969fd3eb494a7e3b9045f2c150336fd63dfe42d8
[pandora-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26
27 #include "sas_internal.h"
28
29 #include <scsi/scsi_transport.h>
30 #include <scsi/scsi_transport_sas.h>
31 #include "../scsi_sas_internal.h"
32
33 static int sas_discover_expander(struct domain_device *dev);
34 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
35 static int sas_configure_phy(struct domain_device *dev, int phy_id,
36                              u8 *sas_addr, int include);
37 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
38
39 #if 0
40 /* FIXME: smp needs to migrate into the sas class */
41 static ssize_t smp_portal_read(struct kobject *, struct bin_attribute *,
42                                char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, struct bin_attribute *,
44                                 char *, loff_t, size_t);
45 #endif
46
47 /* ---------- SMP task management ---------- */
48
49 static void smp_task_timedout(unsigned long _task)
50 {
51         struct sas_task *task = (void *) _task;
52         unsigned long flags;
53
54         spin_lock_irqsave(&task->task_state_lock, flags);
55         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
56                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
57         spin_unlock_irqrestore(&task->task_state_lock, flags);
58
59         complete(&task->completion);
60 }
61
62 static void smp_task_done(struct sas_task *task)
63 {
64         if (!del_timer(&task->timer))
65                 return;
66         complete(&task->completion);
67 }
68
69 /* Give it some long enough timeout. In seconds. */
70 #define SMP_TIMEOUT 10
71
72 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
73                             void *resp, int resp_size)
74 {
75         int res, retry;
76         struct sas_task *task = NULL;
77         struct sas_internal *i =
78                 to_sas_internal(dev->port->ha->core.shost->transportt);
79
80         for (retry = 0; retry < 3; retry++) {
81                 task = sas_alloc_task(GFP_KERNEL);
82                 if (!task)
83                         return -ENOMEM;
84
85                 task->dev = dev;
86                 task->task_proto = dev->tproto;
87                 sg_init_one(&task->smp_task.smp_req, req, req_size);
88                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
89
90                 task->task_done = smp_task_done;
91
92                 task->timer.data = (unsigned long) task;
93                 task->timer.function = smp_task_timedout;
94                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
95                 add_timer(&task->timer);
96
97                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
98
99                 if (res) {
100                         del_timer(&task->timer);
101                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
102                         goto ex_err;
103                 }
104
105                 wait_for_completion(&task->completion);
106                 res = -ETASK;
107                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
108                         SAS_DPRINTK("smp task timed out or aborted\n");
109                         i->dft->lldd_abort_task(task);
110                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
111                                 SAS_DPRINTK("SMP task aborted and not done\n");
112                                 goto ex_err;
113                         }
114                 }
115                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116                     task->task_status.stat == SAM_GOOD) {
117                         res = 0;
118                         break;
119                 } else {
120                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
121                                     "status 0x%x\n", __FUNCTION__,
122                                     SAS_ADDR(dev->sas_addr),
123                                     task->task_status.resp,
124                                     task->task_status.stat);
125                         sas_free_task(task);
126                         task = NULL;
127                 }
128         }
129 ex_err:
130         BUG_ON(retry == 3 && task != NULL);
131         if (task != NULL) {
132                 sas_free_task(task);
133         }
134         return res;
135 }
136
137 /* ---------- Allocations ---------- */
138
139 static inline void *alloc_smp_req(int size)
140 {
141         u8 *p = kzalloc(size, GFP_KERNEL);
142         if (p)
143                 p[0] = SMP_REQUEST;
144         return p;
145 }
146
147 static inline void *alloc_smp_resp(int size)
148 {
149         return kzalloc(size, GFP_KERNEL);
150 }
151
152 /* ---------- Expander configuration ---------- */
153
154 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
155                            void *disc_resp)
156 {
157         struct expander_device *ex = &dev->ex_dev;
158         struct ex_phy *phy = &ex->ex_phy[phy_id];
159         struct smp_resp *resp = disc_resp;
160         struct discover_resp *dr = &resp->disc;
161         struct sas_rphy *rphy = dev->rphy;
162         int rediscover = (phy->phy != NULL);
163
164         if (!rediscover) {
165                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
166
167                 /* FIXME: error_handling */
168                 BUG_ON(!phy->phy);
169         }
170
171         switch (resp->result) {
172         case SMP_RESP_PHY_VACANT:
173                 phy->phy_state = PHY_VACANT;
174                 return;
175         default:
176                 phy->phy_state = PHY_NOT_PRESENT;
177                 return;
178         case SMP_RESP_FUNC_ACC:
179                 phy->phy_state = PHY_EMPTY; /* do not know yet */
180                 break;
181         }
182
183         phy->phy_id = phy_id;
184         phy->attached_dev_type = dr->attached_dev_type;
185         phy->linkrate = dr->linkrate;
186         phy->attached_sata_host = dr->attached_sata_host;
187         phy->attached_sata_dev  = dr->attached_sata_dev;
188         phy->attached_sata_ps   = dr->attached_sata_ps;
189         phy->attached_iproto = dr->iproto << 1;
190         phy->attached_tproto = dr->tproto << 1;
191         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
192         phy->attached_phy_id = dr->attached_phy_id;
193         phy->phy_change_count = dr->change_count;
194         phy->routing_attr = dr->routing_attr;
195         phy->virtual = dr->virtual;
196         phy->last_da_index = -1;
197
198         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
199         phy->phy->identify.target_port_protocols = phy->attached_tproto;
200         phy->phy->identify.phy_identifier = phy_id;
201         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
202         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
203         phy->phy->minimum_linkrate = dr->pmin_linkrate;
204         phy->phy->maximum_linkrate = dr->pmax_linkrate;
205         phy->phy->negotiated_linkrate = phy->linkrate;
206
207         if (!rediscover)
208                 sas_phy_add(phy->phy);
209
210         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
211                     SAS_ADDR(dev->sas_addr), phy->phy_id,
212                     phy->routing_attr == TABLE_ROUTING ? 'T' :
213                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
214                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
215                     SAS_ADDR(phy->attached_sas_addr));
216
217         return;
218 }
219
220 #define DISCOVER_REQ_SIZE  16
221 #define DISCOVER_RESP_SIZE 56
222
223 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
224                                       u8 *disc_resp, int single)
225 {
226         int i, res;
227
228         disc_req[9] = single;
229         for (i = 1 ; i < 3; i++) {
230                 struct discover_resp *dr;
231
232                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
233                                        disc_resp, DISCOVER_RESP_SIZE);
234                 if (res)
235                         return res;
236                 /* This is detecting a failure to transmit inital
237                  * dev to host FIS as described in section G.5 of
238                  * sas-2 r 04b */
239                 dr = &((struct smp_resp *)disc_resp)->disc;
240                 if (!(dr->attached_dev_type == 0 &&
241                       dr->attached_sata_dev))
242                         break;
243                 /* In order to generate the dev to host FIS, we
244                  * send a link reset to the expander port */
245                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
246                 /* Wait for the reset to trigger the negotiation */
247                 msleep(500);
248         }
249         sas_set_ex_phy(dev, single, disc_resp);
250         return 0;
251 }
252
253 static int sas_ex_phy_discover(struct domain_device *dev, int single)
254 {
255         struct expander_device *ex = &dev->ex_dev;
256         int  res = 0;
257         u8   *disc_req;
258         u8   *disc_resp;
259
260         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
261         if (!disc_req)
262                 return -ENOMEM;
263
264         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
265         if (!disc_resp) {
266                 kfree(disc_req);
267                 return -ENOMEM;
268         }
269
270         disc_req[1] = SMP_DISCOVER;
271
272         if (0 <= single && single < ex->num_phys) {
273                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
274         } else {
275                 int i;
276
277                 for (i = 0; i < ex->num_phys; i++) {
