc->internal_lookup[i].smid = smid;
3505                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
3506                     &ioc->internal_free_list);
3507         }
3508         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3509
3510         /* initialize Reply Free Queue */
3511         for (i = 0, reply_address = (u32)ioc->reply_dma ;
3512             i < ioc->reply_free_queue_depth ; i++, reply_address +=
3513             ioc->reply_sz)
3514                 ioc->reply_free[i] = cpu_to_le32(reply_address);
3515
3516         /* initialize Reply Post Free Queue */
3517         for (i = 0; i < ioc->reply_post_queue_depth; i++)
3518                 ioc->reply_post_free[i].Words = ULLONG_MAX;
3519
3520         r = _base_send_ioc_init(ioc, sleep_flag);
3521         if (r)
3522                 return r;
3523
3524         /* initialize the index's */
3525         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
3526         ioc->reply_post_host_index = 0;
3527         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
3528         writel(0, &ioc->chip->ReplyPostHostIndex);
3529
3530         _base_unmask_interrupts(ioc);
3531         r = _base_event_notification(ioc, sleep_flag);
3532         if (r)
3533                 return r;
3534
3535         if (sleep_flag == CAN_SLEEP)
3536                 _base_static_config_pages(ioc);
3537
3538         if (ioc->wait_for_port_enable_to_complete) {
3539                 if (diag_buffer_enable != 0)
3540                         mpt2sas_enable_diag_buffer(ioc, diag_buffer_enable);
3541                 if (disable_discovery > 0)
3542                         return r;
3543         }
3544
3545         r = _base_send_port_enable(ioc, sleep_flag);
3546         if (r)
3547                 return r;
3548
3549         return r;
3550 }
3551
3552 /**
3553  * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap)
3554  * @ioc: per adapter object
3555  *
3556  * Return nothing.
3557  */
3558 void
3559 mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER *ioc)
3560 {
3561         struct pci_dev *pdev = ioc->pdev;
3562
3563         dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3564             __func__));
3565
3566         _base_mask_interrupts(ioc);
3567         ioc->shost_recovery = 1;
3568         _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
3569         ioc->shost_recovery = 0;
3570         if (ioc->pci_irq) {
3571                 synchronize_irq(pdev->irq);
3572                 free_irq(ioc->pci_irq, ioc);
3573         }
3574         _base_disable_msix(ioc);
3575         if (ioc->chip_phys)
3576                 iounmap(ioc->chip);
3577         ioc->pci_irq = -1;
3578         ioc->chip_phys = 0;
3579         pci_release_selected_regions(ioc->pdev, ioc->bars);
3580         pci_disable_pcie_error_reporting(pdev);
3581         pci_disable_device(pdev);
3582         return;
3583 }
3584
3585 /**
3586  * mpt2sas_base_attach - attach controller instance
3587  * @ioc: per adapter object
3588  *
3589  * Returns 0 for success, non-zero for failure.
3590  */
3591 int
3592 mpt2sas_base_attach(struct MPT2SAS_ADAPTER *ioc)
3593 {
3594         int r, i;
3595
3596         dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3597             __func__));
3598
3599         r = mpt2sas_base_map_resources(ioc);
3600         if (r)
3601                 return r;
3602
3603         pci_set_drvdata(ioc->pdev, ioc->shost);
3604         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
3605         if (r)
3606                 goto out_free_resources;
3607
3608         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
3609         if (r)
3610                 goto out_free_resources;
3611
3612         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
3613             sizeof(Mpi2PortFactsReply_t), GFP_KERNEL);
3614         if (!ioc->pfacts) {
3615                 r = -ENOMEM;
3616                 goto out_free_resources;
3617         }
3618
3619         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
3620                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
3621                 if (r)
3622                         goto out_free_resources;
3623         }
3624
3625         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
3626         if (r)
3627                 goto out_free_resources;
3628
3629         init_waitqueue_head(&ioc->reset_wq);
3630
3631         /* allocate memory pd handle bitmask list */
3632         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
3633         if (ioc->facts.MaxDevHandle % 8)
3634                 ioc->pd_handles_sz++;
3635         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
3636             GFP_KERNEL);
3637         if (!ioc->pd_handles) {
3638                 r = -ENOMEM;
3639                 goto out_free_resources;
3640         }
3641
3642         ioc->fwfault_debug = mpt2sas_fwfault_debug;
3643
3644         /* base internal command bits */
3645         mutex_init(&ioc->base_cmds.mutex);
3646         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3647         ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3648
3649         /* transport internal command bits */