278                         res = sas_ex_phy_discover_helper(dev, disc_req,
279                                                          disc_resp, i);
280                         if (res)
281                                 goto out_err;
282                 }
283         }
284 out_err:
285         kfree(disc_resp);
286         kfree(disc_req);
287         return res;
288 }
289
290 static int sas_expander_discover(struct domain_device *dev)
291 {
292         struct expander_device *ex = &dev->ex_dev;
293         int res = -ENOMEM;
294
295         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
296         if (!ex->ex_phy)
297                 return -ENOMEM;
298
299         res = sas_ex_phy_discover(dev, -1);
300         if (res)
301                 goto out_err;
302
303         return 0;
304  out_err:
305         kfree(ex->ex_phy);
306         ex->ex_phy = NULL;
307         return res;
308 }
309
310 #define MAX_EXPANDER_PHYS 128
311
312 static void ex_assign_report_general(struct domain_device *dev,
313                                             struct smp_resp *resp)
314 {
315         struct report_general_resp *rg = &resp->rg;
316
317         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
318         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
319         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
320         dev->ex_dev.conf_route_table = rg->conf_route_table;
321         dev->ex_dev.configuring = rg->configuring;
322         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
323 }
324
325 #define RG_REQ_SIZE   8
326 #define RG_RESP_SIZE 32
327
328 static int sas_ex_general(struct domain_device *dev)
329 {
330         u8 *rg_req;
331         struct smp_resp *rg_resp;
332         int res;
333         int i;
334
335         rg_req = alloc_smp_req(RG_REQ_SIZE);
336         if (!rg_req)
337                 return -ENOMEM;
338
339         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
340         if (!rg_resp) {
341                 kfree(rg_req);
342                 return -ENOMEM;
343         }
344
345         rg_req[1] = SMP_REPORT_GENERAL;
346
347         for (i = 0; i < 5; i++) {
348                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
349                                        RG_RESP_SIZE);
350
351                 if (res) {
352                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
353                                     SAS_ADDR(dev->sas_addr), res);
354                         goto out;
355                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
356                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
357                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
358                         res = rg_resp->result;
359                         goto out;
360                 }
361
362                 ex_assign_report_general(dev, rg_resp);
363
364                 if (dev->ex_dev.configuring) {
365                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
366                                     SAS_ADDR(dev->sas_addr));
367                         schedule_timeout_interruptible(5*HZ);
368                 } else
369                         break;
370         }
371 out:
372         kfree(rg_req);
373         kfree(rg_resp);
374         return res;
375 }
376
377 static void ex_assign_manuf_info(struct domain_device *dev, void
378                                         *_mi_resp)
379 {
380         u8 *mi_resp = _mi_resp;
381         struct sas_rphy *rphy = dev->rphy;
382         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
383
384         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
385         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
386         memcpy(edev->product_rev, mi_resp + 36,
387                SAS_EXPANDER_PRODUCT_REV_LEN);
388
389         if (mi_resp[8] & 1) {
390                 memcpy(edev->component_vendor_id, mi_resp + 40,
391                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
392                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
393                 edev->component_revision_id = mi_resp[50];
394         }
395 }
396
397 #define MI_REQ_SIZE   8
398 #define MI_RESP_SIZE 64
399
400 static int sas_ex_manuf_info(struct domain_device *dev)
401 {
402         u8 *mi_req;
403         u8 *mi_resp;
404         int res;
405
406         mi_req = alloc_smp_req(MI_REQ_SIZE);
407         if (!mi_req)
408                 return -ENOMEM;
409
410         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
411         if (!mi_resp) {
412                 kfree(mi_req);
413                 return -ENOMEM;
414         }
415
416         mi_req[1] = SMP_REPORT_MANUF_INFO;
417
418         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
419         if (res) {
420                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
421                             SAS_ADDR(dev->sas_addr), res);
422                 goto out;
423         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
424                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
425                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
426                 goto out;
427         }
428
429         ex_assign_manuf_info(dev, mi_resp);
430 out:
431         kfree(mi_req);
432         kfree(mi_resp);
433         return res;
434 }
435
436 #define PC_REQ_SIZE  44
437 #define PC_RESP_SIZE 8
438
439 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
440                         enum phy_func phy_func,
441                         struct sas_phy_linkrates *rates)
442 {
443         u8 *pc_req;
444         u8 *pc_resp;
445         int res;
446
447         pc_req = alloc_smp_req(PC_REQ_SIZE);
448         if (!pc_req)
449                 return -ENOMEM;
450
451         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
452         if (!pc_resp) {
453                 kfree(pc_req);
454                 return -ENOMEM;
455         }
456
457         pc_req[1] = SMP_PHY_CONTROL;
458         pc_req[9] = phy_id;
459         pc_req[10]= phy_func;
460         if (rates) {
461                 pc_req[32] = rates->minimum_linkrate << 4;
462                 pc_req[33] = rates->maximum_linkrate << 4;
463         }
464
465         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
466
467         kfree(pc_resp);
468         kfree(pc_req);
469         return res;
470 }
471
472 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
473 {
474         struct expander_device *ex = &dev->ex_dev;
475         struct ex_phy *phy = &ex->ex_phy[phy_id];
476
477         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
478         phy->linkrate = SAS_PHY_DISABLED;
479 }
480
481 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
482 {
483         struct expander_device *ex = &dev->ex_dev;
484         int i;
485
486         for (i = 0; i < ex->num_phys; i++) {
487                 struct ex_phy *phy = &ex->ex_phy[i];
488
489                 if (phy->phy_state == PHY_VACANT ||
490                     phy->phy_state == PHY_NOT_PRESENT)
491                         continue;
492
493                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
494                         sas_ex_disable_phy(dev, i);
495         }
496 }
497
498 static int sas_dev_present_in_domain(struct asd_sas_port *port,
499                                             u8 *sas_addr)
500 {
501         struct domain_device *dev;
502
503         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
504                 return 1;
505         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
506                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
507                         return 1;
508         }
509         return 0;
510 }
511
512 #define RPEL_REQ_SIZE   16
513 #define RPEL_RESP_SIZE  32
514 int sas_smp_get_phy_events(struct sas_phy *phy)
515 {
516         int res;
517         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
518         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
519         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
520         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
521
522         if (!resp)
523                 return -ENOMEM;
524
525         req[1] = SMP_REPORT_PHY_ERR_LOG;
526         req[9] = phy->number;
527
528         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
529                                     resp, RPEL_RESP_SIZE);
530
531         if (!res)
532                 goto out;
533
534         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
535         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
536         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
537         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
538
539  out:
540         kfree(resp);
541         return res;
542
543 }
544
545 #define RPS_REQ_SIZE  16
546 #define RPS_RESP_SIZE 60
547
548 static int sas_get_report_phy_sata(struct domain_device *dev,
549                                           int phy_id,
550                                           struct smp_resp *rps_resp)
551 {
552         int res;
553         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
554         u8 *resp = (u8 *)rps_resp;
555
556         if (!rps_req)
557                 return -ENOMEM;
558
559         rps_req[1] = SMP_REPORT_PHY_SATA;
560         rps_req[9] = phy_id;
561
562         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
563                                     rps_resp, RPS_RESP_SIZE);
564
565         /* 0x34 is the FIS type for the D2H fis.  There's a potential
566          * standards cockup here.  sas-2 explicitly specifies the FIS
567          * should be encoded so that FIS type is in resp[24].
568          * However, some expanders endian reverse this.  Undo the
569          * reversal here */
570         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
571                 int i;
572
573                 for (i = 0; i < 5; i++) {
574                         int j = 24 + (i*4);
575                         u8 a, b;
576                         a = resp[j + 0];
577                         b = resp[j + 1];
578                         resp[j + 0] = resp[j + 3];
579                         resp[j + 1] = resp[j + 2];
580                         resp[j + 2] = b;
581                         resp[j + 3] = a;
582                 }
583         }
584
585         kfree(rps_req);
586         return res;
587 }
588
589 static void sas_ex_get_linkrate(struct domain_device *parent,
590                                        struct domain_device *child,
591                                        struct ex_phy *parent_phy)
592 {
593         struct expander_device *parent_ex = &parent->ex_dev;
594         struct sas_port *port;
595         int i;
596
597         child->pathways = 0;
598
599         port = parent_phy->port;
600
601         for (i = 0; i < parent_ex->num_phys; i++) {
602                 struct ex_phy *phy = &parent_ex->ex_phy[i];
603
604                 if (phy->phy_state == PHY_VACANT ||
605                     phy->phy_state == PHY_NOT_PRESENT)
606                         continue;
607
608                 if (SAS_ADDR(phy->attached_sas_addr) ==
609                     SAS_ADDR(child->sas_addr)) {
610
611                         child->min_linkrate = min(parent->min_linkrate,
612                                                   phy->linkrate);
613                         child->max_linkrate = max(parent->max_linkrate,
614                                                   phy->linkrate);
615                         child->pathways++;
616                         sas_port_add_phy(port, phy->phy);
617                 }
618         }
619         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
620         child->pathways = min(child->pathways, parent->pathways);
621 }
622
623 static struct domain_device *sas_ex_discover_end_dev(
624         struct domain_device *parent, int phy_id)
625 {
626         struct expander_device *parent_ex = &parent->ex_dev;
627         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
628         struct domain_device *child = NULL;
629         struct sas_rphy *rphy;
630         int res;
631
632         if (phy->attached_sata_host || phy->attached_sata_ps)
633                 return NULL;
634
635         child = kzalloc(sizeof(*child), GFP_KERNEL);
636         if (!child)
637                 return NULL;
638
639         child->parent = parent;
640         child->port   = parent->port;
641         child->iproto = phy->attached_iproto;
642         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
643         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
644         if (!phy->port) {
645                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
646                 if (unlikely(!phy->port))
647                         goto out_err;
648                 if (unlikely(sas_port_add(phy->port) != 0)) {
649                         sas_port_free(phy->port);
650                         goto out_err;
651                 }
652         }
653         sas_ex_get_linkrate(parent, child, phy);
654
655         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
656                 child->dev_type = SATA_DEV;
657                 if (phy->attached_tproto & SAS_PROTO_STP)
658                         child->tproto = phy->attached_tproto;
659                 if (phy->attached_sata_dev)
660                         child->tproto |= SATA_DEV;
661                 res = sas_get_report_phy_sata(parent, phy_id,
662                                               &child->sata_dev.rps_resp);
663                 if (res) {
664                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
665                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
666                                     phy_id, res);
667                         goto out_free;
668                 }
669                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
670                        sizeof(struct dev_to_host_fis));
671
672                 rphy = sas_end_device_alloc(phy->port);
673                 if (unlikely(!rphy))
674                         goto out_free;
675
676                 sas_init_dev(child);
677
678                 child->rphy = rphy;
679
680                 spin_lock_irq(&parent->port->dev_list_lock);
681                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
682                 spin_unlock_irq(&parent->port->dev_list_lock);
683
684                 res = sas_discover_sata(child);
685                 if (res) {
686                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
687                                     "%016llx:0x%x returned 0x%x\n",
688                                     SAS_ADDR(child->sas_addr),
689                                     SAS_ADDR(parent->sas_addr), phy_id, res);
690                         goto out_list_del;
691                 }
692         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
693                 child->dev_type = SAS_END_DEV;
694                 rphy = sas_end_device_alloc(phy->port);
695                 /* FIXME: error handling */
696                 if (unlikely(!rphy))
697                         goto out_free;
698                 child->tproto = phy->attached_tproto;
699                 sas_init_dev(child);
700
701                 child->rphy = rphy;
702                 sas_fill_in_rphy(child, rphy);
703
704                 spin_lock_irq(&parent->port->dev_list_lock);
705                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
706                 spin_unlock_irq(&parent->port->dev_list_lock);
707
708                 res = sas_discover_end_dev(child);
709                 if (res) {
710                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
711                                     "at %016llx:0x%x returned 0x%x\n",
712                                     SAS_ADDR(child->sas_addr),
713                                     SAS_ADDR(parent->sas_addr), phy_id, res);
714                         goto out_list_del;
715                 }
716         } else {
717                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
718                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
719                             phy_id);
720         }
721
722         list_add_tail(&child->siblings, &parent_ex->children);
723         return child;
724
725  out_list_del:
726         sas_rphy_free(child->rphy);
727         child->rphy = NULL;
728         list_del(&child->dev_list_node);
729  out_free:
730         sas_port_delete(phy->port);
731  out_err:
732         phy->port = NULL;
733         kfree(child);
734         return NULL;
735 }
736
737 /* See if this phy is part of a wide port */
738 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
739 {
740         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
741         int i;
742
743         for (i = 0; i < parent->ex_dev.num_phys; i++) {
744                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
745
746                 if (ephy == phy)
747                         continue;
748
749                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
750                             SAS_ADDR_SIZE) && ephy->port) {
751                         sas_port_add_phy(ephy->port, phy->phy);
752                         phy->phy_state = PHY_DEVICE_DISCOVERED;
753                         return 0;
754                 }
755         }
756
757         return -ENODEV;
758 }
759
760 static struct domain_device *sas_ex_discover_expander(
761         struct domain_device *parent, int phy_id)
762 {
763         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
764         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
765         struct domain_device *child = NULL;
766         struct sas_rphy *rphy;
767         struct sas_expander_device *edev;
768         struct asd_sas_port *port;
769         int res;
770
771         if (phy->routing_attr == DIRECT_ROUTING) {
772                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
773                             "allowed\n",
774                             SAS_ADDR(parent->sas_addr), phy_id,
775                             SAS_ADDR(phy->attached_sas_addr),
776                             phy->attached_phy_id);
777                 return NULL;
778         }
779         child = kzalloc(sizeof(*child), GFP_KERNEL);
780         if (!child)
781                 return NULL;
782
783         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784         /* FIXME: better error handling */
785         BUG_ON(sas_port_add(phy->port) != 0);
786
787
788         switch (phy->attached_dev_type) {
789         case EDGE_DEV:
790                 rphy = sas_expander_alloc(phy->port,
791                                           SAS_EDGE_EXPANDER_DEVICE);
792                 break;
793         case FANOUT_DEV:
794                 rphy = sas_expander_alloc(phy->port,
795                                           SAS_FANOUT_EXPANDER_DEVICE);
796                 break;
797         default:
798                 rphy = NULL;    /* shut gcc up */
799                 BUG();
800         }
801         port = parent->port;
802         child->rphy = rphy;
803         edev = rphy_to_expander_device(rphy);
804         child->dev_type = phy->attached_dev_type;
805         child->parent = parent;
806         child->port = port;
807         child->iproto = phy->attached_iproto;
808         child->tproto = phy->attached_tproto;
809         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
810         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
811         sas_ex_get_linkrate(parent, child, phy);
812         edev->level = parent_ex->level + 1;
813         parent->port->disc.max_level = max(parent->port->disc.max_level,
814                                            edev->level);
815         sas_init_dev(child);
816         sas_fill_in_rphy(child, rphy);
817         sas_rphy_add(rphy);
818
819         spin_lock_irq(&parent->port->dev_list_lock);
820         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
821         spin_unlock_irq(&parent->port->dev_list_lock);
822
823         res = sas_discover_expander(child);
824         if (res) {
825                 kfree(child);
826                 return NULL;
827         }
828         list_add_tail(&child->siblings, &parent->ex_dev.children);
829         return child;
830 }
831
832 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
833 {
834         struct expander_device *ex = &dev->ex_dev;
835         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
836         struct domain_device *child = NULL;
837         int res = 0;
838
839         /* Phy state */
840         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
841                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
842                         res = sas_ex_phy_discover(dev, phy_id);
843                 if (res)
844                         return res;
845         }
846
847         /* Parent and domain coherency */
848         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
849                              SAS_ADDR(dev->port->sas_addr))) {
850                 sas_add_parent_port(dev, phy_id);
851                 return 0;
852         }
853         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
854                             SAS_ADDR(dev->parent->sas_addr))) {
855                 sas_add_parent_port(dev, phy_id);
856                 if (ex_phy->routing_attr == TABLE_ROUTING)
857                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
858                 return 0;
859         }
860
861         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
862                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
863
864         if (ex_phy->attached_dev_type == NO_DEVICE) {
865                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
866                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
867                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
868                 }
869                 return 0;
870         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
871                 return 0;
872
873         if (ex_phy->attached_dev_type != SAS_END_DEV &&
874             ex_phy->attached_dev_type != FANOUT_DEV &&
875             ex_phy->attached_dev_type != EDGE_DEV) {
876                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
877                             "phy 0x%x\n", ex_phy->attached_dev_type,
878                             SAS_ADDR(dev->sas_addr),
879                             phy_id);
880                 return 0;
881         }
882
883         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
884         if (res) {
885                 SAS_DPRINTK("configure routing for dev %016llx "
886                             "reported 0x%x. Forgotten\n",
887                             SAS_ADDR(ex_phy->attached_sas_addr), res);
888                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
889                 return res;
890         }
891
892         res = sas_ex_join_wide_port(dev, phy_id);
893         if (!res) {
894                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
895                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
896                 return res;
897         }
898
899         switch (ex_phy->attached_dev_type) {
900         case SAS_END_DEV:
901                 child = sas_ex_discover_end_dev(dev, phy_id);
902                 break;
903         case FANOUT_DEV:
904                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
905                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
906                                     "attached to ex %016llx phy 0x%x\n",
907                                     SAS_ADDR(ex_phy->attached_sas_addr),
908                                     ex_phy->attached_phy_id,
909                                     SAS_ADDR(dev->sas_addr),
910                                     phy_id);
911                         sas_ex_disable_phy(dev, phy_id);
912                         break;
913                 } else
914                         memcpy(dev->port->disc.fanout_sas_addr,
915                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
916                 /* fallthrough */
917         case EDGE_DEV:
918                 child = sas_ex_discover_expander(dev, phy_id);
919                 break;
920         default:
921                 break;
922         }
923
924         if (child) {
925                 int i;
926
927                 for (i = 0; i < ex->num_phys; i++) {
928                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
929                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
930                                 continue;
931
932                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
933                             SAS_ADDR(child->sas_addr))
934                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
935                 }
936         }
937
938         return res;
939 }
940
941 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
942 {
943         struct expander_device *ex = &dev->ex_dev;
944         int i;
945
946         for (i = 0; i < ex->num_phys; i++) {
947                 struct ex_phy *phy = &ex->ex_phy[i];
948
949                 if (phy->phy_state == PHY_VACANT ||
950                     phy->phy_state == PHY_NOT_PRESENT)
951                         continue;
952
953                 if ((phy->attached_dev_type == EDGE_DEV ||
954                      phy->attached_dev_type == FANOUT_DEV) &&
955                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
956
957                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
958
959                         return 1;
960                 }
961         }
962         return 0;
963 }
964
965 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
966 {
967         struct expander_device *ex = &dev->ex_dev;
968         struct domain_device *child;
969         u8 sub_addr[8] = {0, };
970
971         list_for_each_entry(child, &ex->children, siblings) {
972                 if (child->dev_type != EDGE_DEV &&
973                     child->dev_type != FANOUT_DEV)
974                         continue;
975                 if (sub_addr[0] == 0) {
976                         sas_find_sub_addr(child, sub_addr);
977                         continue;
978                 } else {
979                         u8 s2[8];
980
981                         if (sas_find_sub_addr(child, s2) &&
982                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
983
984                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
985                                             "diverges from subtractive "
986                                             "boundary %016llx\n",
987                                             SAS_ADDR(dev->sas_addr),
988                                             SAS_ADDR(child->sas_addr),
989                                             SAS_ADDR(s2),
990                                             SAS_ADDR(sub_addr));
991
992                                 sas_ex_disable_port(child, s2);
993                         }
994                 }
995         }
996         return 0;
997 }
998 /**
999  * sas_ex_discover_devices -- discover devices attached to this expander
1000  * dev: pointer to the expander domain device
1001  * single: if you want to do a single phy, else set to -1;
1002  *
1003  * Configure this expander for use with its devices and register the
1004  * devices of this expander.