3650         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3651         ioc->transport_cmds.status = MPT2_CMD_NOT_USED;
3652         mutex_init(&ioc->transport_cmds.mutex);
3653
3654         /* scsih internal command bits */
3655         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3656         ioc->scsih_cmds.status = MPT2_CMD_NOT_USED;
3657         mutex_init(&ioc->scsih_cmds.mutex);
3658
3659         /* task management internal command bits */
3660         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3661         ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
3662         mutex_init(&ioc->tm_cmds.mutex);
3663
3664         /* config page internal command bits */
3665         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3666         ioc->config_cmds.status = MPT2_CMD_NOT_USED;
3667         mutex_init(&ioc->config_cmds.mutex);
3668
3669         /* ctl module internal command bits */
3670         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
3671         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
3672         ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
3673         mutex_init(&ioc->ctl_cmds.mutex);
3674
3675         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
3676             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
3677             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
3678             !ioc->ctl_cmds.sense) {
3679                 r = -ENOMEM;
3680                 goto out_free_resources;
3681         }
3682
3683         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
3684             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
3685             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply) {
3686                 r = -ENOMEM;
3687                 goto out_free_resources;
3688         }
3689
3690         init_completion(&ioc->shost_recovery_done);
3691
3692         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3693                 ioc->event_masks[i] = -1;
3694
3695         /* here we enable the events we care about */
3696         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
3697         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
3698         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
3699         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
3700         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
3701         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
3702         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
3703         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
3704         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
3705         _base_unmask_events(ioc, MPI2_EVENT_TASK_SET_FULL);
3706         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
3707         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
3708         if (r)
3709                 goto out_free_resources;
3710
3711         mpt2sas_base_start_watchdog(ioc);
3712         return 0;
3713
3714  out_free_resources:
3715
3716         ioc->remove_host = 1;
3717         mpt2sas_base_free_resources(ioc);
3718         _base_release_memory_pools(ioc);
3719         pci_set_drvdata(ioc->pdev, NULL);
3720         kfree(ioc->pd_handles);
3721         kfree(ioc->tm_cmds.reply);
3722         kfree(ioc->transport_cmds.reply);
3723         kfree(ioc->scsih_cmds.reply);
3724         kfree(ioc->config_cmds.reply);
3725         kfree(ioc->base_cmds.reply);
3726         kfree(ioc->ctl_cmds.reply);
3727         kfree(ioc->ctl_cmds.sense);
3728         kfree(ioc->pfacts);
3729         ioc->ctl_cmds.reply = NULL;
3730         ioc->base_cmds.reply = NULL;
3731         ioc->tm_cmds.reply = NULL;
3732         ioc->scsih_cmds.reply = NULL;
3733         ioc->transport_cmds.reply = NULL;
3734         ioc->config_cmds.reply = NULL;
3735         ioc->pfacts = NULL;
3736         return r;
3737 }
3738
3739
3740 /**
3741  * mpt2sas_base_detach - remove controller instance
3742  * @ioc: per adapter object
3743  *
3744  * Return nothing.
3745  */
3746 void
3747 mpt2sas_base_detach(struct MPT2SAS_ADAPTER *ioc)
3748 {
3749
3750         dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3751             __func__));
3752
3753         mpt2sas_base_stop_watchdog(ioc);
3754         mpt2sas_base_free_resources(ioc);
3755         _base_release_memory_pools(ioc);
3756         pci_set_drvdata(ioc->pdev, NULL);
3757         kfree(ioc->pd_handles);
3758         kfree(ioc->pfacts);
3759         kfree(ioc->ctl_cmds.reply);
3760         kfree(ioc->ctl_cmds.sense);
3761         kfree(ioc->base_cmds.reply);
3762         kfree(ioc->tm_cmds.reply);
3763         kfree(ioc->transport_cmds.reply);
3764         kfree(ioc->scsih_cmds.reply);
3765         kfree(ioc->config_cmds.reply);
3766 }
3767
3768 /**
3769  * _base_reset_handler - reset callback handler (for base)
3770  * @ioc: per adapter object
3771  * @reset_phase: phase
3772  *
3773  * The handler for doing any required cleanup or initialization.
3774  *
3775  * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
3776  * MPT2_IOC_DONE_RESET
3777  *
3778  * Return nothing.