1005  */
1006 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1007 {
1008         struct expander_device *ex = &dev->ex_dev;
1009         int i = 0, end = ex->num_phys;
1010         int res = 0;
1011
1012         if (0 <= single && single < end) {
1013                 i = single;
1014                 end = i+1;
1015         }
1016
1017         for ( ; i < end; i++) {
1018                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1019
1020                 if (ex_phy->phy_state == PHY_VACANT ||
1021                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1022                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1023                         continue;
1024
1025                 switch (ex_phy->linkrate) {
1026                 case SAS_PHY_DISABLED:
1027                 case SAS_PHY_RESET_PROBLEM:
1028                 case SAS_SATA_PORT_SELECTOR:
1029                         continue;
1030                 default:
1031                         res = sas_ex_discover_dev(dev, i);
1032                         if (res)
1033                                 break;
1034                         continue;
1035                 }
1036         }
1037
1038         if (!res)
1039                 sas_check_level_subtractive_boundary(dev);
1040
1041         return res;
1042 }
1043
1044 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1045 {
1046         struct expander_device *ex = &dev->ex_dev;
1047         int i;
1048         u8  *sub_sas_addr = NULL;
1049
1050         if (dev->dev_type != EDGE_DEV)
1051                 return 0;
1052
1053         for (i = 0; i < ex->num_phys; i++) {
1054                 struct ex_phy *phy = &ex->ex_phy[i];
1055
1056                 if (phy->phy_state == PHY_VACANT ||
1057                     phy->phy_state == PHY_NOT_PRESENT)
1058                         continue;
1059
1060                 if ((phy->attached_dev_type == FANOUT_DEV ||
1061                      phy->attached_dev_type == EDGE_DEV) &&
1062                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1063
1064                         if (!sub_sas_addr)
1065                                 sub_sas_addr = &phy->attached_sas_addr[0];
1066                         else if (SAS_ADDR(sub_sas_addr) !=
1067                                  SAS_ADDR(phy->attached_sas_addr)) {
1068
1069                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1070                                             "diverges(%016llx) on subtractive "
1071                                             "boundary(%016llx). Disabled\n",
1072                                             SAS_ADDR(dev->sas_addr), i,
1073                                             SAS_ADDR(phy->attached_sas_addr),
1074                                             SAS_ADDR(sub_sas_addr));
1075                                 sas_ex_disable_phy(dev, i);
1076                         }
1077                 }
1078         }
1079         return 0;
1080 }
1081
1082 static void sas_print_parent_topology_bug(struct domain_device *child,
1083                                                  struct ex_phy *parent_phy,
1084                                                  struct ex_phy *child_phy)
1085 {
1086         static const char ra_char[] = {
1087                 [DIRECT_ROUTING] = 'D',
1088                 [SUBTRACTIVE_ROUTING] = 'S',
1089                 [TABLE_ROUTING] = 'T',
1090         };
1091         static const char *ex_type[] = {
1092                 [EDGE_DEV] = "edge",
1093                 [FANOUT_DEV] = "fanout",
1094         };
1095         struct domain_device *parent = child->parent;
1096
1097         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1098                    "has %c:%c routing link!\n",
1099
1100                    ex_type[parent->dev_type],
1101                    SAS_ADDR(parent->sas_addr),
1102                    parent_phy->phy_id,
1103
1104                    ex_type[child->dev_type],
1105                    SAS_ADDR(child->sas_addr),
1106                    child_phy->phy_id,
1107
1108                    ra_char[parent_phy->routing_attr],
1109                    ra_char[child_phy->routing_attr]);
1110 }
1111
1112 static int sas_check_eeds(struct domain_device *child,
1113                                  struct ex_phy *parent_phy,
1114                                  struct ex_phy *child_phy)
1115 {
1116         int res = 0;
1117         struct domain_device *parent = child->parent;
1118
1119         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1120                 res = -ENODEV;
1121                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1122                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1123                             SAS_ADDR(parent->sas_addr),
1124                             parent_phy->phy_id,
1125                             SAS_ADDR(child->sas_addr),
1126                             child_phy->phy_id,
1127                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1128         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1129                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1130                        SAS_ADDR_SIZE);
1131                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1132                        SAS_ADDR_SIZE);
1133         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1134                     SAS_ADDR(parent->sas_addr)) ||
1135                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1136                     SAS_ADDR(child->sas_addr)))
1137                    &&
1138                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1139                      SAS_ADDR(parent->sas_addr)) ||
1140                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1141                      SAS_ADDR(child->sas_addr))))
1142                 ;
1143         else {
1144                 res = -ENODEV;
1145                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1146                             "phy 0x%x link forms a third EEDS!\n",
1147                             SAS_ADDR(parent->sas_addr),
1148                             parent_phy->phy_id,
1149                             SAS_ADDR(child->sas_addr),
1150                             child_phy->phy_id);
1151         }
1152
1153         return res;
1154 }
1155
1156 /* Here we spill over 80 columns.  It is intentional.
1157  */
1158 static int sas_check_parent_topology(struct domain_device *child)
1159 {
1160         struct expander_device *child_ex = &child->ex_dev;
1161         struct expander_device *parent_ex;
1162         int i;
1163         int res = 0;
1164
1165         if (!child->parent)
1166                 return 0;
1167
1168         if (child->parent->dev_type != EDGE_DEV &&
1169             child->parent->dev_type != FANOUT_DEV)
1170                 return 0;
1171
1172         parent_ex = &child->parent->ex_dev;
1173
1174         for (i = 0; i < parent_ex->num_phys; i++) {
1175                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1176                 struct ex_phy *child_phy;
1177
1178                 if (parent_phy->phy_state == PHY_VACANT ||
1179                     parent_phy->phy_state == PHY_NOT_PRESENT)
1180                         continue;
1181
1182                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1183                         continue;
1184
1185                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1186
1187                 switch (child->parent->dev_type) {
1188                 case EDGE_DEV:
1189                         if (child->dev_type == FANOUT_DEV) {
1190                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1191                                     child_phy->routing_attr != TABLE_ROUTING) {
1192                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1193                                         res = -ENODEV;
1194                                 }
1195                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1196                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1197                                         res = sas_check_eeds(child, parent_phy, child_phy);
1198                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1199                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1200                                         res = -ENODEV;
1201                                 }
1202                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1203                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1204                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1205                                 res = -ENODEV;
1206                         }
1207                         break;
1208                 case FANOUT_DEV:
1209                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1210                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1211                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1212                                 res = -ENODEV;
1213                         }
1214                         break;
1215                 default:
1216                         break;
1217                 }
1218         }
1219
1220         return res;
1221 }
1222
1223 #define RRI_REQ_SIZE  16
1224 #define RRI_RESP_SIZE 44
1225
1226 static int sas_configure_present(struct domain_device *dev, int phy_id,
1227                                  u8 *sas_addr, int *index, int *present)
1228 {
1229         int i, res = 0;
1230         struct expander_device *ex = &dev->ex_dev;
1231         struct ex_phy *phy = &ex->ex_phy[phy_id];
1232         u8 *rri_req;
1233         u8 *rri_resp;
1234
1235         *present = 0;
1236         *index = 0;
1237
1238         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1239         if (!rri_req)
1240                 return -ENOMEM;
1241
1242         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1243         if (!rri_resp) {
1244                 kfree(rri_req);
1245                 return -ENOMEM;
1246         }
1247
1248         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1249         rri_req[9] = phy_id;
1250
1251         for (i = 0; i < ex->max_route_indexes ; i++) {
1252                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1253                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1254                                        RRI_RESP_SIZE);
1255                 if (res)
1256                         goto out;
1257                 res = rri_resp[2];
1258                 if (res == SMP_RESP_NO_INDEX) {
1259                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1260                                     "phy 0x%x index 0x%x\n",
1261                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1262                         goto out;
1263                 } else if (res != SMP_RESP_FUNC_ACC) {
1264                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1265                                     "result 0x%x\n", __FUNCTION__,
1266                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1267                         goto out;
1268                 }
1269                 if (SAS_ADDR(sas_addr) != 0) {
1270                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1271                                 *index = i;
1272                                 if ((rri_resp[12] & 0x80) == 0x80)
1273                                         *present = 0;
1274                                 else
1275                                         *present = 1;
1276                                 goto out;
1277                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1278                                 *index = i;
1279                                 *present = 0;
1280                                 goto out;
1281                         }
1282                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1283                            phy->last_da_index < i) {
1284                         phy->last_da_index = i;
1285                         *index = i;
1286                         *present = 0;
1287                         goto out;
1288                 }
1289         }
1290         res = -1;
1291 out:
1292         kfree(rri_req);
1293         kfree(rri_resp);
1294         return res;
1295 }
1296
1297 #define CRI_REQ_SIZE  44
1298 #define CRI_RESP_SIZE  8
1299
1300 static int sas_configure_set(struct domain_device *dev, int phy_id,
1301                              u8 *sas_addr, int index, int include)
1302 {
1303         int res;
1304         u8 *cri_req;
1305         u8 *cri_resp;
1306
1307         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1308         if (!cri_req)
1309                 return -ENOMEM;
1310
1311         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1312         if (!cri_resp) {
1313                 kfree(cri_req);
1314                 return -ENOMEM;
1315         }
1316
1317         cri_req[1] = SMP_CONF_ROUTE_INFO;
1318         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1319         cri_req[9] = phy_id;
1320         if (SAS_ADDR(sas_addr) == 0 || !include)
1321                 cri_req[12] |= 0x80;
1322         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1323
1324         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1325                                CRI_RESP_SIZE);
1326         if (res)
1327                 goto out;
1328         res = cri_resp[2];
1329         if (res == SMP_RESP_NO_INDEX) {
1330                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1331                             "index 0x%x\n",
1332                             SAS_ADDR(dev->sas_addr), phy_id, index);
1333         }
1334 out:
1335         kfree(cri_req);
1336         kfree(cri_resp);
1337         return res;
1338 }
1339
1340 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1341                                     u8 *sas_addr, int include)
1342 {
1343         int index;
1344         int present;
1345         int res;
1346
1347         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1348         if (res)
1349                 return res;
1350         if (include ^ present)
1351                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1352
1353         return res;
1354 }
1355
1356 /**
1357  * sas_configure_parent -- configure routing table of parent
1358  * parent: parent expander
1359  * child: child expander
1360  * sas_addr: SAS port identifier of device directly attached to child
1361  */
1362 static int sas_configure_parent(struct domain_device *parent,
1363                                 struct domain_device *child,
1364                                 u8 *sas_addr, int include)
1365 {
1366         struct expander_device *ex_parent = &parent->ex_dev;
1367         int res = 0;
1368         int i;
1369
1370         if (parent->parent) {
1371                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1372                                            include);
1373                 if (res)
1374                         return res;
1375         }
1376
1377         if (ex_parent->conf_route_table == 0) {
1378                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1379                             SAS_ADDR(parent->sas_addr));
1380                 return 0;
1381         }
1382
1383         for (i = 0; i < ex_parent->num_phys; i++) {
1384                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1385
1386                 if ((phy->routing_attr == TABLE_ROUTING) &&
1387                     (SAS_ADDR(phy->attached_sas_addr) ==
1388                      SAS_ADDR(child->sas_addr))) {
1389                         res = sas_configure_phy(parent, i, sas_addr, include);
1390                         if (res)
1391                                 return res;
1392                 }
1393         }
1394
1395         return res;
1396 }
1397
1398 /**
1399  * sas_configure_routing -- configure routing
1400  * dev: expander device
1401  * sas_addr: port identifier of device directly attached to the expander device
1402  */
1403 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1404 {
1405         if (dev->parent)
1406                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1407         return 0;
1408 }
1409
1410 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1411 {
1412         if (dev->parent)
1413                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1414         return 0;
1415 }
1416
1417 #if 0
1418 #define SMP_BIN_ATTR_NAME "smp_portal"
1419
1420 static void sas_ex_smp_hook(struct domain_device *dev)
1421 {
1422         struct expander_device *ex_dev = &dev->ex_dev;
1423         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1424
1425         memset(bin_attr, 0, sizeof(*bin_attr));
1426
1427         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1428         bin_attr->attr.mode = 0600;
1429
1430         bin_attr->size = 0;
1431         bin_attr->private = NULL;
1432         bin_attr->read = smp_portal_read;
1433         bin_attr->write= smp_portal_write;
1434         bin_attr->mmap = NULL;
1435
1436         ex_dev->smp_portal_pid = -1;
1437         init_MUTEX(&ex_dev->smp_sema);
1438 }
1439 #endif
1440
1441 /**
1442  * sas_discover_expander -- expander discovery
1443  * @ex: pointer to expander domain device
1444  *
1445  * See comment in sas_discover_sata().