3779  */
3780 static void
3781 _base_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
3782 {
3783         switch (reset_phase) {
3784         case MPT2_IOC_PRE_RESET:
3785                 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
3786                     "MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
3787                 break;
3788         case MPT2_IOC_AFTER_RESET:
3789                 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
3790                     "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
3791                 if (ioc->transport_cmds.status & MPT2_CMD_PENDING) {
3792                         ioc->transport_cmds.status |= MPT2_CMD_RESET;
3793                         mpt2sas_base_free_smid(ioc, ioc->transport_cmds.smid);
3794                         complete(&ioc->transport_cmds.done);
3795                 }
3796                 if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
3797                         ioc->base_cmds.status |= MPT2_CMD_RESET;
3798                         mpt2sas_base_free_smid(ioc, ioc->base_cmds.smid);
3799                         complete(&ioc->base_cmds.done);
3800                 }
3801                 if (ioc->config_cmds.status & MPT2_CMD_PENDING) {
3802                         ioc->config_cmds.status |= MPT2_CMD_RESET;
3803                         mpt2sas_base_free_smid(ioc, ioc->config_cmds.smid);
3804                         ioc->config_cmds.smid = USHRT_MAX;
3805                         complete(&ioc->config_cmds.done);
3806                 }
3807                 break;
3808         case MPT2_IOC_DONE_RESET:
3809                 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
3810                     "MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
3811                 break;
3812         }
3813         mpt2sas_scsih_reset_handler(ioc, reset_phase);
3814         mpt2sas_ctl_reset_handler(ioc, reset_phase);
3815 }
3816
3817 /**
3818  * _wait_for_commands_to_complete - reset controller
3819  * @ioc: Pointer to MPT_ADAPTER structure
3820  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3821  *
3822  * This function waiting(3s) for all pending commands to complete
3823  * prior to putting controller in reset.
3824  */
3825 static void
3826 _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3827 {
3828         u32 ioc_state;
3829         unsigned long flags;
3830         u16 i;
3831
3832         ioc->pending_io_count = 0;
3833         if (sleep_flag != CAN_SLEEP)
3834                 return;
3835
3836         ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
3837         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
3838                 return;
3839
3840         /* pending command count */
3841         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3842         for (i = 0; i < ioc->scsiio_depth; i++)
3843                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
3844                         ioc->pending_io_count++;
3845         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3846
3847         if (!ioc->pending_io_count)
3848                 return;
3849
3850         /* wait for pending commands to complete */
3851         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
3852 }
3853
3854 /**
3855  * mpt2sas_base_hard_reset_handler - reset controller
3856  * @ioc: Pointer to MPT_ADAPTER structure
3857  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3858  * @type: FORCE_BIG_HAMMER or SOFT_RESET
3859  *
3860  * Returns 0 for success, non-zero for failure.
3861  */
3862 int
3863 mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
3864     enum reset_type type)
3865 {
3866         int r;
3867         unsigned long flags;
3868
3869         dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
3870             __func__));
3871
3872         if (mpt2sas_fwfault_debug)
3873                 mpt2sas_halt_firmware(ioc);
3874
3875         /* TODO - What we really should be doing is pulling
3876          * out all the code associated with NO_SLEEP; its never used.
3877          * That is legacy code from mpt fusion driver, ported over.
3878          * I will leave this BUG_ON here for now till its been resolved.
3879          */
3880         BUG_ON(sleep_flag == NO_SLEEP);
3881
3882         /* wait for an active reset in progress to complete */
3883         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
3884                 do {
3885                         ssleep(1);
3886                 } while (ioc->shost_recovery == 1);
3887                 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
3888                     __func__));
3889                 return ioc->ioc_reset_in_progress_status;
3890         }
3891
3892         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
3893         ioc->shost_recovery = 1;
3894         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
3895
3896         _base_reset_handler(ioc, MPT2_IOC_PRE_RESET);
3897         _wait_for_commands_to_complete(ioc, sleep_flag);
3898         _base_mask_interrupts(ioc);
3899         r = _base_make_ioc_ready(ioc, sleep_flag, type);
3900         if (r)
3901                 goto out;
3902         _base_reset_handler(ioc, MPT2_IOC_AFTER_RESET);
3903         r = _base_make_ioc_operational(ioc, sleep_flag);
3904         if (!r)
3905                 _base_reset_handler(ioc, MPT2_IOC_DONE_RESET);
3906  out:
3907         dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: %s\n",
3908             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
3909
3910         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
3911         ioc->ioc_reset_in_progress_status = r;
3912         ioc->shost_recovery = 0;
3913         complete(&ioc->shost_recovery_done);
3914         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
3915         mutex_unlock(&ioc->reset_in_progress_mutex);
3916
3917         dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
3918             __func__));
3919         return r;
3920 }