1446  */
1447 static int sas_discover_expander(struct domain_device *dev)
1448 {
1449         int res;
1450
1451         res = sas_notify_lldd_dev_found(dev);
1452         if (res)
1453                 return res;
1454
1455         res = sas_ex_general(dev);
1456         if (res)
1457                 goto out_err;
1458         res = sas_ex_manuf_info(dev);
1459         if (res)
1460                 goto out_err;
1461
1462         res = sas_expander_discover(dev);
1463         if (res) {
1464                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1465                             SAS_ADDR(dev->sas_addr), res);
1466                 goto out_err;
1467         }
1468
1469         sas_check_ex_subtractive_boundary(dev);
1470         res = sas_check_parent_topology(dev);
1471         if (res)
1472                 goto out_err;
1473         return 0;
1474 out_err:
1475         sas_notify_lldd_dev_gone(dev);
1476         return res;
1477 }
1478
1479 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1480 {
1481         int res = 0;
1482         struct domain_device *dev;
1483
1484         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1485                 if (dev->dev_type == EDGE_DEV ||
1486                     dev->dev_type == FANOUT_DEV) {
1487                         struct sas_expander_device *ex =
1488                                 rphy_to_expander_device(dev->rphy);
1489
1490                         if (level == ex->level)
1491                                 res = sas_ex_discover_devices(dev, -1);
1492                         else if (level > 0)
1493                                 res = sas_ex_discover_devices(port->port_dev, -1);
1494
1495                 }
1496         }
1497
1498         return res;
1499 }
1500
1501 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1502 {
1503         int res;
1504         int level;
1505
1506         do {
1507                 level = port->disc.max_level;
1508                 res = sas_ex_level_discovery(port, level);
1509                 mb();
1510         } while (level < port->disc.max_level);
1511
1512         return res;
1513 }
1514
1515 int sas_discover_root_expander(struct domain_device *dev)
1516 {
1517         int res;
1518         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1519
1520         res = sas_rphy_add(dev->rphy);
1521         if (res)
1522                 goto out_err;
1523
1524         ex->level = dev->port->disc.max_level; /* 0 */
1525         res = sas_discover_expander(dev);
1526         if (res)
1527                 goto out_err2;
1528
1529         sas_ex_bfs_disc(dev->port);
1530
1531         return res;
1532
1533 out_err2:
1534         sas_rphy_remove(dev->rphy);
1535 out_err:
1536         return res;
1537 }
1538
1539 /* ---------- Domain revalidation ---------- */
1540
1541 static int sas_get_phy_discover(struct domain_device *dev,
1542                                 int phy_id, struct smp_resp *disc_resp)
1543 {
1544         int res;
1545         u8 *disc_req;
1546
1547         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1548         if (!disc_req)
1549                 return -ENOMEM;
1550
1551         disc_req[1] = SMP_DISCOVER;
1552         disc_req[9] = phy_id;
1553
1554         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1555                                disc_resp, DISCOVER_RESP_SIZE);
1556         if (res)
1557                 goto out;
1558         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1559                 res = disc_resp->result;
1560                 goto out;
1561         }
1562 out:
1563         kfree(disc_req);
1564         return res;
1565 }
1566
1567 static int sas_get_phy_change_count(struct domain_device *dev,
1568                                     int phy_id, int *pcc)
1569 {
1570         int res;
1571         struct smp_resp *disc_resp;
1572
1573         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1574         if (!disc_resp)
1575                 return -ENOMEM;
1576
1577         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1578         if (!res)
1579                 *pcc = disc_resp->disc.change_count;
1580
1581         kfree(disc_resp);
1582         return res;
1583 }
1584
1585 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1586                                          int phy_id, u8 *attached_sas_addr)
1587 {
1588         int res;
1589         struct smp_resp *disc_resp;
1590         struct discover_resp *dr;
1591
1592         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1593         if (!disc_resp)
1594                 return -ENOMEM;
1595         dr = &disc_resp->disc;
1596
1597         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1598         if (!res) {
1599                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1600                 if (dr->attached_dev_type == 0)
1601                         memset(attached_sas_addr, 0, 8);
1602         }
1603         kfree(disc_resp);
1604         return res;
1605 }
1606
1607 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1608                               int from_phy)
1609 {
1610         struct expander_device *ex = &dev->ex_dev;
1611         int res = 0;
1612         int i;
1613
1614         for (i = from_phy; i < ex->num_phys; i++) {
1615                 int phy_change_count = 0;
1616
1617                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1618                 if (res)
1619                         goto out;
1620                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1621                         ex->ex_phy[i].phy_change_count = phy_change_count;
1622                         *phy_id = i;
1623                         return 0;
1624                 }
1625         }
1626 out:
1627         return res;
1628 }
1629
1630 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1631 {
1632         int res;
1633         u8  *rg_req;
1634         struct smp_resp  *rg_resp;
1635
1636         rg_req = alloc_smp_req(RG_REQ_SIZE);
1637         if (!rg_req)
1638                 return -ENOMEM;
1639
1640         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1641         if (!rg_resp) {
1642                 kfree(rg_req);
1643                 return -ENOMEM;
1644         }
1645
1646         rg_req[1] = SMP_REPORT_GENERAL;
1647
1648         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1649                                RG_RESP_SIZE);
1650         if (res)
1651                 goto out;
1652         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1653                 res = rg_resp->result;
1654                 goto out;
1655         }
1656
1657         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1658 out:
1659         kfree(rg_resp);
1660         kfree(rg_req);
1661         return res;
1662 }
1663
1664 static int sas_find_bcast_dev(struct domain_device *dev,
1665                               struct domain_device **src_dev)
1666 {
1667         struct expander_device *ex = &dev->ex_dev;
1668         int ex_change_count = -1;
1669         int res;
1670
1671         res = sas_get_ex_change_count(dev, &ex_change_count);
1672         if (res)
1673                 goto out;
1674         if (ex_change_count != -1 &&
1675             ex_change_count != ex->ex_change_count) {
1676                 *src_dev = dev;
1677                 ex->ex_change_count = ex_change_count;
1678         } else {
1679                 struct domain_device *ch;
1680
1681                 list_for_each_entry(ch, &ex->children, siblings) {
1682                         if (ch->dev_type == EDGE_DEV ||
1683                             ch->dev_type == FANOUT_DEV) {
1684                                 res = sas_find_bcast_dev(ch, src_dev);
1685                                 if (src_dev)
1686                                         return res;
1687                         }
1688                 }
1689         }
1690 out:
1691         return res;
1692 }
1693
1694 static void sas_unregister_ex_tree(struct domain_device *dev)
1695 {
1696         struct expander_device *ex = &dev->ex_dev;
1697         struct domain_device *child, *n;
1698
1699         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1700                 if (child->dev_type == EDGE_DEV ||
1701                     child->dev_type == FANOUT_DEV)
1702                         sas_unregister_ex_tree(child);
1703                 else
1704                         sas_unregister_dev(child);
1705         }
1706         sas_unregister_dev(dev);
1707 }
1708
1709 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1710                                          int phy_id)
1711 {
1712         struct expander_device *ex_dev = &parent->ex_dev;
1713         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1714         struct domain_device *child, *n;
1715
1716         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1717                 if (SAS_ADDR(child->sas_addr) ==
1718                     SAS_ADDR(phy->attached_sas_addr)) {
1719                         if (child->dev_type == EDGE_DEV ||
1720                             child->dev_type == FANOUT_DEV)
1721                                 sas_unregister_ex_tree(child);
1722                         else
1723                                 sas_unregister_dev(child);
1724                         break;
1725                 }
1726         }
1727         sas_disable_routing(parent, phy->attached_sas_addr);
1728         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1729         sas_port_delete_phy(phy->port, phy->phy);
1730         if (phy->port->num_phys == 0)
1731                 sas_port_delete(phy->port);
1732         phy->port = NULL;
1733 }
1734
1735 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1736                                           const int level)
1737 {
1738         struct expander_device *ex_root = &root->ex_dev;
1739         struct domain_device *child;
1740         int res = 0;
1741
1742         list_for_each_entry(child, &ex_root->children, siblings) {
1743                 if (child->dev_type == EDGE_DEV ||
1744                     child->dev_type == FANOUT_DEV) {
1745                         struct sas_expander_device *ex =
1746                                 rphy_to_expander_device(child->rphy);
1747
1748                         if (level > ex->level)
1749                                 res = sas_discover_bfs_by_root_level(child,
1750                                                                      level);
1751                         else if (level == ex->level)
1752                                 res = sas_ex_discover_devices(child, -1);
1753                 }
1754         }
1755         return res;
1756 }
1757
1758 static int sas_discover_bfs_by_root(struct domain_device *dev)
1759 {
1760         int res;
1761         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1762         int level = ex->level+1;
1763
1764         res = sas_ex_discover_devices(dev, -1);
1765         if (res)
1766                 goto out;
1767         do {
1768                 res = sas_discover_bfs_by_root_level(dev, level);
1769                 mb();
1770                 level += 1;
1771         } while (level <= dev->port->disc.max_level);
1772 out:
1773         return res;
1774 }
1775
1776 static int sas_discover_new(struct domain_device *dev, int phy_id)
1777 {
1778         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1779         struct domain_device *child;
1780         int res;
1781
1782         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1783                     SAS_ADDR(dev->sas_addr), phy_id);
1784         res = sas_ex_phy_discover(dev, phy_id);
1785         if (res)
1786                 goto out;
1787         res = sas_ex_discover_devices(dev, phy_id);
1788         if (res)
1789                 goto out;
1790         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1791                 if (SAS_ADDR(child->sas_addr) ==
1792                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1793                         if (child->dev_type == EDGE_DEV ||
1794                             child->dev_type == FANOUT_DEV)
1795                                 res = sas_discover_bfs_by_root(child);
1796                         break;
1797                 }
1798         }
1799 out:
1800         return res;
1801 }
1802
1803 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1804 {
1805         struct expander_device *ex = &dev->ex_dev;
1806         struct ex_phy *phy = &ex->ex_phy[phy_id];
1807         u8 attached_sas_addr[8];
1808         int res;
1809
1810         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1811         switch (res) {
1812         case SMP_RESP_NO_PHY:
1813                 phy->phy_state = PHY_NOT_PRESENT;
1814                 sas_unregister_devs_sas_addr(dev, phy_id);
1815                 goto out; break;
1816         case SMP_RESP_PHY_VACANT:
1817                 phy->phy_state = PHY_VACANT;
1818                 sas_unregister_devs_sas_addr(dev, phy_id);
1819                 goto out; break;
1820         case SMP_RESP_FUNC_ACC:
1821                 break;
1822         }
1823
1824         if (SAS_ADDR(attached_sas_addr) == 0) {
1825                 phy->phy_state = PHY_EMPTY;
1826                 sas_unregister_devs_sas_addr(dev, phy_id);
1827         } else if (SAS_ADDR(attached_sas_addr) ==
1828                    SAS_ADDR(phy->attached_sas_addr)) {
1829                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1830                             SAS_ADDR(dev->sas_addr), phy_id);
1831                 sas_ex_phy_discover(dev, phy_id);
1832         } else
1833                 res = sas_discover_new(dev, phy_id);
1834 out:
1835         return res;
1836 }
1837
1838 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1839 {
1840         struct expander_device *ex = &dev->ex_dev;
1841         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1842         int res = 0;
1843         int i;
1844
1845         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1846                     SAS_ADDR(dev->sas_addr), phy_id);
1847
1848         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1849                 for (i = 0; i < ex->num_phys; i++) {
1850                         struct ex_phy *phy = &ex->ex_phy[i];
1851
1852                         if (i == phy_id)
1853                                 continue;
1854                         if (SAS_ADDR(phy->attached_sas_addr) ==
1855                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1856                                 SAS_DPRINTK("phy%d part of wide port with "
1857                                             "phy%d\n", phy_id, i);
1858                                 goto out;
1859                         }
1860                 }
1861                 res = sas_rediscover_dev(dev, phy_id);
1862         } else
1863                 res = sas_discover_new(dev, phy_id);
1864 out:
1865         return res;
1866 }
1867
1868 /**
1869  * sas_revalidate_domain -- revalidate the domain
1870  * @port: port to the domain of interest
1871  *
1872  * NOTE: this process _must_ quit (return) as soon as any connection
1873  * errors are encountered.  Connection recovery is done elsewhere.
1874  * Discover process only interrogates devices in order to discover the
1875  * domain.
1876  */
1877 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1878 {
1879         int res;
1880         struct domain_device *dev = NULL;
1881
1882         res = sas_find_bcast_dev(port_dev, &dev);
1883         if (res)
1884                 goto out;
1885         if (dev) {
1886                 struct expander_device *ex = &dev->ex_dev;
1887                 int i = 0, phy_id;
1888
1889                 do {
1890                         phy_id = -1;
1891                         res = sas_find_bcast_phy(dev, &phy_id, i);
1892                         if (phy_id == -1)
1893                                 break;
1894                         res = sas_rediscover(dev, phy_id);
1895                         i = phy_id + 1;
1896                 } while (i < ex->num_phys);
1897         }
1898 out:
1899         return res;
1900 }
1901
1902 #if 0
1903 /* ---------- SMP portal ---------- */
1904
1905 static ssize_t smp_portal_write(struct kobject *kobj,
1906                                 struct bin_attribute *bin_attr,
1907                                 char *buf, loff_t offs, size_t size)
1908 {
1909         struct domain_device *dev = to_dom_device(kobj);
1910         struct expander_device *ex = &dev->ex_dev;
1911
1912         if (offs != 0)
1913                 return -EFBIG;
1914         else if (size == 0)
1915                 return 0;
1916
1917         down_interruptible(&ex->smp_sema);
1918         if (ex->smp_req)
1919                 kfree(ex->smp_req);
1920         ex->smp_req = kzalloc(size, GFP_USER);
1921         if (!ex->smp_req) {
1922                 up(&ex->smp_sema);
1923                 return -ENOMEM;
1924         }
1925         memcpy(ex->smp_req, buf, size);
1926         ex->smp_req_size = size;
1927         ex->smp_portal_pid = current->pid;
1928         up(&ex->smp_sema);
1929
1930         return size;
1931 }
1932
1933 static ssize_t smp_portal_read(struct kobject *kobj,
1934                                struct bin_attribute *bin_attr,
1935                                char *buf, loff_t offs, size_t size)
1936 {
1937         struct domain_device *dev = to_dom_device(kobj);
1938         struct expander_device *ex = &dev->ex_dev;
1939         u8 *smp_resp;
1940         int res = -EINVAL;
1941
1942         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1943          *  it should be 0.
1944          */
1945
1946         down_interruptible(&ex->smp_sema);
1947         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1948                 goto out;
1949
1950         res = 0;
1951         if (size == 0)
1952                 goto out;
1953
1954         res = -ENOMEM;
1955         smp_resp = alloc_smp_resp(size);
1956         if (!smp_resp)
1957                 goto out;
1958         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1959                                smp_resp, size);
1960         if (!res) {
1961                 memcpy(buf, smp_resp, size);
1962                 res = size;
1963         }
1964
1965         kfree(smp_resp);
1966 out:
1967         kfree(ex->smp_req);
1968         ex->smp_req = NULL;
1969         ex->smp_req_size = 0;
1970         ex->smp_portal_pid = -1;
1971         up(&ex->smp_sema);
1972         return res;
1973 }
1974 #endif